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Part I. Electrostatics and Electromagnetism

1. Central Forces.

2. Gravity vs. Electricity.

3. Energy and momentum scales.

4. Divergence, gradient and ~div ~grad.

5. Electrodynamics departs from gravitation.

6. Invariants, cross-products and convention.

7. Electromagnetic waves.

Part II. Partial Slope Equations and Quantum Mechanics

8. Partial Slope Equations: Laplace’s Equation.

9. The Wave Equation.

10. The Schrödinger Equation I: Physics.

11. The Schrödinger Equation II: Animating in 1D.

12. The Schrödinger Equation III: Animating in 2D.

I. Prefatory Notes

13. The electromagnetic Schrödinger equation. In Note 5 we found that electromagnetism
introduces a potential momentum M as well as the potential energy P . This suggests that the
Schrödinger equation of Note 10

ih̄∂tu = − h̄2

2m
∂2

xu + V u

based on the equation of motion

E =
p2

2m
+ V
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should become

ih̄∂tu1 =
1

2m
(−ih̄∂x + M)2u1 + (V + P )u1

by including M with the momentum −ih̄∂x and P with the potential energy V due to non-
electromagnetic causes (if any).

This is more difficult to solve than Schrödinger’s equation, but there is a trick.

Suppose
u = u1e

iβ

for some phase factor β(t, x, y, z) which depends on timespace and thus has slopes

κα = ∂αβ α = t, x, y, z

Then

−ih̄∂xu = −ih̄∂x(u1e
iβ)

= −ih̄(eiβ∂xu1 + ieiβu1∂xβ)

= (−ih̄∂xu1 + h̄κxu1)e
iβ

and similarly for −ih̄∂yu and −ih̄∂zu, and in particular,

ih̄∂tu = (ih̄∂tu1 − h̄κtu1)e
iβ

We need the spatial slopes squared and we can go at these from two directions.

(−ih̄∂x)2u = −ih̄∂x(−ih̄∂xu1 + h̄κxu1)e
iβ

= (−h̄2∂2
xu1 − ih̄2∂x(κxu1) − ih̄2κx(∂xu1) + h̄2κ2

xu1)e
iβ

but

(−ih̄∂x + h̄κx)2u1 = (−ih̄∂x + h̄κx)(−ih̄∂xu1 + h̄κxu1)

= −h̄2∂2
xu1 − ih̄2∂x(κxu1) − ih̄2κx(∂xu1) + h̄2κ2

xu1

so these are almost the same thing

(−ih̄∂x)2u = (−ih̄∂x + h̄κx)2u1e
iβ

Putting them together in Schrödinger’s equation, which u satisfies (I’ve shown only the ∂2
x terms:

∂2
yand ∂2

z may be added)

ih̄∂tu1 − h̄κtu1 = (ih̄∂tu)e−iβ

= − h̄2

2m
(∂2

xu)e−iβ + V ue−iβ

=
1

2m
(−ih̄∂x + h̄κx)2u1 + V u1

or

ih̄∂tu1 =
1

2m
(−ih̄∂x + h̄κx)2u1 + (V + h̄κt)u1

This is the electromagnetic Schrödinger equation if we put

h̄∂tβ = h̄κt = P

h̄∂xβ = h̄κx = Mx

h̄∂yβ = h̄κy = My

h̄∂zβ = h̄κz = Mz
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So the solution to the electromagnetic Schrödinger equation is just an ordinary wavefunction u
multiplied by a phase factor β whose slopes are the electromagnetic potential energy and potential
momentum

u1 = ue−iβ

14. Simulating a charged wavepacket moving near a current. It is easy to modify free2dSchroeGauss()
from Note 12 to simulate a charged wavepacket moving near a wire.

1

x

y

x

wire

0

0

Here

P = 0

Mx = 0

Mz = 0

and from Note 5

My =
−2ECqI

c2
ln

r

a

where r =
√

x2 + y2 and where we can set a = 1 without changing the effect of the potential
momentum.

In this two-dimensional simulation z = 0, even though the formulas model the 3D physics.

In the simulation V = 0 but after each time step we increment the phase

β → β + ∂xβ∆x + ∂yβ∆y + ∂zβ∆z

= β +
My

h̄
∆y

(and note that β must be an array dependent on x). The starting value for β at time 0 does not
matter so we just set it to 0.

Here are three snapshots of running phase2dSchroeGauss(E,ws,v,ang,I) with the parameters E
= 2, v = ’3’, ang = π/2 having the same meaning as for free2dSchroeGauss() in Note 12 with
ws = ’w’ meaning we’re simulating a wire with a current, and I = 20 amperes.
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We can see the wavepacket drawn towards the wire at x = 0.5 and we can see that it is accelerating.

Here is another version, showing just the phase angles
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We can see the disturbance caused by the magnetic field of the wire.

A simple program showing the sum of phases, β−k0y, with β = Myy/h̄ (remembering My depends
on ln(x)) illustrates the bending of the wavefront towards the current in the wire at x = 0.5nm
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Note that the phase is shown modulo 2π. We can visualize the corresponding wavefront by taking
the sine of the phase plot. We can also imagine that the wavefront would be perpendicular to the
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y-direction of motion if current I = 0.

15. Links with geometry. In the simulation of Note 14 we stepped through the phases β at each
position of timespace (actually only the x coordinate matters in this example) in a way analogous
to the parallel transport described in Note 13 of Book 11c Part I where we traced out a geodesic
in curvilinear coordinates by moving a vector parallel to itself and appending it each step to the
current end of the geodesic.

