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I. Prefatory Notes

1. Fields and slopes. A function of two variables is called a “field” by the physicists, maybe
because it might be describing a topography in which the height of the surface above, say sea level,
is a function of two coordinates, say the longitude and latitude.

To be precise, physics would call this a scalar field (because the height is a single number at each
point) in two dimensions (because of the two coordinates). We will soon encounter more ambitious
types of field.

An example is
f(z,y) =y

Here is what the surface xy looks like, plus a few of its values.
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What do we mean by the slope of this field?

The rate at which the surface rises depends on what direction we are going in. Given the two
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coordinates, x and y, we evidently have two preferred directions to go in.

Looking at the numbers, we see that for y = 1, xy increases by 1 for each increase of x by 1: its
slope is 1 when y = 1.

When y = 2 the slope with respect to z is 2.
When y = 0 the value of xy is constant (0) so its slope = 0.
When y = —1, xy goes down as x goes up, with a slope of —1.

So it seems that the slope with respect to x of xy is y. This makes sense if we consider that we’re
fixing y at a constant value each time: the slope with respect to x of a constant times x is just that
constant. So

slope,zy =y

Similarly, we can fix x at different values and look at the slope as we go in the y-direction along
that z-value. We get
slopeyzy = x
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We can take this further and find second slopes. We can repeat the processes we did for the values
of xy in the two cases of slope,xy = y and slope,xy = x; or we can just write it formally.

slope,slope,zy = slope,y =0
slope,slope,zy = slope,y =1
slope,slope,zy = slope,z =1
slope,slope,zy = slope,z =0

(See how y is a constant with respect to x and vice-versa.)
The only nonzero result for xy is
slope,slope,zy = 1 = slope,slope,zy
Not surprisingly these two results are the same: it should not matter in which order we take the
slopes.

2. “Reality” and coordinates. The physics notion of “field” is in a sense more solid than the
mathematics notion of a function because it purports to describe something “real”.

We’ll take a limited view of “reality”: “real” means existence independent of the coordinate system.

A coordinate system is a construct which we build in order to describe a field as a function, often
in a way convenient to us, but quite unrelated to the “reality” of the field we’re describing.

For example, if we rotated the coordinate system we’ve used to be able to describe our field as zy,



this description would no longer be correct, although the field did not go away and we must still
be able to find a description of it.

Here’s the rotation from x,y to x’,y’—and its inverse, which we’ll find more useful.

2\ [ ¢ s x x\ (¢ —s !
v )]\ —-s ¢ y y ) s ¢ y
where the rotation angle is 6, say, so c is cosf and s is sinf.

You'll notice that the rotation matrix is opposite to the usual rotation, with —s in the first column
not the second. This is because we are rotating the coordinate system not the object.

Here’s a diagram to help you work through the differences, first for an arbitrary angle (top) then
for a right angle (bottom).
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It’s best to think of the arbitrary angle as small, so ¢ &~ 1 and s ~ 0—but both positive. Then you
can see why 2/ < x and 3’ > y when we rotate the object, but the opposite when we rotate the
coordinate system.

We can redescribe the field in the new coordinate system by using the inverse transformation
x\ [ cx'—sy
y )\ s’ +cy

vy = (e’ —sy)(s2’ + )
— CS($,2—y,2)+(C2

SO

_ 82).1‘/:1//

1
= 582(%‘,2 — ) + o’y

where the last line reexpresses the ¢, s expressions in terms of c2 = cos(26) and s2 = sin(26): this
will be handy a little later in this Note.

Here are plots of the field in the two coordinate systems, side by side. This is meant to show that
the field has not changed, although of course the sets of values for which it is plotted have conformed



to the corresponding coordinate systems. For concreteness, I've shown the rotation angle to be 45°.
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What in the math can we point to to say that the field has an existence independent of the
coordinate suystem describing it? Nothing so far.

But if the field is “real” then so are its slopes, and we can find a connection between the transfor-
mation we’ve just seen describing the coordinate rotation, and the corresponding transformation
of the slopes.

From our discussion in Note 1 about two-dimensional slopes, you should be able to do for 2’ and
y’ what we did there for x and y.

slope,(cs(x™ — ) + (2 — s¥)2'y) = 2csa’ + (¢ — %)y
slope, (cs(z? — %) + (¢ — s*)a'y') = —2csy + (¢* — s*)a

This looks as if it could be written as a matrix equation so we’ll put 2’ and v’ into a vector and
the slopes into another vector. We’'ll also here take a notational step and write, more briefly, and
more conventionally.

slope,, slope,, = Oy

Oy
slope, = 0, slope, = Jy

Oy 22 2 NI 2cs 2 — 2 x’
( Oy ) cs(@ Yo+ (e =Ty = -5 —2s Y
B s2 c2 z
- 2 —$2 Y

This matrix looks almost like a rotation matrix. We could make it so by swapping columns. And
if we swap rows in the vector at the same time, the equation is still correct.

S2 (] x/ _ C2 S2 y/
c2 —82 y —82 C2 x’
But our objective is to express 0,y and 0y in terms of d, and Jy. Now we know from Note 1 (and

using the new notation)
Oz [y
(5 )= (%)

and the transformation at the beginning of this Note is

(v)=(5 ) ()

Thus



so we won’t do the swap just yet, but plug these two in.
S22
(= %)
S22
- (=5
S22
- (=5
(

( gz: )xy (in terms of 2, y')

S2 C2
- c2 —S82

and this is the same matrix that gives 2/, 4y’ from z,y.

(Warning: it’s going to turn out that it is not the same matrix but the transpose of its inverse.
We'll need new notation to find this out. In this example it’s the same thing.)

Note that in the last line of the chain of equations above I took a quick step to multiply the
s2,c2 matrix by the s,c matrix to get the ¢, s matrix: you can check this out by algebra, using

c® + 5% = 1 = c2® + 522, or you can do the Excursion that combines the double rotation with the
single rotation back.

What about second slopes? We can write them as follows.

(o )@ o = (]
(0 )@ oy = () y’><Z _C;)

or we can apply our coordinate transformation twice to the final result

c s 0 1 c —s\ [ % ©
—s c 1 0 s c T\ 2 —s2
So the same transformation works for second slopes as for first slopes, but just applied twice.

Every index transforms the same way. This is the math that says that an indexed variable has an
existence independent of the coordinate system describing it.

The reason is that if we can write a relationship, say,

1
Ry — ijok = KTk



then the same relationship holds in a new coordinate system

1
Rjw — ijo’k/ = kT %

after the coordinate transformation {j, k} — {j’, k'}.
The math has not changed even though the coordinate system has.

But note that matrix notation begins to get tricky. We must transpose matrices at the right places
to get things right.

We need new notation which does not get tangled up in transposition.

Third slopes will make life impossible for matrices. The slopes themselves have three indices, not the
two that matrices can express or the one that vectors can express. And to go from one three-index
set of slopes to the transformed three-index set of slopes, we’ll need to apply the transformation
three times. Matrix/vector notation fails us.

3. Index notation and tensors. The new notation we need keeps track of indices explicitly. Thus,

a transformation matrix, X, has elements

Xk
Its transpose is

Xkj

and since each of these stand for an ordinary number, we can write them in any order in a product.
All this is much easier than dealing with matrices. And we are not limited to one or two indices
but can use any number.

We will, however, need indices for coordinates, too, so we must give up x and y and call them

r1 and T2

and similarly

Thus
2 = X' kX

expresses the transformation. We could have written
T = Zka’kxk
with an explicit summation over the index k, but since k appears only on the right-hand side of

the version that does not have the ¥ (it is a “dummy index”), it is reasonable to interpret k as an
index to be summed over. (This is the “Einstein summation convention”.)

Note that the index notation in
xi = Xi'kxk

generalizes the transformation to any number of dimensions. First, leaving # and y behind and
introducing the parametrization zx allows more (or less) than two dimensions. Second, replacing

the explicit sum by ¥ and then by the summation convention completes this parametrization.

To prove that the transformation from unprimed to primed coordinates applies also to slopes of all
orders, we will need a further generalization for any linear transformation.

This involves perceiving that the (matrix) coefficients in a linear transformation are themselves
slopes.

cx + sy = (02" )x + (9y2")y
= —sztcy = (0uy)z + (Oyy)y



or
xj" = (Ogps’) Tk

and, to avoid sub-subscripts (actually, I'm using midscripts, so “sub-midscripts” might best describe
the above) we can rewrite this without ambiguity as

xj’ = (Okxj' )Tk

Now it is a rule of slopes that

&B/f(a:(x’, y/)> y(xlv y/)) = (8$f)(8$/.1‘) + (ayf)(aa:’y)

and similarly for d, f:

Oy f(x(@', "), y(@', ") = (0uf)(Oyx) + (8, f)(Dyy)

So, together in matrix form, without the common f

O _ Oprx Opry Oy
Oy )\ Oyz Oyy Oy

which we compare with the inverse transformation

(a:):(@x/x 8y/x>(:v/)
y Oy Oyy Yy

and we see immediately that the transformation from Or to O« is the transpose of the matrix of

the transformation from zx to xx’.

0j' = (07xk)0x  vs. xr = (0ixk)x)

We see that this notation is very compact: we must be very finicky to use it fluently.

The first-slope transformation

o = (8k’xk)8k

is the generalization of the first specific result in Note 2.

We can also show the second-slope transformation, provided that we make the assumption that the
transformation does not depend on xj’: 0 (Owzk) = 0.

Since
Ok = (8k’xk)8k

then

0/'0r = 05'((Owxr)0k)
= (&/:ck)aj'ak
= (Owzk)(0x5)0;0k

or, using a single symbol with two indices for the second slope

0i'k = (@j’ﬂ?]’) (ak/l'k)ajk



This generalizes the matrix multiplication we had for two-dimensional second slopes in Note 2: we
see that the same transformation (matrix) applies to each index; we also see where the matrix must
be transposed if we look carefully at the order of indices in the last product (Ox'zx)0;k

The generalization also brings out explicitly the assumption we must make for it to work, This
is an assumption we’ll be prevented from making later, introducing new considerations to the
mathematics.

We see the pattern and can go on to write the third-slope transformation without worrying about
the limitations of matrices
0i'k'e = (8]".1‘]')(8k’xk)(8e’xe)8jkz

(Of course, for the field zy the third slopes are zero, but you can now try another field, say x2y2.)

A mathematical construct such as this, which, when the coordinate system is changed, transforms
the same way on each index, is called a tensor. Tensors imply a certain “reality”, in the sense
we’ve been discussing, for the entities they describe: tensor relationships do not change even if the
coordinate system has been transformed.

For a coordinate transformation which is independent of the coordinates themselves (the assumption
we made above), the slopes of a field are tensors. In a more general coordinate transformation, the
slopes are not tensors, as we’ll see in Note 11.

Since our notation can describe both tensors and non-tensors, we can discuss, generally, proto-
tensors or protors.

4. Protors. Index notation is powerful, as we have just seen, but it is finicky, as we said, and it has
two drawbacks in comparison with matrix notation. The first drawback is that it cannot suppress
the indices and work with the whole aggregate of numbers that constitute a matrix or tensor or
protor. The second drawback is related: that the only way to calculate specific examples is to write
out all the (finicky) index values.

We cannot go back to matrices, but matrices are generalized by another structure (which, re-
markably, was devised to manipulate the very large amounts of data held in secondary-storage
databases).

This structure is the relation. The relational form of an array (vector, matrix, ..) is most commonly
shown as a table giving indices and values all on the same footing.

Let’s go back to the z,y to 2/, 1y’ transformation in Note 2 for our first example.

(v)=(5 ) ()

or
xi = X' kTk

(2 ) x( k x )

1 2 y 1 =z

2 X(J kX ) 2y

1 1 ¢
or 1 2 s or

R 2 1 ke

1 z/ ¢ 1 x1

X2 2 x2

We are free to put as data (anything below the line under the descriptors) any symbols we like. The
descriptors on the other hand contain all the indices, but no indexed variables, The symbol in front



of the parenthesis is the relation name. The symbols between the parentheses are the attributes.
Note that it is possible to reuse the relation name as the attribute below which we can list the
values in the vector or matrix.

So, how do we express matrix multiplication? We can do so independently of the data and using
only the relation name and the attributes.

This is done with two independent but interacting “algebras”, the relational algebra and the at-
tribute algebra. Here are the expressions to combine X with x.

let x’ be equiv + of X * x by j’
x’ « [j’,x’] in (X ijoin x)
The first statement is of the attribute algebra. Every symbol in it, X, z,j’ and 2/, is an attribute

of some relation. The new attribute, 2/, is defined by this statement to be a sum of the products
of attributes X and z, grouped by each value of attribute j'.

The second statement is of the relational algebra. The symbols X,z and 2’ in it are relations and in
addition the symbols j/ and 2’ in the square brackets are attributes. This creates the new relation
z’ by “joining” relations X and x in a way which we’ll describe next, and then “projects” only the
attribute j and the newly defined atttribute z’.

We get away with polymorphic (ambiguous) reuse of names z, X and 2’ as both relations and
attributes because the syntax makes clear which is which. But I'm not going to dwell on the syntax
here, because it was devised for much more general operations than what we will need for tensors
and protors. All we’ll be needing is matrix and similar multiplications. For this, the index notation
of Note 3 is sufficient, so we will not use relational or attribute algebra syntax after this, even
though we will use relational representations to write out the detail and do the calculations.

But we must show what calculations are accomplished by the relational/attribute syntax so that
we can adapt these calculations to tensors and protors in general.

We start out with the join (called ijoin, for “intersection join”, in the syntax, and, more conven-
tionally, “natural join” by the database community).

Here is how we join relations X(j’,k,X) and x(k,x): match rows of X and x that share values of
k, and keep all attributes.

Xijoinx( j’ k X )
1 1 T
1 2 sy
21 —-s =z
2 2 c vy

Here is how we apply the attribute algebra first to take the product X x z, then to sum these
products within groups of j’.

Xijoinx( j> k X x ) X#*x x’
1 1 c cx cx+ sy
1 2 sy sy cx+ sy
2 1 —-s =z —sxr —sTr+cy
2 2 c vy cy —sxr+cy

Finally, we complete the relational algebra statement by projecting only attributes j/ and the new
2’. (Note that duplicate rows are not included.)

X’( j) <’ )
1 cx+sy
2 —sr+cy



For a second example, let’s try transforming the second slopes of zy. (We go back to using zy for
the sake of concrete results.)

c s 1 c —s\ [ % ©
—s c 1 s c T\ 2 —se
(8j’$j)(8k/xk)8j,k = 0j' ¥
Since we're dropping the relational/attribute algebra syntax we can avoid the redundant relation

names.

Note that rows with value 0 can be omitted.

relation 1 relation 2
i’ j Oizi k> k Ovzk relation 3
1 1 c T 1 c j k O
1 2 s 1 2 s 1 2 1
2 1 —5 2 1 —5 2 1 1
2 2 c 2 2 c

Looking for common attributes to join on, we could join relations 1 and 3 (left to right, above) on
j or relations 2 and 3 on k. We choose the latter. After the join we multiply values, sum, and
project (the summing is trivial in this example: each sum has only one term).

k2> k ] 0i'x; * Ok k> ] Oj'xj * Djk
1 1 2 cx*x1 1 1 s
1 2 1 sx*x1 1 2

2 1 2 —s*1 2 1 c
2 21 cx*x1 2 2 —S

Repeating this process with this result and relation 1 above is less trivial, both in multiplication
and in summing. Note that rows may be rearranged at will, and so may columns as long as the
attribute still labels its column.

i’ ] 05'T; j Kk’ 05/ * O,k
1 1 c 1 1 s
2 1 —S 1 2 c
1 2 S 2 1 c
2 2 c 2 2 —s
(37 j k> Oyx; Ofzi*x0ik ) X0ixj* 0Tk * ik

1 1 1 s 2cs

1 1 2 c 2 — §2

2 1 1 —s s g

2 1 2 —s c —2cs

1 2 1 s c (see 112)

1 2 2 s —s (see 111)

2 2 1 c c (see 211)

2 2 2 c —s (see 212)

So finally

10



j ) k’ 8j/k’

1 592
2 C9
1 (&)
2 —S89

NN — =

In summary, a relation is a labelled set of columns with each row being unique and listed in no
particular order. In the special relations we’re using here, the last, or value, column has a value
in each row such as a matrix element. All the preceeding columns are indices with integer (or
sometimes symbolic) values. If the value column is 0 for any row, the entire row is omitted.
Vectors are represented as binary relations (two columns) and matrices as ternary relations.

There is no reason to stop at ternary relations, with two index columns. Third slopes will be
quaternary, with three index columns; fourth slopes will have pentuples for rows and so on. (So we
could speak of “n-tuples” in general, being the rows of relations of “arity” n.)

2,2
Y

To illustrate these higher orders we must pick another example field, such as f(x,y) = z“y°. Here

are the untransformed slopes.

3rd slopes 4th slopes
2nd slopes @ B 7 Oupyay? a B 7 8§ Oupyery?
1st slopes a B Oapriy? 1 1 2 4y 1 1 2 2 4
a  Oqr’y? 1 1 P 1 2 1 4y 1 2 1 2 4
1 2z 1 2 dzy 1 2 2 4z 2 1 1 2 4
2 222y 2 1 dxy 2 1 1 4y 1 2 2 1 4
2 2 222 2 1 2 dx 2 1 2 1 4
2 2 1 4z 2 2 1 1 4

The join-product-sum process works equally well at these higher arities.

We define a protor in terms of this relational representation of indexed variables, whether they are
tensors or not.

An n-protor is an (n + 1)-ary relation with n index columns and one column of values. If these
values are symbolic and would depend on positions as given by the coordinates, the protor is a
protor field. Otherwise, that is, if the symbolic values depend only on a parameter such as the
angle of rotation in ¢ and s, or if the values are simply numbers, the protor is a constant protor.

Note that all vectors and matrices are protors, although they are not necessarily tensors.
Note again that any row whose value column is zero is simply omitted.

5. The protor calculator 1. The relational and attribute algebras are implemented in the algebraic
data programming language Aldat which interprets syntax such as that used in Note 4. For two
reasons we shall rewrite the parts relevant to protors in MATLAB. The first reason is that, because
of the power of Aldat, it requires us to learn new ways of thinking about data aggregates, which
we won’t need if we stick to the familiar MATLAB. The second reason is that we’ll need symbolic
math, which is not implemented in any current version of Aldat, although it fits seamlessly into
the attribute algebra.

For present purposes, the protor calculator consists of two MATLAB functions. First, slopes(),
slopes(in,vars)

e.g.,

11



>> slp3x2y2 = slopes(slp2x2y2, [x,y])
slp3x2y2 =

>>
Syms x ¥ [ X, X, ¥, 4*Y]

>> slopes(xxy, [x,y])

_ [X, Y: X’ 4*y]

aEni ] [ x, y, y, 4xx]

[y, 1] [y, x, x, 4xy]

>>y, = ~Oxy" [y, x, y, 4xx]

slplx2y2 = slopes(x"2¥y~2, [x,y]) Ly, vy, x, 4*x]

?1plx2y2 = >> slp4x2y2 = slopes(slp3x2y2, [x,y])

X, 2%xxy~2] .
slpdx2y2 =

[y, 2xx"2x%y]

>> slp2x2y2 = slopes(slplx2y2, [x,y])
slp2x2y2 =

[ x, x, 2xy~2]

[ x, y, 4xx*y]

[x, x, 9,9, 4]

X, ¥, X, ¥, 4]
y, x, 4]
Y’ X’ X, Y, 4]
[y, X, 4*X*y] Y’ X, y, X, 4]

~ [Y, Y: X, X, 4]
’ ’2 2
[y, vy, 2%x°2] >> s1pbx2y2 = slopes(slp4x2y2, [x,y])

slpbx2y2 = allzeros

[ s R R
ol
.
<
-

From these examples we see how protors are represented as MATLAB arrays, one row per tuple.
The first column of each result gives the index the slope has been taken with respect to. This
is why it is appropriate to use the symbolic names rather than integers for the indices. (The
MATLAB code rearranges the rows of each result, so you must look a little carefully to find the
correspondences between input rows and output rows.)

The second MATLAB function is joinred().

joinred(inl,coll,in2,co0l2)

e.g.,
>> syms c s >>=V = [x;2,y]
>> X = [1,1,¢;1,2,s;2,1,-5:2,2,c] M
_ [ 1, x]
X = [ 2, y]
[1, 1, ] >
[1. 2, s] zzsjglnred(X,Q,v,l)
[ 2, 1, -s] -
[ 2. 2. c] [ 1, cxx + sxy]

[ 2, cxy - s*x]
Here we joined X with v by matching the 2nd column of X with the 1st column of v.

The protor calculations to find the slopes of z?y? transformed by

(¢ a X )
1 1 c
1 2 s
2 1 -—s
2 2 c

12



are

0ot = XalaOaz?y? joinred(X,2,slplx2y2,1)
Darp’ = Xa'aXp'p0asr’y? joinred(X,2,joinred(X,2,s1p2x2y2,2),2)
Oalpley = Xa'aXﬁ'ﬁwaaama:QyQ joinred(X,2, joinred(X,2, joinred(X,2,s1p3x2y2,3),3),3)
Outirrst = Xora XX X ot sDasszy> joinred(X,2,joinred(X,2,joinred(X,2,joinred (X,2,slp4x2y2,4) ,4) ,4) ,4)

with the following results 2nd slopes
1st slopes o Ow pry?
o/ O 229> T oz 2(cy)? + 808;1:3/ +2(sz)?
x  2xy(cy + sx) r oy 2es(x? —y?) +day(P - s?)
y  2zy(cr — sy) y oz 2cs(x® —y?) + day(c — s?)

Yy oy 2(sy)? — 8csxy + 2(cx)?

13



4th slopes

Oz/ ﬁ/ ’)/ 5/ 3af/3w5'932y2
r T x x 24c?%s?
xr T Ty 12cs(c? — 52)
3rd slopes x T Yy x 12¢s(c? — s2)
o [y Do g 2y r x oy vy 4c®—16c%s% + 4s°
x T 12¢s(sz + cy) x Yy T x 12¢s(c? — s2)
v x y —4s3c+ 8cs(cx — sy) +4c3y r oy =y 4c® —16c%s% + 452
r y x —4s53c+ 8cs(cx — sy) + 43y r oy y x 4c® —16c%s% + 452
r oy y 4tz —8es(sz + cy) + 453y T Yy Yy oy —12¢s(c? — s?)
y x 1z —483z+ 8cs(cx — sy) +4cy y x* T 12cs(c? — 52)
y x oy 4cdz — 8cs(sx + cy) + 453y y x x y 4c® —16c%s® + 452
y y x4z — 8cs(sx + cy) + 453y y x y x 4c®—16c%s® + 452
y oy oy —12¢s(cx — sy) y x oy vy —12cs(c? — 5?)
y y x x 4% —16c%s® + 452
Yy oy Ty —12¢s(c? — s?)
Yy oy Yy —12¢s(c? — s?)
y oy oy oy 24¢? s>

It is important to note the column chosen for the joining attribute of the original slope: it is always
the last index column.

