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I. Prefatory Notes

1. Matrix multiplication. Teacher, help your grade scholar master the multiplication of 2x2
matrices outlined below and then encourage hem to invent a few 2x2 matrices to exercise on. Try
3x3, 2x3, and other n x m matrices as well. A grade scholar who enjoys calculating will like
this work for a while and will appreciate all the more the revelations later in these Notes of what
matrices mean and how they can be applied.

Polynomials in Week iii add and subtract in fairly straightforward ways. They become more
intriguing when multiplied, divided and factored. In these Notes we look at a quite different
assemblage of numbers, the matriz.

A matrix is a rectangular array of numbers. We will focus on 2x2, square rectangles.

Here are two 2x2 matrices multiplied together.

4 5 y 12 3\ (73 32
3 12 5 4 )  \ 96 57
Here is how we get this answer.

4 5 12 3\ [ 4x1245x5 4x3+5x4
312 )70 5 4 )7 3%x124+412x5 3x3+12x4

A picture will help even more.
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Copyright for components of this work owned by others than T. H. Merrett must be honoured. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or fee. Request permission to republish from: T. H. Merrett, School of Computer Science,
McGill University, fax 514 398 3883. The author gratefully acknowledges support from the taxpayers of Québec and
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Matrix multiplication is not necessarily commutative.
12 3 o 4 5\ (57 96
5 4 3 12 )  \ 32 73
2. Vectors. Matrices do not have to be square. Here are two rather special 2x1 matrices.
1 0
(o) (1)
Using the matrix multiplication rule
4 5 « 1y [ 4
3 12 0) \3
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(2 3)<(0)-(3)

2x1 matrices are called vectors. (So are 1x2 matrices.)

(o) ()

are special because any other vector can be made up from them.
T 1 0

(3) = (o) e (V)
4 1 0

(3) (o) v (V)

This introduces two new operations on matrices: scalar multiplication and addition, both easy.

> (1)=(5)
(1)+(5)=(5)

3. Identity matrix. Notice how the first multiplication in Note 2 “selects” the first column of the
matrix, and the second multiplication “selects” the second column.

The two vectors

For example,

Scalar multiplication

Addition

We can actually lump together these two multiplications.
4 5 « 10\ (4 5
3 12 0 1) \ 3 12
10 o 4 5\ (4 5
0 1 3 12 )\ 3 12

So we have a special square matrix, called the identity.

(o)

The identity matrix plays the same role in matrix multiplication that 1 does in number multipli-
cation.

And, swapped

4. Matrix inverse. Given a matrix, what matrix multiplied by it gives the identity? This will be
the inverse of the given matrix.

A fairly simple rule gives the inverse for a 2x2 matrix. The rule starts: Swap the diagonal elements
and change the signs of the off-diagonal elements.

Try
4 5 « 12 =5\ (33 0
3 12 -3 4 ) 0 33



This is almost the identity: we must just divide by 33.

Before we say what this 33 is, notice carefully just why the swap and the sign change give the
off-diagonal zeroes in the result.

Try multiplying the two diagonal elements of the original matrix, then subtracting the product of
the off-diagonal elements. This is called the determinant of the 2x2 matrix and in this case it is

33.
12 =5
-3 4

(4 5)>< _(1 0)
3 12 4x12—-5x3 \0 1

So the rest of the inversion rule is: Divide the new matrix by the determinant of the original matrix.
Now you have the inverse of the original.

The convention is to use an exponent —1 to signify the inverse.

(32)<(s2) =(a )

We do not usually talk about matrix division because the important operation is inversion, and
inversion is enough to give us division.

12 3\ (4 5 1 /135/33 —48/33
5 4 3 12 - 48/33 —9/33
is what we would mean if we could say
12 3\ . (4 5\ _ (135/33 —48/33
54 )\ 3 12 ) 48/33  —9/33
(By the way, the matrix we got here is in a special class: the off-diagonal element(s) above the

diagonal differ only in their sign from their counterpart(s) below the diagonal. Can you see why
this result had to turn out this way?)

If its determinant is zero, a matrix is not invertible. (Why?). Such a matrix is called singular.
Singular matrices play the role in matrix “division” that 0 plays in number division. But note that
there will be more than one singular matrix.

5. Vectors in space. Now let’s see what all these matrices and their strange operations might
mean and might be useful for.

We start with vectors, specifically the “column vectors” (2x1 matrices) we have been using. These
are just pairs of numbers, and so are useful for working with two-dimensional space.

Here is a view from the ceiling of a classroom with a floor tiled with large dark and light linoleum
tiles, and of the six people currently in the classroom. (It’s not that they are all looking at the
ceiling and not paying attention, but that I couldn’t draw both the floor and the faces of the people
at their desks in any other way.)
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Everybody’s name (one letter each) is also shown, and so are their positions (two numbers—a
vector—each).