We find another analogy in the electromagnetic Schödinger equation of Note 13. We could abbre-
viate (and again I’ve left the x and y terms for you to fill in)

ih̄∂tu1 − h̄κtu1 =
1

2m
(−ih̄∂x + h̄κx)2u1 + V u1

to

ih̄Dtu1 = − h̄2

2m
D2

xu1 + V u1

with
Dt = ∂t + iκt

and
Dx = ∂x + iκx

This imitates the absolute slope of Note 14 in Book 11c Part I. The role of the “affine connection”,
Γ (Note 12 of Book 11c) is here played by the 4-vector κ = M/h̄. In this context, we’ll call it the
inside connection: the phase whose slope is κ is internal to the particle but perceived as a field
which is external to it.

Since we have analogs for parallel transport and for the affine connection, what about curvature?
We can modify the argument of Note 17 of Book 11c—it actually becomes simpler. We move the
wavefunction u(t, x, y, z) around the same infinitesimal parallelogram, u(P ) to u(Q) to u(R) to
u(S), to see what the effect is.

b’

Q

Ra’

For Infinitesimal Parallelogram

P

S

b

a

This is a parallelogram in ordinary, flat, space: the “curvature” will not be a curvature in this
space but another tensor describing the effect of the electromagnetic field on the phase of the
wavefunction. So b′ = b and a′ = a, but it is useful to distinguish them for the moment.

To move the wavefunction from P to Q we need the transformation

u(Q) = U(a)u(P )

where

U(a) = e−i∆β

≈ 1 − i∆β

with ∆β the change from β(P ) to β(Q), which we make arbitrarily small, along the infinitesimal
displacement a. So, summed over the indices α

∆β = ∂αβ(P )aα = κα(P )aα
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and
U(a) ≈ 1 − iκα(P )aα

Similarly, to move from P to R

u(R) = U(b′)u(Q) = U(b′)U(a)u(P )

with

U(b′) = 1 − iκα(Q)b′α
= 1 − iκα(P )b′α − i∂µκα(P )b′αaµ

where we use the slope of κ(P ) to find κ(Q) from κ(P ).

Putting these together

U(b′)U(a) = (1 − iκα(P )b′α − i∂µκα(P )b′αaµ)(1 − iκν(P )aν)

≈ 1 − iκα(P )b′α − iκν(P )aν − i∂µκα(P )b′αaµ + κα(P )κν(P )b′αaν

keeping only terms at most quadratic in the infinitesimals a and b′.

That gets us from P to R via Q. We can also get from P to R via S, by just replacing a → b,
b′ → a′.

U(a′)U(b) = 1 − iκα(P )a′α − iκν(P )bν − i∂µκα(P )a′αbµ + κα(P )κν(P )a′αbν

The whole circuit from P back to P is the difference of these two. We can drop the (P ) after each
κ because they are all κ(P ). And we can now reduce a′ = a and b′ = b.

U(b′)U(a) − U(a′)U(b) = −i(∂µκα − ∂ακµ)aµbα + (κακµ − κµκα)aµbα

If κα and κµ commute (which they do for the electromagnetic field) this combined transformation
of u(P ) to u′(P ), having cycled around the parallelogram, is

U(b)U(a) − U(a)U(b) = −i(∂µκα − ∂ακµ)aµbα

=
−iq

h̄
(∂µAα − ∂αAµ)aµbα

where A = h̄
q
κ is the specific (charge-independent) potential energentum (for magnetism usually

called the vector potential).

The expression ∂µAα−∂αAµ looks like a curl, and in Note 6 we defined the magnetic field ~B = ~▽× ~A

and the electric field ~E = ~▽φ − ∂t
~A where φ = At.

Thus, for electromagnetism, we get

U(b)U(a) − U(a)U(b) =
iq

h̄
Fµαaµbα

where the Maxwell field tensor

F =









0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0








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This tensor is the analog of timespace curvature (general relativity) for the local connections of the
phase of the wavefunction (quantum electromagnetism).

We shall be considering more general fields, A, in which Aα and Aµ do not commute

[Aα, Aµ] 6= 0

Then the Maxwell tensor generalizes to

Fµα = ∂µAα − ∂αAµ − iq[Aµ, Aα]

16. Local action versus action-at-a-distance. The important insight of the derivation, in the
previous Note, of the Maxwell field tensor is that the argument is local, based on an infinitesimal
parallelogram. If we can keep our arguments local then we avoid action at a distance, just as
general relativity avoids Newtonian action at a distance for gravity.

The phase space of a wavefunction shows an important symmetry: we can add any constant phase
we like, provided that we do so everywhere in timespace.

u(t, x, y, z) → eibu(t, x, y, z)

for any angle b independent of t, x, y or z.

This is because uu∗ → eibuu∗e−ib = uu∗ and there is no difference in the physics, which always
depends on the probability uu∗ rather than the probability amplitude u.

But suppose we have a wavefunction stretching from here to Alpha Centari (which might happen
in some entangled communication system of the future). Adding b to the phase here requires us to
add b to the phase there and the simpleminded way of doing so must be action at a distance.

We must be more subtle. The slope of b is zero, because of the constancy. So if we connect here to
here-plus-an-infinitesimal using

b(here + ∆s) = b(here) + ∆s ∗ slope b = b(here)

then we have the first step. Many steps later we have

b(Alpha Centauri ) = b(here)

which is what we want, but propagated locally.