This is because joinred() does not work with attribute names the way Aldat would, but with
their positions. It outputs index columns in the order in which they appear in the input protors,
omitting the join index from both protors.

For fourth slopes, for example, with inputs X (four times) and dass, we have the following inter-
mediate steps.

Xs'5,008v6 — 06 apy

Xw’w, 65’aﬁw - 8#5’043
X,(i’,(i, aw’é’a,ﬂ — 85’#5’(1
Xola,08'+'s'a —  Oa'p'+s'

(So we must be careful if we decide to check the intermediate steps of the calculation: the index
columns are not labelled with their attributes so we must keep track of their positions.)
6. Divergence and Curl. The first slope of the scalar field xy, Oaxy, is its gradient. This is a

vector field giving the direction and magnitude of the steepest slope at each point.

Here are pictures of the gradients of zy and of zy rotated by 45 degrees to cs(z'? —y?)+(c? —s2)z'y’.

14



Slopes of (x’z—y’z)/2 in position

Slopes of xy in position
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N A
1 \\\\\‘,///
x\\\\A/r/f
> 0 oo R
[ \\\‘:
-1 ////,,\\\
VPR RVAN
-2 ’\/:///‘*\\\
-3
-2 0 2

The divergence and curl are two important properties of vector fields, producing respectively a

scalar and a tensor field.
Instead of discussing the divergence and curl of the gradient we’ve just seen of xy (since both are

in fact zero) we’ll look at some new vector fields as examples.

They are Ny y Yy y
(h)‘(y)rp and <hy>—(x)7“p
(5)=(3)»

where r = /22 + y? (and so
The first can illustrate divergence but has zero curl. The second can illustrate curl but has zero

divergence.
Here is what these two fields look like for p = —1. We can see intuitively that the first diverges

and that the second curls.
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Both divergence and curl can be found from the first slopes.

div = 8zfm + ayfy
curl = azhy — ayhz

We can derive these same results from a physical, and microscopic, viewpoint. We’ll use three-
dimensional vocabulary despite this being a two dimensional example. “Area” means the length of
a segment of the boundary and “volume” means the area of the region enclosed by the boundary.
We start with a “field” which can be thought of as a flow per unit area, convert that into a total
flow at one boundary, find the net flow over the region (which is a difference, which over a small
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enough region can be found by a slope), and finally find that net flow per unit volume in the region.

Divergence

3
\L“\\
W

This example is a field in the radial direction,
with “flow” per unit “area” f = rP and “vol-
ume” of the region = rAfdAr.

e total flow at boundary: frAf =
rPTIAQ;

e net flow from region = slope of this =
(p + D)rP ArA6;

e net flow per unit volume = (p + 1)rP~!
(which is zero if p = —1, the classical
gravitational field in 2D).

In -y coordinates, the field is (z,y)r?~! and

div =

Ouar?™) + 0, (yr" )
P a(p — 1)7“1”*2E
,
+rP 7 b y(p — 1)7“1”2g
,

277 4 (@ + ) (p — et
(p+ 1)

(In 3D this is (p + 2)rP~! which is zero for
f = 1/r%; in d dimensions the generalization
is (p— 14+ d)rP~L)

We notice a remarkable thing in each case. The divergence and curl depend on the magnitude as
well as the direction of the vector field, and for p = —1 both are zero. This is just the value of p
we used to generate the intuitive pictures we showed above. Intuition says the one field diverges
and the other curls, but calculation says that each field does neither.

Curl

\
\
X
“

This example is a field in the tangential direc-
tion, also with “flow” per unit “area” h = rP
and “volume” of the region = rAfAr.

e total flow at boundary: hrAf =
rPTIAQ;

e net flow perpendicular to region = slope
of this = (p + 1)rPArAb;

e net flow per unit volume = (p + 1)rP~!
(which is again zero if p = —1).

In -y coordinates, the field is (—y, z)rP~! and

curl =

O (r?™h) = Oy(—yr?™)
P 4 x(p — 1)7"7’_2;
~(=rP Ty - D)

207t 4 (22 + ) (p — 1)rP P
(p+1)rP~!

This is a simple variant on the divergence. A
similar discussion to that for divergence holds
for higher dimensions.

The intuitive pictures look much the same with p = —2, and in this case divergence and curl are
neither zero. (However, in three dimensions, p = —2 does make divergence and curl vanish in the
analogous fields.)

In general, for vector fields fand h

div.f

= 0if;
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(curl x h)jp, = Oihx — Okh;
where div.f is just the notation for the dot product of two vectors giving a scalar, but curl x h is
notation which can be considered to define a two-index tensor.

Thus in three dimensions

div.f = 0ufo+ Oufy+ O0:f-
(curl x h),y = 0zhy — Ovhe
(curl x h),, = Oyh: — 0:hy
(curl x h),; = 0:he — O:h-

See the Excursions for the examples

=Y
h = r—z |rP71
y—x

We can show that divergence is invariant—it has the same form no matter what the coordinate
system is—using a general argument in index notation.

We have found (Note 3) '
05" = (&j'aﬂ)&j

so of course
9, = (927)0y
= (8;27")(8yz")0n
and so

lif j =k
0 otherwise

(8j$‘j/)(aj’$k) = djk déf{

i.e., these two are inverses of each other.

We also know (Note 3)
x = (05 )i

because, if for coefficients a, b, ..
T = ax1+ bxr2 + ..

then

= 81x‘j’
b = 821‘;"

and so on.

To go from the divergence 0;f; to d;/f;/ in the new coordinate system x; = (0;x;')z; we need two
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steps: 1) transform the slopes 05/ = (9527)d;; 2) transform the axes f; — f; which is the same
linear transformation as x; — xj.

We'll write it in reverse

9y fir = (0s%5)04(0kxs’) fr
= (05'x;)(Orx;')0ifr
= 0if;

In the second line, we’ve repeated our earlier assumption that the transformation (Jxz;’) does not
depend on the coefficients z; (Note 3). (If it does, the invariant form of the divergence is somewhat
different, as we shall see in Note 15.)

In the third line we use the fact that the two transformations (for slopes and for coordinates) are
inverses of each other (Note 3).

7. Classical gravity. Newton proposed that the gravity of a body such as the Sun or the Earth is a
force, acting instantaneously at a distance, directed toward the body with a magnitude proportional
to 1/r? with r the distance from the body.

From the point of view of Euclidean geometry, this is an almost inevitable perspective on the
influence of the body, which must be diluted with r in proportion to the area that the influence
must affect at that distance: 4mr2.

In two dimensions, the “area” the influence gets spread over at distance r from the body is 27r.
So 2D gravity would be a 1/r force.

Newtonian gravity came to be regarded as a field, z;/r3, or, in 2D x;/r%. These are both examples
of the z;7P~! field of Note 6, with p = —2 in 3D and p = —1 in 2D.

The source of this gravitational field would be the body that causes it, and was related by Newton
to the mass of that body.

Mathematically, it makes sense to relate the source to the divergence of the field. (Since the field is
incoming—directed towards the origin at the body—that divergence will be negative. Mathemati-
cally the slope of an inverse power is also negative.)

Here we run into a problem. We found in Note 6 that the divergence of z;77~1 is (p +d — 1)rP~!
in d dimensions: zero in both cases.
Well, of course, that’s the divergence anywhere in the space with the 7!=¢ field in it. And there

is no source anywhere in that space, so the divergence should be zero. (Indeed, from Euclid’s
perspective, it is quite natural that the divergence should be zero.)

The source is only at the origin, r = 0, and we haven’t put it in. Mathematically, the fields r!~¢
have a singularity here, so physically we can’t go all the way to r = 0.
We’ll need a new field in the space around the origin that represents the body and the source.

Suppose a body of mass m;, occupies a sphere of radius r, and has uniform density p = my,/ (471} /3).
Then we can show that, anywhere inside that sphere (imagine a very thin hole bored all the way
along a diameter), the field is radial and proportional to pr, i.e.,

(V)
Yy
Then the divergence is nonzero and proportional to p. This mass density will be the source of the
gravitational field.
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In the figure, we imagine a spherical shell of matter which is creating a field at point p a distance
rp from the centre of the shell. We can put point p on the z-axis without losing generality, because
the coordinate system can always be set up so that the z-axis contains p.

The angle 6 is the usual coordinate of a location on the shell, and the angle ¢ is not shown because
of symmetry about the z-axis.

density 0

field outsider T

densityp
field insidea: pr

We need two arguments. First that the spherical shell, of radius r, thickness Ar and mass m =
47r? Arp attracts anything outside that shell (at radius rp > 1) proportionally to m/rg as if the
mass were all at a point source at the origin.

The second argument is that the attraction of this same shell for anything inside it (at radius
rp < 1) is zero.

These arguments require some setting up and rearranging of variables, followed by a two-dimensional
antislope over (effectively) ¢ from 0 to 27 and 0 from 0 to .
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First some geometry. Equating (rs)? = (rs)? in the two Pythagorean triangles sharing that side,
d* — (rp —rc)? =1 — (re)?
=)
2rpre = TZ +7r? — d?

where ¢ = cos . We're going to need s = sin§ as well, because, with a small change in 6
A2rpre) = A(rﬁ + 72— d?)

gives

—2r,rsAf = —2dAd
by taking slopes with respect to 6 on the left and with respect to d on the right: note that d and
6 co-vary—as ¢ goes from 0 to =, d goes from r, —r to r, + .

Because of symmetry—each part of the shell is part of a ring all the same distance d from point
p—we will need only the z-component of the field, not the component along line d. So we need a
factor
rp —TC

d
21"; = 2rpre

2rpd
d?+r2—r?

2rpd

cosa =
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c=cod
s =sif

The contribution of a little part of the mass of the shell
Am = p(Ar)(Af)rs(Ag)

at distance d from p to the field at p is thus

Af = Ad_gn cos «
_ pr(Ar)rs(A0)(Ag) & + 1y — 1
d? 2rpd
_ pr(Ar)d(Ad)(Ag) & 1y — 1
rpd? 2rpd

Including the whole ring, ¢ = 0 to 27, replaces A¢ by 27. And including the whole shell, § = 0 to
m, which is to say, d = r, — r to r, + r, requires the antislope of this.

27 p d? + Tf, —7r2
27“}2, d?

f antislopedzrp_r;rpw

2.2
TrpAr Ty =T
= 2 antislopeg_ _y.r, 47 (1 + 7 )

p
rp+T
Tp—T

_ TrpATr (% B 7“127 —r?

d

’Eﬁw| 3

where m = 4nr?Arp is the mass of the whole shell.

Thus the shell acts gravitationally as if the entire mass were concentrated at the point that is the
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centre of the sphere.
A solid sphere is made up of concentric shells, and the same argument applies to each of them.

So a spherical body acts gravitationally on any point exterior to it as though its whole mass was
concentrated at its centre.

c=co¥d

s=sib V
Do d
0

What about a point inside a spherical shell? The argument above applies except that now, as 6
ranges from 0 to m, d ranges from r — 7, to r + 1,

r=4r
TrpAr 7“12, — 2|
2ry —

p r—"rp

= x 0

So a spherical shell has no gravitational effect on a point inside it.

From these two results it follows that a point p in a narrow tunnel through a solid sphere of uniform
density p, at a distance r from the centre, will experience a field, due to all shells of radius < r,
proportional to

m  4rrdp/3 4

—=—"=-7r
2 r? 3"
Thus we have results for the gravitational field at points a) in free space with a spherical mass m
centred a distance r away and b) within a sphere of mass density p.

r

To turn the proportionalities into equalities we need Newton’s gravitational constant G so that
the field represents the acceleration of the point p towards the centre of mass,

a) free space b) within sphere
4

:_GNm f=—=-mrGnp
r2 3

These fields are vector fields, because the acceleration is directed, so strictly

a) free space b) within sphere
Gnm 4

fi=~— N3 T Ji=—5mziGnp
r 3

Each field can, if we wish, be expressed as the gradient of a scalar field, called the gravitational
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potential

a) free space b) within sphere
1 2 2
f =Gnm grad— f= —§7rGNp grad r
r
Going the other way, we notice an important property of the divergence of the gravitational field.
a) free space b) within sphere
div-f=0 div-f = —4nGpnp

These are the same result if we consider that, in free space, the density of matter p = 0. And this
is a general result, which can be taken as an abstract formulation of classical gravity.

div-f = —47Gpnp
Or, in terms of the potential, ¢ (f = grad ¢),
div - grad ¢ = —47Gnp

Note for future reference that this is formed from second slopes of the potential ¢.

8. Gypsum coordinates. It is sometimes appropriate to use a coordinate system in which the
basis vectors are neither orthogonal nor of unit length. An example is a coordinate system which
indexes sites in a crystal with integers. Here is a two-dimensional representation of gypsum.

Gypsum (plaster, chalk, alabaster, ..) in 2D
(monoclinic crystal: depth is 0.57 nm orthogonal)

0,2) 1,2)
0,1) (1,2) (2,1)
Q
)
K 118
(0,0) 1.52 nm (1,0) (2,0)

Gypsum sand at White Sands, New Mexico ~ MAM
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Gypsum is a monoclinic crystal of CaS04.2H20, occurring naturally in great quantities in, for
example, White Sands New Mexico and used for fertilizer, drywall (yvios means “plaster”) and,
as alabaster, for sculpture. It provides a simple example of a non-orthogonal coordinate system.

&

et

«
R
1@ &1

1.52 nm

&

Here is a diagram showing three different sets of basis vectors for (2-dimensional) gypsum. The
conventional basis €1 and €2 is orthonormal. We’ve been using “midscripts” so far in these Notes,

and will continue to do so for orthonormal basis vectors and for coordinate systems based on them.

The basis vectors that parallel the natural axes of gypsum, e; and eo, are written with subscripts,
and coordinates based on them will be written with superscripts.

A third pair of basis vectors, e' and e?, is complementary, in the sense that e’.ej, = 5%:

el.el =1 61.82 =0

62.61 = 0 62.62 = 1
i.e., the complementary basis is orthogonal to the gypsum basis, and normal to it in the above
sense. The complementary basis vectors are written with superscripts and coordinates based on

them will be written with subscripts.

Here are the cosines and sines for the gypsum basis and the complementary basis. (Numerical
values are for (two-dimensional) gypsum. Angles are in degrees.)

1 =cos(/e;) =cos0=1 co = cos(/ey) = cos 118.43

s1 =sin(Ze;) =sin0 =0 s9 = sin(Zey) = sin 118.43
¢! = cos(/e!) = c0s28.43 = s, ? = cos(/e?) = cos 90 = —s;
st =sin(/e!') =sin28.43 = —¢y 52 =sin(/e?) = sin 90 = ¢;

The lengths of the basis vectors are in nanometers. We define sin(Zey — Zej) = s9; = sin 118.43
61 :‘ (3] |: 1.52 EQ :‘ €9 |: 0.65
(' =| e |=1/(f1s21) = 0.75 % =| e |=1/(fys21) = 1.75

Here are the (gypsum) basis vectors in terms of the orthonormal basis.
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e1 = li(c1e1 4 cz€2) es = la(s1€1 + sq€2)

lier Loc
1) = (e e g 22 )

— (2 2)(",)

And similarly for the complementary basis,

&
'—\
Y
S
2 5
3
A v, Vi
o
2
2 o
> 3 €1
1.52 nm v

Now we show an arbitrary vector v. (To make the example concrete, the figure above shows
(v1,v2) = (1,1) with respect to the orthonormal basis.) The contravariant coefficients v!,v? and

the covariant coefficients vy, vy are defined below. Note the orthogonality of e and e, and of e'
and ey, and how the coefficients are found by dropping lines from the end of v parallel to the other

axis.

(We'll use this terminology from now on, so here is a useful mnemonic. Note the lengths of (numbers

of letters in) the prefixes.

co:sub covariant components are subscripted
contra:super contravariant components are superscripted

Remember that components for an orthonormal basis are “midscripted”.)
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Covariant

Contravariant o
vV = Vi€l + v2€2 = (61 62) ( )
( ) V1 V2
V = Vi€1+ V2€2 = (€1 €2
('UQ) 7)161+7)262
vle; + vles = 0161(5261 — c€2) + UQEQ(—sla + cr€2)

= vM(cre1 + s1€2) + v2 s (co€1 + s9€2) = (villsy — val%s1)er + (vi(—Llc) + val?cy)er

_ 1 2 1 2

= (vlicg +vilaco)er + (v l181 + vlas9)e€x _ (5182 —6281) ( z; >e1 X (_5102 6201) ( z; ) -

1 1
= (6161 EQCQ) < 32 >61+ (5181 EQSQ) < 32 >€2 ( 5182 —5281 ) < 01 )
1 2
- (6 6) 6161 EQCQ Ul —/ C2 14 Cq1 V9
- ! ? 6181 EQSQ U2 o 59 —S1 fl (%]
(61 62) 2

c1 ¢ ¢ vl 2 a ¢ v2
_ 1 2 1
_(6162)(81 52)( 52)(7)2) (

1
woe)(m L) ()
—C2 (1 TosaT V2
So we have the two relationships

()-(C ) () () G- D ) (2)

The definition of the dual basis, from which we get the relationships linking ¢/, s/ and # to ¢y, s

and ¢, as
() - (2)e

where the fourth line is due to the perpendicularities e! | ey and e? L e:

(5)-(2%) (%)=

and the values we gave at the beginning of this Note
= L % = L

l1591 la591

follow from the last line.

Similarly we can show that the dot product of (v; wvy) with its superscripted counterpart gives the
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length of an arbitrary vector v.

(v1 v2) < Z; )

Il
—~
S
4
[
SN—
7N
(9
=
(S
)
"
7N
.0
[l
®»w »
N =
~~_
N~~~
L
N
7 N
QO
N
®w O
N
N~~~
/N
~
—
N
)
N~~~
"
L
N
< <
N =
~_—

= (Ul 'UQ)

(
(
—1 —c V1
(8 ) Ea (0 () ) ()
(

= (v1 v2)

= (v1 v2) < z: )

So covariant and contravariant coordinates are complementary in the important sense that they
must be used together to calculate lengths or distances and even angles between two different

vectors.
vl 1,2 U1
(up us9) 2 = (u" u®) Vo =|u|lv|cosf

where 6 is the angle between u and v, and

= (%) =t ()

and similarly for | v |? the square of the length of v.

When we must use non-orthonormal basis vectors we’ll find we need both contra- and co-variant
coordinates.

Index notation. We can do all this more generally using index notation.

Ej = GmXWLJ = Gmg‘ytm]
where the trigonometric terms t1; = ¢; and t2; = s;;
ek = eank = €n€ktnk

with the trigonometric terms t:i* = ¢* and t2* = s*.

Find the superscripted X in terms of the subscripted X.
5‘? — ejek — EmeJEank
— XmJXnkEmen

So the superscripted X is the inverse of the subscripted X. To work this out in detail we must
write the elements out in array form, making the trigonometric terms explicit again.
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Xomj m | 1 2
J=11lca bs
2 EQCQ 5282
X,k k| 1 2 (Xomj)~Lak k| 1 2
n=1]0c P = n =11 lasa/l1la59; —l151 /0102891
2| gt (242 2 —5202/5152821 5101/5152821

where s91 = ¢189 — ¢251. (These tables can be thought of as relations formatted so as to make it
easy to see the inverse in the 2-by-2 case. Each could also be written as a three-column, four-row
representation of the relation.)

There are multiple solutions to this, even with the restriction that (c*)? + (s¥)2 = 1. We choose
the solution that gives positive lengths in the gypsum example.

gl — 1 Cl S92
51;21 8= e
2 = e = —s
U591 2 _
S = C1

We can now show that the components of an arbitrary vector give its length as the dot product of
subscripted with superscripted components.

VUm€Em = UV — ’Ujej — ’Ujemej

= vjel =vjemXn’

VUmE€Em — ’U]ijem VUm€Em — UijJGm
vm = v/ Xm;j Um = v;Xm’
ko _ J . k_ k — . J —
Ume — v Xm]Xm = 'Umek — UJXm X'mk - Uk

The second line on each side above follows from the first because all the components of €x are
independent so for the sums to be equal, each of the corresponding coefficients must be equal.

The third lines follow because X/ and Xmj, are inverses, as we found from the orthonormality of
the sub- and superscripted basis vectors to each other.
Thus

'Uk'Uk — 'UmeankUn = UmUm

again because the two variants of X are inverses of each other.

The final right-hand side is the length-squared of v expressed in the orthonormal coordinate system.
So the left-hand side, v*vy, equals this length-squared.

Generally, the dot product of two vectors is written as the sum of the products of corresponding
sub- and superscripted coordinates.

(For triclinic crystals, such as turquoise, angles § and « are also not right angles, and we would
need to do all the above in three dimensions.)

We have started in this Note to use the same symbol to mean different, indeed opposite, things,
and so the relational version of these protors will need an improved notation.

We had

k k
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so that X is its own inverse, depending on the position of the sub/superscript.

Representations which do not show sub/superscripts, such as matrix or relational representations,
must be augmented to be clear.

So we’ll say explicitly whether each index is mid, up (super) or down (sub) as follows
Xmu - (de>_1T
for matrices, or
Xma(m, j, X) and Xuu(m, k, X)
for relations.
We will call this “mud” notation for the three possible index positions.

Note that the indicators m, u and d are themselves typeset as midscripts, because midscript indices
will not be used much from now on: the notation is effectively “ud” notation. (Note that we can

“transpose”, say Xmu as Xum, and so swap the index columns, but this makes no effective difference
to any relational calculations.)

9. The metric. We can find a direct relationship between contravariant and covariant components
by eliminating the orthonormal (midscripted) basis from the two versions of v in the previous Note.

() =(e o)) () (0)-(a ("))

So if we know only, say, the contravariant (superscripted) components, we can write the length in
terms of them only.

() = (" e) (55) (1)

~
—
N~ N N~
»
bt
7N
o
Ay,
»
—

- E% 5152621 v
o 5152621 E% v

where co1 = cac1 + $281 is cos(Zes — Zeq) = ca1.

4 l1laca
6162621 f%

is called the metric g because it enables us to calculate lengths from a given set of coordinate
components. Note that ¢ is a symmetrical matrix. Check that it is a diagonal matrix if the
coordinate axes are orthogonal to each other, and the identity matrix if they are orthonormal.

This matrix

It is called the metric because it turns coordinates into lengths or distances. (This reinforces the
notion, which is a fact, that unnormalized coordinate systems do not directly tell us about distances
between points.) It can be found directly from distances. Here is a point p a distance d from the
origin.
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Q,x2\ - &2

9,

9, 131 Qxt

(All expressions in this diagram, except p, represent distances.)