Positions must be measured from some starting point, and by convention they are all measured
from the origin, the point (0,0).

So we had to show the origin and, for symmetry, it appears in the centre of the picture. It could
be anywhere else, such as the bottom left-hand corner (a frequent scientific convention) or the top
left-hand corner (the usual computer graphics convention) or somewhere completely outside the
picture.

Wherever it has been put, the origin is the point of reference for all positions, hence its name.

Putting the origin at the centre of the picture allows us to show negative numbers on the same
footing as positive.

Note how “M” is positioned 3 tile widths right of “E” (who happens to be sitting at the origin)
and 2 tile heights above. So these two numbers form the two components of the position of “M”.

“L” on the other hand is directly opposite “M” relative to the origin. By convention (again) right-
wards and upwards are indicated by positive numbers and leftwards and downwards by negative.
So “L”’s position consists of two numbers which are the respective negatives of “M”’s numbers, —3
and —2.

Vectors can be written either horizontally as 1x2 matrices or vertically as 2x1 matrices. It was
convenient to write them horizontally in the picture but in the text we will stick to column vectors.
These are more common than row vectors, and I myself have some trouble with left and right which
I do not have with top and bottom. It is important to distinguish the first from the second element
since the first element of a vector conventionally describes the left-right direction in space while the
second describes the up-down direction. In row vectors the first element is the left one. In column



vectors it is the top one.

Here are the vectors corresponding to the positions of the six people in the classroom. One other
vector is added because we do not have anybody seated at the position given by the second special
vector.

() ()¢ () () (2 ¢

These seven vectors can also be lumped into a single 2x7 matrix.
010 3 2 -3 3
100 -1 -1 -2 2

6. Positions and intervals. So far the vectors just stand for positions in space. They can also
stand for intervals.

For example, the interval from “A” to “N” is N — A:

(1)-(4)=(o)

Note that this is the same vector as the position of “J”.

So vectors representing intervals also represent them relative to the origin: they don’t start at the
first position.

We would really need four numbers to give both the interval and its starting point. But we already
have these four numbers in the two vectors N and A. So it is economical just to take the two
numbers in N — A as the interval. But this can be a confusing convention and takes getting used
to.

A similar convention also holds when we interpret ordinary numbers as positions along a line (such
as the Celcius temperature scale) or as intervals on the line (such as how much the temperature
went up today (positive interval) or down last night (negative interval)).

Thus we can interpret addition and subtraction of vectors. Two vectors representing positions
can be subtracted to give the vector representing the interval between. Two vectors representing
position and interval respectively can be added to give the new position (again a vector) that is
the given interval away from the first position.

7. Transforming space. How can we interpret multiplication? By the rule for matrix multiplication
we cannot multiply two vectors (except only if the first is a row vector and the second a column
vector, but we are sticking to column vectors): why?

So we must return to multiplying 2x2 matrices and column vectors.

Recall from Note 2 that the two special column vectors “select” the two columns of the matrix
when multiplied by the matrix. But these special vectors just describe the intervals of one step
(tile) rightward and one step upward in the classroom space. So we can easily read the effect of
multiplying these special vectors by the matrix.

For an example, I'm going to modify the matrix a little from

4 5

3 12
by dividing the first column by 5 and the second by 13. (What is special about the triplets 3,4,5
and 5,12,137 The answer may give a hint about why I am making this change, but it will not



become clear until Week 2.)
4/5  5/13\ [ 0.8 0.38
3/5 12/13 ) — \ 0.6 0.92

Here is the effect of this matrix on the left-right unit vector (a “unit” vector has length 1)

(05 092 )% (0)=(55)

and here is the effect on the up-down unit vector

0.8 0.38 « 0\ (038

0.6 0.92 1) 092
and we see that multiplying by the matrix has had the effect of bending the left-right unit vector
upwards to a new vector, and bending the up-down unit vector rightwards to another new vector.

0
(o

1
0 1)
Vs 0

The red arrows show the changes to the special vectors.

Recall also from Note 2 that any vector is a combination of the two special vectors. So any vector
is part left-right unit vector and part up-down unit vector. The left-right part will be bent by the
matrix multiplication in the way we have just seen. The up-down part will be bent leftwards as we
also saw.

8. Rotations.

To turn, turn will be our delight,

Till by turning, turning we come round right.
Joseph Brackett (1797-1882)

Let’s look at this in a special case, the matrix
4/5 -3/5\ (08 —0.6
3/5 4/5 ) {06 0.8

Multiply every position in the classroom by this matrix and see where everybody moves to. (I'll
use the lumped vectors, the 2x7 matrix, to write this more compactly.)

0.8 —-0.6 « 010 3 2 -33\ (-6 8203 22 -12 12
0.6 08 100 -1 -1 =2 2 /) 8 6 01 04 —-34 34
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9. Shear. All rotation matrices have determinant 1. (Check this for Note 8.) We can find other
matrices which also have determinant 1.