In the presence of an electromagnetic field A the slope of the phase β(t, x, y, z) is no longer zero. We
can still add any angle we like to the phase here but this angle will be propagated to neighbouring
points by the electromagnetic field

slope β = κ =
q

h̄
A

It is not hard to see, using the argument of Note 13, that if

u(t, x, y, z) → eiqλu(t, x, y, z)

where λ(t, x, y, z) is a function of timespace, then

Aµ → Aµ − ∂µλ

This is a classical condition on the vector potential: we can add to it the gradient of any field
without changing the physics at all.

The above argument can be reversed: if we make the wavefunction invariant under position-
dependent phase changes λ(t, x, y, z), then we get an electromagnetic field, which appears as the
“inside connection” in the “absolute slope”

Dµ = ∂µ +
iq

h̄
Aµ
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and which itself transforms under the phase change as

Aµ → Aµ − ∂µλ(t, x, y, z)

in this way, we derive a force, electromagnetism, from the condition of invariance under local
(position-dependent) phase changes.

Because the angle β in the slope equation

slope β =
q

h̄
A

allows an arbitrary constant, we can still add a constant phase angle everywhere to the wave
function. This invariance under what is thus an arbitrary rotation in the internal (phase) space of
the wavefunction constitutes a symmetry of the type described in Note 26 of Book 8c (Part III).

(The invariance under a position-dependent rotation, which gives rise to the electromagnetic field,
is called local. The invariance under position-independent rotation is called global. These terms are
misleading because the global invariance, arising from the arbitrary constant, is in a sense a special
case of local invariance. But see [FLS64a, Sect.27.a] and [FLS64b, Sect.21.2].)

17. Other symmetries, other forces. The symmetry of the “inside connection” of Notes 13 to
16, with its local, timespace-dependent phase factor, β(t, x, y, z), is known as U(1)—1-dimensional
unitary—because e−iβ describes the circumference of a unit circle in the space of 2D numbers. This
led in Note 16 to a variant of absolute slope which captures both external (the usual slope) and
internal (the slope of β) slopes

Dµ = ∂µ − ig1
Y

2
Bµ

I have changed notation to be more conventional: I’ve changed the sign of the phase β; I’ve changed
the name of the field from the electromagnetic Aµ to Bµ for reasons which will soon be clear; I’ve
changed the charge q to a combination of “hypercharge generator” Y and coupling constant g1;
and I’ve buried the h̄ but exposed a factor 1/2.

In Notes 32 and 33 of Book 8c (Part IV) we discussed more complicated symmetry groups, SU(2)
and SU(3), respectively. These are the two- and three-dimensional special unitary groups, based
respectively on 2-by-2 and 3-by-3 matrices with “special” referring to the restriction that the
determinants of those matrices are all +1.

SU(2) consists of all 2-by-2 unitary matrices with that determinant and can be generated by
2× 2− 1 = 3 basic matrices, which we can take to be the Pauli matrices—more precisely, 1/2× the
Pauli matrices—making SU(2) closely related to the rotation group, in fact a generalization of it.
(Here I anticipate Note 21 in Part IV of these Notes: you can come back to this discussion if you
like after reading Part IV.) The −1 in 2 × 2 − 1 = 3 reflects the loss of freedom imposed by the
restriction on the determinant.

SU(3) correspondingly has 3× 3− 1 = 8 generators which in Note 33 of Book 8c we took to be the
Gell’mann matrices—also with a factor 1/2.

Taking the electromagnetic inside connection to its empirical1 limit, we get two new types of force-
field, the “weak force” governed by SU(2) and the “strong force” governed by SU(3).

Dµ = ∂µ − ig1
Y

2
Bµ − ig2

fj

2
W j

µ − ig3
λk

2
Gk

µ

Here the gd are coupling constants to give the strengths of the fields, the numerators (over the
denominator 2) are the generators, and the final factor in each term is the field component. The
superscripts j and k appear in pairs and are summed over.

The g2 term contains three generators, which in Note 19 we will call fj, j = 1, 2, 3 for reflection,
and which are just the Pauli matrices.

1Not logical limit: the Standard Model does not know why these symmetries apply nor even if they are all.
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f1(fz) f2(fx) f3(fy)
(

1
−1

) (

1
1

) ( −i
i

)

And in Note 21 we will see that the 2-by-2 rotation generators are half of these: Jx = fx/2,
Jy = fy/2 and Jz = fz/2.

These 2-by-2 matrices imply a 2-state system analogous to spins: the electron and its neutrino are
examples of the two “states” of a more fundamental underlying “particle”, the electron “state”
corresponding, say, to spin-up, and the neutrino to spin-down. This explains the “spin” part of the
name “isospin” used for weak-force states; explaining the “iso” part is left as an Excursion.

So the weak force has three fields, W 1
µ , W 2

µ and W 3
µ , each a 4-vector just as the electromagnetic

field Aµ is a 4-vector. We will see in Note 25 that fields are particles: the weak-force fields are
spin-1 bosons, as too are the EM and strong-force fields. The W -bosons frequently appear in the
linear combinations

W+
µ = − 1√

2
(W 1

µ − iW 2
µ)

W−
µ = − 1√

2
(W 1

µ + iW 2
µ)

W 0
µ = W 3

µ

In the “electroweak” unified theory of electromagnetic and weak interactions, the EM field Aµ and
the Zµ boson are further linear combinations of Bµ and W 0

µ .