In terms of the orthonormal coordinates
d2 = 5 12 =+ 522

In terms of the gypsum coordinates x! and x?

61 = fll‘l +£26211‘2
£2 = lysya?
d? = B+ E(?)? + 200y 2t a?

where co1 = cos(/2 — /1) and s9; = sin(£2 — /1), or, in matrix form,

02 {105¢ 2!
2 1 2 1 1€2C€21
&= 2 ( llacr 13 ) ( ? )

So it is easy to read the metric off from the coordinate axes.

A perhaps even easier way of finding the metric from the coordinate axes is
o €1 . o €1.e1 e€1.€ey
gad = < €9 ) (61 62) o ( €2.61 €92.€9 )

o ;3 l1locoy
g l1lycoy 43

From this, g can be decomposed into the product of the matrix that transforms from orthonormal
coordinates with the transpose of that matrix.

gdd = ( > (e1 ez

Ecl 6181
6262 6282

For gypsum this is also

)

Eccl 6162
( < ) @ e <f251 5282>
_ leer l1st 1 leer  lico
B EQCQ 5282 5281 5282
( Leer sy ) ( 1 Lo )
lacy Lasy lys1 {282
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or, generally (and we see the transpose only on the apparently swapped positions of m and k)

gjk ej.ek
XmJEJGank

Similarly g—! gives lengths if we must use the covariant components only.

(01 v2) ( Z; ) . v2)< 3 l1lacoy ) ( Z; )

6152021 E%
B 1 2 —l1laco1
= (0 UQ)E%K%(l — C21) ( —l1lyc g%

)()

10. Fields in gypsum. We can also transform fields such as the radial field (in orthonormal

coordinates) (f1 f2) =P~ La1 a2)

Thus, in mud notation, guu = gaa~!.

and the tangential field
(hi h2) = Tpfl(—.l‘z x1)

to gypsum coordinates.

First we review the results for fields in orthogonal coordinates.

r

So, for f

o1
02

) (fr f2)
and

And for h

o1
(7)o n

O
- 9o

_ 1 _ 1
= rpl(_l )-l—(p—l)rp?’(x2

S|

= V12 + x22
o1
02

)=o)

O
= ( O )Tpl(l‘l m)
= P71 ( 1 1 > +(p—1)rP3 < i; ) (z1 @2)

div.f = (p+ 1)
curl x f = 0

)T‘p_l(—l‘2 x1)
) (x1 x2)
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and

divh = 0
curl x h = (p+1)rP™!

Now we transform to gypsum coordinates. We’ll be interested in the contravariant x.

and in both contravariant and covariant f and h

s (8o Yo = (0 0

lacy  la59 lasy 282

(note the transposed inverse), and similarly for h.

The divergence is a scalar and so must combine covariant and contravariant, taking the covariant
slope of the contravariant coordinates.

div.f = 9;f’ div.h = 9;h
where we note that the covariant 0; means slope,;, the slope with respect to the contravariant
coordinates.

The curl is generally a two-index tensor. (Since it is antisymmetric, it has only one independent
component in two dimensions, so we’ve been getting away with writing it as a scalar.) We don’t

want a mixed tensor (one index up, the other down) so of the four possibilities, curljy, curl?, curli

and curl’* we’ll choose the first—both indices covariant—because it will be the easiest to use in
future. Thus

curl x f =01 fo — b fi curl x h = 91hy — Oxh
Here are the preliminaries for «

(21 22) = (2! 2?) ( tier fys )

6202 EQSQ
SO
r o= Va2 + 22
= \/(ﬂlclxl + lacox?)? + (015121 + lasqx?)?

= \/(€1$1)2 + 2€1£20211‘1$2 + (€2$2)2

where, again, co; = cjca + $152 is the cosine of the angle between the axes e; and es. (And we’ll
soon need the counterpart, so; = ¢189 — 251, the sine of that angle.)

We will need
81 r = 1 f% 5152021 x‘l
82 o r 5152021 f% l‘2

Here are the divergences of f and h in gypsum coordinates.

() = (5 (g “81)_1

lacy L5
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_ licy s lrer lrsp \ 7!
_ p—1/,1 2 1€1 191 1€1 191
=7 (1‘ r ) ( EQCQ 6252 ) ( 6262 EQSQ >

_ 0
= it ) ()t )

_ 1 _ 2 f145¢ x!
_ p—1 o p—3 1 1£2€21 1 2
= 7r < 1 ) + (p ].)7' < 6162621 E% ) < .’,132 ) (.’13 X )

from which, summing the diagonals and using the above expression for r,
div.f =0,/ = (p+ 1)rr7!

as before: divergence is an invariant scalar.

Next, h
(h' %) = (m ’”)(22 oo )1
- e (o o)
- e (i e Yt )
- e (T ) () e
= Pl(z! 3:2)( _gi%cm flgigl ) @
(8 )0t = (T ) e
+(p — 1)7“13_3 ( 5152%021 51%021 ) ( i; ) (xl x2) ( 5152%021 51%021 ) 5152321

_ ?”p_l( —5152621 5%1 ) 1
_K% l1lycoy 0109891

+(p B 1)T‘p_3 ( E%l‘l + 5152021l‘2

U1locorat + (3 > (—libaennat — £32” (ot + liloena?)
and, summing the diagonals

div.h =0

These results on divergence can be captured generally, using

ijka — 5? Xmlz = 8kam
Xm'Xn'] — (5mn

XmjXmp = gjk
Xl Xk = gk
Ojf7 = XmjOm(Xnl fn)
= Xm;XolOmfn
— SO fn
— Onfm
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where we’ve used the inverse of Xn; in the first line and in the second line, and the assumption
that the transformations X do not depend on the coordinates.

Here are the curls of f and h in gypsum coordinates.

(h 1) = (5 (0 )

_ ficr l1s licp Uae

_ p—1/..1 2 1¢1 121 1€1 2€2

=7 (l‘ x)(EQCQ 5282)(5181 5282)
_ Iz l1lsc

_ p—1/..1 2 1 1€2C€21

= $)(€1€2C21 3 )

B Iz llsc
(01 82 )(f1 fo) = »27! ( 61621621 1«% N )

_ Iz l1lsc x! 2 1y
_ p—3 1 1£2€21 1 2 1 12621
+(p 1)T ( 6162621 f% ) < $2 ) (.1‘ v ) ( £1€2021 f% )

and, since all the matrices are symmetric,

curl x f=0
Next, h
lic1  Lac
(h1 h2) = (ha h2) ( 5151 5282 )

_ —l1s1 fic fic1 oe
. oop11 2 151 licy 1c1 laco
= ke )< —lasy  Lacy > < U151 Lasg )
= Tp,1($1 1‘2)< 1 L >€1f2821
_ 1
(01 02 )(f1 fo) = 7P 1( 1 >€1£2521

_ 2 {145¢ x! 1
_ p—3 1 1€2C21 1 .2
—l—(p 1)7‘ < 5152621 g% ) ( $2 ) (3: x ) ( 1 ) 6162521

= Tp_1< 1 1 >€1€2821

_s [ x4+ llyco2?
+p -1 < 615262133% j—zéxZ ) (=a® 2')lilasn

so that, subtracting the off-diagonals and using the contravariant r

curl x h = (2Tp_1 + (p — 1)Tp_3r2)€1€2821
= (p+1)rPtdet X

where

_ licr Lacy
5152821 = det( 5181 5282 )

the determinant of the transformation or, alternatively the square root of

. f% 6162021
9= det ( 5152021 f% )
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11. Polar coordinates. A commonly-used alternative coordinate system is polar, with the distance
from the origin r and the angle 8 as the two coordinates.

r o= /22 +y? xr = rcosf

0 = atan(y,x) y = rsinf

We introduce the idea of local coordinate systems in which an observer at point (r,0) describes a
vector (Ar, Af) in terms of how much r and # must change from the observer’s standpoint (r,6) to
the top of the vector at (r + Ar,0 + Af). (That’s in terms of coordinates. In terms of lengths we
need (r + Ar, 76 +rA#f).)

In order to measure distances correctly, the local basis vectors must have length 1 in the r direction
and have length r in the (orthogonal) € direction, because the length s satisfies

52 = (Ar)? + (rAd)?

(e)=(= (e

(Please remember that, since these are vectors, i.e., two-dimensional intervals, they are described
independently of their locations, i.e., their starting points.)

So we have

This is an orthogonal but not normalized coordinate system with metric
= e.e, epe. \ (1
gad = e..ep eg.ey ) r?
So the contravariant coordinates for a vector v in this basis are given by

(vz vy) = v= (" ve)(er )

=T

w8 ()

Because the polar coordinate basis is not orthonormal it must have a different dual basis with

metric
1 (ee eler\ (1
gue = gad == er el el | T 1/r?

and with transformation matrix the transpose of the inverse of the €; — e transformation

e\ c s €x
e )\ —s/r ¢/r €y
And we can check

= (G ) e = (5, c;)(:)@z e ()
= (o e )5 )= )
(D)~ e ) (8

- (&@)(Z)I(l 1)



Here is a vector v, shown in three different locations, two of them at two different local polar
coordinate systems.

ee/

&Y

The components of the vector v in the three systems are
(v v) = (0 V2)
N c —s/r
(" V") = (vs Uy)(s o/r )

o) = o) (00

(r6) = (2 7/6) (r 6) = (3 m/4)
(cs) = (V3/2 1/2) (cs) = (1/V2 1/v?2)
(0" o) = (1/vV2 V3/(2v2)) (0" o) = (1 1/3)

(vr v9) = (1/vV2 V6) v vg) = (13)

and you can easily check the contravariant components (1 1/3) at (r 6) = (3 n/4) in the diagram.
And note that the length of v is V2 in all systems.

0 1 V3 1/v/2 1\ /1
-0 )= (5 ) (1) 05 )
OvIlva )=\ 2z) | Ve 3)\ 3
Now let’s work with contravariant coordinates at the two locations, calling the first location 1 (at,
say, (2 7m/6)) and the second location 2 (at, say, (3 7/4)), and labelling the ¢ and s accordingly.

Vs €1 —Trist 1" c1 —s1 1 vi”
Vy - S1 ric1 v16 - S1 C1 ( ri > 7)16
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Vs 2 —T282 Vo 2 —82 1 v2"
Vy - S2 Tr2C2 ’U26 o S2 Cc2 r2 7)26

To go directly from location 1 to location 2 we must eliminate the orthonormal coordinates (v1 v2).
v1” 1 C1 S1 Ve
v? - < 1/r ) —s1 Vy
1 Cc1 S1 c2 —82 1 a2’
- < 1/r ) —51 s2  C2 ( T2 > v2?
1 C21 —S821 1 2’
- < 1/?”1 ) S21 C21 < T2 ) va?

where c21 and s21 are again, respectively, the cos and sin of the difference in angles 62 — 6.

This transformation between the coordinate system at point 1 and the coordinate system at point
2 introduces something new.

The transformation now depends on the coordinates (71, 601) and (rz, 62). It will no longer be possible

to commute the operation of taking slopes with the transformation.
o X(r,0) # X(r,0)0,
0p X (r,0) # X(r,0)09
So we will have to adjust our idea of tensors (Note 3) to this new situation: a tensor will still

transform identically on all indices, but the transformation will need to be more subtle, particularly
where slopes are concerned.

We’ll soon need the above transformation from vz to v:1 in index notation.

. . .,
v = XlQ;,'UQJ
X, = X! Xomj
./ -/ .
vl = X21g- v’
7' '
XQlj = X2m le]
XuwlXol = &
J4 k k
Vi = X21]:/7)2'/
J 7 J
U2j/ = X12;,U1j

12. The affine connection. To adjust the operation of slope to the new, coordinate-dependent,
transformation, we must now consider transformations between two coordinate systems located
arbitrarily closely together, say

e o= T r2 = r+Ar
0 = 0 0 = 0+ A0
for sufficiently small Ar, Af.

Then



becomes
v’ 1 C21  —821 1 2"
U19 - ( 1/7“ ) S21 C21 ( r+ Ar ) 1)29
and since A6 is small, c21 = cos(f2 — 01) = cos(Af) ~ 1 and s21 = sin(f2 — 61) = sin(Af) =~ Af, we
1 1 —A#f 1 v2"
1/r AO 1 T+ Ar va?
1 N 0 —rAf v2"
1 Ab/r  Ar/r v2?

eliminating powers of Ar and A# higher than the first.

now have

N
[SEENS]
P T

~

s

%

We can write this transformation as
X =I1+AX

and we see that AX is linear in the small change (Ar, A#f).
So we’d like to express AX as the product of something with the vector (Ar A#).

Unfortunately there is no way that “something” can be a matrix—try it! We’re going to need to
go to three indices, ' '
AX] =T7,A"
so we’ll switch to relations (Note 4).
AXud(j ¢ AX )

0 —rAf ok 2 )
0 r AfQ/r
0 0 Ar/r o A6
And here’s the I' that will do it—try it!
Twa(j k ¢ r )

r 6 60 —r

6 r 0 1/r

6 60 r 1/r

I" is called the affine connection because it is a linear connection between coordinate systems which
are translated and linearly deformed from one another. It is also commonly named after Elwin
Bruno Christoffel.

Notice that I' is symmetric on k and /.

Notice also that the index positions are dictated by the contravariance of the coordinates being
transformed.

v? = (8 + Azl )t
. b
AX] = Ti,A

The dummy indices, over which summations are performed, are alternatively up and down, to keep
the result a tensor, and the other indices match partners across the = signs.

Because it arises from very small changes in the coordinates, we can obtain I' directly from slopes.
We’ll investigate the slopes of the basis vectors eg

8jek
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Since the basis vectors located at point 2/ change as x/ changes, 0jey, reflects this change.

We'll use transformation X from Note 10 and earlier

fjej == f — fmem
— fm(smnen
SO
ej — XnJEn
or )
€n = Xn]ej
Thus

8jek = 8j (Xnken)

l
= F]keg

where we’ve defined

def
T = 0;(X k) Xo'

Let’s see if they are the same as before in polar coordinates.

(o)-(5 a)(2)

Xau(n k X )
da(j 0 ) 1 r c
r slope, 1 6 —rs
0 slopeg 2 r S
2 6 rc
(8X)ddu(j k n 0 )
6 r 1 —5 Xowu(n £ X )
0 r 2 c 1 r c
r 6 1 —s 1 60 —s/r
r 6 2 c 2 r s
06 6 1 —rc 2 0 c/r
6 0 2 -—rs
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(0X > X)aagmu(j k n ¢ O0XX )

6 r 1 r —cs

6 r 2 r cs

6 r 1 60 s%/r

6 r 2 60 )r

r 6 1 r —cs

r 6 2 r cs

r 6 1 6 s%)r

r 6 2 6 )r

6 0 1 r —rc

g 0 2 r —rs?

6 6 1 6 cs

6 6 2 0 —cs

(X0X)au(j k ¢ X0X ) Fuwa(l j k r
0 r 0 1/r r 6 0 —r
r 6 0 1/r 6 r 0 1/r
0 6 r —r 0 6 r 1/r
T'uwaa is what we got before.
We can also show the symmetry: since
ijzajl‘m

is itself a slope
Ll = (0(Bam)) X"

14
Ty
And we can show that
d;er = —Ffeeg
To do this, note that
gk = XmpXmps
8jgkk/ = kaanmk/ + kalanmk

= gekazanmk/ + ggk/Xmeanmk
= g D5 + g T,
where we’ve used gda to lower indices in Xwmu. We use this new relationship in the following.

We assume an analogue to I' which we’ll call H and we’ll show that H = —I'. We know, from the
definition of T,
F?keg = 8jek
Here is the analogous definition of H and what follows from it.
ff;-}ez = 8jek = 8]-(9’“’“ ek/)

= 0i(d")ew + 9" Ojen

= ngerek/ + gﬂg H]]-}ek/ + g"* ojey

= ergekgk/g/ee + ereé + gkl€ F?k’géf/ 66
0 = HEg%gwe + g™ Tugu

= Hiyg™ g + ¢ T g0
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and it suffices for the latter to hold that

L _ 4
H]k/ — _ijl

In the above derivation the following explanations may help. In line 3 we introduced H as the
analogue of I' in taking the slope of the metric. In line 5 we cancelled two terms and then equated
the coefficients of e’ because that vector itself is not zero. In line 6 we exchanged names of two
dummy indices: k' < /.

When we introduced the metric gaa in Note 9 we got away from the orthonormal coordinate system
we had started with and became able to work purely in the general coordinate systems we’re now
transforming into each other.

We should be able to do that, too, with the affine connection I'. We have derived I' in terms of the
slope of the orthonormal-to-general transformation, X, but we also know that g is the product of
X with its transpose.

So can we find [uaa in terms of slopes of gaa? A clue is the relationship we’ve just derived. Since
Gkt = XmpXmp we showed that 0;jgpp = ggkfgk, + ggklrgk

We can write this down twice more permuting the indices and then add the first two and and
subtract the third to eliminate all but one of the I'uaa s.

Oigkry = gmcfgk/ + gmcffgk
Ogit = 96 %k + 9T,
Ogrj = 9Ty + 9ok
20075 = 0jgkw + Ow gk — Ongnj
1
Il = 59%(@'9%' + Ok gjk — Okgrrj)

Note that the symmetry of I'waa follows from the symmetry of gad.

The affine connection I'uaa depends only on the metric gaa (and it involves slopes of gad). This

means that we can work with spaces—such as the 2-D surface of a sphere—for which there is no
obvious orthonormal coordinate system to build on.

The properties of a coordinate system are determined by the metric alone.

13. Parallel transport and geodesics. The components of a vector v also vary, as we have seen,
as the location of the coordinate system giving those components is changed. We can describe this
variance using I'uaa.

Since .
v=1'e;
we can find the component v*
v-ef = vjejek = vjéf =F
So the slope of a component
o = 9;(v-eb)



where 9;(v) - €* is the kth contravariant component of the slope of the vector v.

What if 0j(v) = 0?7 This means that the vector does not change as we move its location from one
local coordinate system to another. That is, since the origin of v can be anywhere in the space (a
vector is an interval, not an absolute position), the vector v can be thought of as moving parallel
to itself.
This is parallel transport.

8jvk =—v- I‘?j/ej
We can use it to create geodesics. A geodesic may be described as the shortest path between two
points. Or we can explore a more useful definition.

In a flat space, a geodesic is a straight line, the original concept given by the shortest-path definition.

In a curved space (which we haven’t come to yet) such as the 2-D surface of a sphere, a geodesic
is a segment of a “great circle”, the line resulting from cutting the sphere by a plane through its
centre.

It is fairly apparent, and an alternate definition which is better for us is, that a geodesic can be
generated by a small vector, moved repeatedly parallel to itself by placing its origin at its previous

tip.
o' = ok 4 AP

where
Avk = (ajvk')Aj — —I’?j/vlej
SO
vk = (0% — Tk, Ay
(Note the sign difference from the beginning of Note 12: why?)

We can illustrate geodesic generation for polar coordinates in a plane because we already have,
from Note 12 (in the mud notation a ¢ and a « are omitted because they are dummy variables and

summed over)

_AB
I‘ufdAf - ( 0 TA >

Ag/r A" /r

A MATLAB function [v, origin] = geodPlanePolarStep(v,origin) can calculate
v — 0 —rA? v
N AJr Ar)r

r4+ AT
0+ A?

AT‘
=)
This step can be iterated n times by
ends = geodesicPlanePolar(v,start,n,stepsize)
which reduces v to a vector in the same direction but divided in length down to stepsize, and
starting the iteration at origin start

and the new origin

given vector

and its origin (r,6).

Here is a result with, initially
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direction of v | start | n | stepsize
1 2 [1000| 0.0
1/2 /6

Plane polar geodesic starting at (2~ 0.5236) in direction (1 0.5)
90

15

180 [+

270

We see the 1000 steps as a straight line—a geodesic in this flat space, never mind that it is all
calculated in terms of varying polar coordinates.

Note that the vector v = (1 1/2)T appears in the initial coordinate system at (r,6) = (2, 7/6) as
a vector from the origin at (r,0) = (2,7/6) to the point (1Ar, (1/2)rA#f)

1<€
1/2 1
er
gy o (1e)
=8<

14. Absolute slopes. From Note 13 we have
(9;v) - eF = 907 + F?g?}e

and we can see that neither 8jvk nor I' ?evf is a tensor, even though v* is. Hence neither 0j nor I’ ?12
is a tensor.

For v* transforms as , ,
vk = Xmﬁ vi®

but

’

a2j/2}2k = X21;/alj(X21£/U1k)
75 X21§/X21£/ (81j’01k)
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because X21 now generally depends on the coordinate z17.

We want to claim that (0;v) - e’ is a tensor, because v and e* both certainly are tensors, being
vectors independent of any coordinate system.

Let’s check an example, using the radial field f = r7P~! in polar coordinates.
fr _ c s fe
) = \=s/r ¢r o
x p—1
—s/r c/'r ) ( )r

(-
= (o ) (2
()

(3)-(= (%)

In Cartesian coordinates (x,y) the metric g is independent of z, y: it is the identity matrix gijx = d;y.

*B

and

So the affine connection, being a combination of slope g with respect to the coordinates, is 0.

So we have in orthogonal coordinates (we’ll call them the 0-system, so the affine connection I''1 = T)

<< gz ) f) (€ €) = ( g: ) (fz fy) + Dorjefe

iy ) (f+ £2)

(
(3w
<

1 _ _ 2
e (2 )

Ty Y

where I'o = 0 gives the second line and the fourth line was worked out in Note 10.

In polar coordinates (system 1)

((5)7) @ e =
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where ['uaa 1 fu in line 2 expresses the join of

Twaa(k j ¢ T)
r 6 0 —r . follf)
6 r 6 1)r with o P
6 0 r 1)r
But we can get this result by tensor transform of (9;f) - €* (using z = cr,y = sr):
We need
e’ - 1 e,
e’ - 1/r? ey
. 1 c s €x
a 1/r? —rs rc €y
. c S €z
- —s/r c/r €y
and
(e &) Uy — (e e) c —s/r Uy
Vg CE s efr Vg
Ve
— (61‘ €y) < Uy )
SO

and, since 0; transforms as does vj,

Thus
(( g; )f) (e el =

(o)
Ef«s )K )r“+<p—1>(ii 2 ) (s an)
(

(e
— p 1 )rp_l
Here (0, f) - €* = 0, f* + F ,f* transforms as a tensor—although the individual components each
do not.

We conclude that (9; f) - €F is a tensor and should be used instead of 9; f* which is not.

We need a notation for the “absolute slope”
Dif* € (9;f) - € = 051" + T
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This tells us how much the vector field v changes itself as we move along coordinate j, without
being misled by “changes” in its components due to the changing coordinate system.