An example is a shear matrix. The matrix we started with in Note 1 shears space as we saw in
Note 7: it squeezes it in one direction and lets it squirt out in another direction, like a toothpaste
tube. That matrix also does other things to the space so let’s see if we can purify the notion of
shear.

First, we can make the distortion symmetrical. This takes a “symmetric” matrix, such as
4/5 3/5\ (0.8 0.6
3/5 4/5 ) — \ 0.6 0.8

However, the determinant is no longer 1. (What is it?)

To get determinant 1 for the symmetric matrix

a b

b a
we need a? — b? = 1. This can also be done with a Pythagorean triple.
For example, (5/4)? — (3/4)? =1, so

5/4 3/4\ ([ 1.25 0.75
3/4 5/4 )~ \ 0.75 1.25
is a symmetric, det=1 matrix. We call such matrices (pure) “shear” matrices.

Here is the effect on the classroom space.
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10. Diagonalizing matrices. The shear matrix of the previous Note appears to stretch the space
in the direction half-way between the horizontal z and the vertical y axes. And it shrinks the space
in the direction half-way between the vertical y axis and the horizontal —x axis.

(1)ma (1)
respectively, we can see that the “stretch” is a doubling and the ”shrink” is a halving.
5/4 3/4 1 B 2\ 9 1
3/4 5/4 1 o 2 ) 1
5/4 3/4 -1 B -1/2\ _ 1/ -1
3/4 5/4 1 - 1/2 ) 9 1

This leads us to wonder if rotating the shear matrix could be thought of as producing a pure stretch
and a pure shrink in these new directions respectively.

In fact, calling these directions

Let’s look at the shear matrix S and the rotation matrix R formally. The effect of S on a vector v
is Sv, the product. Similarly the effect of R on v is Rv. Now let’s rotate the sheared vector.

R(Sv) = RSv = RSIv = RS(R'R)v = (RSR™')(Rv)

where I've supposed that R has an inverse R~' (Note 4). I've stuck in that inverse multiplied by
R because the product is the identity I and changes nothing. The reason I've done this is to find



out the effect of rotation on the matrix S.
This effect is that we can rotate the matrix S by multiplying: RSR™!.

We can see this by noting that R(Sv) is the the rotated result of the shear, and the “rotated shear”
is the effect of the shear on the rotated v, i.e., on Rv. And the math shows that this rotated shear
must be RSR™L.

Let’s try it. To rotate the x and y axes in the new directions
1 -1
(1)ma ()
1 1 -1
=i )

(I've divided everything by /2 because this matrix must be a rotation so its determinant must be
1. Or, ¢® + s? = 1: what are c and s in this case?)

Let’s do it.
_ 1 1 -1 5/4 3/4 1 1 1
1 _
mset = (0 ) (3 3 ) (o)

we need the matrix

S

-3 D )
- %(464 160/4>
- (% 2)

This rotation diagonalizes the matrix. It has the effect of transforming the axes to new axes along
which the shear becomes pure stretch and pure shrink respectively.
(There is a subtle reason why we should have done the transformation R~!'SR. Try this. Is the

[199%]

new “z’ axis stretched and the new “y” axie shrunk?)

11. Summary
(These notes show the trees. Try to see the forest!)

Matrix multiplication.
Vectors.

Identity matrix.
Matrix inverse.
Vectors in space.
Positions and intervals.
Transforming space.
Rotations.

Shear.

10. Diagonalization.

IT. The Excursions
You've seen lots of ideas. Now do something with them!

©C RN TR W

1. “Transpose” the operations in Note 2 by rewriting each 2x1 matrix as a 1x2 matrix. When
you transpose each matrix in a multiplication, note that the multiplication rule can no longer
work. So you must also exchange the two matrices. Try

(1 o)x(;L 12):(4 3)

10



Using these two ideas, rework all the matrix calculations in these Notes into their transposes.

(5 73)

4><12—5><3X<

. What is
4 5
3 12

. Are the following matrices singular?

2 4 2 6 2 8
1 2 1 3 1 4
What is the pattern? Do all singular matrices obey this pattern? Can any non-singular

matrix obey it? How does this pattern transform space? (Draw the effect on the two special
unit vectors.)

. What is the condition that the determinant of the antisymmetric matrix

a —b
b a
be 17 How can this be achieved by Pythagorean triples?

. a) Write down a rotation matrix based on the Pythagorean triple 5, 12, 13.

b) Multiply this both ways with the rotation matrix from Note 8: does matrix multiplication
“commute” for rotation matrices? (An operation, *, is commutative if a * b = b * a for any a
and b. In Note 1 we saw that matrix multiplication does not commute for arbitrary matrices.)
Why should rotation matrices commute?

c) What are the inverses of these rotation matrices?

d) What is the vector that is twice the angle from horizontal as that made by

4/5
3/5
What is the corresponding Pythagorean triple?

