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I. Prefatory Notes
A. Recursion
1. Define “ancestor” in terms of “parent”.

2. Precedence without parentheses

We’d like to parse ab + cd in the conventional way: (ab) + (cd).

We can say ab + cd is an expression made up of terms.
“Made up” means combined by + (or).

Likewise, terms are made up of identifiers (letters), i.e., combined by adjacency, or sometimes •
(and).

Grammar

<expression>::= <term> | <term> + <expression>
<term>::= <letter> | <letter><term>

These recursive definitions allow us to have indefinite numbers of terms with indefinite numbers of
letters.

E.g., a + bc + def + gh

Let’s see if we can use these recursive guidelines to write a program to recognize such an expression
and put parentheses around the terms.

parsexp(’ab+cd’)

ans =

((ab)+(cd))

1. parsexp puts out a ‘(’, calls expression, and puts out a ‘)’.
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of Canada who have paid his salary and research grants while this work was developed at McGill University, and
from his students and their funding agencies.

1



2. expression puts out a ‘(’, calls term, puts out a ‘)’, calls plussign and, if plussign found
a plus in the input, calls itself recursively to get the next expression.

3. plussign puts out ‘+’ and reports success if ‘+’ is indeed the next character of the input;
otherwise it reports failure.

4. term calls letter and, if letter found a letter in the input, calls itself recursively to get the
next term.

5. letter puts out the letter and reports success if the next character of the input is indeed a
letter; otherwise it reports failure.

Here is parsexp. Note that MATLAB obliges us to keep explicit account of the input (code), our
current input position (inpos), and the output (parsed) and our current output position (outpos).

% function parsed = parsexp(code)
% THM 060829
% uses expression.m
function parsed = parsexp(code)
parsed(1) = ’(’;
[parsed,inpos,outpos] = expression(code,parsed,1,2);
parsed(outpos) = ’)’;

Here is expression. I’ll leave plussign, term and letter as exercises.

% function [parsed,inpos,outpos] = expression(code,parsed,inpos,outpos)
% THM 060829
% used by parsexp.m; uses term.m, plussign.m; term.m uses letter.m
function [parsed,inpos,outpos] = expression(code,parsed,inpos,outpos)
parsed(outpos) = ’(’; outpos = outpos + 1;
[parsed,inpos,outpos] = term(code,parsed,inpos,outpos);
parsed(outpos) = ’)’; outpos = outpos + 1;
[succ,parsed,inpos,outpos] = plussign(code,parsed,inpos,outpos);
if succ
[parsed,inpos,outpos] = expression(code,parsed,inpos,outpos);

end

We can see that recursive thinking makes the process very much easier than without recursion.

3. Fractals

A significant benefit of recursion is in computing an exponential number of things.

Expression and term only called themselves once, but if a function calls itself twice and does this
recursively to depth n then we can get 2n invocations of the function.

We don’t often want an exponential number of invocations because it is very expensive (see the
Excursion this week about the chessboard), but one attractive application is drawing self-similar
figures (fractals).

Here is the “Peano curve”, named after the French mathematician who published it in 1880 [Pea90].
I have run the program to depths 1–6.
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1. peano(n) sets up the arrays that MATLAB needs to represent the final drawing, calls
peanoStep(n), and then uses MATLAB’s quiver() and axis() functions to produce the
drawing.

2. peanoStep(n) calls peanoStep(n−1) four times and also draws three lines, one in between
each invocation: first vertically up then diagonally down and rightwards then vertically up
again; the length of the lines depends on the current level, n.

Here is peanoStep(). Remember again that MATLAB obliges us to do all the housekeeping
explicitly, including keeping track of the “screen” represented by the arrays X,Y,U and V .

% function [X,Y,U,V,j,k] = peanoStep(n,X,Y,U,V,j,k)
% THM 060829
% called from peano(n); uses draw.m
function [X,Y,U,V,j,k] = peanoStep(n,X,Y,U,V,j,k)
if n>0
[X,Y,U,V,j,k] = peanoStep(n-1,X,Y,U,V,j,k);
x =1-2^(n-1); y = 1; draw
[X,Y,U,V,j,k] = peanoStep(n-1,X,Y,U,V,j,k);
x = 1; y =1-2^n; draw
[X,Y,U,V,j,k] = peanoStep(n-1,X,Y,U,V,j,k);
x =1-2^(n-1); y = 1; draw
[X,Y,U,V,j,k] = peanoStep(n-1,X,Y,U,V,j,k);

end

(A nice thing about recursive programming is that as you improve your code it gets smaller. My
original version of peanoStep() had a stopping condition for n = 1. Why is this neither needed
nor very good?)

(When the Peano curve is drawn in any number of dimensions (including 2-D as a special case),
it is called “Z-order”. It can actually be drawn, to fixed depth, without recursion by interleaving
(or “shuffling”) the bits that represent the coordinates of the grid points being connected by the
Z-order.)

4. Mathematical induction.

A good way to think about recursion is as a form of proof by mathematical induction. This
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requires an induction step, which is the recursive call, and a starting step, which becomes the
stopping condition in a recursive program.