The strong force has eight fields, the “gluons” Gk
µ, k = 1, ...8.

The thinking I have collapsed into this Note so far, which unites the electromagnetic and nuclear
forces into a consequence of “inside connections”, took a good half-century (from 1919 into the
1970s) to develop, and deserves a name. It is known, unhelpfully, as gauge theory for historical
reasons. I thought of calling it WYMH theory after its primary developers, Hermann Weyl, C N
Yang, R Mills and Peter Higgs, but instead I’ll take Kane’s suggestion [Kan93, p.36] that it really
describes symmetries and invariants of the phase of the wave-function or quantum field, and call
it faze theory. The variant in spelling is to distinguish the theory from other important technical
uses of the word “phase”.

In principle, we need only extend ∂µ in the Lagrangian of a free particle with the inside connections
in order to arrive at the “Standard Model” of the three forces of particle physics, In practice there
are complications. The Standard Model is less a theory than a committee of theories,

An obvious complication is that each term in the expanded absolute slope is in a different mathe-
matical category. The gd term invokes a d-by-d matrix, so it must be reduced to the single number
that is the phase by pre- and post-multiplying by a d-dimensional vector. For the weak force, for
instance, the electron, e, and its neutrino, νe, can be regarded as components of a single, 2-vector,
state, (e, νe), and this and its conjugate would be the 2-component vectors.

A more serious practical complication has to do with the ranges of the weak and strong forces.
Both are short-range, for different reasons, as opposed to the long (infinite) ranges of gravity and
electromagnetism.

In Note 25 below, quantum field theory will teach us that the range of a force is governed by the
mass of its carrier particle. Electromagnetism, for instance, is carried by the photon, which is
massless and gives it infinite range.

To give the short range of the weak force, the carriers—the W bosons, for instance—must have
mass (and quite a lot of mass). Unfortunately, faze-theory bosons are obliged to be massless, so
this explanation stalled until the mechanism of the Higgs field was proposed to lend mass to the
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bosons, essentially by slowing them down. (We know from E2 − p2 = m2 that massless particles
must travel at lightspeed, and vice-versa, so slowing them down effectively imparts mass.)

The symmetry of the inside connection must also be broken2, and the Higgs mechanism does this,
too, by an effect discovered in the explanation of superconductivity—a totally different field. (The
symmetry is broken by the ground state of a Lagrangian (Hamiltonian, potential energy) which is
itself perfectly symmetrical but with off-center minima.)

The apparent short range of the strong force is explained quite differently. The three dimensions
of SU(3) are due to three different types of “charge”, which are called r, g and b. They are named
after colours because they have some properties which are analogous to colours. For instance, the
combination of all three, rgb, is neutral, like white light, as is the combination of a colour and its
complementary, or anti-, colour, e.g., rr. (These two kinds of combination give the baryons (three
differently-coloured quarks) and mesons (quark-antiquark pairs), respectively.)

Unlike the photon, which carries no electric charge, the eight “gluons” (the SU(3) bosons, corre-
sponding to the eight generators) carry colour charge. Thought of as fields, this means that the
“lines of force” carried by gluons between two colour charges do not spread to infinity the way
electromagnetic (photons) lines of force do, but bunch into a tube between the two charges. The
strong force thus acts like a spring, getting stronger the greater the separation. Pulling two colour
charges apart, then, requires putting energy into the system in increasing amounts. Enough stretch
and the spring will break, with the energy going into the production of a meson—a quark-antiquark
pair. This can happen multiple times and these “meson jets” account for many of the multiple
particles produced in high-energy accelerator collisions. And the lines of force break in this way at

2It is not surprising that the symmetry is not perfect: for example, the electon and its neutrino have widely
different masses, half an MeV for the one and almost zero for the other. (Indeed, the Standard Model requires the
neutrino masses be zero: the discovery that neutrinos “oscillate” among their three types and thereby must have
mass is one of the refutations of the Standard Model which physics in now addressing, despite its miraculous success
in calculating almost everything else.)
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very short ranges.

Part IV. Quantum Field Theory: Matrix Quantum Mechanics

18. Introduction to Quantum Fields.

19. Small matrices.

20. Tensor products.

21. Spin.

22. Vectors and spinors,

23. Multiple and independent systems.

24. A simple field.

25. The Yukawa potential.

26. Perturbation approximations.

27. Fermions.

28. Slopes and antislopes of 2D numbers, etc.

29. Charge conservation and antimatter.

30. Relativistic quantum field theory redux, so far.

Part V. Functional Integrals

31. Path amplitudes.

32. Functionals.

33. Gaussian integrals.

33. Gaussian integrals.

34. Diagrams and QED.

35. Chirality and electroweak.

36. Green’s functions.

37. Propagators.

38. Quantum Computing.

39. Binary Fourier transform.

40. Quantum Fourier transform.

41. Finding periods.

42. Quantum key distribution.

43. No cloning.

44. Database search.

45. Detecting and correcting errors.

46. Nonlocality: Einstein-Podolsky-Rosen.

47. Building a quantum computer.

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Aharanov-Bohm effect. In Notes 5 and 6 of Part I we introduced “potential momentum”
and its conventional name “magnetic vector potential”. Pre-quantum electromagnetism con-
sidered this quantity to be only a handy conceptual, and calculational, tool, not something
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observable. Only the magnetic field (Note 6) was observed—although without the sign that
appears in the math as I noted at the end of Note 6. In Note 13 we saw that the po-
tential momentum is central to quantum electromagnetism and contributes to the phase of
the wavefunction. Aharonov and Bohm pointed out that this is observable in the following
modification to the electron two-slit experiment.