. a) Show that m? — n?,2mn and m? + n? is a Pythagorean triple for any two integers m and
n.

b) Write a MATLAB program to find all the Pythagorean triples up to m and n equal to
some given upper value.

¢) Run your program, say for m and n up to 9. How many of the triples you get are not
multiples of some other triples in your list?

. Suppose the class in Note 5 is all sitting around a table with corners

(5)L5) 0758 )m(75)

a) Show that the effect of
4 -3
3 4

on the (black) table is the new blue table in

11



b) Confirm that points along the black lines, such as

(6)(5)-(70)(5)

and not just the corners, map to corresponding points on the blue lines.
¢) What matrix gives the new red table shown above?

d) Do the same for
3 —4
4 3

12



(2

e) This rotates through a larger angle. What matrix would rotate through the still larger
angle of 90 degrees?

f) Note that the rotation in (d) maps one corner of the table to another corner (and the same
for their negatives or “opposites”). Find a rotation matrix which maps the whole table into
itself, by mapping each corner into its opposite corner. What matrix just leaves the table
alone by mapping every corner back into itself?

g) The two different matrices you have found in (f) are the symmetry rotations of the table.
If the table were square, it would have two more symmetry rotations: can you find them?
h) Can you find two more matrices which reflect (i) the top of the rectangle into the bottom
and (ii) the left side of the rectangle into the right side? These are also symmetry operations:
they also map the rectangle onto itself.

. What are the determinants of the two matrices in the previous excursion which map the
black tables into the blue tables? By what factor(s) do the areas of the tables increase by
these mappings? By what factor(s) do the linear dimensions of the table increase? Why does
dividing the matrix by 5 make the determinant 17 What would happen in three dimensions?

13



9. Cosine and sine. a) For angles a of 0, 90, 180 and 270 degrees calculate the values for ¢
and s in the table.

1T cosine C

aljc s G - & o
o170 B .

90 0 0 90 180 270 360

180|-1 0 . s sine

270| 0 -1 L } ‘o

360/ 1 0 T > >

_ S

Confirm that ¢ and s plot as shown as a function of the angle «.

b) What we’ve been calling ¢ and s are short for “cosine” and “sine” respectively. These
depend on the angle o and are usually written cos(a) and sin(a) respectively. Add to the
table and to the plots the values for cos(45) and sin(45): note that they must be equal and
that the sum of their squares must be 1.

cos(45) = sin(45) cos?(45) + sin?(45) = 1

(In the table write the exact values. Calculate these to one decimal place for the plots.) What
about a = 135, 225 and 315 degrees? (Watch the signs!)

¢) Now add the values of ¢ and s for o = 30, 60, 120, 150, 210, 240, 300 and 330 degrees. Note
that a 30-60-90-degree triangle is half of an equilateral triangle: show that with hypotenuse
1 the two other sides are 1/2 and v/3/2.

d) What are cos(45—30) and sin(45—30)? This will give you the values for ¢ and s for «
= 15, 75, 105, 165, 195, 255, 285 and 345 degrees. Hint: if you rotate by 45 degrees then
counter-rotate by 30 degrees, you must get a net rotation of 45—30 = 15 degrees.

()-8 )
(£70)
(52

gives the rotation through zero degrees, so that the second is the counter-rotation to the first.
How does this relate to the inverse in Note 47
Then show that the rotation which is the combination of two rotations is

¢ =5\ C —-S\ _[cC—-=s8 —(sC+cS)
5 ¢ S C ) \ sCHcS cC —sS
e) What are ¢z = cos(2a) and sy = sin(2«) in terms of ¢ = cos(a) and s = sin(a)?
f) Comparing waves. Cos(t) and sin(¢) both make waves when plotted against ¢. You can

compare them in two ways. First. plot them both against ¢t. Second, plot them against each
other. This makes a circle, generated counterclockwise as ¢ increases.

i.e., following the rotation

by the rotation

14



cosine vs sine: phase

cosine vs sine: waves

C 05
N \
-1 % 0 g
0 2 4 6
t
Ccos -0.5

sin

-1
-1 -0.5 0 0.5 1
cos

Use the table above and your additional calculations to confirm the circle and its direction.
g) Show that sin(¢) = cos(t — 90), measuring angles in degrees. Confirm the following wave
comparisons. Note the change of direction of rotation as the added constant angle changes
sign.

7
£

<] — cos(t)
—é —— cos(t-90) OK "
0 5 1
-1 0
1
cos(t)
—é cos(t-45) 0 /s
0 5 1
-1 0 1
1
cos(t)
—ém cos(t+0) 0
0 5 .
-1 0 1
1
cos(t) (
—é — cos(t+45) 0 /
0 5 1
-1 0 1
1
7 cos(t) [ i
—é cos(t+90) 0
ENCEE

What happens if you continue the added angle from 490 all the way around to —90 degrees?
What happens if you compare sin(t) with sin(t + «) for various constant angles a?