Typically, mathematical induction is used to prove something is true for all integers, n, by showing

1. the “something” is true for n = 1;

2. if the “something” is true for n − 1, then it is true for n.

This is related to linear (non-exponential) recursion.

Another linear recursion is used to find the greatest common divisor of two integers (and the
corresponding mathematical induction is proof that the recursion is correct):

function g = gcd(x,y)
if y==0, g=x; %stopping condition
else g = gcd(y,rem(x,y)); %recursion/induction step

Try this on x = 38, y = 14. Try it with paper and pencil: the sequence of calls is

step 0 1 2 3 4
x 38 14 10 4 2
y 14 10 4 2 0

We saw in Week 10 that x and y have the same greatest common divisor (gcd) as y and x mod y.
This is the induction step in a mathematical proof that the gcd function is correct, and it is the
recusive step in the function. (The MATLAB function rem(x,y) and x mod y do the same thing.
They give the remainder when integer x is divided by integer y.)

Furthermore, the recursion reduces the sizes of the parameters so they get smaller and smaller.
Persuade yourself that y must eventually be 0, so that the x that made it so is an exact divisor of
both the preceding x and y ... and so of the original x and y.

This was an inductive argument showing that the gcd program works. It is called Euclid’s algorithm.

5. MATLAB syntax is not particularly elegant for recursion, and we can do better in other lan-
guages.

function gcd(x,y) is
if y==0 then x
else gcd(y,x mod y)

A programming language which supports only expressions, without needing assignment statements,
is an example of functional programming. LISP was the first thorough example of this.

6. L-systems

Botany provides many illustrations of recursion: a branch produces sub-branches which produce
sub-sub-branches, and so on.
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Such botanical structures are also self-similar. How many times is the second “tree” drawn above
found in the third? How does each of these correspond to a straight line in the second? Can you
see what will happen next?

The basic pattern can be captured symbolically.
B[+B]B[−B]B

where
B: draw a line of given length
+: turn left by a given angle
−: turn right by a given angle
[: store current position and heading
]: retrieve stored position and heading

([ and ] are stack operations, so several (position, heading) states may be stored, to be retrieved
in the inverse order.)

Now for the recursion. To make a self-similar version to the next degree of resolution, turn the
symbolic string into a rewriting rule

B → B[+B]B[−B]B
This has the effect of replacing each B in the string by the string itself.

Applied an indefinite number of times, the rewriting rule “grows” a structure of arbitrary complex-
ity.

Here are the next two steps following the three shown above.
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MATLAB can implement this, although in a limited way. Using quiver to draw the final picture,
we can build up the picture recursively in a way which follows the symbolic string.

1. branchOL1(max,n) initializes the size of the picture, given by max, initializes arrays needed
by the stack, and then calls branchOL1Step(n,..).

2. branchOL1Step(n,..) calls branchOL1Step(n−1,..) five times, corresponding to the five
occurences of B in the rewriting rule, or, if n = 0, directly calls forward() to draw the
straight line represented by the lowest level of B. branchOL1Step() uses pushBOLstate()
and popBOLstate() to do the stack operations where indicated by [ and ], respectively.

Here is branchOL1Step(). (It must explicitly pass as parameters and return as results all the global
variables needed for the current position and heading, and for the stacked positions and headings.)

% function [x,y,h,sX,sY,sH,sNext] =
branchOL1Step(n,step,delta,x,y,h,sX,sY,sH,sNext)

% THM 061023 in file: branchOL1Step.m
% called by branchOL1.m; uses forward.m popBOLstate.m, pushBOLstate.m
function [x,y,h,sX,sY,sH,sNext] =

branchOL1Step(n,step,delta,x,y,h,sX,sY,sH,sNext)
if n==0, [U,V,x,y] = forward(step,U,V,x,y,h); else
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[x,y,h,sX,sY,sH,sNext] = branchOL1Step(n-1,step,delta,x,y,h,sX,sY,sH,sNext);%B
[sX,sY,sH,sNext] = pushBOLstate(x,y,h,sX,sY,sH,sNext); %[ PUSH
h = h + delta; %+ left(delta)
[x,y,h,sX,sY,sH,sNext] = branchOL1Step(n-1,step,delta,x,y,h,sX,sY,sH,sNext);%B
[x,y,h,sX,sY,sH,sNext] = popBOLstate(sX,sY,sH,sNext); %] POP
[x,y,h,sX,sY,sH,sNext] = branchOL1Step(n-1,step,delta,x,y,h,sX,sY,sH,sNext);%B
[sX,sY,sH,sNext] = pushBOLstate(x,y,h,sX,sY,sH,sNext); %[ PUSH
h = h - delta; %- left(-delta)
[x,y,h,sX,sY,sH,sNext] = branchOL1Step(n-1,step,delta,x,y,h,sX,sY,sH,sNext);%B
[x,y,h,sX,sY,sH,sNext] = popBOLstate(sX,sY,sH,sNext); %] POP
[x,y,h,sX,sY,sH,sNext] = branchOL1Step(n-1,step,delta,x,y,h,sX,sY,sH,sNext);%B

end

B. Instantiation

Comparing recursive with nonrecursive code, we see that the parameters of the recursive function
provide a kind of workspace.

