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I. Prefatory Notes
1. Which operations preserve the triangle?

2. How did we get the last two reflections?

3. We can abstract all this.

4. Other properties of the operators.

5. Operating on the group operators.

6. ghg−1.

7. The rotation subgroup, {(), (123), (132)}.
8. Simplifying matrices.

9. Other representations of the group.

10. Simplifying matrices.

11. Regular representation.

12. Molecules

13. Modes of motion of a molecule.

14. Greenhouse gases.

15. The water vapour molecule.

16. Tetrahedron.

17. Hexa/Octahedra.

18. Dodeca/Icosahedra.

19. Infinite groups

20. 1D crystals
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21. 2D crystals

22. 2D waves

23. Brillouin zone.

24. Non-translational crystal symmetries.

25. Wallpaper groups.

26. Continuous groups. As we know from triangles, squares, etc., rotations form groups. An
n-fold rotation is generated by

(

cos φn − sinφn

sinφn cos φn

)

where φn = 2π/n. There is no limit to how big the integer n can be.

Arbitrary rotations also form groups. Every element of an arbitrary rotation group is
(

cos φ − sinφ
sinφ cos φ

)

where φ is a parameter which can take on any value between 0 and 2π (with 2π being equivalent
to 0).

This is a continuous parameter, and the group is a continuous group. “Continuous” is an attribute
of mathematics, not of nature. If we believe that nature abhors infinities, it certainly cannot be
continuous: continuous math includes not only an (uncountable) infinity of numerical values, but
most of them—still an uncountable infinity—require an infinite number of decimal places each.

Finite rotation groups have a smallest angle, namely φn, and all rotations involve multiples, 1,..,n,
times this.

Since a continuous rotation has no smallest angle, what is the generator of the group?

To see what happens to
(

cos φ − sinφ
sinφ cos φ

)

as φ becomes very small, we must introduce the series expansions of cos() and sin().

cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+ ..

sin x = x − x3

3!
+

x5

5!
− ..

You can check this by writing programs to evaluate the series until the next term in the series
is smaller than, say, 10−6 and display the differences between these series and cos x or sin x,
respectively. These calculations must be done in radians: why?

From these we also have

eix = 1 + ix − x2

2!
− i

x3

3!
+

x4

4!
+ i

x5

5!
− x6

6!
− ..

and this will be very useful quite soon.

When x is very small, x2, x3 and so on can be neglected and

cos x
x→0−→ 1

sin x
x→0−→ x

(

cos φ − sinφ
sin φ cos φ

)

φ→0−→
(

1 −φ
φ 1

)

= I + φ

( −1
1

)
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Now here is something remarkable. This is all we need. Let’s define

eiX def
= I + iX − X2

2!
− i

X3

3!
+

X4

4!
+ i

X5

5!
− X6

6!
− ..

for any square matrix X and see what happens when

X = −i

( −1
1

)

First,

X2 = −
( −1

−1

)

= I,

X3 = X,

X4 = I, ..

So

eiφX = I(1 − φ2

2!
+

φ4

4!
− φ6

6!
+ ..)

+iX(1 − φ3

3!
+

φ5

5!
− ..)

= I cos φ + iX sin φ

=

(

cos φ − sinφ
sin φ cos φ

)

Because we can find any group element, eiφX , given X, it is appropriate to call X the generator of
the rotation group. The parameter is φ.

Since two-dimensional rotations commute, the representations are all one-dimensional.

Since the group has an infinite number of elements (given by the parameter φ), there are an infinte
number of representations.

The representations are eiφ, e2iφ, e3iφ, .., corresponding to waves with 1 period around the unit
circle, 2 periods, 3 periods, and so on.

The figures show both eimφ and 1 + 0.5eimφ (real parts only) for m = 1, .., 5: the latter show the
wave nature more explicitly.
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These waves would give the amplitudes for quantum-mechanical behaviour under circular symmetry.
The probabilities would be the squares, i.e., the product of the amplitudes with their 2-number
(complex) conjugates. These are all 1, giving equal probabilities in all directions around the circle.

In the expression eimφ, as we just now saw, m is the number of waves that fit around the circle.
That is, m is the (circular) wavenumber.

In Week 7a we said that momentum is proportional to wavenumber, k, which appears with x in
the 2-number exponential eikx : p = h̄k.

We will also define angular momentum

J
def
= h̄m

(although we will see in Note 29, where we work in three dimensions, that h̄m is merely the
z-component of the full angular momentum).

(The symbol L is often used for angular momentum, but what we’ve been calling J is essentially
angular momentum so I’ll use J for consistency. Often the relationship is L = h̄J , but I hope the
presence or absence of the h̄ in different places will not confuse.)

Angular momentum is important because it is also conserved.

Note that, while the angular momentum, h̄m, is known exactly, the angle, φ, is not known at all:
when we find the probability function, by multiplying the amplitude eiφ by its 2-number (complex)
conjugate, we get 1 everywhere. No angle is preferred. Angle and angular momentum are said to
be “complementary” in this way.

27. Spherical symmetry. As the group of circular symmetry has an infinite number of representa-
tions, so the group of spherical symmetry will have an infinite number of representations, this time
not one-dimensional because 3D rotations do not commute (Week 6 Note 5, Week 7c Note 9).

The rotation groups for discrete subsets of the sphere are suggestive but not conclusive. The
rotation subgroup, A4, of the tetrahedron has representations of dimensions 1, 1, 1 and 3 (see
Excursions, Book 8cI). The rotation subgroup of the cube and octahedron has representations of
dimensions 1, 1, 2, 3 and 3 (see Notes 17 and 16, Book 8cI). The rotation subgroup, A5, of the
dodecahedron and icosahedron has representations of dimensions 1, 3, 3, 4 and 5 (see Excursions,
Book 8cI).

We have already seen 2- and 3-dimensional representations of three-dimensional rotations in Week
6 Note 3 and Week 7c Note 9, respectively. And there is always the 1-dimensional trivial represen-
tation.

We are going to find that the group of spherical symmetry has representations of 1, 2, 3, 4, ..
dimensions, with no upper limit.

Let’s start by finding the generators of the spherical group. We’ll use the 3D representation given
by the Interval Algebra in Week 7c Note 9.

The rotation of any 3D vector by an angle α around the axis (p, q, r) (normalized to p2+q2+r2 = 1)
is given there by





cos α −r sin α q sin α
r sinα cos α −p sinα
−q sin α p sinα cos α



 + (1 − cos α)





p
q
r



 (p, q, r)

For very small α this is approximated, as in the previous Note, by





1 −rα qα
rα 1 −pα
−qα pα 1



 = I − iαpJ ′
x − iαqJ ′

y − iαrJ ′
z
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where the generators are

J ′
x = i



 −1
1





J ′
y = i





1

−1





J ′
z = i





−1
1





(Compare these with the 2D generators, X, in the previous Note.)

We can also write this formally as a dot product involving a vector of matrices, ~J ′, and a vector af
angles, (αp, αq, αr)

I + iα(p, q, r)





J ′
x

J ′
y

J ′
z



 = I + ~α.~J ′

The J ′ do not commute but their commutators have interesting properties.

[J ′
x, J ′

y]
def
= J ′

xJ ′
y − J ′

yJ
′
x = iJ ′

z

[J ′
y, J

′
z ]

def
= J ′

yJ
′
z − J ′

zJ
′
y = iJ ′

x

[J ′
z , J

′
x]

def
= J ′

zJ
′
x − J ′

xJ ′
z = iJ ′

y

(Compare the Pauli matrices in Week 6 Note 5.)

We can reconstruct the group elements from the generators as formal exponentials, as we did for
the circle group elements in the previous Note.

ei~α. ~J ′

= I + i~α.~J ′ − (~α.~J ′)2

2!
− i

(~α.~J ′)3

3!
+ i

(~α.~J ′)4

4!
+

where

~α.~J ′ = i





−rα qα
rα −pα
−qα pα



 = iα





−r q
r −p
−q p





(~α.~J ′)2 = −α2





−r2 − q2 pq rp
pq −r2 − p2 qr
rp qr −p2 − q2





= −α2





p2 − 1 pq rp
pq q2 − 1 qr
rp qr r2 − 1





= α2(I −




p
q
r



 (p, q, r))

(~α.~J ′)3 = iα3





−r q
r −p
−q p



 = α2(~α.~J ′)
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So

ei~α. ~J ′

= I(1 − α2

2!
+

α4

4!
− ..) −





p
q
r



 (p, q, r)(−α2

2!
+

α4

4!
− ..)