The angle « is called the “phase difference” between the two.

h) Use (d) above to show that, if p* + ¢* = 1,

peos(t) + gsin(t) = cos(t+ «)
= sin(t + 3)

15



with cos(a)) = p, sin(a) = —q, cos(3) = ¢q and sin(3) = p. Hence verify the following “vector”
representation of a combination of sin() and cos().

C
fofed=1 0 sB=ct)
p cos(t) + g sin(t)

= cos(t ) —a P

= sin(t +) B

cos@) =p, sin@)-= q

L iR — ¢ s(t+B)= c(t +a)
cosB) =q, sin(B)= p o
\%s(t)

The small diagram underneath says that the whole system of sin(¢), cos(t) and cos(t + «)
= sin(t 4+ () rotates as t increases while preserving the relationship among the three lines.
Note that sin() is the horizontal axis and cos() the vertical: cos(t) “leads” sin(¢) during this
rotation, or sin(t) “lags” cos(t). Explain how cos(t + «) = sin(t + ) leads and lags sin(¢) and
cos(t), respectively.

g) Express a cos(t) + bsin(t) in terms of phase-changed cos() or sin() when r = v/a2 + b2 # 1.
h) Write a MATLAB program to compare cos(t) and cos(w X ¢t + «) for multiplier w and
phase difference a. Try it with w simple integers such as 2 or 3 and then simple fractions
such as 1/2 or 2/3. Start with o = 90 degrees, then get more adventurous. (Be careful to
run it far enough to show the whole picture: rat(w,0.1) is a useful MATLAB function.
Here is a simple call, cosVScosWalpha(2,90)

cosVScosWalpha: phase

1
cosVScosWalpha: waves /
! 0.5
0

cos(t) -0.5
cos(2*t+90)

-1 -0.5 0 0.5 1
cos(t)

16



10. 2-dimensional numbers: a digression from matrices. a) The rotation matrices in Note
8 and in the previous excursion have the form

(2 7)

where ¢ and s are numbers such that ¢ + s2 = 1. Check that this true for the two matrices
that map black rectangles into red rectangles in the previous excursion.
b) Using matrix addition (Note 2), show that the above can be written

(e 72)=(52)+ (%)

Then, using scalar multiplication (Note 2), show that it can further be written

(2 )= v) (Y )

¢) These are special matrices. What happens when

(07)

is multiplied by any 2 x 2 matrix (or any 2 x 1 vector)? What happens when

0 -1

1 0
is multiplied by any 2 x 1 vector? (Try it first on the two special “unit” vectors of Notes 2
and 7.)
Why is the first matrix usualy called the identity matrix (Note 3.)? It is usually given the
special name I. And let’s give the second matrix the special name 1.

So we can write the rotation as
cl + st

d) Rotation matrices behave just like ordinary numbers. They commute when multiplied by
each other, which matrices in general do not do. So in principle we could treat I and i as
numbers (which ¢ and s already are). I, as a number, acts just like 1, so we can now write
the rotation

c+ st

or, more conventionally, as
c+1is

e) But the 7 thing is very weird. As we saw in (c) ¢ rotates through 90 degrees, a right
angle. But numbers are 1-dimensional, along a line from —oo to co. How can they be rotated
through a right angle?

Well, they can if we think that ¢ introduces a second dimension.

We can say i stands for “imagine that!”.

And so we can imagine 2-dimensional numbers that obey all the arithmetic laws that regular
“l-dimensional” numbers do.

f) Practice this by multiplying the matrices

c =s\, C =S\ _[cC—5s5 —(sC+cS)
S c S C ) \sC+cS cC — sS

17



11.

12.

13.

14.

and comparing it with the corresponding multiplication of 2-dimensional numbers

(c+is) x (C+iS) = cC+isiS+i(sC + cS)
= cC —s5+i(sC+cS)

Does the result say the same thing in both cases?

g) “But, wait!” you say. “How did isiS become —sS57”

Well, isiS = iisS = i?sS by commutativity of number multiplication. So we just need to
know what i?> means.

Well, multiplying by ¢ means rotating through a right angle. So multiplying by ¢ again means
rotating through a second right angle. Two right angles make 180 degrees.

Now think of the 1-dimensional number line. If I rotated it by 180 degrees, I would map 1
into —1, —1 into 1, and every other number into its negative. That is, rotating through two
right angles just changes the sign of any 1-dimensional number. So i? = —1.

h) Practice comparing matrix rotations and 2-dimensional number rotations for specific
Pythagorean triples, e.g., ¢ = 4/5 and s = 3/5 as in Note 7. Every time you come up
with an i just replace it by —1.