path 1

solenoid

path 2

Here a solenoid is placed behind the screen and between the two slits in it. As we saw

in Excursion Visualizing magnetic fields (Part I), the field ~B is essentially contained in the
solenoid and we can ensure that it is zero at the two paths followed by the electron. So the

electron encounters only ~A. Nevertheless, the phase of the electron wavefunction is affected
and the phase difference between the two paths has been calculated and measured to be
proportional to the “magnetic flux” in the solenoid. See [FLS64a, pp.15-11,15-12].

2. Modify your MATLAB simulation free2dSchroeGauss() in Note 14 to phase2dSchroeGauss().
Build in code which reports on the trajectory of the peak of the wavefunction (x vs. t), its
velocity and acceleration, and compare the results with electromagnetic theory (see Note 5).

3. Maxwell’s tensor and equations. Referring to Note 15 and using Note 6 (equations EM1
and EM2 with c = 1), show that

(∂t, ∂z, ∂y, ∂z)









0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0









= 4πEC(ρ, jx, jy , jz)

and hence that Maxwell’s equations become

∂µ(∂µAλ − ∂λAµ) = 4πECjλ

4. Gauge theory. The connection between electromagnetism and general relativity was first
made by Hermann Weyl in 1919. Look up Weyl and find his mis-step. Ten years later Weyl in-
troduced the German term “Eichinvarianz” for the symmetry we found in Note 16. “Eichen”
translates to “gauge” or “calibrate”, and the theory Weyl started has become known as gauge
theory.
The word “gauge” is used often to describe different conventions for the A field in electromag-

netism: for example, the Coulomb gauge is ~▽ · ~A = 0; the Lorentz gauge is ~▽ · ~A = −∂tφ/c2

(Think of the “gauge” conventions in railway building, meaning the distances separating the
rails.) What is the relationship between this invariance of A and the 2-D-number rotation
symmetry of the phase of the wavefunction?
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5. Kane [Kan93, p.82] calculates the g2 term contribution to the intersection Lagrangian we
discuss in Note 17, Work through this example. On pp.44–46 he does an analogous calculation
for protons and neutrons: why did Heisenberg invent the concept of “isospin” and why did
Yang and Mills’ theory based on this get initially rejected?

6. Abelian and non-Abelian symmetries. (This excursion looks ahead to Parts IV and
V.) Ryder [Ryd85, §§3.3, 3.5, 3.6] elaborates the discussion of Note 17. Here is an outline,
in parallel, of the discussions there of an Abelian faze theory (electromagnetism) and of a
non-Abelian faze theory (hinting at the Weak force).
(In an Abelian group all elements commute; in non-Abelian groups they do not. The term
honours Niels Henrik Abel, 1802–29.)

φ = (φ1 + iφ2)/
√

2 −→ e−iΛφ ≈ φ − iΛφ

φ∗ = (φ1 − iφ2)/
√

2 −→ eiΛφ ≈ φ + iΛφ

φ1 + iφ2 −→ (c − is)(φ1 + iφ2)

φ1 − iφ2 −→ (c + is)(φ1 − iφ2)

φ1 −→ cφ1 + sφ2 ≈ φ1 + Λ3φ2

φ2 −→ −sφ1 + cφ2 ≈ −Λ3φ1 + φ2

where c is cos(Λ3) and s is sin(Λ3) and in 3D

we can consider the angle ~Λ to have three com-
ponents of which so far we are discussing only
the z-component, i.e., for a rotation in the x-y
plane.
The equations remind us of a “cross-product”
(see Note 22 of Part IV), except that in 2D
only component Λ3 in nonzero.

~Λ × ~φ =
1

2
[Λ\ .φ\ ]−

φj −→ φj − (~Λ × ~φ)j
φ1 −→ φ1 − (Λ2φ3 − Λ3φ2)

φ2 −→ φ2 − (Λ3φ1 − Λ1φ3)

φ3 −→ φ3 − (Λ1φ2 − Λ2φ1)

We focus now on ∆φ and ∆(∂µφ) and how they transform under faze invariance.

φ −→ φ − iΛφ ∆φ = −iΛφ

∂µφ −→ ∂µφ − i(∂µΛ)φ − iΛ∂µφ

∆(∂µφ)

=

{ −iΛ∂µφ if Λ const. : “global”
−iΛ∂µφ − i(∂µΛ)φ if Λ(t, x, y, z): “local”

~φ −→ ~φ − ~Λ × ~φ ∆~φ = −~Λ × ~φ

∂µ
~φ −→ ∂µ

~φ − (∂µ
~Λ) × ~φ − ~γ × ∂µ

~φ

∆(∂µ
~φ) = −(∂µ

~Λ) × ~φ − ~Λ × ∂µ
~φ

Change ∂µ to “covariant” slope: add field Aµ or ~Wµ. The first lines show the transformations

Aµ and ~Wµ must undergo to support faze invariance. In the electromagnetic case, this says
that Aµ can change by adding a divergence without affecting the physics: the original “gauge”
invariance.
The second lines give the covariant slopes in each case, choices that must be justified by the
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following.