15. Gradient, divergence and curl with absolute slope. Now that we have absolute slopes, we
use them everywhere we formerly used slopes. In Cartesian coordinates, or coordinate systems
whose transformation from Cartesian is independent of the coordinates, the results are the same
as before. In other coordinate systems the regular slopes are wrong because they do not transform
as tensors. The absolute slopes do.

A source of variety, and confusion, is that there are both covariant and contravariant absolute
slopes. We’ve introduced the covariant one D;, which is always used, for reasons this Note tries
to make clear. But there is also the contravariant absolute slope, D7, which is equally valid in
principle if not in practice.

a) Here are the four possible combinations of absolute slope

Co-co Co-contra
g, L Lk _ gk ko0
Djvg = Ojur — ' Djv" = 00" + T
Contra-co Contra-contra
. . . . . .,
Dlv, = oy, — g Fg/kw DivF = §IvF + ¢¥ F?we

The bottom two are simple transformations of the two above, using the metric guu to raise the
index j from down to up.

The relationship between the top two needs work. Here we derive co-co from co-contra.

We must show that all that changes between the two is the sign on the affine connection I'naa—and
of course a necessary repositioning of the indices to keep up and down consistent.

Divk = Dj(grrv™)
ui Dy
= grw O™ + grwThp!
= 9i(giwv™) — (8jgi )" + grwThp’
= 0i(ger ™) — (g eT% + grel 5™ + gow Thp"
= vk — (g5 + grelS — el 0"
= Ojuy — gk/yfg/kvk/
= Ojv; — I’gkw
In the above, the second line follows from the important fact that the absolute slope of the metric

is zero: the metric is constant. We show this below, but first continue commenting on the above
derivation.

The third line is the co-contra absolute slope which we showed in Note 14.
The fourth line uses the rule for the slope of a product.

The fifth line uses the expansion of dg from Note 12.

Then it is just index rearrangement, cancellation and lowering the index of v.
Now we show that the metric is always constant. We use

1
ng - §gep(aj9kp + Ok Gjp — OpYjk)
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from Note 12 and an extension, which we do not prove, of the absolute slope (co-co) applied to
variables of more than one index.

Digerr = 096k — Tpgin — Tl gne
1 1
= Ojgrk — §5Z/(3jgkp + Ok9jp — Opgjk) — 55;@)(33'91@/;) + O 9jp — OpGjir)

1
0 Grir — 5(@'91@14 + Okgjrr — O gjk + 0jGri + Ow gjk — Okgjr’)
=0

b) There are two possible gradients, now using absolute slopes in place of the ordinary slope.
Co Contra
D;S = 0;S DI =88
These need no affine connection because the field whose slope is being found has no indices.

¢) One of the four varieties of curl, co-co, has a particularly simple form, because of the symmetry

of T.
Co-co
Co-contra

Divg — Dyv; = Oivp — o -
Ik kT Ik gk ¢ Dj’l)k —Dkvj = 8jvk+F§evz

—8k7)' + Fz Vg : i
J ki —Opv? — I’?dve

= 8jvk - 8k7)j
Contra-co Contra-contra
Djvk — Dkvj = 8jvk — gjjlrgj/ve Divk —DFyl = §iyk — gk
/ i kk' 1
—0Fv; + g"F L0 +9"7 9" (0 g — O gujr )v

d) We saved divergence for last because the co-contra form can be simplified, with some work, to
a form involving /g, the square root of the determinant of gaa.

We’ll give an unexplained derivation immediately below, and explain it after presenting all four
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versions.

Co-co

— 9. — T
Djvj = 0Oju; —T'jue

ayJ
Djv

1y
= 955 — 59"°(99ip + 0i9jp — Dpgjs)e

1
= 0jv; + 59" (9p95)ve — 97 (D39 )ve

Contra-co

Ja. = . — 33T
Dlvj = Pvj— g7 T

Co-contra
aj’l)j + F;:gve
S
007 + 5976 (05900 + Oegjer — af/gjf)ve

. 1 ..
8]-1)9 + 5936 8393'@/1}6

+ (%gjelﬁjgw - %gjelae'gje)vz
ajvj + %gjelaggjg/ve
907 + %tr(cflagc:)vf
907 + %(8@ In det G)v*
d;v7 4+ (9y1In /g)v*
A0l + %(ag\/g)vf
1

\/gae(\/gve)

Contra-contra

DI/ = Pl + gl T

The co-contra version is the one that is used. The derivation needs some amplification. In line 5, G
is defined as the matrix gaa, the covariant metric tensor. Line 6 starts a derivation, for any matrix

G, which takes us back to line 5: see below. Line 7 uses the conventional definition g = det G.

Here is the derivation that takes us from line 5 to line 6 in the co-contra argument above.

9 Indet G

Q

%

Q

Q

LAlndetG

(Indet(G + AG) — Indet G)

(det(G + AG))

1
—— Indet

1
—— Indet

—tr(GT'AG)
tr(G_lagG)

det G
(G7HG + AG))

(1+GTAG)

In(1+ tr(GTAG))

And even this derivation needs comment. The jump from det in line 5 to trace in line 6 follows
because the AG produces dth powers of shrinkingly small quantities in the determinant everywhere
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except on the diagonal. For example, in 2D, d = 2:

1+ g% Agin g2 Agie

=1+ g" Agi + g Agas + O(A?
921A921 1+g22A922 g gi1+4g g22 ( )

The step in line 7 uses the expansion In(1 + x) = x + 22/2 + .., stopping at the linear term.

16. Spherical polar coordinates. The three-dimensional extension of plane polar coordinates
involves two angles.

S
rg,o)
SZ{k

ex \sine )

from which we can read off the metric

1
gdd = r?
?”282

where we can continue to abbreviate sinf as s because there is no dependence on angle ¢ in the
metric. (And ¢ = cos#.)

From the metric we can get the affine connection

Fudd(j k / T )
r 6 6 —r
ro¢ ¢ —rs’

6 r 6 1)r
6 6 r 1)r
0 ¢ ¢ —cs
¢ r ¢ 1r
o o r 1)r
o 0 ¢ /s
6 6 0 cfs

We can move on to parallel transport and geodesics on the surface of a sphere. This means retaining
in the affine connection only those terms independent of r,

Twa(j k£ ¢ T )

0 ¢ ¢ —cs
o 0 ¢ c/s
6 6 0 cfs

To transport a vector v parallel to itself, winding up as vector v’ we had in Note 13
. . .
v = (6, —T9,A

Here the small change A in coordinates is
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so the reduced join 'A =T A is
FAud(j k FA )
0 ¢ —csA¢ < 0 —csA¢
< )

S 4 g ¢/s)AG (c/s)A0

given as a relation on the left and as a matrix on the right.

A MATLAB routine like that for plane polar geodesics in Note 13 can use parallel transport to
track geodesics on the surface of the Earth.

Here is the plot from the invocation

ends = geodesicLonglat([-60;66.5],Montreal’,Inuvik’,80,0.01)
where Montreal is at (—73.6,45.5) degrees and the initial direction is not directly towards Inuvik
at (—133°43',68°21") but in direction (-60,66.50), greatly shortened by a factor 100. (This is
an equirectangular projection from the sphere onto the plane: ¢ and 8 are each mapped directly
(linearly) to  and y respectively.)

Spherical polar geodesic starting at (-73.6 45.5) in direction (-60 66.5)

-150 -100 -50 0 50 100 150

Here is the great circle continuing entirely around the globe: I did not lift the pen as it switched
from —180 to 180 degrees of longitude.

Spherical polar geodesic starting at (-73.6 45.5) in direction (-60 66.5)
00 T T T T T T T

80

60

40t

20

ot

-60}

-80}

100 i i i i i i i
-200 -150 -100 -50 0 50 100 150 200
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We can use our general results from Note 15 on divergence and curl to examine a “magnetic” field
and a “rotation” field, respectively, on the surface of a sphere.

Divergence. Here is the “magnetic” field, v/ =1 = vy and v® =0 — V.

The divergence must be a scalar and only co-contra and contra-co forms can give scalars, so we try

both.
Co-contra Contra-co

8]-Vj+l“§ZVz = cosf/sinf 8NV“—|—FZ)\V)‘ = cosf/sinf

1 N S R 1 N o= Y g eyt
\/gag(\/gV) = Smeag(smm/) \/58,\(\/51/) = Smea(,(smW)

= cosf/sinf = cosf/sinf

These results make sense as the divergence of the magnetic field from north pole to south pole:

0 | 0 7w/4 w/2 3w/4 T
cosf 1 1/vV2 0 -1/vV2 -1
sinf 0 1/v/2 1  1/¥V2 0

~1

cosf/sinf | oo 1 0 —00

Curl. Here is the “rotation” field, v/ = 0 = vy, vy = sinf and v? = 1/sinf. (Note that we must
now accommodate the non-normalized coordinate system by multiplying or dividing by sinf for the
down and up second coordinates respectively.
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Here is the result from the simplest approach, co-co.

D;Vi —DpV; =

0;Vi — O,V
89V¢ — 8¢Vg
Ogsinf — 0,0
cos 6

We can check these results with microscopic calculations following on from the microscopic deriva-
tions of div and curl we made in Note 6 for flat space.
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Divergence

This example is a field of constant magnitude
f in the 6 direction, the “area” it applies to
is asin #A¢ and the “volume of the region is
(aAf)(asin 0AQ) = a’sind AGA.

e total flow at boundary = fasin 0Ag;

e net flow from region = slope of this =
fecosOAOAP;

e net flow per unit area =

(f/a)(cos@/sin0)

which agrees with the divergence above
and is also plausibly inversely propor-
tional to the radius a of the sphere: at
infinite radius the surface would be flat
and have no divergence (except maybe
at the poles).

Curl

This example is a field of constant magni-
tude fsinf in the ¢ direction (for a covari-
ant system), the “area” it applies to is again
asinfA¢ and the “volume of the region is
again (aAf)(asin Ap) = a?sinfAOA.

e total flow at boundary = fasin? 0A¢;

e net flow perpendicular to region = slope
of this = 2f cos0sin A Ag;

e net flow per unit area = (f/a)(2cos6),
which agrees with the curl above (apart
from the 2) and is again plausibly in-
versely proportional to the radius a of
the sphere.

17. Curvature. How can we tell if we live in curved space? Suppose we were two-dimensional
creatures who can measure angles in a triangle. Then in flat, Euclidean, space, the angles would
total 7 in any triangle. But in curved space, the total would differ from #w. Here is the example
of a sphere (which has “positive curvature”) with a particular triangle whose ezxcess angle is w/2.
(Other triangles on a sphere will have different excess angles, but which will all be positive.)

Excess Angle for Triangles

3 . i
a+B+y:T[ q:B:y:g
3n___Tt
excess angle 5 "=

o4



The excess angle may be measured by parallel transport. In a flat space a vector, transported
parallel to itself around a closed curve (for example a triangle), will return to its original orientation.
In a curved space it will not. Here is the same triangle on the sphere: we see that the final position,
4, of the vector differs by 7/2 from its original position, 1.

Excess Angle by Parallel Transport

e

A= 7 excess ang

We no longer need triangles but can parallel-transport a vector around an arbitrary closed curve.
The diagram shows that this is the same as parallel-transporting the vector around each of a whole
bunch of parallelograms decomposing the area contained within the curve: each internal edge will
be traversed in both directions, cancelling out the effects of all internal edges and leaving only the
effect of the boundary, i.e., the curve itself.

For Arbitrary Curve

q
N
N
N
SN

.. all loops cancel,
except on outer boundary

.. SO just add up contributions
from each parallelogram

So we can focus on an infinitesimal parallelogram.
For Infinitesimal Parallelogran

3~

1 /b , /b

5/P Q

The analysis of this involves parallel-transporting the vector, which we’ll call v, around the paral-
lelogram, and parallel-transporting the edges a and b to give the other edges, respectively a’ and
b, of the parallelogram itself.

There are three preliminaries.
First, a and b must be parallel-transported to a’ and ¥'.
VY= b —Tel5a
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avV o= a’— I‘P’%b”’a‘;
because the change in coordinate for moving a, Az = b and the change in coordinate for moving b,
Az = a.

Note that in the four dimensions of timespace it is conventional to use Greek indices. More Greek
letters are available and free of alternative meanings than Roman. We will find that curvature
becomes really interesting in four or more dimensions. So we’re going to switch to Greek letters
for the remaining Notes.

Second, note that I'" has a midscript, P, to indicate that the I' has been calculated as at point P.
Since we will also need I' at points () and S, this brings us to the second preliminary. We will need
the slope of I' to approximate the infinitesimal transportation from P to these points.

Lo, = Ty + a%slope,I'Fl,

Ishy = Trly + b*slope, P,
The third preliminary is a similar transportation of the vector v which is to be transported around
the entire parallelogram.

vod = vt — I‘pgﬁao‘vpﬁ

vsd = UPA—FPgﬁbaUPﬁ

We’ll work out the expression for the transport of v from P to @ to R, from which we can easily
get the transport of v from P to S to R by swapping a and b. Then we put the first together with
the negative of the second to get the transport of v from P to ) to R to S and back to P.

So we start work with only the first of each of the above three pairs of preliminary equations. We
break down Aprgr = Arq + Aqr, where Aprqu = v — vp etc.

Aprov¥ = —Fpl’j/\a”vp)‘
Agrv? = —FQﬁ)\b/V’l)QA
= — (TPl + a®slope, Pl ) (b — Tr¥5a7) (v — Tp)gavr?)

= —FPfj)\bVUP)‘ + FPﬁAFP:(;(I’YbaUP)\ + FPﬁAbergﬁaavPﬁ — ao‘(slopeaFPff)\)b”vP}‘ + ..

where the terms left out in the last equality are those of orders higher than ab: the approximation
is linear.

Thus (and we drop the P midscript since it now appears everywhere),

Argrv* = —T* a”v* — T b0 + FﬁAF’§5a7b5v)‘ + T8 0T 5a%0" — a®(slope,I'hy )07 0™ + ..
Now for the inverse of the path back: swap a and b.

Apspot = —TH b0 — TH a"0* + I”;AF’%b”’a‘sv)‘ + T80 Thgb™0” — b*(slope, I, )a" v + ..
Subtracting the latter from the former we get a lot of cancellation and we can factor the abv part
out of every term.

Apqrspvt = —Rﬁaﬁaabﬁv)‘

where o
Rf\‘aﬁ < slopeafg)\ —slopegl™, + 0, T4 — I‘gy “
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is the Riemann curvature tensor. (Note the grouping of A\ and p: this is the convention.)
Understanding this tensor is not immediate, so let’s try examples.

First, plane polar coordinates, with metric g,3 and affine connection ng

Fudd(a [ v r )
g_dd(?f E % ) 6 60 r 1/r
6 r 6 1)r
2
o 0 r r 6 0 —r

The slopes of the affine connection are with respect to r. The first three lines below are calculated
and then rearranged into the second three lines for the second term in the curvature tensor.

slopel’ )
—1/r?

slopeafﬁﬂ(a 8
r
6 —1/r?
0
r
r
r

-1
1/r?
1/7“2

-1

—slopegly |

T 333
T T3 DT
I DI | >

giving four terms, since the first of each triple cancel each other.

Here are the two products of affine connections with each other. The first is calculated (five lines)
and the second is a rearrangement, swapping o with § and not retaining the join index, v.

S I5sw voa A B T )
6 6 r 6 r 1/r?
6 6 r r 0 1/r?
r 6 6 6 r -1
r 6 6 r 0 -1
6 r 6 06 0 r?
—Ty,T%, 0 ro 0 r —1/r?
0 o r r —1/r?
r r 60 0 1
r 0 r 0 1
o 06 6 0 —r?

Here there are three pairs of cancellations—the first, fourth and fifth in each of the five-row sets—
leaving again four terms.

Finally, combining the two sets of four terms—one set from the slope calculations and one set from
the product—we find they all cancel. So the excess angle will be zero in plane polar coordinates.
That is exactly what should happen, since the space is flat. It has zero curvature.

The second example is curved: the surface of a sphere with metric g,5 and affine connection

gy Puala ro)
ad udd| ¥ 'y
J (Z g T‘Z ) 0 (5 ¢ —sc
¢ ¢ 1 ﬁ 6 ; Zﬁ

where s = sinf and ¢ = cos . So the slopes are with respect to #. We follow the same procedure
as for plane polar.
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slopeafﬁﬂ(a s%opef )
s°—c
—1/s?
—1/s?
¢ —s
1/s?
1/s?

—slopegly

SORSERSEES SESSENS

T E
ASEIN SR S SN SN
SSEESSES SIS N R Y ey

Cancellations again reduce these six rows to four.

Fﬁarg\ﬁ(

SIS S S SN AN

—Isl%a

- T TIE
LTI DDDO L
ST T DO | >
ACSESSIIS SR SR CEECEE SR CHIES SR CH e
Q
(3%}

Three pairs of cancellations reduce these also to four rows.

But the four rows from the slopes combine with the four rows from the products to produce a
non-zero curvature tensor.

Riaﬁ(ﬂ A a R )
0 ¢ 0 ¢ s
o 0 0 ¢ -1
0 ¢ ¢ 6 —s?
o 0 ¢ 0 1

Let’s look at
At = —Rﬁaﬁaabﬁv)‘

directly on the sphere for a small parallelogram of sides

au(fa a ) bu(f b )
¢ A 0 Af

The result is, with 6 as the first and ¢ as the second index,

—g2
Av=— ( . ) vAOAG

Aw is thus orthogonal to v, and it turns v counterclockwise, as you can see in the two base cases
v Av v Av

() (4o () (3)aae

The factor of s? reflects a) a factor s = sin§ reducing the area AGA¢ as 6 moves from equator to
(either) pole, and b) a factor s multiplying the ¢ component of the test vector v to give its length.

Something neat happens if we lower the one up-index
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gng‘f\aﬁ W 6 N a p gR )
0 0 o 0 o r2s?
o & 0 0 ¢ —r’s?
0 0 ¢ ¢ 0 —rs?
o ¢ 0 ¢ 0 r2s?
If we remove the column for §, the join index, we see that R, 5.3 has some symmetries
R A o B gR )
0 ¢ 6 o r?s?
6 0 0 ¢ —r2s?
0 ¢ ¢ 0 —r3s?
o 6 o 0 r2s?
namely
Runap = —Luap
Runep = —Rurga
Rurap = Rapu

Let’s see if we can confirm these symmetries.

We must anticipate two advanced results. The first is that, by the meaning of tensors, a tensor
relationship which holds in one coordinate system also holds in any coordinate system. Excursion
Absolute slope and curvature shows that the curvature tensor is indeed a tensor in this definition.

The second advanced result is that, in a small enough region, a curved space is locally flat, and
that in this case, we can find coordinates in which the slope of the metric vanishes—although the
slope of this slope may not. See Excursion Local flatness.

So we look at the curvature tensor in such a coordinate system. The affine connection, being a
combination of slopes of the metric, vanishes, but its slope does not.

Rﬁaﬁ - 8«111% — 08T\
Iy = %g“ %(D5gsn + Oxgsp — Dsgxs)
Oy = %g“ % (000595 + 0a0rgsp — 0adsgrg)
Ol = %9“ *(080agsx + 0307gsa — 03059ra)
R\, = %g“ 2 (0002955 — 9307Gs0 + 0305970 — 0aOs9r3)
Riyap = %(aaaxgpﬁ — 980\Gua + 980u9xra — 0aOugrg)

= A-B+C-D

In the above, the first line is the short, locally flat, version of the curvature tensor; the second line
is the definition of the affine connection; the third line is the slope of the affine connection, given
that ¢ has zero slope; the fourth line swaps o and § in the third line to give the term to be
subtracted; the fifth line is the difference of the third and fourth lines; the sixth line gets rid of the
leading ¢ term by lowering the first index; and the seventh line abbreviates each of the respective
terms so that we can use them in the following rearrangements of the indices.

Rupes = A—B+C—D
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Ryws = D—C+B—A
Rypga = B—A+D—-C
C-B+A-D

Ragun

which proves the symmetries.

There is another symmetry which is not obvious from the 2-dimensional example of the surface of
a sphere. This is the cyclic symmetry

Ry + Rugra + Ryapy = A-B+C-D+E—-A+F-C+B—-E+D-F
=0

where A, B,C and D are as before, taking advantage of the symmetry of d,03 and of g,g, and
where FE and F' are additional terms which, as we see, cancel.

The cyclic symmetry reduces to the swap symmetries we saw first, unless all the indices are different.
Thus the cyclic symmetry says nothing for a space under four dimensions.

Back in two dimensions, the single independent number in the Riemann tensor is simply related to
the Gaussian curvature,
Ri912
g

Karl Friedrich Gauss’ “Theorema Egregium” (18277) established the curvature (that is, the “inner”
curvature) of a 2D surface in terms of the metric tensor and its derivatives—that is by knowing
only measurements which creatures living in that surface can make. K relates the excess angle to
the area bounded by the curve traversed, in the limit that the area becomes arbitrarily small.

A0 = K Aarea

K=-—

Bernhard Riemann subsequently generalized this result to any number of dimensions.

On a sphere we can talk about large areas because the curvature is constant, i.e., independent of
location on the sphere. (The symmetry of the sphere should make this apparent: what is there to
differentiate any particular location from any other?) So the excess angle for the 1/8 of the sphere
at the beginning of this Note is 7/2 and its area is

4rr? w o,
=_r
8 2

so K =1/r%

The derivation of K from R\ usually goes from the full expression for R above to the even more
cumbersome expression Gauss derived for K. Here is a simpler derivation.

For a small angle formed by changing a vector v by Av the definition of angle in radians allows us
to say
B | Av |

AY
| v |

We know that
Aot = —Rﬁaﬁaab’%)‘
and can work with this to get the infinitesimal area and the Ri212.

In two dimensions, indices take on only two values which we’ll call 1 and 2. And the area of a
parallelogram of sides a and b is, using Cartesian coordinates

azby —ayb: = |al||b| (cos@sin(¢p+ 6) — cos(¢p + 0)sin @)
= [al[b]sin(¢+6—9¢)
= |allb|siné
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where a is inclined angle ¢ from the z-axis and b is inclined angle 6 from a. The final result is the
area between two vectors of the magnitudes given and separated by angle 6.

We'll actually need a'b? — a?b! but the transformation from (z,%) to non-orthonormal coordinates

is familiar (e.g., Note 8, Note 11) and we can invent a transformation matrix to write

(2)-(2 1) ()5 () ()

where /g = ps — qr, and similarly for b.
So

[(saz — ray)(—gb: + pby) — (—qa= + pay)(sbz — rby)]

[(ps — qr)asby — (ps — qr)ayb:]

QIkFQ |~

—

— E(a‘rby - aybz)

We can always find a coordinate system in which the metric tensor is diagonal, so we can assume this
without losing generality. (Make the basis orthogonal: choose a coordinate transformation which
is an orthogonal matrix, so its inverse is its transpose. This is a diagonalizing transformation.)