Three-dimensional rotations. Since a rotation is always in a plane (2 dimensions), writing
rotations in three dimensions is not in principle harder than in two. Only there will be different
rotations in different planes. We can look at basic rotations in the zy, yz and zx planes. Each
will leave one direction invariant, so corresponding to that direction there will be a diagonal
1 in the now 3-by-3 matrix.

c —S 1 c s
Ryy=1s ¢ R, = c —s R, = 1
1 s c —8 c

Show that R,.R., # Ry R,. for a 90-degree angle a) by matrix multiplication and b) by
performing these two rotations in the different orders on some unsymmetrical 3-D object
such as a chair.

c) What would R, look like in four dimensions? How many different basic 4-dimensional
rotations can there be? (How many ways can two dimensions be chosen from among the
four?)

Calculate the effect of the first symmetric matrix of Note 9 on the seven vectors of the
classroom in Note 8 and compare this with the shear matrix by drawing the transformed
space.

a) Write down a shear matrix based on the Pythagorean triple 5, 12, 13.

b) Multiply this both ways with the shear matrix from Note 9: does matrix multiplication
commute for shear matrices?

c) What are the inverses of these shear matrices?

d) What are the invariant vectors of your new shear matrix?

(53)

applied to the table the class is all sitting around gives the distorted blue table in

a) Show that the matrix
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15.

16.

b) Find the shear matrix that gives the distorted red table.

0 1 -1 0 0 1 1 -1 -1

0 0 0 1 -1 1 -1 -1 1
transform under the shear matrix of Note 97 Draw the new space.
b) Which of these vectors are appropriately called “invariant” vectors of the matrix?

a) How do

Rotations and shears have so far been discussed for two-dimensional space and I’ve labelled
the axes = and y.

We can also consider shear in timespace with the axes labelled ¢ for time and s for space.
What connects time and space is velocity. If we travel, time becomes space: travel twice as
fast and the same time allows us to cover twice the distance.

Here are three different velocities in timespace.
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1 sec. 2 sec.

If we travel at 1 m/sec it takes us 1 sec to go 1 m; if we travel at 1/2 m/sec it takes us 2 sec
to go 1 m; if we travel at 1/4 m/sec then we need 4 sec to go that 1 m.
A shear transformation is called a boost in timespace. Let’s look at

(94 %)

1 2
(1)e(3)
1 13/8
(12 ) (315
1 . 23/16
1/4 )"\ 17/16
and so moves the velocity lines passing through the first of each of these pairs of points to
the dashed velocity lines passing through the second of each pair.

Show that this moves

20



(When we are interested only in velocities, why does it not matter where on the lines the

points lie?)

4 Iightsec.S //S' 2,
Q Y
<5/4 3/ e
3/4 5/ {7
3 lightsec 1
2 lightsec A q4F A2
1 lightsec A
L L L T T T t
2 1 sec. 2 sec.

Interpret the changes in the lines as “boosts” in the velocities. The lowest velocity, 1/4, gets
the biggest boost, to 17/23. The middle velocity, 1/2, gets not quite so big a boost, to 11/13.
The highest velocity, 1, stays exactly the same.

If we measure the space units not in meters but in light-seconds, v = 1 corresponds to
lightspeed. Einstein said nothing can go faster than light. We have just seen the mathematics
behind that. Boosts correspond to accelerations and nothing can accelerate lightspeed because
the v = 1 line is an invariant line of the boost (shear) transformation: see previous Excursion.

17. Reflections, etc. a) What do the matrices

10
= (o)

0 1
o= (10)

do to an z-y-space such as the classroom?
b) Show that any 2-by-2 shear matrix of the sort discussed in Note 9 is a combination of the
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identity matrix I and F7,
S =al +bly,

What restriction must we assume on the relationship between a and b to get the kinds of
shear in Note 97

c¢) Show that any 2-by-2 matrix is a combination of I, the 90-degree rotation matrix Rgg, Fy
and Fy

( v ) = al + BRgo + Fyy + 0F,
What are «, 8, and § in terms of a, b, c and d?

18. Draw the classroom of Note 8, or the class table of previous excursions, as transformed by
any of the 2x2 matrices discussed in these Notes or that you have invented yourself.

19. The “MAT” in the MATLAB programming language stands for matrices. The TI81 calculator
and its successors can also do matrix operations. Learn how to use these or equivalent software
to check the calculations in these Notes and your own exercises.