Aµ −→ Aµ +
1

e
∂µΛ

Dµφ = (∂µ + ieAµ)φ

∆(Dµφ) = ∆(∂µφ) + ie(∆Aµ)φ

+ieAµ∆φ

= −iΛ∂µφ − i(∂µΛ)φ

+i(∂µΛ)φ − ieiΛAµφ

= −iΛ(∂µφ + ieAµφ)

= −iΛ(Dµφ)

which we can compare with ∆φ = −iΛφ: the
covariant slope transforms in the same way as
the original field, to preserve faze invariance.
We interpret the covariant slope as follows.
As well as the field φ changing from point to
point in timespace, so does the internal angle
Λ. The covariant slope isolates the change to
that in φ.

~Wµ −→ ~Wµ − ~Λ × ~Wµ +
1

g
∂µ

~Λ

Dµ
~φ = ∂µ

~φ + g ~Wµ × ~φ

∆(Dµ
~φ) = ∆(∂µ

~φ) + g(∆ ~Wµ) × ~φ

+g ~Wµ × ∆~φ

= −~Λ × ∂µ
~φ − g(∂ ~Λµ) × ~φ

−g(~Λ × ~Wµ) × ~φ + g(∂ ~Λµ) × ~φ

−g ~Wµ × (~Λ × ~φ)

= −~Λ × ∂µ
~φ

−g[(~Λ × ~Wµ) × ~φ + ~Wµ × (~Λ × ~φ)]

= −~Λ × ∂µ
~φ − g~Λ × ( ~Wµ × ~φ)

= −~Λ × (∂µ
~φ + g ~Wµ × ~φ)

= −~Λ × Dµ
~φ

which we can compare to ∆~φ = −~Λ × ~φ.
The fourth line above uses the identity

( ~A× ~B)× ~C +( ~B× ~C)× ~A+(~C × ~A)× ~B = 0

(check this from the definition of ×), from
which

( ~A × ~B) × ~C + ~B × ( ~A × ~C) = ~A × ( ~B × ~C)

From the “potential” fields Aµ and ~Wµ we get the EM (electromagnetic) field Fµν and a Y-M

(Yang-Mills) field ~Wµν respectively.
The Lagrangians L that follow are in the end justified by giving the right equations, which
we know to be Maxwell’s in the EM case (see Note 35 in Part V), and which are analogous
in the Y-M case.
Both times, the mass m (in the Klein-Gordon part of the Lagrangian) of the carrier particle
must be 0 by an argument we give below. For EM this is the photon, whose mass has never
been found to exceed 0. For Y-M, the electroweak carrier bosons, W1,W2,W3, do not have 0
mass, so the theory must be refined to match observation.
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Fµν = ∂µAν − ∂νAµ

L = (Dµφ)(Dµφ) − m2φ∗φ − 1

4
FµνFµν

From this Lagrangian the Euler-Lagrange
equations give Maxwell’s equations (see Note
35 of Part V)

∂µFµν = ejν

with the “4-current”

jν = i(φ∗Dνφ − φDνφ∗)

~Wµν = ∂µ
~Wν − ∂ν

~Wµ + g ~Wµ × ~Wν

∆ ~Wµν = −~Λ × ~Wµν

L = (Dµ
~φ) · (Dµ~φ) − m2~φ · ~φ − 1

4
~W µν · ~Wµν

You can confirm the second line above by
again using the cross-product identity,
The extension of Maxwell is

Dµ
~W µν = g ~jν

with the source term defined

~jν = (Dµ~φ) × ~φ

An important consequence of the non-commutativity of the generators of the Y-M group is

the nonlinearity of the equations for ~W µν with the result that even if the source jν = 0, the
~W field is its own source. Dµ

~W µν = 0 gives ∂µW µν = −g ~Wµ × ~W µν

Note also that L has terms cubic and quartic in ~W . We discuss cubic terms, and also mention
quartic terms, in Note 33 of Part V.

Finally a non-zero mass in the Lagrangian, say m2 ~Wµ · ~W µ, will give Dµ ~Wµν = gjν + m2 ~Wν

but this is not faze invariant. So faze invariance requires massless carrier particles, something
which is not true for the weak force.

7. Goldstone and Higgs mechanisms. When the lowest-energy, or vacuum, state is less
symmetric than the Lagrangian, we will want to calculate based on the vacuum state, and
this changes things when we have either a global or a local faze symmetry as well.
Let’s look at a potential V (φ, φ∗) = m2φ∗φ + λ(φ∗φ)2 where m2 is usually the mass but
here we’re going to let m2 be negative, and where the quartic (φ∗φ)2 term is something we’ll
mention in Note 33 of Part V. Here is a plot of this potential
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where
φ = φ1 + iφ2

φ∗ = φ1 − iφ2
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and where m2 is negative: if m2 were positive there would be no bump in the middle.
(The shape is called “Mexican hat” because, if it were plotted using a circular grid for φ1 and
φ2 instead of a square one, it would look like an exaggerated sombrero.)
This potential has circular symmetry, but an object, say a ball-bearing, placed at (φ1, φ2) =
(0, 0) would not stay there but would fall to somewhere on the circle, on the inside part of
the brim, that marks the lowest part. But it can fall only at one point of that circle, not
everywhere, so once the system is in that one of many lowest states, the symmetry has been
broken. It is said to be spontaneously broken: the system is still symmetrical but now its
state is not.
We must review our vocabulary here. Notice that I’ve discussed and shown V in terms of φ1

and φ2, not x and y. V is a function of fields, not of coordinates. That is because relativity
does not distinguish space from time, yet the traditional potential V (x, y, z) is a function of
space only. Nonetheless, because V (φ1, φ2) gives energy, we call it a “potential”.
And so the minimum value of V identifies not a location in space but a state of fields called
the vacuum state: the state of lowest energy.
So let’s find the radius a for all the possible vacuum states. Since