Putting this all together
Aot = R)\Olﬁao‘bﬂvA
= —Rfaﬁ(aabﬂ — ) restricting o < 3
= —g"R,rap(a®b? — aPb*)0?
= —g”“RMMg(aabﬂ — a’@ba)v’\
9 Ris1a(a'b? — a2b )2
= - ( 722 Ro110(a'b? — a2b ! )

911 2 112 2,1
= ( Zg2! ) (=Ri212)(a"b” —a®b")

g2

= ( g2y ) (=R1212)(asby — avb=)/\/g
= V(—Ri212)(asby — avb:)/\/g

In the second line we restrict @ < 3 and use the antisymmetry of RY Ao OD the last two indices.

In the third line we change R/\aﬁ to R aap- In the fourth line we use our assumption that ¢'* is
diagonal. In the fifth line we restrict to the two indices 1 and 2 and to the four nonzero values of
Ry zap- The seventh line rewrites the sixth in terms of the area in orthonormal coordinates. The
last line gives the vector part a name V to use in the following.

The norm of this is just the norm of the vector part V times the factors outside (which we see are
coming pretty close to the product of Ri212 and the area over g). We start with the square of the
norm.

VP = gV

_ 911(911U2) +922( 221}1)

g ()2 + g (0')?
(g22(v*)* + 911( Y%)/g
= [vP/g
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So the norm of V is the norm of the original vector v divided by ,/g. Note incidentally that V

is orthogonal to v: take the inner product v/ gjka. This means that the norm of the new vector
v + Av is the same as that of v.

From all this we see that the excess angle, which is the ratio of norms, is

no = LAY
| v |
= —R1212(azby — aybz)/g
= —RjgpAarea/g

as claimed.

18. Negative curvature. A two-dimensional surface has negative curvature if it curves oppositely
in opposite dimensions. A hyperboloid of revolution is a good example.

One-sheet hyperboloid of revolution

This is an x-z hyperbola rotated about the z-axis, so we should study hyperbolas first.

In Week iv we found that hyperbolas emerge from shear matrices in the same way that circles
emerge from rotation matrices. Here are the results of applying a very small rotation or a very
small shear to a point in space, then applying it repeatedly to the previous result.
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Rotation Shear

ch sh
sh ch

A+s2=1 ch?> —sh?> =1
locus due to matrix 0.99985 -0.017452 starting 1 o' locus due to matrix 1.0002  0.020001 starting 1 o'
1 T T T T 4 T T T T T
0.8r — 3
0.6 —
2
0.4r —
0.2 — L
> or = > 0
-0.2f 4 L
-0.4} . 1
-2
-0.6[ : 1
-0.8} : 1 3
o ‘ ‘ ‘ o ‘
0 0.5 1 1 15 2 25 3 3.5 4
X X
Here, ¢ = 0.99985 and s = 0.017452: Here, ch = 1.00020 and sh = 0.02000:
a very small rotation. a very small shear.
I’ve used symbols ch and sh respectively for “hyperbolic cosine” and “hyperbolic sine”! because

they give the x and y coordinates, respectively, just as do cos and sin for circles.

locus due to matrix 1.0002 0.020001 starting 1 o’

4 T T T T T

-4 i i i i i i i

The discussion in Excursion What functions for ch, sh? argues for the following parametrization.
1 _
ch = coshp = 5(67’—1—6 P)

1
sh = sinhp:§(ep—e_p)

T preferred to use the Hebrew khaf and shin for these but IWTEX does not support Hebrew other than R.
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Now three dimensions: the hyperboloid. The extension is easy: the only change is to rotate
in the z-y plane.

= cosh(p) cos(0)
y = cosh(p)sin(h)
z = sinh(p)
We are interested in the metric and hence the affine connection and hence the curvature tensor.

The incremental distance as we change 6 obeys
(As)? = cosh(p)?(AB)?

because cosh(p) = ch is the radius of that section of the rotated hyperbola.

Similarly, but less obviously,
(As)? = cosh(2p)(Ap)?

because the vertical distance squared (i.e., dependent on p but not on ) from the origin to any
point (r,2) = (/22 + y2, z) on the hyperboloid—that is, the radius of the arc from p to p+ Ap—is

cosh(p)? + sinh(p)? = cosh(2p)

So the metric is

goa = ( cosh(2p)

cosh(p? )

We can follow the now well-practiced calculation to find the affine connection.

1
F});,V = §g)ﬂ(S10pey 9up + Slopeu v — Slopeﬁ g,uz/)

Fuaa( A p v r )
p p D the
p 6 0 —%tiw
0 p 0 th
0 6 »p th

where th = tanh(p) and th2 = tanh(2p).
The next step is the Riemann curvature tensor. I’ll find — Raddad because the 2-dimensional curvature
is —nglg/g.

v

_RHVOtﬁ = Gu (Slopea Fﬁﬁ - Slopeﬁ Fﬁa + F');ar'yﬁ - F');BFZa)

—Ragaa(p v a f R )
p 6 p 0 —%th the — %
p 6 0 p %th the + ﬁ
0 p p 0 —3ththe+1
6 p 6 p %th ths — 1

making it seem for a moment that a symmetry is broken. But

1 1 ch? 1
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Furthermore it is easy to see that the expression for —Rjs12 is always negative, so the Gaussian
curvature K = —Rj212/¢ is also always negative.

% ~ Rz
g
ch?
__ ch2
chach?
1

cha?

We also see that the curvature is not constant.

curvature of hyperboloid of revolution
T T T T T

curvature
!
o
«»

i i i i i i
-2 -15 -1 -0.5 0 0.5 1 15 2
parameter, p

The (negative) curvature is maximum at p = 0, the most bent part of the hyperbola and hyper-
boloid. It approaches zero asymptotically as the hyperboloid approaches a 45-degree cone, which
can be made from a flat sheet of paper and so has zero curvature.

There is no surface embedded in our usual Euclidean 3-dimensional space which has constant
negative curvature. But we can find an esoteric such surface, a “pseudo-sphere”, if we look at yet
another way to represent ch and sh for a hyperbola.

parameter | ch | sh | ch™! | sh™1
—i% <p <if | cos(p) | isin(p) | acos(ch) | asin(—z sh)

Note, for example, that
ch? 4+ sh? = cos? p — sin® p = cos(2p) = che
This is based on a central result on two-dimensional numbers (and i is just the “number”—imagine
that!—representing the 90-degree rotation)
e = cosf+isind
e? = coshp+sinhp
where I've given also the corresponding relationship on hyperbolic cosine and sine.

So we’ve just set parameter p = 6. But this has the effect of making one axis “imaginary”: instead
of (x,z) = (cosp,isinp) we can use (z,() = (cos p,sinp) where ( = —iz.

Let’s explore the surface of a sphere in z-y- coordinates, i.e.,

= cosfcos¢
y = cosfsing
¢ = sinf

65



In the metric we can retain rsin € because it gives a horizontal direction, i.e., parallel to the z-y
plane. But we must change the other direction so that, where 12 = 22 + 42,

4 (i¢)* =r? = ¢

is a distance. So the metric has a sign change in the (0,0) entry (which we’ve been writing first,
before (¢, ¢), for spheres).
2
—r
g-dd = < r2g2 )

reverting to the abbreviations s for sinf (and ¢ for cosf).

Following our usual calculations, we get affine connection and curvature tensor for this pseudo-
sphere with some sign changes from the results for the sphere.

FuddA p v T )

0 ¢ ¢ cs
¢ 0 & c¢fs
6 ¢ 8 cfs
—Ruddd(p v o B R )
0 ¢ 0 ¢ —s°
0 ¢ ¢ 0 s°
o 0 6 ¢ -1
o 6 ¢ 6 1
So
—Rdddd(p v a p R )
0 ¢ 0 ¢ 1r’s?
0 ¢ ¢ 0 —r3s?
6 0 0 ¢ —r’s?
b 0 ¢ 0 rs?
And R - .
_ tuge  orist 1
K= g —ris2 2

a negative constant over the whole surface.

19. The Ricci tensor. In Excursion Number of components of the curvature tensor we show that
the Riemann curvature tensor has d?(d? — 1)/12 independent components in d dimensions. It is of
interest to compare this with the Ay independent components of a symmetric d-by-d matrix, e.g.,
a symmetric d-dimensional tensor of two indices.

d 1 2 3 4
@@ -1)/1210 1 6 20
Ay 1 3 6 10

So, for up to three dimensions, a 2-index tensor can in principle contain all the information of the
full Riemann curvature tensor.

Such a 2-index tensor is the Ricci tensor

Rys = RY,5 = 6" Ronug

66



and we can see that it is symmetric by the symmetries of 9“5 = g‘sl‘ and Rsyag = Ragsr

The Ricci tensor is arrived at by contracting two indices of the Riemann tensor, one up and one
down so that Ricci is a tensor too.

If we contract again we get the curvature scalar
R=g"Rys=g"g" Rsrp

We can go the other way and write the Riemann tensor explicitly in terms of the curvature scalar
R in d = 2 dimensions and in terms of R and the Ricci tensor in d < 3 dimensions.

2D. To start, you should check that the symmetries of R, \.3 require, in two dimensions when
Wy A, 0, Be{1, 2}, that the only nonzero components out of the 16 possible will be

Ri212 = —Ri1291 = —Ra112 = Ro121
Then you can show
R = ¢Mg¢"Rsus
("9 — 926" Riota + (622" — ¢2'9'%) Roron

2
= —Rioo
g

where g = g11922 — (g12)? is the determinant of the inverse of gu, g = 1/(g'¢%* — (¢'2)?).

Still in two dimensions, you can also show that

Ri212
R,u)\aﬁ = (g,uag)\ﬁ - g,uﬁg)\a)T

Here, for this and the previous result for R, are the nonzero components of the relations R, \.3 and
Guadrp — JupIra

p A a B R gg—
1 2 1 2 T g
1 2 2 1 —-r —g
2 1 1 2 —r —g
2 1 2 1 r g

where r = Ry912 and g = 11922 — g12921-

So we have the Riemann curvature in two dimensions in terms of the curvature scalar.

1
R,uAa,ﬁ’ = 5(-9#019)\/@ - g,u,ﬁ’g)\a)R
Incidentally

Ri212

Ryg = 6" (9s5u978 — 96890u)

Ri212

= (81,9x5 — 95 9x)

Ri212
= (2958 — 9x8) P

Ri212 R

= g)\,@?

= 9N
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3D+-. In three dimensions we need the Ricci tensor as well as R to give R, g completely.

1
Rixap = Jualrg — 9usBaa — 9ra s + 9 Rua — i(guagm — 9uB9ra) R

In three or more dimensions d this generalizes to

1 1
Ryas = P (GuaRrg — 9upRora — 9raRup + 98 Rua) — @-Dd-2) (9ua9r8 — 9uB9ra) B4 Clrag

where C)\qg is the Weyl tensor, which in four or more dimensions, picks up all the leftovers not
accounted for by the Ricci tensor and the scalar R.

Excursion Paraboloid part (e) illustrates a use of the Ricci tensor.

20. More protor calculator. Building on Note 5 and the Excursions implementing slope() and

joinred (), we have one major function to add to the protor calculator,
function(conn,curv_uddd,curv_.dddd) = metr2curv(metr,invmetr,indices)

Fairly self-evidently, metr2curv () computes the Riemann curvature tensor (curv_uddd and curv_dddd

forms) via the affine connection (conn) given the metric tensor (metr and its inverse invmetr). It

requires metr and invmetr in protor form, and a list of symbolic indices for the slope () operation.

Here is a sample invocation for the three-dimensional paraboloid of Excursion Paraboloid (part (e)).

1 >> syms a r theta phi

2 >> gparab3 = [r,r,1/(1-a/r);theta,theta,r 2;phi,phi,r 2*sin(theta) 2]

3 gparab3 =

4 [ r, r, -1/(a/r - 1)]

5 [ theta, theta, r-2]

6 [ phi, phi, r"2*sin(theta) 2]

7 >> invgparab3 = [r,r,1-a/r;theta,theta,1/r"2;phi,phi,1/r"2/sin(theta) 2]
8 invgparab3 =

9 [ r, r, 1 - a/r]

10 [ theta, theta, 1/r"2]

11 [ phi, phi, 1/(r"2*sin(theta)"2)]
12 >> [connParab3,curvParab3_uddd,curvParab3_dddd] = metr2curv(gparab3,invgparab3, [r,theta,phi])
13 connParab3 =

14 [ phi, phi, T, 1/r]

15 [ phi, phi, theta, cos(theta)/sin(theta)]

16 [ phi, r, phi, 1/r]

17 [ phi, theta, phi, cos(theta)/sin(theta)]

18 [ r, phi, phi, r*sin(theta) 2*(a/r - 1)]

19 [ T, T, T, a/(2*xr"2x(a/r - 1))]

20 [ r, theta, theta, rx(a/r - 1)]

21 [ theta, phi, phi, -cos(theta)*sin(theta)]

22 [ theta, r, theta, 1/r]

23 [ theta, theta, T, 1/r]

24 curvParab3_uddd =

25 [ phi, r, r, phi, a/(2xr~3*x(a/r - 1))]
26 [ r, phi, r, phi, (axsin(theta) ~2)/(2*xr)]
27 [ r, theta, r, theta, a/(2xr)]
28 [ theta, T, r, theta, a/(2*xr"3*(a/r - 1))]
29 [ phi, theta, theta, phi, a/r]
30 [ theta, phi, theta, phi, - sin(theta) 2 - sin(theta) "2*(a/r - 1)]
31 [ phi, r, phi, r, -a/(2xr~3*x(a/r - 1))]
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32 [ r, phi, phi, r, -(axsin(theta) "2)/(2x*r)]

33 [ r, theta, theta, T, -a/(2*r)]

34 [ theta, r, theta, r, -a/(2xr~3*(a/r - 1))]

35 [ phi, theta, phi, theta, -a/r]

36 [ theta, phi, phi, theta, sin(theta) "2 + sin(theta) "2x(a/r - 1)]

37 curvParab3_dddd =

38 [ phi, r, phi, T, -(a*sin(theta) "2)/(2*xr*(a/r - 1))]
39 [ phi, T, r, phi, (a*sin(theta) "2)/(2*xr*(a/r - 1))]
40 [ phi, theta, phi, theta, -a*rxsin(theta) ~2]
41 [ phi, theta, theta, phi, axr*sin(theta) 2]
42 [ r, phi, phi, r, (axsin(theta) "2)/(2*xr*x(a/r - 1))]
43 [ r, phi, r, phi, -(a*sin(theta) "2)/(2*xr*(a/r - 1))]
44 [ r, theta, r, theta, -a/(2*xr*(a/r - 1))]
45 [ r, theta, theta, T, a/(2*xr*(a/r - 1))]

46 [ theta, phi, phi, theta, r~2+(sin(theta)”2 + sin(theta) "2x(a/r - 1))]
47 [ theta, phi, theta, phi, -r"2*(sin(theta) 2 + sin(theta) "2x(a/r - 1))]
48 [ theta, T, r, theta, a/(2*xr*(a/r - 1))]
49 [ theta, r, theta, T, -a/(2*xr*(a/r - 1))]
50 >> riccParab3 = contract(curvParab3_uddd,1,3)
52 riccParab3 =
52 [ phi, phi, -sin(theta)”2 + sin(theta) "2x(a/r - 1) - (a*sin(theta) ~2)/(2*r)]
53 [ T, T, -a/(r~3*(a/r - 1))]
54 [ theta, theta, -a/(2*r)]
55 >> Xparab3_ud = [r,r,sqrt(l-a/r);theta,theta,1/r;phi,phi,1/r/sin(theta)]
56 Xparab3_ud =
57 [ T, r, (1 - a/r)"(1/2)]
58 [ theta, theta, 1/r]
59 [ phi, phi, 1/(r*sin(theta))]
60 >> riccParb3norm = transform(riccParab3,Xparab3_ud)
61 riccParb3norm =
62 [ phi, phi, -(sin(theta)”~2 + sin(theta) "2*x(a/r - 1)
- (a*sin(theta) ~2)/(2*r))/(r"2*sin(theta) "2)]
63 [ r, T,
a/r"3]
64 [ theta, theta,
-a/(2xr~3)]

In the above code, I've added line numbers for this discussion. You can compare the results with
the calculations in Excursion Paraboloid (part(e)) as we go along.

Lines 1-11 set up the symbolic variables and the metric and its inverse.
Line 12 is the invocation of metr2curv() with these parameters.
Lines 13-23 show the affine connection calculated by metr2curv().

Lines 24-36 show the uddd Riemann tensor and lines 37-49 show Raddda, both as calculated by

metr2curv(): to get the results of Excursion Paraboloid, some of these must be simplified manually,
because MATLAB is sloppy about symbolic calculation.

Line 50 invokes another function contract() to contract Riemann Rudda to Raa (Ricci), and lines
51-54 show the result, in agreement with Excursion Paraboloid.

Lines 55-59 define the normalizing transformation matrix and line 60 uses the function transform(),
discussed in Note 5, to take the final step in Excursion Paraboloid: compare with the result in lines
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61-64.

The implementation of metr2curv() is based on other functions and so the full code is short.

% function [conn,curv_uddd,curv_dddd] = metr2curv(metr,invmetr,indices) THM 140130
% Use metr2conn(), conn2curv(), matmult() to calculate Riemann_dddd from metr
% metric_dd), invmetr (inverse metric_uu) and indices
% In metr: the metric tensor dd: 2 cols indices, 1 col values
% invmetr: the inverse metric tensor uu: 2 cols indices, 1 col values
% indices syms: (row) vector of all index values (Greek, Latin)
% 0Out curv: the Riemann_dddd curvature tensor
% Uses metr2conn(), conn2curv(), joinred()
function [conn,curv_uddd,curv_dddd] = metr2curv(metr,invmetr,indices)
conn = metr2conn(metr,invmetr,indices); % display test only
% NB may need to improve MATLAB’s simplification of conn before continuing:
curv_uddd = conn2curv(conn,indices);
syms allzeros %140429 deal with flat space
if curv_uddd==allzeros
curv_dddd = allzeros;
else
curv_dddd = joinred(metr,2,curv_uddd,1);
end

The two steps are encapsulated in two new functions.

First, find the affine connection.

conn = metr2conn(metr,invmetr,indices);
This in turn requires a couple of auxiliary functions not discussed in Note 5, and we can give the
full code.

% function conn = metr2conn(metr,invmetr,indices) THM 140129
% Combine slopes(), nozeros(), swapcols(), mergesum(), joinmult(), scalarmult()
% and reduce() to calculate the affine connection given the metric, its inverse
% and the set of indices to differentiate with respect to.

% In metr: the metric tensor - 2 columns of indices dd, 1 column of values

% invmetr: the inverse of the metric tensor - ditto but indices uu

% indices: (row) vector of all indices involved, usde by slope()

% NB all entries in these arrays are syms : invocation must be preceded by,

% e.g., syms theta phi r; g = [theta,theta,r"2;phi,phi,r"2*sin(theta)"2]; etc.
% Out conn: the Christoffel symbols - 3 columns of indices udd, 1 col. values
function conn = metr2conn(metr,invmetr,indices)

di_g = nozeros(slopes(metr,indices)); % display test only

preG = nozeros(mergesum(1,nozeros(...
mergesum(1,di_g,-1,swapcols(di_g,1,2))),1,swapcols(di_g,1,3)));

conn = reduce(scalarmult(1/2,joinmult (invmetr,2,preG,2)),2);

The two auxiliary functions for metr2conn() are a merge

% function out = mergesum(signl,inl,sign2,in2) THM 140127
% Merge two relations on their (commensurate) index columns, incorporating the

% given sign for the value column and summing (with signs) if match.

% In signl, sign2, integer: the respective signs for the two value columns

% hell, it can be any numeric weight or even another sym

% inl, in2: the size#In2-ary relations of size#Inl tuples each to merge
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% Out out: the merged result.
% Used by metr2conn(), conn2curv(), abslopes(), mergesum()

and a routine to swap indices

% function out = swapcols(in,coll,col2) THM 140127
% Swap two index columns (i.e., avoid last column) in symbolic relation in .

% In in: sizeIn2-ary relation stored as array 1 row per tuple

% coll, integer: column to be swapped with col2

% col2, integer: column to be swapped with coll

% Out out: the relation with index columns swapped

% Used by metr2conn(), conn2curv(), abslopes(), mergesum()

% Related but not reduced to movecols(), permcols()

These are straightforward to implement except that, for mergesum (), MATLAB precludes inequal-
ity comparisons on symbolic variables so I could not use merge logic but had to find matches first
and then append unmatched tuples from each operand.

Here is a sample run of mergesum(), simple enough to show how it needs to be built.

1 >> mergesum(1,[1,1,phi;2,2,thetal,2,[1,1,theta;2,1,phi])

2 ans =

3 [1, 1, phi + 2*thetal
4 [ 2, 2, thetal
52,1, 2*phi]

Here is one for swapcols() showing how the specifed columns are simply interchanged.

digk1k2 =

[ xi, =xi, =xi, 2*xkl1°2*xi]
[ xi, xi, eta, etaxklxk2]
[ xi, eta, xi, etaxklxk2]
[ eta, xi, eta, k1xk2*xi]
[ eta, eta, xi, k1xk2*xi]
[ eta, eta, eta, 2*etaxk2"2]
>> digklk2_12 = swapcols(digklk2,1,2)
9 digklk2_12 =

10 [ xi, =xi, =xi, 2*xk1"2*xi]
11 [ xi, xi, eta, etaxklxk2]
12 [ eta, xi, xi, etaxklxk2]
13 [ xi, eta, eta, k1xk2*xi]
14 [ eta, eta, xi, k1xk2*xi]
15 [ eta, eta, eta, 2*etaxk2"2]

O ~NO O WN -

The second step of metr2curv() uses the affine connection to get the Riemann curvature.

function curv = conn2curv(conn,indices)
uses slopes(), nozeros(), swapcols(), mergesum(), joinmult(), reduce(), and permcols()
in straightforward ways to generate Ruddaa from I'wada. In addition it needs

% function out = permcols(in,perm) THM 140128
% Permute index columns of relation in according to perm
% e.g., alpha,mu,nu,beta->mu,nu,alpha,beta uses [2,3,1,4]
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% In in: relation to be permuted

% perm integer (row) vector: the permutation

% Out out: the permuted relation

% Used by conn2curv(), bianchi()

% Related but not reducible to movecols(), swapcols()

to permute columns, as in

1 gamma =

2 [ eta, eta, eta, etaxk2 2x(eta"2xk2"2 + 1) + etaxkl~2xk2"2*xi~2]
3 [ eta, xi, =xi, etaxk2*xkl1"3*xi"2 + etaxk2*x(eta"2%xk2°2 + 1)%*k1]
4 [ xi, eta, eta, kilxxixeta~2*%k2"3 + klxxix (k1 2*xi~2 + 1)x*k2]
5[ =xi, =xi, xi, k1" 2%xi*x(k1"2*%xi"2 + 1) + eta”2*xk1"2%k2"2%*xi]
6 >> permcols(gamma, [2,3,1]) % NB for this e.g., same as [3,2,1]
7 ans =

8 [ eta, eta, eta, etaxk2 2x(eta"2xk2"2 + 1) + etaxkl~2xk2"2*xi~2]
9 [ xi, =xi, eta, etaxk2*kl~3*xi"2 + etaxk2*(eta~2*xk2°2 + 1)x*k1]
10 [ eta, eta, xi, kilxxixeta~2%k2"3 + kl*xxix (k1 2*xi"~2 + 1)x*k2]
11 [ xi, =xi, xi, k1" 2%xi*x(k1"2*%xi"2 + 1) + eta”2xk1"2%k2"2%*xi]

With these hints you should be able to implement the two new functions, metr2curv() and
contract () and their auxiliaries.