−i
~α.~J ′

| α | (α − α3

3!
+

α5

5!
− ..)

=





cos α −r sin α q sin α
r sin α cos α −p sinα
−q sin α p sin α cos α



 + (1 − cos α)





p
q
r



 (p, q, r)

28. Commutator algebra. With the formal definition we’ve used for exponentials of matrices, one
familiar property of exponentials gets lost.

It is no longer true that
eiXeiY = ei(X+Y ) [wrong!]

because if X and Y do not commute then eiX and eiY cannot commute.

We need a new result. But it should be apparent that the difference between old and new will
involve only the commutator, [X,Y ], of X and Y :

eiXeiY = ei(X+Y )×(some function of [X,Y ], etc.)

We can work out some of these [X,Y ]-dependent terms to make this more convincing.

We will need not only the series expansion for eiX but also of the inverse operation to exponentiation,
the natural logarithm

ln(1 + K) = K − K2

2
+

K3

3
− K4

4
+ ..

Since eiX and eiY are elements of a group (in our case the spherical group) their product must also
be a group element, so we can call it eiZ . (Do not confuse X,Y and Z with J ′

x, J ′
y and J ′

z : we are
being more general now.)

So we make two definitions for convenience.

1 + K
def
= eiZ def

= eiXeiY

so iZ will be ln(1 + K).

Now let’s work out the series, going only up to third powers. (The full result requires going to an
infinite number of powers, but we’ll get tired doing that, and besides our purpose is only to support
the general argument that the difference between eiXeiY and ei(X+Y ) involves only commutators.)

1 + K = eiXeiY = (1 + iX − X2

2!
− iX3

3!
..)(1 + iY − Y 2

2!
− iX3

3!
..)

= 1 + i(X + Y ) − 1

2
(X2 + 2XY + Y 2) − i

6
(X3 + 3X2Y + 3XY 2 + Y 3)..

So

iZ = ln(1 + K) = K − 1

2
K2 +

1

3
K3..

= i(X + Y ) +
1

2
((X + Y )2 − (X2 + 2XY + Y 2))

+
i

12
((3(X + Y )(X2 + 2XY + Y 2) + 3(X2 + 2XY + Y 2)(X + Y )

−2(X3 + 3X2Y + 3XY 2 + Y 3) − 4(X + Y )3)..

= i(X + Y +
i

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [X,Y ]])..)
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Thus Z, to third powers, is X + Y + commutators, as we argued. Clearly it cannot be otherwise
when taken to any power.

Now that we have seen that the product of two group elements, gX and gY , having generators X
and Y respectively, depends only on X,Y and their commutators.

But in the spherical group of Note 27 the commutators of the generators are also generators:
[J ′

x, J ′
y] = −iJ ′

z, etc.

We can generalize such relationships to a commutator algebra, in which the commutator of any two
elements is a linear combination of (some of) the elements, e.g. [X,Y ] = aW + bX + cZ, and which
has the following axioms.

[X + Y,Z] = [X,Z] + [Y,Z]

[aX, Y ] = a[X,Y ]

[X,Y ] = −[Y,X]

0 = [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

The first two axioms say that the algebra is linear. The third axiom replaces the definition that
[X,Y ] = XY − Y X (for which it is obviously true) and generalizes the commutator.

29. Representations of the spherical group. We haven’t lost sight of the goal of finding the
representations of the spherical group.

In Note 27 we saw the 3D representation generated by J ′
x, J ′

y and J ′
z. We also have the 2D rep-

resentation generated by the half-Pauli matrices σx/2, σy/2 and σz/2 (Week 6 Note 3). And we
have the 1D trivial representation, of course.

To explore further, we need to diagonalize. Since the generators do not commute, they cannot all
simultaneously be diagonalized.

So we must choose one to diagonalize and take the others as they work out.

The choice of which one is arbitrary. It could equally well be J ′
x, J ′

y or J ′
z. But J ′

z is always chosen,
and we do the same.

We need Q so that Jz = QJ ′
zQ

−1 is diagonal. Try

Q = 1√
2





1 −i
−
√

2
−1 −i



 Q−1 = 1√
2





1 −1
i i

−
√

2





Thus, with J ′ = pJ ′
x + qJ ′

y + rJ ′
z

J = QJ ′Q−1 =









r p−iq√
2

p+iq√
2

p−iq√
2

p+iq√
2

−r









So

Jx = 1√
2





1
1 1

1



 cf
σx

2
=

1

2

(

1
1

)
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Jy = 1√
2





−i
i −i

i



 cf
σy

2
=

1

2

( −i
i

)

Jz =





1
0

−1



 cf
σz

2
=

1

2

(

1
−1

)

where I’ve also shown the half-Pauli matrices for comparison.

At a guess, in 4D,

Jz =









3/2
1/2

−1/2
−3/2









But how do we show what Jx and Jy are?

In Week 6 Notes 8 and 9 we constructed a 3D and a 1D representation by taking the tensor product
of a 2D representation with itself and symmetrizing. This process can be abbreviated

A(4) = Q(A′
(2) ⊗ A′

(2))Q
−1

where Q =









1
1/
√

2 1/
√

2
1

1/
√

2 −1/
√

2









, Q−1 =









1
1/
√

2 1/
√

2
1/
√

2 −1/
√

2
1









and A′
(2) =

(

a c
b d

)

with 1 = det(A′
(2)) = ad − bc

We got

A(4) =









a2 ac
√

2 c2

ab
√

2 ad + bc cd
√

2
b2 bd

√
2 d2

1









= A′
(3) ⊕ A(1)

We can similarly build a 4D and a 2D representation from the tensor product of A′
(2) and A′

(3)

A(6) = Q(A′
(2) ⊗ A′

(3))Q
−1

where

Q =



















1
√

2/3
√

1/3
√

1/3
√

2/3
1

−
√

1/3
√

2/3
−

√

2/3
√

1/3



















The result is

A(6) =



















a3 a2c
√

3 ac2
√

3 c3

a2b
√

3 a + abc c + acd c2d
√

3
ab2

√
3 b + abd d + bcd cd2

√
3

b3 b2d
√

3 bd2
√

3 d3

a c
b d



















= A′
(4) ⊕ A′

(2)
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You can check these calculations, but the point of making them is to motivate the 4-dimensional
J matrices.

In symmetrizing A′
(2)⊗A′

(2), Q contains some 1/
√

2s, which Jx and Jy also contain. They also came

from normalizing the symmetric 1√
2
(| +− > + | −+ >), and antisymmetric, 1√

2
(| +− > − | −+ >),

state combinations.

The
√

2/3 and
√

1/3 in Q for A′
(2) ⊗ A′

(3) come from the 4D Jx and Jy. We’ll now see how.

To get the results quickly, I’m going to make an argument which is not watertight. My justification
will be that it gives the coefficients in Q which block-diagonalized A′

(2) ⊗ A′
(3).

In Week 6 we associated the 2D representation with “spin 1/2”, a situation which must be rotated
through 4π to restore it to itself—rotating by 2π changes the sign of the amplitude. We also
associated the 3D representation with “spin 1”, a combination of two spin-1/2s.

So the dimension of the representation is 2ℓ + 1 where ℓ is the “spin”—we’ll call it “anguℓar
momentum” for this discussion. Inversely the angular momentum relates to the dimension, d, of
the representation: ℓ = (d − 1)/2.

The (diagonal) elements of Jz are ℓ, ℓ − 1, ..,−ℓ : d = 2ℓ + 1 of them. This I am going to suppose
is true for all dimensions.

Given that, we can find Jx and Jy for any dimension by a trick.

The trick is to consider the “raising operator” J+
def
= (Jx + iJy)/

√
2 and the “lowering operator”

J−
def
= (Jx − iJy)/

√
2. (The 1/

√
2 is not always used, but it normalizes the operators.)

From the general commutator relationships, [Jx, Jy] = iJz, etc.

[J+, J−] = Jz

as well as
[J±, Jz] = ∓J±

Thus we have

In 2D J+ =
1√
2

1

2
(σx + iσy) =

1√
2

(

1
)

J− =
1√
2

1

2
(σx − iσy) =

1√
2

(

1

)

In 3D J+ =
1√
2
(Jx + iJy) =





1
1





J− =
1√
2
(Jx − iJy) =



 1
1





In 4D J+ =





c3/2

c1/2

c−1/2



 Jx =
1√
2









c3/2

c3/2 c1/2

c1/2 c−1/2

c−1/2









J− =









c3/2

c1/2

c−1/2









Jy =
i√
2









−c3/2

c3/2 −c1/2

c1/2 −c−1/2

c−1/2








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where we don’t yet know the cs.