φ∗φ = φ2
1 + φ2

2

we can express the potential in terms of

| φ |=
√

φ∗φ =
√

φ2
1 + φ2

2

as
V (| φ |) = m2 | φ |2 +λ | φ |4

and take the slope of this to find its maximum and minima

0 = ∂|φ|V = 2m2 | φ | +4λ | φ |3

giving the maximum at | φ |= 0 and the minima at

| φ |= a =

√

−m2

2λ

What we will do is to adjust the fields to be based on the vacuum, making this the state of
lowest energy: φ −→ φ − a.
Now we take parallel paths for global faze symmetry and for local faze symmetry. In the fol-
lowing we will work with Lagrangians of the form L = (∂µφ)(∂µφ∗)−V (φ, φ∗). We’ll consider
the coefficients of quadratic terms such as φ∗φ to be squares of masses. Each field with such
a term will be understood to have excitations which are carriers having that mass. Any field
without such a term will be understood to have massless excitations which are carriers. The
justification for force carriers being particles with or without mass is in Note 25 of Part IV.
We won’t pay any attention to higher powers of φ∗φ for this discussion, which is about carrier
masses. They come up in Note 33 of Part V.
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Global faze: Goldstone bosons

Historically these ideas were initiated by Y
Nambu in 1960 and J Goldstone in 1961.
The Lagrangian

L = (∂µφ)(∂µφ∗) − m2φ∗φ − λ(φ∗φ)2

is invariant under global faze

φ −→ eΛφ

with vacuum at

φ0 = a =

√

−m2

2λ

(a being real, we have selected the φ1 direction
for the ball-bearing to have fallen in) so the
new state

η + iξ = φ − a

or
φ = a + η + iξ

and we can rewrite

L = (∂µη − i∂µξ)(∂µηi∂
µξ)

−m2(a + η − iξ)(a + η + iξ)

−λ((a + η − iξ)(a + η + iξ))2

= (∂µη)(∂µη) + (∂µξ)(∂µξ)

−m2(a2 + 2a|eta + η2 + ξ2)

−λ(a4 + 4a3η + 6a2η2

+4aη3 + 4aηξ2 + 2η2ξ2 + η4 + ξ4)

Using a2 = −m2/(2λ) and ignoring all con-
stant terms because changing the energy by
a constant amount has no physical effect, we
get

L = (∂µη)(∂µη) + (∂µξ)(∂µξ) − 4λa2η2

−4λaη(η2 + ξ2) − λ(η2 + ξ2)2

In this result, η2 appears with coefficient
−4λa2, so the field η has mass 2a

√
λ.

On the other hand, ξ2 does not appear, so the
field ξ has mass 0.
So, under global faze symmetry, going to the
vacuum state (and breaking the circular sym-
metry the Lagrangian has) turns two massive
scalar fields, φ1 and φ2 into a massive scalar
field η and a massless scalar field ξ. The latter
is called a Goldstone boson.

Local faze: Higgs bosons

Historically these ideas were initiated by F.
Englert and R. Braut then P. Higgs then G S
Guralnik, C R Hagen and T W R Kibble, all
in 1964.
Looking at two scalar fields as in the Global
faze example, plus a photon field from Ex-
cursion Abelian and non-Abelian symmetries,
we have a term in the Lagrangian involving
Fµν = ∂µAν − ∂νAµ and we must switch to
the covariant slope Dµ = ∂µ + ieAµ. The La-
grangian is

L = (Dµφ)(Dµφ)−m2φ∗φ−λ(φ∗φ)2−1

4
FµνFµν

It is invariant under the local faze transforma-
tion

φ −→ eiΛ(t,x,y,z)φ

Aµ −→ Aµ + e∂µΛ(t, x, y, z)

The minimum a and the vacuum fields η and
ξ are identical to the Goldstone case, so ex-
panding the Lagrangian

L = (∂µ + ieAµ)(a + η − iξ)

+(∂µ − ieAµ)(a + η + iξ)

−m2(a + η − iξ)(a + η + iξ)

−λ((a + η − iξ)(a + η + iξ))2 − 1

4
FµνFµν

= (∂µη)(∂µη) + (∂µξ)(∂µξ) − e2a2AµAµ

−4λa2η2 − ea(Aµ∂µξ + Aµ∂µξ)A + · · ·

−1

4
FµνFµν

as in the Goldstone case, where I’ve left
out constant terms, cubic terms such as
−4λaη(η2 + ξ2), −e2aAµAµη, etc., and quar-
tic terms such as −e2AµAµη2.
The two quadratic terms assign mass ea to
the photon and mass 2a

√
λ to the η field.

Ryder [Ryd85, p.302] uses the faze transfor-
mation

η −→ η − Λξ

ξ −→ ξ + Λη + Λa

to set ξ = 0 by a suitable choice of Λ, so the
Aµ∂µη terms no longer bother us.