(A further addition to the protor calculator is given in Note 30 (Part II): curv2einstein() calcu-
lates the “Einstein tensor” given the curvature and metric tensors.)

21. Summary.
(These notes show the trees. Try to see the forest!)

This long Part evolves the mathematics underlying general relativity, Einstein’s theory of gravity.
It works from the notion of fields (in physics) to how to account for the (mathematical) coordinate
system used to describe a field, to the notions of divergence and curl with the former illustrated
by a discussion of classical gravity. It stretches the discussion of coordinate systems to include
non-orthonormal coordinates (using the gypsum crystal as example) and introduces the metric. It
stretches coordinates further to consider coordinate systems which themselves depend on the coor-
dinates (e.g., polar coordinates) and introduces the affine connection, which is needed to calculate
slopes, for instance, because the coordinates themselves change as we move from place to place.
This leads to parallel transport and geodesics and to “absolute slopes” which tell us how the field
itself changes from point to point independently of the coordinate changes. Divergence and curl
must be rewritten using absolute slopes.

The final stretch is to curved space, Gauss’ result that we can detect intrinsic curvature of the
space we live in without having to get “outside”, and Riemann’s capturing of this in general in
the curvature tensor. Curvature can be positive, zero (flat) or negative. Finally we look at a
simplification of the four-index Riemann curvature tensor, with loss of information in four or more
dimensions, to the two-index Ricci tensor.

This mathematics needs new notation, the index notation and, for calculations, a generalization of
matrices to a special kind of relation we call a protor. MATLAB implementations of some of the
suite of programs giving the protor calculator are outlined in the course of the Part.

Here is the table of contents.
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Fields and slopes.

“Reality” and coordinates.
Index notation and tensors.
Protors.

The protor calclator 1.
Divergence and Curl.

Classical gravity.

Gypsum coordinates.

The metric.

Fields in gypsum.

Polar coordinates.

The affine connection.

Parallel transport and geodesics.
Absolute slopes.

Gradient, divergence and curl with absolute slope.
Spherical polar coordinates.
Curvature.

Negative curvature.

The Ricci tensor.

More protor calculator.
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Here are some useful results.

Metric Affine connection Riemann curvature
gaa(j kK g )
Cartesian z z 1
y y 1
gaa(j kK g
T T Iz
Gypsum z y Lilacoar
y x Lilacan
y y 63
guaG k g ) Tuwaa(y k ¢ r )
Plane polar ror 1 ro 00 o
0 0 g2 6 r 6 1)r
6 0 r 1)r
Twa(j k ¢ r )
r 6 0 —r
r —rs?
wl v g ) R
Spherical polar 0 0 2 o 6 & 1
2.2 0 ¢ ¢ —cs
S —iing cr—scos 0 ¢ oo 1
- - o ¢ r 1)r
o 0 ¢ /s
6 6 0 cfs
. Raaaalp A o f R )
gaa(j k Y ) Twaly k¢ L ) 0 ¢ 60 ¢ r’s?
Spherical 2D 0 0 1 6 ¢ ¢ ~o ¢ 0 0 ¢ —rs
2.2 ¢ 0 ¢ cfs 2.2
¢ ¢ rs 6 b 6 cfs 0 ¢ ¢ 0 —r7s
o 0 o 0 r2s?
gaa(j Kk g
Hotplate o p 1/(1+k%p?) (See Spherical 2D) (See Spherical 2D)
o ¢ p*/(+Kp?
Tuaa( A v T ) Raaaa(pp v o B R
gaa(j Kk g p p p tanh(2p) p 0 p 0 cosh?(p)/ cosh(2p)
Hyperboloid p p cosh(2p) p 0 6 —itanh(2p) p 6 0 p —cosh?(p)/cosh(2p)
6 6 cosh®(p) 6 p 0 tanh(p) 0 p p 6 —cosh®(p)/cosh(2p)
06 0 p tanh(p) 9 p 6 p  cosh®(p)/cosh(2p)
Tuwa(lae B 7~ r Raaaa(lae B v 0 R )
gaa(j k g = r 6 r 0 —a/2/(a—7)
Paraboloid 2D r r 1/(T1—a/r) r 6 0 a-—r ro 0 6 r a/2/(a—rT)
6 0 2 6 r 6 1/r 0 r r 0 a/2/(a—7)
6 6 r 1/r 6 r 0 r —a/2/(a—T)
Raaaala B v 4 R
Twia(e B v r ) r 0 r @0 —a/2/(a —1)
r r r a/2r(a—r) ro 0 0 r a/2/(a—r)
r 6 6 a—r z r g 0 a//22//(?—r))
; r a —r)sin? 0 r r —a a—r
Paraboloid 3D 0 0 9 0 0 r 1/r r ¢ ¢ T asin“0/2/(a —r)
2 o 0 ¢ ¢ —cosfsind ¢ r r ¢ asin®6/2/(a—r)
¢ ¢ rsin” 0 o r @ 1/r 6 r ¢ r —asin’0/2/(a—7)
¢ ¢ T 1/r 9 ¢ 0 ¢ —arsin®()
o 0 o cos 0/ sin 6 6 ¢ o 0 arsin®(6)
¢ ¢ 6  cosf/sinf o 0 0 ¢ arsin’(6)
o 0 ¢ 0 —arsin®(0)
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22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

IT.

Curved timespace.

Gravitational redshift.

Spherically symmetric gravity.
Schwarzschild orbits and black holes.
Rotationally symmetric gravity.
Kerr orbits and black holes.

Tides.

Light orbits.

The source of gravity.

Cosmology.

Negative pressure and dark energy.
Gravitational irreversibility.
Alternatives to geometry.

The Excursions

You’ve seen lots of ideas. Now do something with them!

1. Slopes commute? (Note 1.) Does slope,slope, = slope,slope,? The formulae in the
diagram below makes it appear simple to show that it is generally true, but it is subtle
because of the different orders of taking the limits. The first limit in 0,0, (slope, slope,)
is the y-limit shown—bringing R and S to P and @ respectively—while the second limit
brings @ and S to P and R. This is no problem unless there is a discontinuity in the PQRS
region. Suppose there were a Queen-Anne-style “eye” discontinuity just along the PQ edge,
including @, as shown in red. Then taking the z-limit first will have no problems—the @ to
P shrinkage will take place along either the upper or the lower path (it doesn’t matter) and
avoid the discontinuity; then the RS to P(Q shrinkage will be straightforward. But taking the
y-limit first will hit the discontinuity at ) and give an undefined slope for the ratio shown
with the red division line.

f slopg slogd x.y )
f(a+pa,b+Ab) -f(a+aa,b) _ f(ab+A b-f(ab
R Ab Ab
. N
P Aa
Q.'/i b bipap  SOP§ slogd x.¥ )
al I4S y f(a+pa,b+Ab) —f@b+Ab  f(a+pab) -fab
a+A;Lf4|imit o A3 " A3
< VTmit

2. (Note 2.) Use a rotation matrix twice to show that c2 = cos(26) and s2 = sin(26).

3. (Note 2.) Show that
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4. a) Given f(g(x)) show that 0, f = (04f)(029):

start with
o.f ~ TUl@+ AZQ — flg(z))
_ flle+Ax)) — fg(x)) g(x + Az) — g(x)

gz + Az) — g(x) Ax
bt) Ciivgrghf(g(x), h(z)) show that 0, f = (9yf)(0z9) + (Onf)(0zh):
0.f ~ flg(z + Az), h(z + Axz)) — f(g(x), h(x))

v Ax
flg(z + Az), h(z + Az)) — f(g(x + Az), h(z)) + f(g(z + Ax), h(z)) — f(g(z), h(x))

Ax

c¢) Take the next step and confirm the “rule of slopes” cited in Note 3.

5. Look up the programming language Aldat, e.g., http://www.cs.mcgill.ca/~tim/aldat /welcome.html
and, for tutorial detail, http://www.cs.mcgill.ca/~tim/cs612/

6. Implement slopes(in,vars) from Note 5 in MATLAB. Use MATLAB’s diff (expr,var)
repeatedly to do the symbolic slope calculations, building up the extra indices in the new
first column. It should also call a function nozeros(in) at the end to eliminate any rows
with zero in the value column. (I cheated in showing the examples because my implemen-
tation of slopes() does not call nozeros(), so I should have shown the invocations as
nozeros (slopes(..)).)

7. a) Implement joinred(inl,coll,in2,co0l2) from Note 5 in MATLAB. You can write sep-
arate functions reduce(in,col) and joinmult(inl,coll,in2,co0l2) so that joinred() is
implemented as

nozeros (reduce (joinmult(inl,coll,in2,c0l2),coll))
The task of joinmult() is to implement the natural join (ijoin) on two relations inl and
in2 using coll and col2 as join columns, and to multiply the two last (value) columns of
each relation. Reduce () then groups the index columns into sets differing only on coll, and
sums the last (value) column.
b) Your implementation should manage columns as specified at the end of Note 5. You can
show, also, that

joinred(joinred(. . (joinred(protor,1,X,2),..),1,X,2),1,X,2)
will apply coordinate transformation X to every index in protor, and so you can implement
transform(protor,X) for a protor of any number of indices.

8. For the three-dimensional examples from Note 6,

T

f = y | Pt
z
2=y

h = x—z | Pt
y—

Da 1 22 xy a2
O | (fe fv f2) ( 1 )7“”‘1 + ( yr y* yz ) (p— 1)
1

0= 2 2y 2

show that
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10.

11.

12.

13.

14.

15.

. In Note 6 show that

p+1
< a: ) rP~! = grad !
Y p+1
What is the significance of the divergence vanishing for p = —1 in two dimensions and for

p = —2 in three?

Apply to curl the argument in Note 6 for the invariance of the divergence, assuming that
the coordinate transformation does not depend on the coordinates, and show that its form is
invariant.

Show that the vector field that is the slopes of f(x,y) = zy (Note 1) has zero divergence and
curl (Note 6).
It does not, however, have zero shear, defined as

shear ¢ = 0:qy + 0yq=

Show that this form is also invariant under the assumption that the transformation coefficients
are independent of the coordinates.

Newton’s constant. Given that the acceleration due to gravity at the surface of the Earth
is about 10m/s?, the radius of the Earth is about 6.4Mm (6.4 x 10m), and the mass of the
Earth (found from the orbit of the Moon or of artificial satellites) is about 6Ykg (Y = yotta
= 10%*), what is Newton’s gravitational constant G'x (see Note 7) in m-s-kg units (and what

are the units)?
/div.f:/f.n
\%4 S

using conventional integral signs to mean, respectively, the antislope taken over the whole
volume V' and over the whole surface S. Show that the classical gravitational field

Gauss’ law says

4
fn=_mrGnp
3
where f.n is the part of f normal to the surface of a sphere of radius r, satisfies Gauss’ law
when the volume and surface are those of that sphere.

Message through the Earth. If you could drill a tunnel through the Earth, going straight
from a point on the surface, through the centre, to the opposite point on the surface, you
could drop a bottle with a message in it and it would take 42 minutes for the trip to the other
side.

This Excursion is not to calculate the 42 minutes (although the data in Excursion Newton’s
constant on the Earth’s radius and surface gravitational acceleration will enable you to cal-
culate it afterwards), but to plot the motions of the bottle.

Your MATLAB program can imagine the tunnel running down the z-axis and the bottle

7



starting with zero velocity at z = 1 Earth radius. Then, since acceleration is proportional to
z (Note 7)

v o= v—2zX At
= z4+vx At

is the heart of your program. You should get a nice cosine curve, if you use small enough At,
with period 27 (and you can adjust the plot so it shows 84 minutes instead of 27).

Of more interest is the difference between this bottle and a second bottle you dropped five
minutes later with a P.S.

Here are the trajectories of the two bottles (red for the message, blue for the P.S.) and of the
difference in their z positions (green).

Earth tunnel: posmon vs time for [dt n] = 0.01,1256

1
0.8
0.6
0.4
0.2
-0.2
-0.4r 4
-0.6 1
-0.8 1
1k 4

0 100 120 140 160
t, mlnutes

z, Earth radii
o
T

Note that the difference is also sinusoidal and goes periodically to zero: the two bottles each
fall back down the tunnel if they are not caught at the other side, and so will meet each other
a few minutes after the message reaches the surface. (So, anticipating the P.S. and wanting
to avoid a lot of broken glass going up and down, you actually drilled a parallel tunnel for
the P.S., both tunnels still effectively through the centre of the Earth, so there will be no
crashes.)

This is not the usual trajectory for bodies moving without (non-gravitational) influence. For
example, two bodies in uniform motion maintain their separation and do not meet—or meet
at most once.

78



16.

Free motion: position vs time for [dt,n] = 0.01,200

z, Earth radii

0 5 10 15 20 25 30
t, minutes

We will be asking: what kind of geodesic (Note 13) must bodies follow in order to meet
periodically. Preparing for that is the purpose of this Excursion.

(Wheeler [Whe90, Ch.4] has an elaborate qualitative discussion of this project.)

You can also do all these calculations analytically and even figure out when the two bodies
pass each other (if it’s not obvious).

Falling traffic lights with two blue UFOs. The second kind of gravitational influence
happens outside the Earth. One body falling is again not very informative, so we shall look
at two bodies. In fact we’ll look at four, quartering a vertical circle about 200 earth radii
above the North pole.

Here is a traffic light, disassembled into its red and green lights, but dropped with red still
on top and green still on the bottom, plus two blue UFOs falling with it on either side.
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I've exaggerated the horizontal distance but reduced the vertical in this picture. I've also
shown the circle defined by the four test masses in dashed lines, and the fall lines for each
mass. We’ll call the angles from the vertical of the two non-vertical dashed lines (the “UFO”s’
fall lines) 6 and —6, a little in defiance of the convention for spherical polar coordinates.

It is clear that the two outlying bodies will approach each other as they follow their fall lines.
What about the upper and lower bodies?

Your MATLAB program can start with

z = [180,200,220,200]
s = sin[0.0,0.1,0.0,—0.1]
T = z.%8

and zero velocities v. and v. for all four bodies.
Then the loop must be based on (Note 7)

a- = —100./z. A2
Gz = Qz. %S

V: = V:+a:*x At
Ve = Uz+ Qo At

Here is the result from two perspectives. In the second I've drawn the circle at the start and
the ellipse at the end showing how the circle was distorted. (Note that MATLAB plots the
time upwards.

The gravitational effect this shows is what the gravity of the Moon does to the oceans of the
Earth, and how the gravity of the Earth locked the Moon’s rotation so that one side now
always faces us.

Tidal fall: position vs time for [dt,n] = 0.01,2500 Tidal fall: position vs time for [dt,n] = 0.01,2500

300 4
250 4

- 200
150 4 200

200
100 150
150
507 100
0- 50 z, Earth radii
1099 50 2, Earth radii 1020
x, Earth radii X, Earth radii

While the bodies at 8 and —6 approach each other along their fall lines, the other two, upper
and lower, bodies draw apart from each other because the 1/7? acceleration is greater for the
lower body.

This decreasing and increasing separations of pairs of bodies, depending on their orientation
relative to each other, is characteristic of gravitation outside but near a source of gravity.
We also will want to ask, as in the previous Excursion, what kind of geodesics (Note 13) are
being followed.

(Wheeler [Whe90, Ch.5] also discusses this qualitatively. You can imagine the two skydivers
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17.

18.

19.

20.

21.

22.

23.

on the cover of that book as the two test bodies at § and —f@. There would have to be a third
skydiver below them, and a fourth above, taking the picture, to complete the configuration.
And they’d be jumping from a lot further than the atmosphere.)

Again, you can do these calculations analyticlly.

Calculate and confirm the lengths I've given in Note 8 for e! and e?, their angles, and the
three ways of showing that the length of v is v/2.

Show directly that the metric for a coordinate system in which the axes e; and ey are e1 and
€2 respectively rotated towards each other each by an angle (in one case positive and in the
other case negative) given by c and s as

1 2ecs
2cs 1
Check this against the more general result of Note 9.

Show that gua = I = gau, i.e., gi;, = 5i the identity matrix. Hint: how must you use ¢7¢ to
change gy, to g;.?

From Note 10 show that

1% lloc x!
2 _ 1 2 1 12621
r=le ) ( lilsear 43 ) < a? )

61 o 1 f% 5152021 l‘l
82 "= r 5152021 f% l‘2

Using gjx = XmjXmp, ¢7¥ = X XoF and X Xn? show that gjeg™ = 6% and 0 = XmjOm.

SO

Using the notation at the end of Note 11, with g and X meaning either of g1 or g2 and X1 or
X2 respectively, show that

gjj. = XmjXmj

gjj' Xod X3
Levi-Civita symbol, alternating tensors. Show that the Levi-Civita symbol is not a
tensor.
a) Levi-Civita defined a family of symbols, with one index for each dimension, in terms of
even and odd permutations. Thus

emmm(j k / € )
r Yy =z 1
emm(j Kk € ) Yy z x 1
Tz Yy 1 z Ty 1
y =© —1 y x z -1
r z y -1
z y x -1
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. ]. T NN
Let’s transform e;rx from Cartesian x,y, where gc = ( 1 ) to €'¥ in polar 7,6, where

gr = ( 1 2 ) (Note 11).

= (6m€y)<zz>
(o) = (o 3 ()

and the transformation is v/ = X jj/Uj with

x T c
y T s

x 0 —s/r
y 6 c/r

v ’ .
So X7 Xi¥ ejn is

r
6 r —1/r

which is e/'¥’ /+/9 where g = det gp and ¢/'F" is again the Levi-Civita symbol.

g G w e )
r 0 1
6 r -1

So the Levi-Civita symbol does not transform into itself and is not a tensor.
b) But the corresponding alternating tensor is

1 .
— Ik

V9

(Note that g disappears in Cartesian coordinates because

1
\ gc

¢) The Levi-Civita symbol has an important connection with determinants. For example

€jk = Ejk.)

gi1 912

_ N _ , ,Ejlk/
G2 922 g11922 — 912921 = g15'921

9=
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24.

Now notice

g2j'91k'€j M= 921912 — g11922 = —¢
while

glj/glk/fj Moo= 911912 — 912911 = 0

925/ Gak' € M= o199 — gazgo1 = 0

So we can immediately get the covariant form of the Levi-Civita symbol

g ”
ij = gjj’gkk’ﬁj = gEJ

And, for the alternating tensor,
1 .
Ve = g—=¢*

V9
so the co- and contravariant forms are ,/ge;, and ek /9 respectively.
This generalizes to the d-index alternating tensor in d dimensions.
d) The alternating tensor can also be used to show that the curl is a tensor, given that the
absolute slope (Note 14) is a tensor. In three dimensions

1
(curl x v)jr = \/gejre—=€""Dpvy
V9
Djvk — Dkvj
= 8j7)]€ - 8k.vj

(and Note 15 derives the third line).
The product of the three tensors involved must give a tensor.
(In 3D it is possible to define the curl as a “pseudo-vector”, using only one alternating tensor

1
(curl x v)" = —e

V9

but pseudo-vectors are odd beasts because they do not transform properly under reflection.
They have three components only in 3D, and should generally be thought of as antisymmetric
2-index tensors as in the first definition above.)

e) Write a MATLAB function out = leviCivita(n) which uses recursion to calculate the
Levi-Civita symbol on n indices. Don’t try to use it for n >~ 5: why?

Imn D

mUn

Physical tensors. Look up the tensors of polarizability, conductivity and inertia in [FLS64,
Ch.31]. They are all 2-index tensors defined as relating one vector to another. So they all
transform properly and so are tensors.

Feynman also discusses the tensor of stress, defined as linking each of the three components
of force applied to each of three directions of surface area of a very small cube internal to a
body—he suggests a block of jello. This is a 2-index protor and to show that it is a tensor
we must show that it, too, relates two vectors to each other. Study Feynman’s argument.
He goes on to discuss a corresponding 2-index strain tensor, which gives the responses of
the jello to the stress. The relationship between stress and strain is, in general, given by a
4-index protor, which must also be a tensor since both stress and strain are tensors. And the
piezoelectric field, a vector, relates to the stress tensor via the 3-index piezoelectric coefficients,
also, necessarily, a tensor.
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25. Orthonormal polars. Working with an orthonormal basis often gives simpler results and
is an easy transformation if the basis is already orthogonal, as in polar coordinates.

We have
€r . C S €z
ey B —rs rc €y
. c s c —rs\ (1
gad = —-rs rc s rc B r?

i.e., (As)? = (Ar)? + (rAf)%. We would like

()= ) (5) = (M) (i) ()

s0 (As)? = (AP)? + (AF)2.
We can describe the new basis as

e;r = [1,0]
e, = [0,1/r]

What is the orthonormal basis for the metric
(As)? = —(1 —2m/r)(At)? + (Ar)2 /(1 — 2m/r) + r2((AB)? + (sin HAH)?)?
Is there a singularity in the new metric?
26. What is the affine connection for gypsum coordinates?
27. Use the derivation at the end of Note 12 that

1
F?k’ = —9%(

5 0jgrk + Ok gjk — Okgr';j)

to calculate the affine connection for the plane polar metric.

o3 o8 ) gualk kg )
r slope, r o r 1
0 slopey 6 6 r?

r 6 60 2r
0gaaa(j k k’ dg ) gl X g )

r 0 0 2r PR T

6 6 r 2r 9

0 r 60 —2r 0 6 1r

(309> g)a—au(j k k> € Odgg ) Twa(f j x> T )

r 6 6 6 1)r r 6 0 —r
6 r 6 6 1)r g r 6 1)r
6 66 r r -—r 6 0 r 1/r
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28.

29.

Show that the result

v\ 1 N 0 —rAd v2"
n? | 1 AO/r  Ar/r v2?
at the beginning of Note 12 gives
j i Ak, L
Av? = -T7,A%

consistent with result

a] = Fjee

at the end of Note 12.