But we can find them out with [J+, J−] = Jz.

J+J− =













cℓ

cℓ−1

. . .
. . .























cℓ

cℓ−1

. . .











=













c2
ℓ

c2
ℓ−1

. . .
. . .













J−J+ =











cℓ

cℓ−1
. . .























cℓ

cℓ−1
. . .

. . .













=











0
c2
ℓ

c2
ℓ−1

. . .











So













c2
ℓ

c2
ℓ−1 − c2

ℓ
. . .

. . .













= [J+, J−] = Jz =











ℓ
ℓ − 1

. . .
−ℓ











That is

c2
ℓ = ℓ

c2
ℓ−1 = ℓ + ℓ − 1 = 2ℓ − 1

c2
ℓ−2 = ℓ + ℓ − 1 + ℓ − 2 = 3ℓ − 3

c2
m = c2

ℓ−k =
k

∑

j=0

(ℓ − j) = (k + 1)ℓ − (k + 1)k/2

= (k + 1)(2ℓ − k)/2

= (ℓ − m + 1)(ℓ + m)/2

So

cm =
√

(ℓ − m + 1)(ℓ + m)/2

giving

for 2D ℓ = 1/2 c1/2 = 1/
√

2

for 3D ℓ = 1 c1 = 1

c0 = 1

for 4D ℓ = 3/2 c3/2 =
√

3/2

c1/2 =
√

2

c−1/2 =
√

3/2

and so on. Note that cm = c1−m.

This general result agrees with what we knew for 2D and 3D and with what we guessed for 4D.
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Back to 4D

J+ =









√

3
2 √

2
√

3
2









J− =













√

3
2 √

2
√

3
2













Jx = 1√
2

















√

3
2

√

3
2

√
2

√
2

√

3
2

√

3
2

















Jy =
i√
2

















−
√

3
2

√

3
2 −

√
2

√
2 −

√

3
2

√

3
2

















Let’s confirm the Q we used to block diagonalize A′
(2) ⊗ A′

(3) to A′
(4) ⊕ A′

(2). The coefficient
√

3/2

has appeared in J±, Jx and Jy but not the
√

2/3 or
√

1/3 that we used.

We use the notation | ℓ,m > to specify the mth basis vector in representation ℓ of 2ℓ+1 dimensions
(−ℓ ≤ m ≤ ℓ). To specify the tensor product of two representations, we combine the basis vectors.

Thus, the m = 3/2 state of the 4D representation ℓ = 3/2 can be assembled from an m = 1/2 state
of the 2D representation ℓ = 1/2 and an m = 1 state of the 3D representation ℓ = 1 in only one
way.

| 3

2
,
3

2
>=| 1

2
,
1

2
>| 1, 1 >

The m = ℓ − 1 states are obtained from this by using the lowering operator J−

J− | 3

2
,
3

2
>= J−(| 1

2
,
1

2
>| 1, 1 >) = (J− | 1

2
,
1

2
>) | 1, 1 > + | 1

2
,
1

2
> J−(| 1, 1 >)

Consult the J− matrices for 4D (ℓ = 3/2), 3D (ℓ = 1) and 2D (ℓ = 1/2):

J− | 3

2
,
3

2
> =

√

3

2
| 3

2
,
1

2
>

J− | 1

2
,
1

2
> =

√

1

2
| 1

2
,−1

2
>

J− | 1, 1 > = | 1, 0 >

So
√

3

2
| 3

2
,
1

2
> =

√

1

2
| 1

2
,−1

2
>| 1, 1 > + | 1

2
,
1

2
>| 1, 0 >

Hence

| 3

2
,
1

2
> =

√

1

3
| 1

2
,−1

2
>| 1, 1 > +

√

2

3
| 1

2
,
1

2
>| 1, 0 >

Similarly

√
2 | 3

2
,−1

2
> = J− | 3

2
,
1

2
> = J−(

√

1

3
| 1

2
,−1

2
>| 1, 1 > +

√

2

3
| 1

2
,
1

2
>| 1, 0 >)

=

√

1

3
(0+ | 1

2
,−1

2
>| 1, 0 >) +

√

2

3
(| 1

2
,
1

2
>| 1, 0 > + | 1

2
,
1

2
>| 1,−1 >)

= 2

√

1

3
| 1

2
,−1

2
>| 1, 0 > +

√

2

3
| 1

2
,
1

2
>| 1,−1 >
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So

| 3

2
,−1

2
>=

√

2

3
| 1

2
,−1

2
>| 1, 0 > +

√

1

3
| 1

2
,
1

2
>) | 1,−1 >

Finally you can show similarly that

| 3

2
,−3

2
>=| 1

2
,−1

2
>| 1,−1 >

These four states of A′
(4) and the coefficients give the first four rows of Q.

For the A′
(2) we start with | 1

2 , 1
2 > which can only be some linear combination of | 1

2 ,−1
2 >| 1, 1 >

and | 1
2 , 1

2 >| 1, 0 >.

This must be orthogonal to
√

1
3 | 1

2 ,−1
2 >| 1, 1 > +

√

2
3 | 1

2 , 1
2 >| 1, 0 >, the linear combination that

gave us | 3
2 , 1

2 >, so we must have

| 1

2
,
1

2
> =

√

2

3
| 1

2
,−1

2
>| 1, 1 > −

√

1

3
| 1

2
,
1

2
>| 1, 0 >

Applying J− to both sides gives

| 1

2
,−1

2
> =

√

1

3
| 1

2
,−1

2
>| 1, 0 > −

√

2

3
| 1

2
,
1

2
>| 1,−1 >

and this completes Q.

Summarizing this long Note, we have found that the representations of the spherical group are of
dimension d = 1, 2, 3, 4, .. They are characterized by an “angular momentum” ℓ = (d − 1)/2, i.e.,
ℓ = 0, 1/2, 1, 3/2, .. Each basis vector within a representation ℓ is characterized by a “magnetic
quantum number” m = ℓ, ℓ − 1, .., −ℓ. These are the eigenvalues of Jz.

It is also true that J2 = J2
x + J2

y + J2
z = ℓ(ℓ + 1)I which commutes with each of Jx, Jy and Jz.

All this can be interpreted as describing a total angular momentum vector of magnitude
√

ℓ(ℓ + 1),
oriented in 2ℓ+1 discrete directions that have projections ℓ, ℓ−1, .., −ℓ on the z-axis. (Remember
we arbitrarily chose axes in the representation so that Jz is diagonal.)

The commuting quantities are given by simultaneously diagonalizable operators (matrices) and may
be measured simultaneously: thus J2 and Jz, but alternatively J2 and Jx or J2 and Jy.

The discussion of tensor products can be interpreted as the addition of angular momenta. In the
first example, A′

(2) ⊗ A′
(2) combined ℓ1 = 1/2 with ℓ2 = 1/2 to give two outcomes ℓ = ℓ1 + ℓ2 = 1

and ℓ = ℓ1 − ℓ2 = 0. For each of these, m = ℓ, ℓ− 1, .., −ℓ, i.e., −1, 0, 1 for ℓ = 1 and 0 for ℓ = 0.

In the second example, A′
(2) ⊗ A′

(3) combined ℓ1 = 1/2 with ℓ2 = 1 giving ℓ = ℓ1 − ℓ2 = 3/2 (m is

−3/2, −1/2, 1/2, 3/2) and ℓ = ℓ1 − ℓ2 (m is −1/2, 1/2).

In general ℓ1 and ℓ2 combine to give

(2ℓ1 + 1)(2ℓ2 + 1) = 2(ℓ1 + ℓ2) + 1 + 2(ℓ1 + ℓ2 − 1) + 1 + .. + 2 | ℓ1 − ℓ2 | +1

states, consisting of n = 2 min(ℓ1, ℓ2) + 1 groups of states of angular momentum ℓ = 2(ℓ1+ℓ2−k)+1
for k = 0, ..,min(ℓ1, ℓ2), each of which has 2ℓ + 1 different states m = −ℓ, .., ℓ.