20. Symmetry. a) Draw a rectangle with corners labelled a, b, ¢ and d at points

2 2 -2 -2
() (5) (7)) ma(2)
respectively. What effect do the matrices
10 -1 0
(o ¥)ma (70 )

have on the rectangle? On a, b, c and d? Is it appropriate to call these matrices, respec-

tively, R() and ngo?
-1 0 10
(o t)mao )

What effect do the matrices

have on the rectangle? On a, b, c and d? Is it appropriate to call these matrices, respec-
tively, Iy, and Fp?

b) Multiply each of these four matrices by every other one, and confirm the matrix “multi-
plication table”

< o) (o) (Gon) (o )
o) T Gon) (o) (o) (o )
(o ) (o) (6v) (o1) (o

-1 0 10 1 0 10 -1 0
0 1 0 1 0 —1 01 0 -1
1 0 -1 0 -1 0 10
0 —1 0 1 0 -1 01
c¢) To see the pattern in this, rewrite it using the names I gave above instead of the matrices

themselves. Here is how it should come out: I've replaced Rigp by just R and Ry by I for the
“identity” matrix.
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21.

x| I R F, F
T|I R F T
R|R I F, F,
F,|F, F, I R
F,|F, F, R I

This set of four operators (which we initially wrote as matrices) forms a group, a mathematical
construct which has a multiplication table such as above, with a) only the original operators
from the top row and first column appear in the body of the table—i.e., multiplying group
elements keeps within the group, and b) each column and each row has no repeating operators.
(A precise characterization of groups is given in Book 8c Note 4.) The group of the rectangle
is the set of four operators that transform any rectangle into itself. These are the symmetry
operators of the rectangle.

d) Find the eight matrices that make up the group of the square, give them appropriate
symbols or short names, and write down their multiplication table. Notice that the group of
the rectangle is a subgroup of the group of the square. What does this mean? Does a square
have more symmetries than a rectangle?

Is there a subgroup within the group of the rectangle?

Projection and reflection. a) Why is the matrix

p=ear(s)=(5 3)

called a projection matrix? Try transforming any vector with it

P(i):?

b) Suppose the solid blue line in the figure (at angle [3) is reflected in the red line (at angle
«) to produce the dashed blue line. Show that the angle of this reflected line is 2o — S.
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22.

c) Call the reflection matrix that transforms the blue line into the dashed blue line F. Why
does P = (I + F)/2?
d) From this, show that the matrix that reflects the 2-D space in a mirror with orientation

c
s
2 — g2 2cs
F= ( 2cs 52 —c? )
o[ 2 52
S22 C2
cg —s2\ [ ¢ —s c —s
82 cas ) \s c s c

(We say that cy is the cosine of twice the angle that ¢ is cosine of and s is sine of, and sy is
sine of twice this same angle. See part (e) of the excursion above on “Cosine and sine” for
combined rotations.)

f) Incidentally, if the red line has orientation

must be

e) Show that therefore

where the double rotation

Sl
7~ N
=N
N———

and the blue line has orientation 1/ 3
:(1)

show that the reflected (dashed blue) line has orientation

1 < 24 >

25\ 7
Diagonalizing matrices. Here is a formal way to find the directions which diagonalize
any matrix, and also to find the values on the final diagonal. The directions are called
“eigenvectors” and the diagonal values “eigenvalues”, from the German word “eigen” meaning
“own” or “proper”.
For a matrix A suppose v is an eigenvector:

Av =X

That is, A operating on v preserves the direction of v, which is to say, gives a multiple A of
v: A is the corresponding eigenvalue.
We can rewrite this

(A= X)v=0

where I is the identity and “0” in this context means the “zero” vector of all zeros.
Unlike ordinary arithmetic, this equation does not mean that v (or A — AI) must be zero.
But it does mean that the determinant (Note 4) is:

det(A — ) =0
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For 2x2 matrices A and I this gives the quadratic equation
A2 — traceA + detA = 0

We know what determinants are. The trace of a matrix is just the sum of its diagonal elements.
a) Show that this is true for an arbitrary 2x2 matrix

= (1 5)

b) Work out and solve the quadratic equation for the shear matrix of Notes 9 and 10
5/4 3/4
3/4 5/4
(If you don’t yet know how to solve a quadratic, try substituting first one then the other of
the two diagonal values we got in Note 10: A =2 and A = 1/2.)
¢) What happens if we start to diagonalize a rotation matrix in this way?
After we find the eigenvalues, the next step is to find the eigenvectors. Let’s do this by

example for the shear matrix. Call either of the eigenvalues we just found A and try to find

the components of v which make
(A= X)v=0

5/4 3/4 9 1 V1
3/4 5/4 1 (%)
5/4 -2 3/4 U1
3/4 5/4 -2 ()
—3/4 3/4 (%]
3/4 —3/4 (%)
—vU1 + V2
vl — vy
So vo = vy in both terms. We can set both = 1, or, to “normalize” the eigenvector so it has
unit length, we can set both to 1/v/2.
d) Repeat this for the second eigenvalue A = 1/2 for the shear matrix example, and confirm

that the resulting eigenvector is what we had in Note 10.
Not every matrix can be diagonalized. Here is a family of 2x2 matrices, for any a,b or c,

which cannot.
A - c—a b
~\ —-d®/b c+a

e) Using the eigenvalue procedure (leading up to (a) and (b) above) show that the two
eigenvalues are the same, each c.
Although these matrices cannot be exactly diagonalized, they can be almost diagonalized, to

(i)

which is called “Jordan canonical form”.
Let’s see this, by finding the “eigenvectors”, the columns P, and P, of the matrix P. This

For instance

7N
o O

) - |
-
|
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time we will write P~ AP with the inverse first.