Note 12 derives the affine connection for plane polar coordinates more directly than by apply-
ing the general formula as in the previous Excursion, by taking the slopes of the components
of a vector v. Give another direct derivation by taking the slopes of the basis vectors.

Find
(S78 . €y _ (S78
A(ee)_(%') (ee)

. e, € €z e .. e,

by finding < " ) from < ) and < ) from < " ) then combining to get < " )
€y €y €y €y €y
directly from ( z; ) in terms of ' = r 4+ Ar, co1 = cos(f’ — 0) and s9; = sin(6' — ) as Ar
and A# shrink.
eT-/ o €x
< €y’ ) - < —?" 8 ) €y

- c —s/r er
- —r's! s cfr ey
_ 621 821/ r €r
N —r'sg1 rear/r ey

8

r—i—Ar Al T(T—AFQK;)/T ) ( g; )

= () (e 290)) ()

(S78 _ arer 8Ger
A( ep ) N ( Oreqg  Ogeg )
- AG/r er
- —rA0  Ar/r ey

and because of the independence of Ar and Af from each other, we can get the following
from 0;e, = ngeg

So

Fudd(ﬁ j k T )
r 6 60 -—r
6 r 0 1/r
6 6 r 1/r



30. Following the arguments of Note 14, show that the field
(fe fo) = (=y @)™

becomes (f" f%) = (0 rP71).
Show that

Show that

(( g;)_f).(er 69):<1 p/r2>rp

a) by taking the absolute slope, and
y

b) by transforming from
as

Show that absolute slopes

/ ’I”1
and
) p/ o2 ) roP
transform into each other in the limit

r1 601) and (rz2 602) become arbitrarily close.

31. Check that the transformation to spherical polar coordinates from Cartesian is e; = Xmjem

50 em = Xm'e;:

e, 50C 5054 cy €z € S9Cy —CoCy/T  —S¢/(TSg) e,
eg | = | —rcocy —rcgsy Tsg €y € | = | ses¢ —Cosg/T  Cy/TSg e

€ —T89S¢  T'S9C4 0 €- € co sl/r 0 €4

where ¢y = cos ), s9 = sinf), cy, = cos ¢ and s4 = sin ¢.
Check that ijka = 5;-“ and that Xm;Xmp = g;, with g;; the spherical metric of Note 16.

32. For spherical polar coordinates (Note 16) derive the affine connection from the metric.
First, using da(k, 9),
Ogrmaaa(k dg )
2r
2rs
2r2cs
2r
2rs
2r2cs
—2r
—2rs?
—2r2cs

2
gaa(l

2

RSN

S 3|

<

N3

V) no

[\
ASERSEESSRSERESEES SN e
LTI IS~
I IO
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33.

34.

35.

36.

Next we join on p, which we can later remove to give Fi;e'

guixdgaaa(j p k € ddg )

r r 6 6 —r

ror ¢ ¢ —rs’

g€ p 9 ) o 0 r 0 1/r
ror 1 6 6 0 r 1)r
6 60 1/r? 0 0 ¢ ¢ —cs
¢ ¢ 1/(rs)? o ¢ r ¢ 1r
o ¢ ¢ r 1)r

¢ ¢ 0 ¢ cfs

¢ ¢ ¢ 0 cfs

Finally we combine the affine connection with small changes in the spherical polar coordinates,
using Au(p, A), to get the matrix for 'A. (The join index, p, can be removed to get the matrix

on § and A. Note that the (¢, ¢) entry is the sum of two terms.)

FAw-(B8 X pu TA )
r 6 6 —rAf
r ¢ ¢ -rsPAd
6 r 6  Ab)r N r oo
0 6 r Ar/r . 0 oA A
Z ; z _ACZ?QZ) B0 (AH/T Ar/r csA¢ )
¢ ; r Ar/; ¢ A¢/r Ag¢c/s Ar/r+ Abc/s
¢ 0 ¢ Apc/s
o ¢ 0 Abc/s

This is for spherical polar coordinates in all three dimensions. Now we restrict ourselves to the
two-dimensional surface of a sphere of fixed radius. All terms containing r can be dropped,
and Ar = 0. Here is the I'A matrix.

A 0
0 0 —csA¢
p ) < A¢c/s  Abc/s >

Develop the MATLAB function geodesicLongLat(..) used to plot geodesics on the surface
of the Earth in Note 16.

Show that two objects each following a separate geodesic on the sphere (Note 16: great circle)
are separated from each other by a distance cos ¢+/2(1 — cos ) where the great circles are in
planes separated by angle «, which is small enough that the angle ¢, increasing with time,
can be considered to give the location of each body as it progresses around the great circle.
The two objects could be the two bottles in the Excursion Message through the Farth: compare
that result with this.

Show that co-contra gives the same result, cosf, for the rotation (curl) field in Note 16 as
co-co. Show that the two contra- approaches get cos6/sinf and that this is plausible.

Hotplate geometry. a) Show that the circumference of a circle drawn on a sphere of radius
R, with the circle’s centre at § = 0 and radius p = rf as measured along the surface of the

sphere is
2
. P\ _ 14
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Compared with the circumference of 27p that a Euclidean geometer would expect, show that
this corresponds to an expansion of the rulers used to measure the circumference by a factor

2
1— o+ 3R

b) Now imagine a flat 2D “hot plate” which heats up rulers and everything else on it so that
they expand by a factor
fp,¢) =1+ K%p?

That is, in this case, the plate is cool in the middle and gets hotter in concentric rings as we
move from the centre to edge.

Hot plate expansion factor contours

(In general, f is an expansion field, depending on both coordinates, p and ¢, but for now it
depends only on p and we will just write it f.)

What is the geometry of the hot plate? Careful! Rulers on the hot plate expand no matter
which direction they’re lined up with, so not only will the circumference appear to shrink
inversely as the rulers expand, but the radius of a circle will not be measured as p but as
about

1 1
1(p:0toAp)+?(pzAptoQAp)—i—?(szAptoSAp)+..

or, exactly

1 1
r = antislope [ ? = antislope |/ TTES
p

(To calculate this, recall that slopes of inverse functions are reciprocals, e.g.,

1 1
2
y=a" : slope,y =2z ; slopeyx - -
2v 2.y
So ,
t=tanu : slope,t=1+1t>; slope,u = e
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Hence antislope % = u = atan t.)

1+¢2 —
So
antislope |} 1 1atank:
T = = —
Pelo 7 +k2p?2 K P
or
1 tan k
= —tankr
P=%
and
2tp 2mp
f 1+k%?
21 tankr
k14 tan?kr

2
= % sin kr cos kr

2
= % sin 2kr
Compare this to a sphere of radius R
2
% = 2rR sin%

and we have that the geometry of the 1+k2p? hot plate is that of a sphere of radius R = 1/2k.
c) To show that the mapping from sphere to 1 + k%p? hot plate is complete we must show
that the metrics are the same.

For a sphere

(As)? = (Ap)? + R?sin® £ (A¢)°

where p is the radial distance as measured on the surface of the sphere.
For the hot plate, the distance is that of plane polar coordinates, all divided by the expansion
factor

1
(As)? = ﬁ((Ap)QJr/P(Acb)Z)
1
= m((AP)Z +p*(A9)%)
Now
p = (slope,p)Ar = (1 4 tan” kr)Ar
A lope,.p)A 2kr)A
SO A
Tp = Ar
Also, as above,
B_l tan kr —i'Qk:
F k1t tanlkr 2k oS
So
.
(As)? = (Ar)? + CE sin?(2kr)(Ap)?

where r is the radial distance as measured by the ruler on the hot plate.

The correspondence is exact (except, as Feynman points out [Fey97, p.120], at the one point
at infinity (the south pole)).

d) The idea of a “hot plate” expansion field f(p, ¢) is not limited to imitating the surface of a
sphere. Create other interesting geometries. (See [?] for a proposal by Poincaré for a hotplate
geometry with temperature T = a? — r? which is coolest (0) on the boundary at r = a.)
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37. Absolute slope and curvature. The curvature tensor, derived using parallel transport at

38.

the beginning of Note 17, is also the commutator of the absolute slope.

[Dy, DiJvj = Dy Dprvj — Dy Dyvy = —Riypve

We use
Dk/vj = 8k/vj — Filjvf
Dityr; = Oty — Digtie — Thpote;
So that
Dka/’Uj = aka/Uj - F;;jDk’vf - Fik/Dng
= Ox(Owv; — Fi/jw) - Fij@k/w - Fi/[l)@l) - Fik/(ﬁgvj - Ffjw/)
Dk/Dk’Uj = 8k/DkUj — Fi/jDkUg — FilkDer

= O (Okvj — I’ijw) — Filj(akw — I’igvg/) — ri,k(awj — Ffjvg/)
So, subtracting and doing a lot of cancellation, and one swap of dummy variables ¢ and ¢,
[Dk, Dk/]vj = (8k/F£J — akre/j + ngjri/@/ — Fil/jrie/)’l)g
Y4
— jkk’ve

It is also true that ' ,
[Dk, Dk/]’l}] — Rikklve

and that higher-rank tensors just generate additional terms, e.g.,
. o , .
[Dk, Dk/]t;/ == R;kk/t]/ — R]/kk/t%

Since the absolute slope is a tensor, so are products and commutators of absolute slopes.
Thus, the curvature protor is indeed a tensor. It is also the only second slope of the metric
tensor, gad, that is a tensor.

Bianchi identities. Using the result of Excursion Absolute slope and curvature, the cyclic
symmetry of the curvature tensor from Note 17

Ryzap + Rupra + Ruapr =0

and, of course, the other symmetries and antisymmetries of Raaad, prove the “Bianchi identi-
ties”
D)\R,uuaﬁ + DVR)\/w[ﬁ + D,LLRI/)\Q,@ =0

a) For any (non-commutative) operator D show the “Jacobi identity”
[D)\, [D}MDV]] + [Dua [D)\aD,u] + [D,ua [DuaD)\] = D)\(D,uDl/ - DVD;L) - (D,MDV - DVD,LL)D)\
+D,(Dy\D,, — D, Dy) — (D\D,, — D,,Dy)D,
+D,(D,Dy — D\D,) — (D, D — D\D,)D,
= 0
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39.

b) Expand the first of the three terms of the Jacobi identity, applied to an arbitrary vector,
with D now the absolute slope and replace the commutators by the curvature tensor using
the above Excursion.

[Dy,[D,,D)])JAa = D\[D,,D,)Aq — [D,, D,]D)\Aq
= —Z))\(R’y Aw)—i-R’Y DWAOé—I_Rl;wD)\AW

apy Apv
_(DARgz;w)A’Y — ng,D)\A’y + Rgm,D)\A’y + RKHVD,YAQ
= _(D)\Rg,uz/)A"{ + R’)\Y,U,Z/D’YAO‘

Similarly for the second and third
Dy, [Dy,Du)JAa = —(DyR], )Ay + R, D, A,

a VAL
[Dm [DIM D)\]]Aa = _(DHszA)AW + R’;\/;LI/D’YAO‘
So
0 = —(DaRy,, + DRy, + DuRl 5 A,
+(R1uu + RZ)\M + RK}U/)D'YROZ

and the second term vanishes because it is just the triple of the cyclic symmetry of Radaa with
the first index raised, say by multiplying with ¢®7. Thus

0 = DiRl, +DyR.,, + DR,
= Dyg"°Rpauw + Dug"’ Raory + Dug™ Rpau
= ¢P(DyRgouw + DyRpary + DuRpowy)
giving the Bianchi identities sought (after using the other symmetries to swap indices around).

We use the arbitrariness of A, to get the first line - which itself gives the Bianchi identities
for Ruaaa. We use the constancy of the metric under absolute slope to step from the second

line to the third.
Divergence-free curvature. Use the Bianchi identities to show that the “Einstein tensor”

RM — %Rg’“’

has zero divergence.
Contract the Raaaa Bianchi identities first with ¢®* then with ¢® and finally raise an index

with g\
0 = ¢"™(DrRpau — DuRpapr + DyRpow)
= DxRay — DyRax + Dug® Rpaun
0 = ¢*(DaRayv — DyRax — Dug® Ropun)
DyR — D,g°" Rox — D,ug?" Ry,
DyR — D,RY — D, Rl
DR — 2D, RY
0 = g"(DyR—2D,RY)
= D,¢"R—2D,R"
— D,(¢"R—2R")
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40.

41.

Note that the constancy of the metric means its absolute slope is zero so that we can add
Agu to the Einstein tensor and still have zero divergence

1
Dy (R" — SRg" + Ag"") =0

A has significance in cosmology and so is called the cosmological constant—even though
Einstein, who introduced it in 1917 (to stop the universe from contracting under gravity),
later considered it “the biggest blunder of my life”: with it he could have anticpated Hubble’s
1929 discovery of the expanding universe.

Number of components of the curvature tensor. The symmetries of R in Note 17
severely reduce the number of independent terms in the curvature tensor. Instead of d* terms
we can show that there are

1 20 12
— —1

independent numbers in d dimensions.

d| d*(d*—1)/12
I 0
2 1
3 6
4 20

(The single value in 2 dimensions is, for instance, the 72s% we found above for the surface

of the sphere. This value appears in four different entries with varying sign, but it is one
independent value.)

Here is the demonstration, first in three dimensions then in four.

R, ap can be examined in terms of the pA pair of indices and the a3 pair. Each of these
pairs, in three dimensions, can take on A, = 3 values: 12, 13, 23: call them z,y and z,
respectively. The reverses, 21, 31, 32, just change sign because of the antisymmetry, and the
values 11, 22, 33 represent 0. (4, is the nth triangular number.)

R, \ap is all possible combinations of x,y and z, with the symmetry of swapping any two of
these index-pairs also limiting these values to Aa, = Az = 6, as we calculated above with
the formula.

x
Y
z

o T8
o Qo
~ O ol

(We can also see, with a little thought, that there are 4 different occurrences, with varying
sign, of the values for a,d and f, and 8 for b, c and e. This leaves 45 zeros among the 3* = 81
elements of the 3-D tensor.)

In four dimensions, the same argument gives Aax, = Ag = 21 different terms. This must be
corrected, because the cyclic symmetry takes one of these different values away. The number
of ways we can select four different values from d numbers is d(d — 1)(d — 2)(d — 3)/4!, i.e.,
d!4 (“d choose 47) or S3_, (the d — 3rd 4-simplex number). That is 1 when d = 4 in the 4-D
case. So the number is reduced to 20 as in the above table.

Given that A,, = n(n + 1)/2 you can combine Aa, , with S} 5 to get the above formula for
the number of independent elements in the curvature tensor.

Angular excess at fixed latitude. Here is how angular excess develops as we traverse a
curve on a sphere.
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Self-parallel pointer along fixed latitudes

latitiude

~100 i i i i i i i
—200 -150 -100 -50 0 50 100 150 200
longitiude

As we proceed along the Equator (lat = 0, § = 7/2), for instance, holding a pointer in front of
us which we maintain parallel to itself for the whole circuit, the pointer stays in the direction
we are going.

If we do the same thing arbitrarily close to the North Pole, we must keep turning left while
the pointer stays in its fixed direction. This is because the geodesic is a “polar equator”,
proceeding straight ahead of us at our start, down to the Equator, then the South Pole, then
back up behind us. Each time we turn to the left, our (right) arm holding the stick must
bend a little further to the right, giving the increasingly clockwise direction shown at the top
of the map. The pointer makes a full rotation as we walk around the Pole.

The effect is less extreme at lower latitudes. For instance, on the Tropic of Cancer (lat =
30, 0 = /2 —7w/6 = 7/3), the pointer will wind up pointing backwards, having made half a
rotation.

Effectively the pointer keeps trying to follow a “straight line” (a great circle or geodesic)
while we keep turning away. So as we turn away the pointer diverges increasingly from
the direction we're headed. A picture of great circles touching each of three latitudes at
hypothetical starting points at longitude —180° (¢ = 0) will help visualize this process. We
must imagine a new great circle redefining the direction the pointer wants to keep at each
step we take along the latitude.

Spherical polar geodesic starting at (-180 60) in direction (1 0)
100 T

80

60

40t

201

—-60}

-80}

100
-200 -150 -100 -50 0 50 100 150 200
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Another way of looking at this is to think of walking with one foot on each side of the latitude
circle we’re following. At the Equator, we can take equal-length strides with each foot. But
at the Tropic of Cancer our northern foot must take shorter strides than our southern foot,
because the latitude circle the northern foot follows is shorter than the latitude circle to the
south. So we are effectively turning all the time towards the north.

We can calculate all this. We’ll use the affine connection for a sphere directly instead of the
curvature tensor.

Tuaa( B~ r )
0 ¢ ¢ —cs
o 0 ¢ «c/s
¢ ¢ 0 cfs

remembering that ¢ = cosf and s = sin 6.
Since, for parallel transport, the change in coordinates of a vector v is due entirely to the
change in position

AvP = —I‘ﬁ/\A“v)‘

we can write the slope of v with respect to position A

A
B~
N AU

slope,,v

Specializing to the spherical surface we have two slope equations for slopes with respect to
longitude ¢ as we stick to fixed latitude 6.

slope¢v0 = cso?

slope¢v¢ = —(¢/s)’
These are “coupled” slope equations which we must separate into pure equations in one

variable each. We can do that by taking the slope again and then using the other equation
to eliminate.

slope¢slope¢v0 = cs slope¢v¢
2

slope¢slope¢v¢ = —(c/s) slope¢v0
= —*®

Both equations are the same so the two variables, v? and v?, have the same behaviour. From
the first picture above we can see that this behaviour is oscillatory—a full cycle in the traversal
at the North Pole, half a cycle in the traversal at the tropic of cancer, and zero cycles when
we traverse the Equator. We could try ¢? (or e~%?) as a solution for each of the variables
v = 1%(¢) and v = v?(¢) but we would like to keep the numbers one-dimensional so we try
instead

v = Acosco+ Bsinco

v? = Ccosco+ Dsince
slopeqwe = —cAsinco + c¢B cos cp
slope¢v¢ = —cC'since + cD cos cp

where I've shown the slopes, too, enough to make clear that the second slopes will just give
back —c? times the original variables.
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Each of these solutions has two undetermined constants. If you take the second slopes you’ll
see that the constants don’t get pulled out of the original proposed solution, so the slopes
alone cannot determine the constants. (Typically, a slope equation has one undetermined
constant for each slope.)

We must use starting conditions to fix the constants. We decided to start at ¢ = 0 the
International Date Line, with an initial pointer

v
v
So setting ¢ = 0 in the solutions we see that
A = f
C = vg)

and using the slopes of the solutions and the original equations we also find (hint: both sides
of the equations below were multiplied by ¢)

B = svg)
1
D = —=f
svo

So now we know the pointer at any position, assuming that we have walked along a fixed
latitude starting at the International Date Line, with initial pointer. Let’s say it is initiallly
pointing straight ahead of us along the line of latitude:

vg (1

i) (o)
Embodying these solutions into the function fixedLatCircle(noTheta,noPhi,v0) and in-
voking fixedLatCircle(7,17,[1;0]) gives the arrows shown above, a 7 by 17 grid. (Hint:
multiply the equation for v#(¢) by s = sin @ to show arrows of the same length at all latitudes
on the equiangular projection.)

We can find the angular difference between the initial and final position ¢ = 27 at each
latitude.

9ikvovh
|vo [Pcosa = ovfu?(2m) + 82v§v¢(27r)

= (9)?cos 2me + ’Ugvgs sin 27e + s (—v®0? (sin 27e) /s + (’1)85)2 cos 27c)

((v9)* + 82(7)85)2) cos 2mc

= | vo |? cos2mc
so the angle the pointer finally winds up pointing at is
o = 2mc

The excess angle, because we’ve gone around a full circle each time, with “interior angles”
summing to 27, is 27 minus this

A =271(1—-¢)=2n(1—cosbp)
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42.

In the above calculations I have set the radius of the sphere to 1 because it does not figure
in either the plot or the angle calculation. For the final step, next, I set it to r, so the metric

now
r2
dd —
g r2g2

To check the curvature (which is constant on a sphere) we need the area contained by this
constant-latitude circle with the North Pole at the centre.
area = antislope,_g.o antislopey_g.g,1/9
= r2antislope¢:0:2ﬁantislope9:0:go sin 0
= 2711 (- cos 9)80

= 27r%(1 — cosby)
and the ratio of these two is the curvature, 1/72.

Local flatness. In Note 17 I claimed that curved space is “locally flat” in the sense that the
slope of the metric vanishes, and so, then, do the affine connections or Christoffel symbols. (It
is in fact the definition of a manifold that we can always find a transformation to a coordinate
system in which the slope of the metric vanishes. We’ll deal always with manifolds.)

The way to do this is to measure the coordinates along geodesics.

In Note 13 we gave the parallel transport that creates a geodesic as

' = (6% — T4 AVt

where A" is a small displacement in the v-direction from the start point of the geodesic.

(In fact, if we choose orthogonal geodesics we can make an orthonormal basis so that the
metric is just the identity matrix up to first order in displacements.)

We'll take this as the transformation from new local coordinates Z» = A* in the basis of the
geodesics, to original local coordinates x® which are small changes in the global coordinate
System

2 = (53 - T )P
We can call this the transformation (matrix)
Xf\( == 5}0(\ - Fg&jy
If the geodesic in the original coordinate frame is g, then its transformation is
Gry = XNXD
g)\,u, A ,u,gaﬁ

which we can see easily in matrix terms
1 =2 Tt
atats () - s

1
xr
= et (%)

=1
= (Tl,TQ)XngdX< x )

52

So gaa = X TgaaX and, of course, in index notation transposition is conveyed simply by the
indices.
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We expand gaa, using a Taylor’s series, in terms of small displacements 7 about the point P
we’ve chosen as origin

9P +7T)ap = 9(P)ap + 0u9(P)apT” + O(E2)
(If we write any function f(P + x) as a series in powers of
f(P+2)=f(P)+ax+bx® +ca’ + ..

we can find successive slopes with respect to z and then let x — 0

slopef(P+x) = a+2bx+3ca’+..—a

slope slopef(P + z)
slope slope slopef (P + z)

2b + 6¢cx + .. — 2b
6c+ .. — 3lc

and so we get the coefficient a for the first order in z, b for second order, and so on.)
Here is the whole transformation, taken to first order in T
g)\u = Xngga,ﬁ'
(6% = Tz (8 — T, 7)(9(P)ag + 3ug(P)apT” + ..)
= 9(P)ru+ [009(P)ay — T9rg(P)ap — T, 9(P)ar]Z" + .

and the term in square brackets, multiplying T, vanishes because of the geodesic.
We can illustrate this for the surface of a sphere.