It is interesting to show the sums as a table, in which Mj = 2ℓj + 1 and the entries are

12



M1M2, #
decomposition

where the decomposition has # = 2 min(ℓ1, ℓ2) terms and sums to M1M2.

ℓ1 = 1/2 1 3/2 2 5/2
M1 = 2 3 4 5 6

ℓ2 M2
1
2 2 4,2 6,2 8,2 10,2 12,2

3+1 4+2 5+3
1 3 9,3 12,3 15,3 18,3

5+3+1 6+4+2
3
2 4 16,4 20,4 24,4

7+5+3+1 8+6+4+2
2 5 25,5 30,5

9+7+5+3+1 10+8+6+4+2

30. Spherical harmonics. The culmination of our work on the simpler finite groups, and on the
circle group, was to show the possible modes of “vibration”, or the general physical states, permitted
by the symmetry. To do this with continuous groups we may no longer restrict our attention to
a finite number of points but must consider an infinity—indeed a continuous infinity—of points
which can “move”.

Since we claim nature cannot be continuous it is best to think of the following discussion as giving
rules for calculating the “vibration” of any one point we happen to take an interest in.

But these rules require us to look at continuous math, whether it describes continuous nature or
is merely an approximation to discrete nature. Continuous math, particularly the calculation of
slopes, has been developed to a high degree and is worth using even if only as a model.

We wrote a solution for the vibrations in circle symmetry, namely eimφ. We also found a diagonal
matrix for the m states in spherical symmetry, namely

Jz =











m
m − 1

. . .
−m











What Jz does is give the eigenvalue m or m − 1 or .. or −m when applied to a vibration state
characterized by the quantum number

Jz | m > = m | m >

Let’s put circle and z-part of sphere together and suppose | m > = eimφ

Jze
imφ = meimφ

We found out (Excursion to Note 26 on the series for cos(x), sin(x) and eix) that

Slopeφeimφ = imeimφ

This makes it plausible to identify the two operators

Jz = −i Slopeφ

13



One is a matrix, the other the slope operator of continuous math.

Now let’s change some variables, since we have been working with Jx, Jy, Jz and even (Jx±iJy)/
√

2,
rather than with the polar coordinates r, θ and φ.

2

θ

ϕ

r

x

y

z

θ 2r sin   =  x  + y

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

slopeφx = −r sin θ sinφ = −y

slopeφy = −r sin θ cos φ = x

From these slopes we can work out the effect of slopeφ on any function f(x, y).

But we should first summarize slopes for handy reference.

Slope Rules
slopexxn = nxn−1 any n power rule
slopex sin x = cos x trig rules
slopex cos x = − sin x
slopexf(x)g(x) =(slopexf)g + f(slopexg) product rule
slopexf(g(x)) = slopegf slopexg chain rules
Slopexf(p, q) = slopepf slopexp+ slopegfslopexg
slopexf−1(x) = 1/slopexf(x) inverse rule

slopex cos−1 x = −1/
√

1 − x2 inverse trig. rules
slopex tan−1 x = 1/(1 + x2)

Armed with these rules (and this is a good exercise in using the rules, too) we can show several
useful things. First

Slopeφf(x, y) = slopexf slopeφx + slopeyf slopeφy

= x slopeyf − y slopexf

= (x slopey − y slopex)f(x, y)

From this we can identify the operators

Slopeφ = x slopey − y slopex

Therefore Jz = −i Slopeφ = −i(x slopey − y slopex).

Let’s make a leap and suppose

Jx = −i(y slopez − z slopey)

and
Jy = −i(z slopex − x slopez)

With a bit of careful slope-finding, we can show

[Jx, Jy] = x slopey − y slopex = iJz

14



which is the correct commutator, so the leap seems to be justified.

We will need the raising and lowering operators

1√
2
(Jx + iJy) =

1√
2
(−(x + iy)slopez + z(slopex + i slopey))

1√
2
(Jx − iJy) =

1√
2
((x − iy)slopez − z(slopex − i slopey))

The second set of applications of the slope rules is to go back again to polar coordinates, this time
to express (Jx ± iJy)/

√
2 as slope operators on θ and φ.

From the diagram we had x, y and z in terms of θ and φ. Now we need slopex, slopey and slopez.

θ = cos−1 z
r φ = tan−1 y

x

Therefore

slopexθ = 0 = slopeyθ

slopezθ = slopez/rθ slopez
z

r
=

−1
√

x2 + y2
=

−1

r sin θ

slopezφ = 0

slopeyφ = slopey/xφ slopey
y

x
=

x

x2 + y2
=

cos φ
√

x2 + y2
=

cos φ

r sin θ

slopexφ = slopey/xφ slopex
y

x
=

−y

x2 + y2
=

− sin φ
√

x2 + y2
=

− sinφ

r sin θ

And so

slopexf(θ, φ) = slopeθf slopexθ + slopeφf slopexφ

=
− sin φ

r sin θ
slopeφf(θ, φ)

slopeyf(θ, φ) = slopeθf slopeyθ + slopeφf slopeyφ

=
cos φ

r sin θ
slopeφf(θ, φ)

slopezf(θ, φ) = slopeθf slopezθ + slopeφf slopezφ

=
−1

r sin θ
slopeθf(θ, φ)

Now we can write the raising and lowering operators in term of θ and φ.

J+ =
1√
2
(Jx + iJy) =

1√
2
(−r sin θeiφ

( −1

r sin θ

)

slopeθ +
r cos θ

r sin θ
(− sin φ + i cos φ) slopeφ)

=
eiφ

√
2
(slopeθ + i cot θ slopeφ)

J− =
1√
2
(Jx − iJy) =

1√
2
(r sin θe−iφ

( −1

r sin θ

)

slopeθ −
r cos θ

r sin θ
(− sin φ − i cos φ) slopeφ)

= −e−iφ

√
2

(slopeθ − i cot θ slopeφ)
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Now that we have J± in terms of the two angular coordinates, θ and φ, on the surface of the sphere,
we can find out the “vibrations” on that surface.

We will call the vibration

Yℓm(θ, φ) = Θℓm(θ)
eimφ

√
2π

where the 1/
√

2π is a normalizing constant so that eimφ
√

2π
e−imφ
√

2π
sums to 1 over the whole circle

φ = 0..2π.

Yℓm(θ, φ) are called the “spherical harmonics”.

Θℓm(θ) contains the θ component (θ = 0..π) and depends on the two quantum numbers ℓ and m
that we found in Note 29.

We use J+ to take advantage of what we know, that m ≤ ℓ:

J+Yℓℓ(θ, φ) = 0

This will give us Θℓℓ(θ). Then we can use J− repeatedly to give us Θℓm(θ) for m < ℓ:

J−Yℓm(θ, φ) =
√

(ℓ − m + 1)(ℓ + m)/2Yℓm−1(θ, φ)

where the
√

(ℓ − m + 1)(ℓ + m)/2 is just the element, cm, of the matrices J− (and J+) in Note 29.

Here is the calculation with J+

0 =
eiφ

√
2
(slopeθ + i cot θ slopeφ)Θℓℓ

eimφ

√
2π

=
ei(m+1)φ

√
4π

(slopeθΘℓℓ(θ) − ℓ cot θ Θℓℓ(θ))

which is satisfied by

Θℓℓ = (−1)ℓ
√

(2ℓ + 1)/2

2ℓℓ!
sinℓ θ

Check it out with Θℓℓ = sinℓ θ: the constant in front is for normalization. We won’t derive it, and
we could forget it with almost no harm for our purposes, but with it our results will agree with the
tables of spherical harmonics that you might look up.)

We can use this to calculate the first few ℓℓ spherical harmonics.

Y00 =
1√
4π

Y11 = −1

4

√

6

π
sin θeiφ

Y22 =
1

8

√

30

π
sin2 θe2iφ

Y33 = −1

8

√

35

π
sin3 θe3iφ

Now we can find the others, just by applying J−

Yℓ,ℓ−1 =
J−√

ℓ
Yℓℓ
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e.g.,

Y10 = −e−iφ

√
2

(slopeθ − i cot θ slopeφ)(−1

4

√

6

π
sin θeiφ)

=
1

2

√

3

π
cos θ

Yℓ,ℓ−2 =
J−√
2ℓ − 1

Yℓ,ℓ−1

e.g.,

Y1,−1 = −e−iφ

√
2

(slopeθ − i cot θ slopeφ)(
1

2

√

3

π
cos θ)

=
1

4

√

6

π
sin θe−iφ

Since this work has already been published in many tables of spherical harmonics we won’t derive
any more.