PlAP = J

AP = PJ
c—a b c 0
—(12/b c+a [PhPQ] - [PhPQ] 1 ¢
= [CPl + PQ, CPQ]

So P, behaves normally and we can solve for it.
=0

c—a b B 1 D _

—a?/b c+a ¢ 1 q -

and you can show ¢’ = pa/b.
But P, is different and is called a “generalized eigenvector”.

(A - CI)Pl = P2
and so we must take an extra step.

() - ()
) -

and you can show that there is no restriction on ¢ or r.

So
_ ([ 4 p
P_<T pa/b>

f) Now for this example, find the product P~'AP and by comparing it to J find the final
relation on the p,q,r making up P, namely p = br — aq. How did we happen to miss this
equation in finding the generalized eigenvectors?

g) Show that the equality of the eigenvalues and the presence of the 0 in J are essential by
tweaking J in two different ways. First try

c+e O
1 c
and show that this diagonalizes exactly, with eigenvalues ¢ 4+ € and c¢. Then try
c €
1 ¢
and show that this diagonalizes exactly, with eigenvalues ¢ 4 /€. Since € can be arbitrarily

small in each case, what does this say about calculating with J on computer?
h) J in the slightly different guise
10
o=(u 1)
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23.

(dividing by ¢ and supposing v = 1/c¢) is called the Galilean transformation and connects
time and space via velocity v. Figure out how this works. Hint: if you start at s and travel
at velocity v for time ¢ you arrive at s 4+ vt. Einstein disagreed with Galileo and replaced G
by a shear transformation

1 1 v
L=——
Vi—oZ\v 1
Show that this also has determinant 1. Thus “space math” becomes “timespace math”.

Array addressing. When a matrix is stored on a computer or calculator its elements must
be stored in a memory which is organized with only one index giving each address, not the
two indices that the matrix uses.

Thus th tri
us the matrix might be stored as

3 0 3 -4 0 1
-4 1
Here, the mapping from the indices is to the addresses
11 12 13
21 22 2 4

or, since you’'ll see that it is much handier to start everything at zero,
it is the mapping from the indices to the addresses

00 01 0 2
10 11 1 3

If the row index is j and the column index is k, show that the address is

a=j+2k
and, for an m-by-n matrix
a=j7+mxk

Here are the addresses for a 3-by-4

J

0j0 3 6 9

111 4 7 10

212 5 8 11

|01 2 3 &k

a) Use the address formula to check that it generates the 3-by-4 addresses shown above, and
convince yourself that it will work for any m-by-n matrix.

b) Matrices are a special case of arrays in a programming language: an m-by-n matrix is
called an m-by-n array. But we could also have 3-dimensional arrays, say, m-by-n-by-p, or
4-dimensional arrays, say m-by-n-by-p-by-¢q, and so on.

For m = 4,n = 3 and p = 1, calculate all the 3-D addresses given by the formula

a=j+mxk+msnx/{

where £ is the third index, running from 0 to p — 1.

c¢) The formula a = j + m * k is one of two possibilities for 2-D arrays, both working in the
same general way. This one is said to store the array in “row-major” order. What is the
formula that will store a 2-D array in “column-major” order?

How many different addressing possibilities are there in 3-D? 4-D?
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24. Simplex arrays. Extending the previous Excursion, what if we wanted to store a triangular
matrix? For example, a symmetric matrix could be stored in half the space if we did not
store the (7, k) element as well as the (k,j) element.

54 39
4 5 6 3
3 6 4 5
9 3 5 4
could just as well be stored as
5 4 39
5 6 3
4 5
4
Here is a way of addressing it
k
010 1 3 6
1 2 4 7
2 5 8
3 9
01 2 3 j
a) Show that
a=k + Aj

generates all these addresses, still starting all our counts from 0. (A is the kth triangular
number: see Notes 1 and 2 of Week 1i.)

Note that this formula does not need to know the overall size of the matrix.

What can you say about the addresses in the top row, above?

b) For a 4-by-4-by-4 array, calculate all the addresses generated by

azE—i—Ak—i—@jl

being careful in what order you write down the result: try j horizontal and k vertical for
£ = 0, then ditto for £ =1 and so on.

What can you say now about the addresses in the top row when k =0 = £7

c¢) In the 4-by-4 example, check that k& < j always. What is the corresponding relationship
among the indices j,k and ¢ in the 4-by-4-by-4 example? What must we do to look up an
element (of the symmetric matrix so stored) whose indices do not satisfy these constraints,
e.g., element j, k=217

d) How does all this discussion generalize to a “simplex array’

” of any number of dimensions?

25. Any part of the Preliminary Notes that needs working through.
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