" Tua(lae B v r
g (z § Tg ) 0 25 ¢ —sc
¢ ¢ 7 2 é ; g?i

By analogy with the discussion of geodesics in Note 16 we have the transformation as a matrix
A 1 2
o 1 1 csT?
2 ~T2c/s 1—-T'c/s

and the transformation of gad is

1 —T2c/s r? 1 csT?
csT? 1 —-T'c/s r?(s* + 2zt es) ~7%c/s 1-7lc/s

Note the first-order term added to s? = sin?(#) to take it to sin?(6 + z).
Worked out to first order this gives
2
1262

which is the metric we started with: the two infinitesimal directions do lie along geodesics,
and they are orthogonal, diagonalizing the metric. The basis vectors are not normalized to
unit length, however, so the metric is not the identity matrix. The result is independent of T
to first order, so the first slope of the metric with respect to the parameter 6 is zero, so the
spherical surface is locally flat in these coordinates.

You can show that the metric is also unchanged and has zero first slope for plane polar
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coordinates

gula B g ) Tua(lae B v r
6 6 r 1/r
g 2 % 6 r 60 1)r
" r 6 6 —r
and for the hyperboloid of revolution (see Note 18)
Fudd(a B 7~ r
gaa(a 3 g ) p p p tanh(2p)
p p cosh(2p) p 6 0 —% tanh(2p)
6 6 cosh(p)? g p 0 tanh(p)
06 0 p tanh(p)

It is interesting to take the above expansions to second order. The metrics we start and end
with are (now omitting the overlines on the z-coordinates):
For the surface of a sphere (¢ = cosf, s = sinf, co = cos 260):

2
”
( r2(s% + 2csa? + 2cox%2?) )

For plane polar coordinates:

r? 1+ 2927 —g"x?
r2 4 2ra” + 22" x" —xrx? P24 r2af2f

And for the hyperboloid of revolution (¢ = cosh p, s = sinhp, co = cosh 2p):

1+ a®z? —c2afz?
—22%29 %+ Ps?aPax? — (14 s2)af2?

( co + 2s22P + 2coxPaP ) ( e2 + ((2 — s2)/c2)zPaP + s2292? ((s2/(2¢2) — s%)zPz? )
c? + 2csaP + cozPaP ((s2/(2c2) — s?)zPa? e? + (s2/(4c2))z%2% + (1 — s?)zPaP

All the resulting metrics are symmetrical, as they should be. This means that they can each

be diagonalized. The eigenvalues, A, of a symmetrical 2-by-2 matrix satisfy

(5 5)(5)=2(3)
(57 p20) ()=

which requires the determinant to vanish

0 A-X B
= B  D-2\
= M- (A+D)\+AD — B?
So
1
/\:§<(A+D)i\/(A—D)2+4BQ>

These two possible values for A are the two elements in the diagonalized matrix. Note that
in each of the three matrices B is quadratic in z, in fact involves a product of two different

rs. So the 4B? term will be quartic. We’ll limit the diagonal matrices to quadratic in z, so
the B terms vanish and we're left with the matrix

(" »)
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43.

44.

in each case: just the diagonal elements of the metrics shown above to second order.

What are the eigenvectors corresponding to these two eigenvalues, and hence what is the
orthogonal matrix (its transpose is its inverse) that diagonalizes the metric?

In each case we can write

Tap = g(<origin>)a3 + Qagur"x”

where g(< origin >) means g() evaluated at z# = 0 and where the symbol Qup,, has the
following meanings.

For sphere (< origin >= 6) For polar (<origin>=r) For hyperboloid (< origin>= p)
Qadaa Qadaa Qaaaa

@B pv Q@ ) (@Bapv Q) (@pfav Q )
6 6 ¢ ¢ rc? g 6 0 0 1 p p p p (2-s3)/3
6 & 0 0 r3(c?-2) 6 ¢ 6 6 r? 6 6 p »p 1—s?

¢ ¢ o o 1 ¢ & ¢ ¢ -1 0 0 60 0 s3/(4c)

I've taken the diagonal form of the metric in each case: the nondiagonal forms will add two
terms to @ each time. What are they?

The boundary of boundary is zero. In three dimensions, curvature can be calculated, as
in Note 17, by the difference resulting from parallel transport of a vector around loops in the
six faces of an infinitesimal cube.

We see that these loops counteract each other totally along the twelve edges of the cube
because each edge borders two faces.

What does this say about total curvature, i.e., the sum of all six curvature results?

Note that the faces are the boundary of the cube and the edges are the boundaries of the
boundary. See [Whe90, Ch.7] for a longer discussion.

In a four-dimensional infinitesimal hypercube, what is the boundary of the boundary, and
what does it say about the sum of all curvatures?

a) Calculate the curvature tensor for spherical coordinates
(As)? = (Ar)? +1r%(A0)* 4 12 sin (A p)?
b) Calculate the curvature tensor for spherical coordinates limited to the surface of a sphere

(As)? = r?(A0)? + r?sin O(Ag)?
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45. What is the rule for the number of vertices, edges, faces and other parts of a d-dimensional
hypercube? (Columns to the right of the column headed d.)

Ay |Rd)||d|V E F
0 00 1

1 01 2 1

3 112 4 4 1

6 63| 8 12 6 1
10 2004116 32 24 8 1

The columns to the left are Ay, the triangular numbers, and | R(d) |, the number of different
elements of the curvature tensor from Excursion Number of components of the curvature
tensor.

Why do the number of different elements of the curvature tensor differ from the number of
faces F'7

46. Curvature of lines. The curvature of a line is defined as the rate of change, per unit length
along the line, of the angle of the tangent to the line.

a) Show that the curvature of a circle is the reciprocal of its radius 7.
The arc length subtended by angle 6 is s = 78, so

slope 6 = 1/slopegs = 1/r

b) Show that the length As along a small segment of any curve y(x) is

As = /1 + (slope,y)?Ax

SO
slope, s = /1 + (slope,y)?

¢) Similarly, show that for a parametric curve z(p), y(p)

As =~ \/(slopepa:)2 + (slope,y)2Ap

100



47.

So

slope,s = \/(slopepl‘)2 + (slope,y)?

d) For curve y(z) again show that

slope,# = slope,x slope,f
= slope,f/slope,s
slope, (atan(slope,y))/slope,s
_ slope,slope,y 1
1+ (slopey)? \/1 + (slope,y)?
slope,slope,y

(1 + (slope,y)?)3/?

So the radius of the “osculating circle”, which is the circle that matches the curvature of the
curve at the point (z,y) under consideration, is

(1 + (slope,y)?)*/?

slope,slope,y

This is known as the radius of curvature, and is the reciprocal of the curvature.
e) For the parametric curve z(p), y(p) show that

slope,§ = slope,p slope,f
= slope,f/slope,s

slope,atan(slope,y/slope,x)

slope,s
slope,, (slope,y/slope,z) 1
1 + (slope,y)? \/(slopepx)Q + (slope,y)?

slopegy slope,x — slopega: slope,y
((slope,x)? + (slope,y)?)3/2
and the radius of curvature is the reciprocal of this.

f) Show that a line has no intrinsic curvature, i.e., a 1-dimensional creature living in the line
can never tell if the line is curved or not.

For a curved surface in two dimensions, show that

2 2

R S

2p1 2p2

for suitable internal (to the surface) coordinates (£,7n), where p; and py are the radii of the
two osculating circles [MTW73, p.335].
Here is a one-dimensional cross-section of the surface (red) showing the tangent plane (co-
ordinates (z,y)) at a given point, and a paraboloid of revolution used to approximate the
surface at that point.

(@R + 2bxy + & )i
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a) We want to transform (z,y) to (£,1) so that z = (k12 +kon?) /2 instead of z = (az?+bxy+
dy?)/2. We rotate within the tangential plane by an angle § using ¢ = cos and s = sin 6.

z = %(w y)(g Z>Q<Z)
= gen(s )G a5 9)0)
- %(f 77)< (a CiCQd)_CSQiC Z(—ZQdf?sQ) “ ;551)46—82;2(46—261_0282) ) ( 767 )

s=sen (™ L) (%)

0= (a—d)cs+b(c® —s%) = (a —d)s2/2 + bey

To make this diagonal we want

so we need

where s2 = sin(26) and c2 = cos(26), so

52 2b
e d—a
or
0 = atan
—a
And, of course,
ki = ac®—2bes +ds®
ky = as®+ 2bes+ dc?

b) We want to show that k1 = 1/p; and ko = 1/pg, the radii of the two osculating circles,
and hence that k1 and k9 are linear curvatures.
So, in directions & and 1 we approximate the surface by circles of radius p; and po respectively.

L L

F =8 +(pz} 2= +pz?
4, A ¢ 3 ®

(X o

& n

The discussion is the same for each circle, so here it is for the &-circle with radius p;.
0 = 22—2p1z+¢2
z = prEpy/1-E/(2p])

pr(1£(1—€/(2p7)))

= &/(2p1)

where we choose the — sign because that is the lower part of the circle seeking z(&).
Combining &- and 7)- directions,

Q

2 2
R S
201 2po
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which, from (a), tells us ky = 1/p; and ko = 1/p2, so ki and ko must be curvatures.
c¢) Show that the metric of the surface is

( K22 +1  kikafn )
kiko&n k3 +1

using

(As)” = (A2)” + (A" + (An)? = (FIEAE + kanAn)? + (AE)? + (An)?

48. In four dimensions, why are there six degrees of freedom for space transformations (three
Lorentz, three rotation) and why must the Riemann curvature have twenty independent
components [FMWO03, pp.104,5]7
a) Show that a p-index transformation of d-dimensional variables z® — z'® has ng elements,
where S% is the number for the p-dimensional simplex of size d (see, e.g., Week ii, Note 6),
that is

Slo=d : 1,2,3,4,..
S2 = Ay : 1,3,6,10,..
S3 = 4 : 1,4,10,20,..

and so on (e.g., Week i Notes 1-6).
Since the transformation elements have the forms of partial slopes

p=1lindex  Jyz*
p = 2 indices O Or
p = 3 indices Dot O Oyt

etc., we must count partial slopes while remembering that 0,0 = 93/ 0y .
Here it is in d = 2 dimensions.

81/1‘1 8211‘1

_ 1_ _
p=1 Oya? Oy dS; =dxd=4
.1‘1 | 81/ 82/
p=2 0| v  dSi=dA;=2x3=6

Oy V
and similarly for z2.
O | 0 Oy
p=32 0y |/ V dSi=d4;=2x4=38
Oy
52/ | 81/ 52/
.1‘1 81/

Oy Vv

and similarly for z2.

Once you’ve made the argument in general, here’s a summary of ng ford,p=1.4

dp| 1 2 3 4

11 1 1 1
2 | 4 6 8 10
319 18 30 45
4 |16 40 80 140
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b) Show that the number of (p — 1)st slopes of the d-dimensional metric tensor gaa is Angfl.

For p = 1 we have the Ay components of the (symmetric) metric tensor: S9 = 1.
For p = 2, each of these components has S Cll = d slopes.

For p = 3, by the reasoning in (a), each component has S = A, slopes.

Check the generalization and then calculate

dp| 1 2 3 4
11 1 1 1
2 |3 6 9 12
3 16 18 36 60
4 |10 40 100 200

¢) When d = 4 compare the bottom rows of the two tables

D 1 2 3 4
freedom to transform: | 16 40 80
metric components: 10 40 100
net freedom: 6 0 -20

Note that the Riemann curvature tensor, with 20 independent components, is formed by
second slopes of the metric tensor.

Note that the 6 first slopes of the metric can in principle be transformed away: this gives us
a locally flat space to work with.

49. What functions for ch, sh? The two symbols in Note 18, ch and sh, will be functions of
some parameter, just as ¢ and s (cos() and sin()) are functions of the angle. What functions?
What parameter?

The choice of functions does not matter, in principle, just as long as they satisfy the constraint
ch?® — sh? = 1. In practice, one will turn out better than the rest. Let’s explore. Each of the
following satisfy the constraint on ch and sh.

parameter | ch | sh | ch™! sh~!
—1<0<] | sty = sec(20) 2;2((22)) = tan(20) asecch Latansh
0<p<oo %(p—i—%) %(p—%) ch + sh = ch + \/ch? — 1 ch + sh = sh + /sh® +1

—00 < p< o (e’ +e?) 1(e? —e?) In(ch + sh) = In(ch + \/ch® —1) | In(ch + sh) = In(sh + \/sh? + 1)
The overlapping plot shows that all give the same hyperbola: the exact dependence on the
parameter does not matter. The only relationship that matters is ch? — sh? = 1.

(I've written the first parameter as a half-angle so it ranges between the asymptotes of the
hyperbola. This does not guarantee that the point (ch, sh) is located at that angle from the
origin.)
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Three parametric hyperbolas

T T T T
sec & tan ||
prpt

eP+e™® |1

8 10

In all these cases, we can find functions corresponding to the other trigonometric functions:

th = % tan

1
sch = — sec

ch

1
csh = T csc

1
cth = m cot

and relationships such as
th® + sch® =
But we can only get an analogue of the trigonometric doubling relationships

02—82 = C2

2cs = s2

and their generalizations (here c2 and s2 are cos(26) and sin(26) respectively) with the third

option.

parameter | ch? + sh? | 2¢h X sh
T T 1+sin(20)? sin(20)
—rs0<7% cos(23 2005(20)2
0<p<oo sh(p?)
—00<p< oo ch(2p) sh(2p)

This explains why the third choice of parameter and functions is used:
1 —
coshp = i(ep +eP)

1
sinhp = i(ep—e_p)
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50.

51.

Furthermore, the slopes of these hyperbolic functions remind us of trig.

slope cosh(p) = sinh(p)
slope sinh(p) = cosh(p)

So this is the convenient parametrization.

Now that convenience—well, let’s call it elegance—has dictated our choice of parametrization,
what does the parameter mean? Not very obviously, and not very helpfully, it is the area OAP,
shown in Note 18, between the line connecting the origin with the point and the hyperbola
itself.

We can see this most easily by taking the antislope with respect to z (in the figure on p.3) of
the difference (remember, 2% — 22 = 1)

2
ch sh* —1
Zon the hyperbola — Zsh = V22+4+1- ZT

This is taken from z = 0 to sh.
The antislope is (from a table of integrals then applying the limits then finding a term which
cancels the second term above)

In(sh 4+ \/sh*>+1) = In(sh+ch) =p

It is just the parameter we came up with and which gives the functions all those neat trig-like
properties.

How far does the notion of negative curvature in Note 18 fit the tidal motion of Excursion
Tides for the discussion of classical gravity in Note 77

Hyperboloid. Show that the Gaussian curvature for the hyperboloid is the product of the
reciprocals of its two radii of curvature

11

r17T2

K =

a) The radius of curvature r is the distance to the z-axis along a line normal to the hyper-
boloid.

1 __________________ (Xp)b)=@1) _________ _________

L P -

=33

X
Radii of curvature for hyperboloid of revolution
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52.

(Note in this figure that the dashed osculating circle is actually in a plane perpendicular to
the page.)

Show that 7, = cha'/? = cosh(2p)'/? in the notation of Note 18 ([Whe90, p.137] has a nice
picture).

r = coshp
z = sinhp
Ar = slope,rAp = sinh pAp

Az = slope,zAp = coshpAp

So the equation of the straight line tangent to the hyperboloid is, for some a,

Az
z=—r+a=rcothp+a

~ Ar
And the equation of the normal—the line perpendicular to the hyperboloid—is
A
z = ——Tr—i-b = —rtanhp+b
Az

Since (7, z) = (coshp,sinh p) is on both of these lines, then in particular
z = 2sinhp
so the normal line is
z = —(rcoshp + 2sinh p)
This crosses the z-axis at (0,2sinh p) giving distance to (cosh p, sinh p)

r? = cosh? p 4 sinh? p = cosh(2p)

b) The other radius of curvature ry is clearly in the opposite direction. To find it we can use
the general results in Excursion Curvature of lines.

We use the parametric form of the hyperbola, x = cosh p and y = sinh p to get

sinh? p 4 cosh? p)?3/2
ry = S PHCOMDITE (o (2p))2
sinh® p — cosh” p

c¢) Thus
11 1

riry  cosh?(2p)

which is what we found for the Gaussian curvature K in Note 18.

Paraboloid. Show that the radii of curvature of the paraboloid of revolution generated by
2
Y
—al1+(Z
T a( + <2a) )
r=a (1 + (%) )
9\ 3/2
re = —2a <1 + (i> )
2a
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are

and



L it ) = (B/4.1)- .......... LR o
T 1= /12504 ! '

X

(Note in the figure that the dashed osculating circle is actually in a plane perpendicular to
the page.)

a) The two radii are directed along the normal to the paraboloid. The centre of the osculating
circle with radius r; is the axis of revolution x = 0.

The tangent to the parabola has slope slope,y

dax = y*+ 4ad®
4a = 2y slope,y
2a
slope,y = —
Yy

so the slope of the normal is the negative reciprocal of this and the equation of the normal
line is yp
y=——x+b
2a

where (zp,yp) is the point on the parabola where the normal crosses, and b can be found by

setting (z,y) = (zp,yp)
b=yp (1 + 2—2)

Tp— X
nyP<1+ )

SO

2a
When x = 0, on the axis of rotation,

The distance from this point to (xp,yp) is

)
2 2 TpYyp 2




giving the first result above.
b) The second radius comes from the result for y(z) in the Excursion Curvature of lines.

(1 + (slope,y)®)*2
slope,slope,y

(1+(2)")"

—2a%a
yy

ro =

giving the second result above.
Thus the Gaussian curvature

223

c¢) Calculate the metric to affine connection to curvature using the general results of Note 18
and show that this gives the same Gaussian curvature for the paraboloid of rotation.
First the metric. Here is Wheeler’s argument [Whe90, pp.156-8], based on Apollonius, that

2 _ (Ar)?
1—a/r

(As)
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The two shaded green triangles are similar, the smaller one being microscopic in size but
formed between two sets of very close line pairs connecting the point P on the parabola a)
to the axis of rotation (the lines in the pair are parallel) and b) to the focus (the lines in the
pair are not parallel but are close enough together to be considered so).

The four steps in the figure are subtraction (1) followed by three Pythagorean triangles (2),
(3), (4).

Including the dependence on the angle 6 in the dimension perpendicular to the page, we have
the metric

(As)? = 1(672/27“ + 72(A0)?

From this, show that the affine connection is

Fuaa B 7~ r )
r.r.r 27"((?71”)
r 6 0 a-—r
6 r 6 1)r
6 6 r 1)r
and that the Riemann curvature is
Raaaa(ae v & R )
r 0 r 0 —a/2(a—r)
r 6 0 r a/2(a—r)
6 r r 0 a/2(a—r)
6 r 6 r —a/2(a—r)
so the Gaussian curvature is
K = _Lrorg
g
~a/2/(a—7)
21 —a/r)
B a
T

We relate this to part (b) above by noting that r and x have the same meaning in the two
diagrams.

d) What are the curvatures in three dimensions?

Check first that what we’ve just solved is a two-dimensional problem, namely the surface of the
paraboloid, even though we’ve shown an extraneous third dimension (the vertical dimension
in the figures) so that we can visualize the paraboloid.

The two dimensions in the problem are

(a) the circular dimension in which we circle around the axis of rotation (symmetry) a
distance r from it (in parts (a) and (b) this distance is called x)—the (6,6) component
of the metric is r?;

(b) the inward-outward dimension in which we approach or recede from the centre of sym-
metry along the paraboloid—the (r,7) component of the metric is 1/(1 — a/r).

The curvature of this two-dimensional space we have just seen to be

a
B = ——
2r3
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The three-dimensional extension we’d like to look at goes from circular symmetry to spherical
symmetry. To keep in mind an extraneous dimension in which to embed the new, three-
dimensional construct, we must think of an infinity of “axes of rotation” pointing in all
directions so that we have circular symmetry in all directions.

Fortunately we don’t have to visualize four dimensions (and the “fourth” dimension has
nothing to do with time, by the way) because curvature always involves only two-dimensional
elements.

So we must think, in the three “real” dimensions, of the curved space we’re now considering,
about a (cubic) sample volume of six equal (two-dimensional) faces.

The “circular” dimension of the two-dimensional paraboloid of the previous parts of this
Excursion now becomes two circular dimensions, each maintaining constant distance r from
the centre of symmetry. We’ll imagine two of the faces of our sample volume as small parts
of the spherical surfaces of radius r and r + Ar respectively.

So the curvature of the closer of these faces is

¢

a

Kfacing = 3

<
»—Aw| =

This leaves four more faces of our sample volume, each one sideways-on to the centre of
symmetry. Since two edges of any of these faces is a constant distance from the centre,
traversing them is along a circular dimension. The other two edges are in the inwards-
outwards dimension, approaching and receding from the centre.

So each of the sideways-on faces has curvature

a

Ks'de ays — = -
HEOWAYS T g 2r3

There are two of these sideways edges for each facing edge, so that the total curvature can
be found from three faces.

Kiotal = Kfacing + 2I(sideways
. a a
r3 23
= 0

This is an important property of the paraboloid of “two-dimensional revolution” (i.e., about a
sphere) and plays the same role in gravity that the divergence-free 1/r? field plays in classical
3-D gravity (Note 7).

e) Obtain these same three curvatures from the Ricci tensor.

Extend the 2-D metric of the paraboloid to 3-D by changing the circle (metric component 2)
to a sphere (metric components 72, 72 sin? 6).

With metric

find the affine connection
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luaa(a I )
a/2r(a—r)
a—r
(a —r)sin?6
1/r
1/r
—cosfsinf
1/r
1/r
cos 0/ sin 0
cos 0/ sin 0

RS R NS N I S N o)
T I DO D3|

ASERSERSERSEESSESSIN e

and the Ricci tensor
R )

et
r3(1—ra/r)
_a
2r

_ 0 gin2
5= Sin 0

Rad(«

g
;
0
¢

oS 3

Transform to orthonormal coordinates (Excursion Orthonormal polars)

( V1—a/r ,n:a(lfiam ( V1—a/r

1/r 1/r

2r

1/(rsin6) ) — & sin? @ 1/(rsinf) )

as required.
Note that the total curvature is the trace of this matrix.

53. Look up [Wei72, pp.144-6] for a derivation of the Riemann curvature tensor in terms of the
curvature scalar, the Ricci tensor and the Weyl tensor in three or more dimensions (Note 19).

54. Implement the MATLAB functions metr2curv() and contract() of Note 20 and their aux-
iliary functions.

55. Look up Karl Friedrich Gauss (1777-1855). What is Gaussian curvature? What other ideas
are named after Gauss—in numerical analysis, in statistics, in field theory, in magnetism?

56. Look up Georg Friedrich Bernhard Riemann (1826-1866), Gauss’ student. What is Riemann
curvature? What other ideas are named after Riemann—Riemann surface, Riemann’s con-
jecture?

57. Apart from books cited in particular Excursions above, three other books I've learned from
are [McC57, Chel0] and [Har03].

58. Any part of the Prefatory Notes that needs working through.
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