But we can make pictures. Here are some, plotted both as a Mercator projection on the θ-φ plane
and in colours on the sphere.

The plots show the “nodes”, a word which in discussions of vibrations means the parts of the
sphere that never move: the spherical harmonic has value 0 on these lines separating the two
colours yellow-green and turquoise in the real and imaginary plots.

Note that there are exactly ℓ such lines.

Note the “dumbell” shapes of Y2,m(M 6= 0).

Note the “tetrahedral” shapes of Y3,±2.

Here is Y11(θ, φ) (ℓ,m = 1)
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The imaginary part is the real part rotated through a right angle.

There is one nodal line, best seen in the θ-φ diagram of the imaginary part, but also evident in
planes bisecting the real and imaginary spheres and including the poles.

The probability is independent of φ.

The probability pictures show things all happening at the equator.
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Here is Y1,−1(θ, φ) (ℓ,m = 1,−1)
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The real part is the real part of Y11 rotated through two right angles. The imaginary part is the
same as that of Y11.

There is one nodal line, as before.

Here is Y10(θ, φ) (ℓ,m = 1, 0)
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The imaginary part is 0 everywhere.

The probability pictures show things all happening at the poles.
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Here is Y20(θ, φ) (ℓ,m = 2, 0)
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There are two nodal lines; between the equator and each pole.

The probabilities are highest at the poles, as with Y10, but there is a small probability of things
happening around the equator.

Here is Y21(θ, φ) (ℓ,m = 2, 1)
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There are two nodal lines, best seen in the imaginary θ-φ plot as a line at θ = π/2 crossing a line at
φ = π. These can also be seen as two planes at right angles to each other and including the poles
in either the real or imaginary spheres.
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Here is Y32(θ, φ) (ℓ,m = 3, 2)

0 1 2 3
0

2
4

6

−0.4

−0.2

0

0.2

theta

real

phi
3,

2

0
1

2
3

0
2

4
6

−0.4

−0.2

0

0.2

theta

imag

phi

3,
2

0
2

0
2

4
6

0

0.05

0.1

0.15

theta

prob

phi

3,
2

−1
0

1

−1
0

1
−1

0

1

x

3,2 real

y

z

−1
0

1

−1
0

1
−1

0

1

x

3,2 imag

y

z

−1
0

1
−1

0
1

−1

0

1

x

3,2 prob

y

z

0.02

0.04

0.06

0.08

0.1

0.12

0.14

There are three nodal lines: those of Y21 and the equator.

Note the tetrahedra of high amplitudes and of low amplitudes in the real and imaginary spheres.

If these were describing quantum systems, we would observe only the probabilities. But the am-
plitudes are what interact with other quantum systems, and so the geometry of both the real and
imaginary parts is important.

In the next Note we will see that knowing the radial behaviour, that is, with r as well as with θ and
φ, helps visualization. We will also see that adding the radial behaviour to the spherical harmonics
describes atoms.

Trying to understand the atom drove the creation of quantum mechanics in the first three decades
of the 20th century.

31. Atomic physics. The spherical symmetry we have been discussing describes, among other
things, the electron structure of the atom.

Shortly after he left McGill, Ernest Rutherford discovered that the atom is made up of electrons
orbiting a very small, dense nucleus. The electron “orbits” were at first imagined to be like the
orbits of planets around the sun. Rutherford’s student, Niels Bohr, proposed that the electrons
could orbit only in certain discrete orbits, but without radiating electromagnetic waves (e.g., light).
This hypothesis was fruitful but contradicted what was and is known about electromagnetism.
Louis de Broglie justified the discreteness by imagining electrom “waves”, of a fixed wavelength,
forming wave patterns, such as those shown in the figures of Note 26, but of different radii to
accommodate different numbers of wavelengths.

Thus, the radial component is an important part of the electron structure of the atom. This goes
beyond this Week’s discussions of symmetry, so we won’t try to derive the functions. But it is
helpful in visualizing the spherical harmonics we’ve just derived, so is worth the digression.

Finding the radial component requires some physics we don’t yet have. I will give the results for
the “inverse square force” which describes both the gravitational attraction of planets by the sun
and the electric (“Coulomb”) attraction of the orbital electrons by the nucleus.

Planets orbit the sun in ellipses, mostly all in the same plane, the “ecliptic”. (The confusing
similarity of the two words is probably intentional.)

Electrons do not orbit in ellipses, as we will now see, despite the popular picture of the atom.
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The radial component, Rnℓ(r), depends on the radius r, on the angular momentum ℓ, which we
have already seen in the spherical harmonics, and on the radial quantum number n, which is the
modern form of de Broglie’s quantized electron-wave levels.

Here, from [LL58, p.124], are the first few functions.
R10(r) = 2e−r

R20(r) =
1√
2
(1 − r

2
)e−r/2

R21(r) =
1

2
√

6
re−r/2

R30(r) =
2

3
√

3
(1 − 2r

3
+

2r2

27
)e−r/3

R31(r) =
8

27
√

6
r(1 − r

6
)e−r/3

R32(r) =
4

81
√

30
r2e−r/3

Notice that 0 ≤ ℓ < n. From the experiment (Excursion for Note 26) with the playground round-
about, this makes some sense: the further out you are from the centre of rotation, the more angular
momentum you can have.

Notice that Rnℓ(r) has nodes—values of r at which it goes to zero. You can see that there are
n − ℓ − 1 of these nodes (apart from zeros at r = 0):

none for R10, R21, R32

one for R20 (at r = 2), R31 (at r = 6)
two for R30 (at r = 9

2 (1 ± 1√
2
))

Notice that the negative exponential ensures that Rnℓ(r)
r→∞−→ 0 so that the electrons do not

normally escape from the atom.

Now let’s draw and discuss some of these. The six plots to follow show a) Rnℓ(r), b) R2
nℓ(r)

combined with the spherical harmonic probability Yℓm(θ, φ)Y ∗
ℓm(θ, φ) (which does not depend on

φ), and c) and d) 1000 atoms randomly generated under this probability and shown on the r-θ
plane (c) and as a three-dimensional super-microscope view (d) of the “electron cloud” around a
simple atom. In (c) and (d) each electron “shell”—separated from the other shells by Rnℓ = 0
nodes—is shown in a different colour.

Here is n, ℓ,m = 1, 0, 0
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This has one shell (shown in blue) because there are zero nodal surfaces.

The electrons are distributed spherically, which is always the case when ℓ = 0.

Here is n, ℓ,m = 2, 0, 0

There are two shells (inner shell in blue, outer shell in green) because there is one nodal surface,
at r = 2.

Here is n, ℓ,m = 3, 0, 0
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There are three shells (inner blue, middle green, outer red) and nodal surfaces at r = 9(1−1/
√

3)/2
and r = 9(1 + 1/

√
3)/2.

Here is n, ℓ,m = 2, 1, 0
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This has one shell but two clusters separated by the nodal plane (the equator) of Y10(θ, φ).

The angular momentum, ℓ = 1, but the z-component, m = 0. We can visualize this (but the
analogy is not perfect) as a top spinning perpendicularly to the z-axis. (Recall

√

ℓ(ℓ + 1) =
√

2.)

2

x

y

z

0
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Here is n, ℓ,m = 3, 2, 0
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There is one shell but three clusters, separated by the two nodal planes of Y20(θ, φ).

Note that the spinning top picture for n, ℓ,m = 2, 1, 0 only partly applies.

Here is n, ℓ,m = 3, 2, 1
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Compare this with n, ℓ,m = 2, 1, 0 but note that the nodes are no longer exactly at the poles. We
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can see this from the plots other than the x-y-z plot. We would need to take cross−section of the
x-y-z plot.

The spinning-top analogy is only suggestive here. (What angle must it be inclined at?) (Recall
√

ℓ(ℓ + 1) =
√

6.)

6

x

y

z

1

The investigation of atoms that led to the understanding of angular momentum at atomic scales
was spectroscopic. Electrons “falling” from one shell to a shell closer to the nucleus release energy
in the form of light—sometimes ultraviolet or infrared—which can be analyzed by spectroscope. In
hydrogen, for example, the so-called Balmer series is visible.

Angular momentum considerations give rise to fine structure in the spectra, which was characterized
by the appearance of the lines of light in the spectroscope. Accordingly, the states of angular
momentum got special names.