Under local faze symmetry, going to the vacuum state turns two massive scalar fields, φ1 and
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φ2 (1 degree of freedom each) and one massless photon field Aµ (two degrees of freedom) into
a massive scalar field η and a massive “photon” (3 degrees of freedom).
The “degrees of freedom” of a photon are the number of directions it can be polarized in: two
transverse polarizations plus, only if it has mass and so travels at less than lightspeed, one
longitudinal polarization. (See Note 13 of Week 6.)
We don’t observe massive photons, so evidently we have further to go with this theory.

We take the Higgs case one step further, to non-Abelian faze. This gets us closer, but still
not all the way, to the unification of electromagnetism and the weak force in “electroweak
theory”.
The Lagrangian is summed over multiple fields φj (which are not 2D (complex) fields).

L =
1

2
(Dµφj)(D

µφj) −
m2

2
φjφj − λ(φjφj)

2 =
1

4
WjµνW

µν
j

with the covariant slope
Dµφj = ∂µφj + gεjkℓWjµφℓ

and where
Wjµν = ∂µWjν − ∂νWjµ + gεjkℓWkµWℓν

The ε symbol appears in Excursion Levi-Civita symbol, alternating tensors of Book 11c (Part
I) and is a more general way of writing the cross-product of the previous Excursion. In the

special case of three fields φ1, φ2, φ3 and hence ~W1, ~W2, ~W3 we can expand these to

Dµφ1 = ∂µφ1 + g(W2µW3ν − W3µW2ν)

Dµφ2 = ∂µφ2 + g(W3µW1ν − W1µW3ν)

Dµφ3 = ∂µφ3 + g(W1µW2ν − W2µW1ν)

and

W1µν = ∂µW1ν − ∂νW1µ + g(W2µW3ν − W3µW2ν)

W2µν = ∂µW2ν − ∂νW2µ + g(W3µW1ν − W1µW3ν)

W3µν = ∂µW3ν − ∂νW3µ + g(W1µW2ν − W2µW1ν)

We move φ3 to the vacuum state, and use a faze transformation to remove φ1 and φ2 [Ryd85,
p.304]:

φ1, φ2, φ3 −→ 0, 0, a + χ

simplifying

Dµφ1 = g(a + χ)W2µ

Dµφ2 = −g(a + χ)W1µ

Dµφ3 = ∂µχ

and giving

(Dµφj)(D
µφj) = (g(a + χ)W2µ)2 + (g(a + χ)W1µ)2 + (∂µχ)2

= g2(a2 + 2aχ + χ2)((W2µ)2 + (W1µ)2) + (∂µχ)2

So

L =
1

2
(∂µχ)2 − 1

2
a2g2((W2µ)2 + (W1µ)2) − 1

4
(∂µWjν − ∂νWjµ)2 − 4a2λχ2 + cubic + quartic
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Thus, for this O(3) symmetry, 3 massive scalar fields (φj : 3 DoF) plus 3 massless vector fields

( ~Wj , j = 1, 2, 3: 6 DoF) have become 1 massive scalar field (χ: 1 DoF) plus 2 massive vector

fields ( ~Wj , j = 1, 2: 6 DoF) plus 1 massless vector field ( ~W3: 2 DoF).
This Excursion is based on [Ryd85, §§8.1, 8.3] with support from [LP01, §§13.4–6] and [Kan93,
§§8.1–3]. Kane [Kan93, pp.93,91] and Moriyasu [Mor83, pp.28,51f.] discuss the obligation
mentioned in Note 17 for faze bosons to be massless. Ryder in Ch.8 discusses the Higgs
mechanism and Moriyasu does this in Ch.7, both linking it to superconductivity.

8. Quarks and vacuum. Kane [Kan93, Ch.15] describes the meson-jet phenomenon of Note 17
and elaborates on “quark confinement” and other aspects of the strong force. Moriyasu [Mor83,
pp.129ff.] adds a discussion of “vacuum polarization” which explains the infinities suffered by
perturbation-based calculations in all the field theories from U(1) QED (quantum electrody-
namics) to SU(3) QCD (“quantum chromodynamics”—for the colours, of course). “Renor-
malization” is used, which modestly admits that the field theory does not apply above certain
energies, thereby effectively discretising timespace (the uncertainty principle says that large
energentum corresponds to small timespace intervals, so upper limits on the one correspond
to lower limits on the other). See [Zee10, p.146]. Why does faze symmetry guarantee renor-
malizability?

9. Any part of the Prefatory Notes that needs working through.

References

[FLS64a] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on Physics,
Volume II. Addison-Wesley, 1964.

[FLS64b] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on Physics,
Volume III. Addison-Wesley, 1964.

[Kan93] Gordon Kane. Modern Elementary Particle Physics. Westview Press, Boulder CO and
Oxford, 1993.

[LP01] Amitabha Lahiri and Palash B Pal. A First Book of Quantum Field Theory. C R C
Press LLC and Narosa Publishing House, Boca Raton FL and New Delhi, 2001.

[Mor83] K. Moriyasu. An Elementary Primer for Gauge Theory. World Scientific Publishing Co
Pte Ltd., Singapore, 1983.

[Ryd85] Lewis H Ryder. Quantum Field Theory. Cambridge University Press, Cambridge, 1985.

[Zee10] A. Zee. Quantum Field Theory in a Nutshell. Princeton University Press, Princeton,
Oxford, 2003,2010.

20