ℓ = 1 s for “sharp”
ℓ = 2 p for “principal”
ℓ = 3 d for “diffuse”
ℓ = 4 f for “fundamental”

and g, h, .. thereafter [Her44, pp.55ff.]

In summary, the possible electron states of an atom are

n 1 2 3
ℓ 0 0 1 0 1 2
m 0 0 1 0 −1 0 1 0 −1 2 1 0 −1 −2

and so on: n2 states for the nth shell.

The different m states do not contribute to the spectra unless symmetry is broken, say by a magnetic
or electric field in the z direction. These states are called ‘degenerate”.

The hydrogen atom is more completely described by SO(4,2), the special orthogonal group on four
spacelike and two timelike dimensions. (The group of invariants under the Lorentz transformation
is SO(3,1).)

32. SU(2) formal and informal.

33. SU(3).

34. Isospin and quarks

35. Symmetry and Conservation: Complementary Quantities

36. Symmetry and Conservation: Energy

37. Principle of Stationary Action.

38. Symmetry and Conservation: Noether’s Theorem

39. The Hamiltonian and Schrödinger’s Equation
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40. Summary (These notes show the trees. Try to see the forest!)

Part I Discrete symmetries and molecules.

Notes 1–11. Symmetries of an equilateral triangle abstracted to groups. Invariant sets and sub-
groups. Traces and further matrix representations. Decomposing into irreducible representations
and block-diagonalizing matrices.

Notes 12–17. Finding fundamental vibration modes of molecules from their symmetries: greenhouse
gases CO2 and H2O.

Notes 16–18. Symmetries of the platonic solids: tetrahedron, octahedron/cube, dodecahedron/icosahedron.

Part II Infinite symmetries and crystals.

Notes 19–25. Translation symmetries and crystals in one and two dimensions: crystallography and
waves.

Part III Continuous symmetries and the atom.

Notes 26–29. Rotational symmetry in two and three dimensions. Commutator algebra and repre-
sentations of the spherical group.

Notes 30, 31. Spherical harmonics and atomic physics.

Part IV Abstract symmetries and lots of physics

Notes 32–34. From SU(2) (the atom) to SU(3) (the quarks). Isospin and hypercharge.

Notes 35–39. Symmetry and conservation laws. Complementary quantities, energy, Lagrangian,
principle of stationary action, Noether’s theorem, Hamiltonian, Schrödinger’s equation and the
quantum harmonic oscillator.

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Look ahead to Week 10 (Excursion “More than one kind of infinity”) and Week 12 (Excursion
“Continuity”) to refine the discussion in Note 26 about continuous groups.

2. a) Write the programs to check the series for cos x and sin x.
b) Remembering from Week 8 (Excursion “Slopes of cos and sin”) that

slope cos x = − sin x and slope sin x = cos x
check these with the slopes of the two series in Note 26.
c) What are slope slope cos, slope slope slope cos, etc. and the same for sin? How do these
compare with the same repeated slopes of the two series?
d) If the series for cos and sin did not alternate signs, could they still be periodic (cos 2π =
cos 0)?
e) What are the slopes of eix and its series?
f) What is the series for ex? What is its slope?

3. a) Diagonalize

R =

(

cos φ − sinφ
sin φ cos φ

)

by QRQ−1 where

Q =
1√
2

(

1 −i
−i 1

)

b) Find QXQ−1 for

X = −i

( −1
1

)

c) Should the same process diagonalize both X and eiX , given the definition of eiX?
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4. Show the following concerning the circular waves plotted in Note 26.
a) If m is not an integer, the wave will interfere destructively with itself everywhere, giving
zero amplitude.
b) If the symmetry were not circular but had n discrete points, higher frequencies (values of
m) are not distinguishable from lower frequencies, above a certain frequency, because the n
nodes move the same way for the higher frequencies as for the lower. What is the highest
value of m that gives a distinct vibration?

5. Notes 9 and 11 (Part I) show group representations built up as linear combinations of ir-
reducible representations, which act as the basis for the space of representations. Note 26
concludes that eimφ are the representations of the 2D rotation group.
a) How do Fourier series (see Week 9) relate to these representations and, in particular, show
that they are irreducible?
b) Fourier terms provide a basis for functions of a single 2-D-number variable. How would
spherical harmonics (Note 30) provide a basis for functions of pairs of 2-D-number variable?
c) What group has “Bessel functions” as its irreducible representations?

6. To experience the conservation of angular momentum you can try the experiment with a
bicycle wheel and swivel chair, if you have each of these, especially a bicycle wheel you can
spin while holding the axle, one hand at each end, without getting too greasy.
Sit on the chair, holding the wheel axle horizontally and have a friend spin the wheel. Sitting
securely but with your feet off the ground, rotate the axle until it is vertical. What happens?
Why?
If you don’t have the above research equipment, here is a possibly dangerous alternative if you
can find one of those playground rotating platforms, built quartered with four steel handrails
to hang on to.
With one or three friends of your own weight and size distributed on the platform, one
opposite you and, if there, the other two opposite each other symmetrically on each side of
you, all leaning as far away from the centre as they can while holding on tightly with two
hands, spin the platform up by walking around it, then get on yourself, leaning outward and
holding on tightly with both hands.
Now, all on the slowly rotating platform, tell everyone to pull themselves in toward the centre¿
What happens? Why?
Do not get off without everybody leaning away from the centre again, so the platform is going
slowly enough for one person to step off and bring it to a halt.
Be careful with the experiment! Do not try it with friends much smaller or much
bigger than you.

7. (Ron Niemi.) Why does a tightrope artist hold a long pole out from side to side, or somebody
doing a lesser act of balancing hold out heir arms?

8. The above experiments with angular momentum show that it involves direction and motion.
The discussion of Note 26 involves only a standing wave. How can a standing wave have
direction or motion?
Look up “standing wave” and “surf” to see. For instance, try the YouTube video “Waimea
River Standing Wave Surf Session”.
Find a standing wave near you (e.g., the Habitat wave in the St. Laurence River or the
Chambly wave in the Richelieu River, both near Montreal) and surf on it to appreciate better
both the feel of momentum and my paraphrase of T. H. Nelson’s remark: if computers are
the wave of the future, graphics is the surfboard.

9. Kepler II. Show that a body of mass m orbiting a central body with constant angular
momentum, J , sweeps out equal areas in equal times at rate J/(2m) area units per time unit
(or 2m/J time units per area unit) using the pre-quantum expression for angular momentum
J = mvr where v is the velocity of the orbiting body and r its distance from the central body.
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m
r a

(Suppose the orbiting body travels along an arc of length a in a time so short that a is very
small and the area swept out can be considered a triangle of base r and height a.)

10. Show that the J ′ matrices have the commutators shown in Note 27.

11. Show that (~α.~J ′)





p
q
r



 =





0
0
0



 and so (~α.~J ′)3 is as shown in Note 27.

12. In Week 6 Note 3 we gave a 2D representation of the spherical group using Euler angles.
Let’s now give it in terms of angle φ about an arbitrary axis, as we do in Note 27 for the 3D
representation.
a) Show that the half-Pauli matrices

Jx =
1

2

(

1
1

)

, Jy =
1

2

( −i
i

)

, Jz =
1

2

(

1
−1

)

have the same commutator relationships as the Js of Note 27.
b) Show that

ei~φ· ~J = I cos
φ

2
+

(

ir ip + q
ip − q −ir

)

sin
φ

2

where
~φ · ~J = φpJx + φqJy + φrJz

c) Check that this result agrees with Week 6 Note 3 for rotations through φ about each of
the x, y and z axes (Week 6 Note 6).
d) What is the character table for this 2D representation? (All rotations by a fixed angle φ
form an invariant class. Why?)
e) What is the character table for the 3D representation of Note 27?

13. Show that ln(ex) = x and eln(x) = x using the series for ex = ei(x/i) = 1 + x + x2

2! + x3

3! .. and
the series for ln(x) given in Note 28.

14. Show that [X,X†] = 0 for hermitian X (i.e., X = Y + iZ, Y T = Y, ZT = −Z).

15. Show that [J ′
x, [J ′

y, J
′
z ]] + [J ′

y, [J
′
z , J

′
x]] + [J ′

z, [J
′
x, J ′

y]] = 0 for the generators of Note 27.

16. What I’ve called a commutator algebra in Note 28, to emphasize the idea from which it was
abstracted, is properly called a Lie algebra, invented by Sophus Lie. Continuous groups with
generators whose commutators obey the axioms of Lie algebra are called Lie groups. Look
up Sophus Lie, 1842–99.

17. Show that the J matrices in Note 29 have the same commutator relationships as the J ′

matrices.

18. a) Show that (2ℓ1 + 1)(2ℓ2 + 1) = (2(ℓ1 + ℓ2) + 1) + .. + (2 | ℓ1 − ℓ2 | +1) in 2 min(ℓ1, ℓ2) +
1 steps.
b) Complete the decompositions in the (ℓ1,M1) by (ℓ2,M2) table in Note 29.
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19. a) Show that each rotation angle α specifies an invariant class of elements in the spherical
group, and so that the characters of the 3D representation are 1 + 2 cos α.
b) What are the group elements and hence the characters in the 2D representation? 4D?
c) What are the invariant subgroups?

20. For what values of ℓ does
√

ℓ(ℓ + 1) equal ℓ to within one part in a million? (Note 29)
For what values of ℓ do two successive values, ℓ and ℓ + 1, differ by less than one part in a
million?
What are the smallest values of n (Note 31) that allow these values of ℓ?

21. Show that the 4D generators from Note 29,

(p, q, r) · ~J =













3
2r

√
3

2 (p − iq)√
3

2 (p + iq) 1
2r p − iq

p + iq 1
2r

√
3

2 (p − iq)√
3

2 (p + iq) 3
2r













has the same commutator relationships as the J ′s of Note 27.

22. Confirm the rules in the “Slope Rules” table in Note 30.
a) Look up the binomial coefficients in Week ii Notes 6 and 7 and show the power rule using
the definition

slopexf(x) ≈ ∆f

∆x
=

f(x + ∆x) − f(x)

∆x
for small shifts, ∆x, in the value of x.
b) Do Week 8 Excursion “Slopes of cos and sin” to show the trig. rules.
c) Check this demonstration of the product rule:

∆(fg) = f(x + ∆x)g(x + ∆x) − f(x)g(x)

= f(x + ∆x)g(x + ∆x) − f(x)g(x + ∆x) + f(x)g(x + ∆x) − f(x)g(x)

= (∆f)g(x + ∆x) + f(x)Dδg)

≈ (∆f)g(x) + f(x)(∆g)

d) Check this demonstration of the first chain rule:

∆f(g)

∆x
=

f(g(x + ∆x) − f(g(x)

∆x

=
f(g + ∆g) − f(g)

∆x

=
f(g + ∆g) − f(g)

(g + ∆g) − g

(g + ∆g) − g

∆x

=
f(g + ∆g) − f(g)

∆g

(g + ∆g) − g

∆x

≈ slopegf slopexg

Combine this argument with that of (c) to show the second chain rule.
e) f−1(x) is defined to be the inverse function to f(x):

x = f−1(f(x)) = f(f−1(x))

(Not every function has an inverse everywhere.)
Use the chain rule to show that

1 = slopeyf
−1(y) slopexf(x)
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and hence show the inverse rule.
f) Use the inverse rule to show the two inverse trig rules. Explain the tricky part of this.

23. Confirm [Jx, Jy] = x slopey − y slopex if

Jx = −i(y slopez − z slopey)

Jy = −i(z slopex − x slopez)

Remember how some of the terms must work out, such as

y slopezz slopex = y slopex + yz slopez slopey

24. In calculating Yℓm in Note 30 we show only integer ℓ and m. The theory also gives half-integer
ℓ and m. Derive these. They are left out of Note 30 because they have almost no effect on
atoms (Note 31).

25. Find the ℓ nodal lines in the spherical harmonics figures in Note 30.

26. Run and understand the MATLAB program (see spherHarm.m in MATLABpak08cIII) that
generated the spherical harmonics figures in Note 30. Explore these plots in 3D and try some
of the other spherical harmonics. Look up still more spherical harmonics and extend the
program.

27. How will Y00 (ℓ,m = 0, 0) appear if drawn in the same way as the spherical harmonics of
Note 30?

28. Why is the probability, YℓmY ∗
ℓm, for the spherical harmonics in Note 30 always independent

of φ?

29. Why is the imaginary part always 0 for the spherical harmonic Yℓ 0 (m = 0)?

30. a) Show directly that J−Yℓ,−ℓ(θ, φ) = 0 is satisfied by sin−ℓ θe−iℓφ (times some normalizing
constant depending only on ℓ).
b) Hence show that ℓ, instead of taking on any value, which would formally satisfy the
equation, may only be an integer or a half-integer.

31. Compare the atomic plots in Note 31 with the graphs and renditions in [Her44, pp.40,43,44]
(which I cited in Week 6 and which you are now in a position to understand a lot better).

32. Run and understand the MATLAB program (see atom.m in MATLABpak08cIII) that gener-
ated the figures of atomic structure in Note 31. Explore the 3D plots from various angles.
Look up more Rℓ,m(r) functions and extend the program.
How would you modify the program to produce a cross-section of the “electron cloud”?

33. How will n, ℓ,m = 2, 1, 1 appear if drawn the same way as the atomic figures of Note 31?
How would its spinning top analogy look?
Show that n, ℓ,m = 3, 1, 1 will be similar, but with two shells.

34. Why will n, ℓ,m = 3, 1, 0 look like n, ℓ,m = 2, 1, 0 but with two shells?

35. Bohr atom. Find the “Bohr radius” a0 = h̄2/(mekH) = 52.9 picometers, and the “Rydberg
constant” R = kH/(2a0) = 13.6 eV, using

constant “dimensions” name
h̄ =6.58210−16 eV-sec ET Planck’s constant

me =0.511106 eV E electron mass
kH =8.6810−10 eV-m EL hydrogen-atom potential energy factor
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(For “dimensions” see Week 7a Notes 7, 8: E energy, T time, L length, M mass. An electron-
Volt, eV, is the energy given an electron by a 1-Volt potential difference, and is a suitable
unit for atom-scale processes.)
These numbers have the following significance for the radii, rn of the electron shells in the
atom and for the wavenumbers νnm of light emitted by an electron falling from shell n to
shell m (n > m).
Given the momentum of the electron, p = h/λe, and that the de Broglie wavelength λe of
the electron must fit an integer number of times in its orbit at radius r, nλe = 2πr, we see
p = nh̄/r where h̄ = h/2π.
Now we invoke both the conservation of pre-quantum angular momentum, p1r1 = J = p2r2,
and of pre-quantum energy

p2
1

2me
− kH

r1
= E =

p2
2

2me
− kH

r2

for two different points and momenta on the electron “orbit”, r1, p1 and r2, p2.
Using 1

r2

1

− 1
r2

2

= ( 1
r1

+ 1
r2

)( 1
r1

− 1
r2

) show that J2( 1
r1

+ 1
r2

) = 2mekH

Making these the same point again (r1 = r2, p1 = p2), J2/r = mekH ,
i.e., p2/(2me) = kH/(2r).
Do two things with this. First n2h̄2/me = kHr so r = h̄2n2/(mekH) = a0n

2.
Second E = kH/(2r) − kH/r = −kH/(2r) = −kH/(2a0n

2) = −R/n2.
So the “orbital radii” are proportional to n2 and the smallest radius of the hydrogen atom is
0.0529 nm.
So an electron “falling” from shell n to shell m gives off energy Enm = R(1/m2 − 1/n2)
corresponding to photon wavenumber (per cycle)
νnm = fnm/c = Enm/(hc) = 10.97(1/m2 − 1/n2) million waves per meter.
What are the photon wavelengths for the first few terms of the Balmer series, in which m = 2,
in hydrogen spectroscopy?
The factor of 2 that appears in the relationships among total energy, E = −kH/(2r), kinetic
energy, T = p2/(2me) = kH/(2r), and potential energy, V = −kH/r, is not a coincidence but
is generally true for stable systems bound by potential energy, with 2 always appearing for
inverse-square forces. Look up the “virial theorem”.

36. Kepler III a) Use the previous Excursion and the Excursion “Kepler II” to show that
the time required for an entire orbit (its “period”) in a circle of radius r is T where T 2 =
4π2r3/kS where kH for the hydrogen atom has been replaced by kS for the solar system,
kS = 23.8Gsolday. (A solday is the amount of energy put out by our sun in one day, and is
a suitable unit for cosmic-scale processes.)
b) If the circle were replaced by an ellipse of semi-major axis a, show that the above expression
holds with r replaced by a, no matter what the semi-minor axis b is.

foci

ae
a

ba

centre

r1 r2

31



(Use r1 as the shortest and r2 as the longest distances from the sun (nucleus) and show that
r1r2 = b2 and r1 + r2 = 2a.
Using the definition of an ellipse as the curve made by a pencil constrained to keep taut a
constant-length string with ends attached to each focus, show that the two as in the figure
are indeed the same.)

37. Conic sections. 1) Circle:

π

x
a( )

2

a
x

y’

a
+ a( )

2y’ = 1

area =    aa

2) We almost never see circles straight-on but usually from an angle: what we are really
seeing is an ellipse, a squashed circle. Try y = by′/a:

y

x
a( )

2

a
x

+ b( )
2y = 1b

area =   abπ

(So, for future reference, y2(a/b)2 = a2 − x2.)
3) Now introduce a quantity ǫ (written slightly differently in the diagrams for this Excursion)
which measures how far away from the circle we have gone. It could be b/a, but that is 1 for
the circle (b = a) and it might be better to make a measure which is 0 for the circle.
What turns out to be handy, although not immediately obvious, is to define ǫ2 = 1− (b/a)2.
To justify this, let’s find the two points on the x-axis a distance aǫ from the centre, and call
them the foci (plural of focus) of the ellipse:

ε  =  1

a
x

y

a a

a

b

b
a( )2 2

ε

Then the definition of ǫ tells us that the hypotenuses of the triangles shown are a. (And
y2 = (b/a)2(a2 − x2) = (1 − ǫ2)(a2 − x2).)
4) Now consider any point on the ellipse, distances r1 and r2 from the two foci. (These are
not the same r1 and r2 as the previous Excursion.) A little algebra:

r2
1 = (x + aǫ)2 + y2 = (a + ǫx)2

r2
1 = (x − aǫ)2 + y2 = (a − ǫx)2
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So r1 + r2 = 2a for any point on the ellipse.

ε

1
r2 r1 r2

a
x

y

a

b

+     = 2a
r

This gives the “string method” of describing an ellipse: put two pins at the foci, tie a loop
of string loosely around them, put a pencil in so that the string is taut between pencil and
both pins, and draw the curve you get by always keeping the loop tight.
5) We can get the polar equation for the ellipse, in terms of distance r from one focus, and
angle θ to the x-axis at that focus.

ε

a
x

y

aε
b

r

θ

r =
θ

2

1      cos
a(1       )

ε

x = r cos θ − aǫ

r = a + ǫx = a + ǫ(r cos θ − aǫ)

r =
a(1 − ǫ2)

1 − ǫ cos θ

Check that this gives the right answers for θ = 0, cos−1 ǫ and π. (When cos θ = ǫ what are
the values of x and r?)
Plot the ellipse using polar coordinates and suitable values for a and ǫ (0 ≤ ǫ < 1).
What happens if −1 < ǫ ≤ 0?
What happens if ǫ > 1 or −1 < ǫ?
6) What happens if ǫ = 1?
Squaring both sides of r = a + ǫx gives (x + aǫ)2 + y2 = (a + ǫx)2 or x2(1 − ǫ2) + y2 = a2,
which is not much help when ǫ = 1.
So we take a new tack and redefine the curve as all points P = (x, y) such that FP = ǫDP

ε=   d = (1+  )v

(0,0)FV
(  v,0)

(0,  )L
(  d,y)D

l

P(  ,y)ξ
ξ

y

εl
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This give the relationship in the figure, ℓ = ǫd = (1 + ǫ)v.
(The point F = (0,0) is the focus, the line D = (−d, y) is the directrix, the point V = (−v, 0)
is the vertex and the length 2ℓ is the latus rectum.)
For an ellipse v = a(1 − ǫ) so ℓ = a(1 − ǫ2) = b2/a, which is the numerator in the polar
equation.
So we rewrite that equation as

r =
ℓ

1 − ǫ cos θ

In general, FP = ǫDP gives, when squared, ξ2+y2 = ǫ2(ξ+d)2 or ξ2(1−ǫ2)−2ǫ2dξ+y2 = ǫ2d2.
(For an ellipse, using d = a(1 − ǫ2)/ǫ and shifting ξ → x = ξ − aǫ,

(x + aǫ)2(1 − ǫ2) − 2aǫ(1 − ǫ2)(x + aǫ) + y2 = a2(1 − ǫ2)2

or x2 + (ay/b)2 = a2.)
Now try ǫ = 1: −2dξ + y2 = d2 or ξ = y2/(2d) − d/2 = y2/(4v) − v
This is a parabola with focal length v and semi-latus rectum ℓ = d = 2v, twice the focal
length.

38. Kepler I. (1/r potentials give motion in conic sections.)
In the Excursion on conic sections we found r = ℓ/(1 − ǫ cos θ) for a conic section with semi-
latus rectum ℓ and eccentricity ǫ.
a) For reasons that will be clear in (e), show that

sloperθ =
ℓ/r

±
√

(ǫ2 − 1)r2 + 2ℓr − ℓ2

Hint. Since cos θ = (r − ℓ)/(rǫ), equate sloper cos θ = − sin θ sloperθ with sloper(r − ℓ)/(rǫ)
b) Since angular momentum is conserved by central forces such as the Bohr atom or the
sun-planet attraction in the solar system, the Kepler II Excursion says that equal areas are
swept out in equal times at rate J/(2m). This restricts planetary motion to a plane interval
which we can call e12J/(2m) in the interval algebra (Week 7c Notes 6–11).
In pre-quantum physics we may use velocities instead of momenta, p = mv or J = mvr, and
velocity is the slope, with respect to time, of position, v = slopetx.
(In quantum physics, velocity cannot be defined because we cannot know both the position
and momentum simultaneously: “successive positions” is an undefined concept.)
In the two dimensions of the planetary orbit we write the angular momentum in the interval
algebra, J = m cmpt(2, qq̇) where position

q = xe1 + ye2 = r cos θe1 + r sin θe2

and velocity

q̇ = slopetq

= (ṙ cos θ − θ̇r sin θ)e1 + (ṙ sin θ + θ̇r cos θ)e2

(check this) where the dotted variables are slopes with respect to time of the corresponding
undotted variables.
Show that J = mθ̇r2e12

Since there is only the e12 component, we will drop the e12 for the rest of this Excursion and
write

J = mθ̇r2 (1)

Why is this the same as J = mvr which we used before?
c) Kinetic energy is T = mq̇q̇/2 = m(ṙ2 + θ̇2r2)/2. Show that q̇q̇ = ṙ2 + θ̇2r2.
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d) Potential energy in the solar system is V = −kS/r, where kS = 23.8Gsolday (see the Kepler
III Excursion).
The total energy, E = V + T , can be written in terms of an “effective potential”,
J2/(2mr2) + V. Show this by replacing θ̇ by J/(mr2) (from equation 1) in the equation for
T .
(The extra term gives rise to the “centrifugal force”, −sloperJ

2/(2mr2) = J2/(mr3) = mv2/r.
But forces are beyond what we understand so far.)
Thus

E =
m

2
(ṙ2 +

J2

m2r2
) − k

r
(2)

e) Show that equations 1 and 2 give

θ̇

ṙ
=

J/(mr)

±
√

2E/m + 2kS/(mr) − J2/(m2r2)

=
J2/(kSmr)

±
√

2EJ2r2/(k2
Sm) + 2J2r/(kSm) − (J2/(kSm))2

and so, comparing with (a) and because slopetθ = slopefθ slopetr by the chain rule (Note 30)

ℓ =
J2

km

ǫ = ±
√

1 +
2EJ2

k2
Sm

This shows that a 1/r central potential gives rise to motion in conic sections—ellipses if the
total energy is negative, parabolas if it is zero, and hyperbolas if it is positive.
(Newton told Halley: “why, I have calculated it”.)
At least, the differential equations relating r and θ are the same. For a more thorough
discussion along these lines (using Gibbs’ vector notation) see [Bae03].
In order to make his Philosophi Naturalis Principia Mathematica acceptable to a readership
without calculus, Newton gave a geometrical demonstration of Kepler I. Look up Feynman’s
reconstruction of this geometrical argument.

39. What difference in behaviour in the (quantum) atom marks the distinction between negative
and positive energies that gives rise to elliptic versus hyperbolic orbits in the solar system?

40. Any part of the Preliminary Notes that needs working through.
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