Recursive

function gcd(x,y) is
if y==0 then x
else gcd(y,x mod y)

Iterative

function gcd(x,y)
while(y>0)
{ y’ = x mod y;
x = y;
y = y’;

}
return x;

(This is not MATLAB code.)

Notice that the iterative (nonfunctional) code, which assigns values to variables y’, x and y, must
have an additional “workspace”, y’. The recursive code just uses the parameters to serve as this
workspace.

But there is a kind of workspace which functional parameters cannot capture.

This is any variable whose value must be kept between invocations of a function.

This is the case for most of the variables in the functions in this week’s notes, and we see what
a pain MATLAB gives us over them. But all of the examples so far this week need to make the
values of these variables available outside the functions as well as inside them.

The flipflop program of Week 11 is different. The “state” of the flipflop needs to be known only by
the flipflop. The functions that call the flipflop, such as flipflopRead() and flipflopWrite(),
do not need to know the state, say y, as we said in Note 1 of Week 11. MATLAB obliged us to
write

function y = flipflopWrite(data,y)
when it should only be necessary to write

flipflopWrite(data)

We can do this better (but not in MATLAB) by maintaining y as a state which is held over between
invocations—but not available to any code outside of the function for which it is intended.

If we had such a capability, here is how we might wrap up the flipflop function we already wrote
in Week 11.

statefunction flipflopstateWrite(data)
state y;
y = flipflopWrite(data,y)
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end flipflopstateWrite

(This is not MATLAB code.)

This is incomplete. y is not initialized for one thing. We could just say state y = 1; to do it.

More importantly, the state cannot be shared with another function, say flipflopstateRead().

So we need to encapsulate the state and the functions we need to work with it.

flipflop
state y = 1;
function flipflopstateWrite(data);
% define the code here (as above)
function data = flipflopstateRead();
% define the code here (similarly)

end flipflop

(This is not MATLAB code.)

So we could now invoke the flipflop functions in this way:
flipflopstateWrite(1);
.. = flipflopstateRead(); % gets 1
.. = flipflopstateRead(); % gets 1
: :
flipflopstateWrite(0);
.. = flipflopstateRead(); % gets 0
: :

8. What if we wanted two flipflops?

We’d have to make a copy of the state.

(We don’t have to copy the functions: they are just code. This is for the same reason that we
didn’t have to copy the nand() function when we built the flipflop in the first place. We just used
it, repeatedly.)

We can take our above definition of flipflop as a template for a class of flipflops. If we provide
some new syntax, the programmer can instantiate as many flipflops as hey likes.

f1 = new flipflop;
f1.flipflopstateWrite(1);
.. = f1.flipflopstateRead(); % gets 1
: :
f2.flipflopstateWrite(0);
.. = f1.flipflopstateRead(); % gets 1
.. = f2.flipflopstateRead(); % gets 0
: :

Classes and their instantiation are the heart of (the very badly named) “object-oriented” program-
ming. In fact, although you will hear many opinions about “O-O” programming, only instantiation
fundamentally matters.

This kind of programming violates the goal of functional programming, which is to dispense alto-
gether with state, or any hidden “side effects” caused by assignment and update operations.

But it is an improvement over unrestricted states and side effects. It contains each state within
the module that also contains all the allowed ways of operating on that state. This is called
encapsulation.

MATLAB can’t do any of the coding we’ve just seen. Can we cobble together a state-preserving,
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instantiable flipflop in MATLAB?

Instead of flipflop, for which we have already written a whole lot of code which we’d have to
modify, let’s try the most basic possible class, counter.

counter
state ctr = 0;

function reset
ctr = 0;

end reset

function count
ctr = ctr + 1;
return ctr;

end count
end counter

sheep = new counter;
goats = new counter;
.. = sheep.count;
.. = sheep.count;
.. = goats.count;
sheep.reset;
:

We can do this in MATLAB but it will be much longer: we must manage the names and the states
ourselves. We can do this using arrays to remember the various instances of the state.

9. Summary

(These notes show the trees. Try to see the forest!)

• Recursion

– Grammar: processing and evaluating expressions.

– Fractals: self-similar curves with exponential complexity.

– Mathematical induction.

– L-systems: self-similar branching structures.

• Instantiation

– Workspace vs. state.

– Functional vs object-oriented programming:

∗ functional programming has no side-effects (e.g., assignments), and hence no state;

∗ object-oriented programming has state, and instantiation to copy the state, but it
encapsulates the state to make it safer;

∗ conventional programming (usually called “imperative”) allows assignments and
state anywhere, thus forcing the programmer to remember all the assigned vari-
ables and their values at any given point in the program.

II. The Excursions
You’ve seen lots of ideas. Now do something with them!
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1. Combine parsexp with the shuntingYard algorithm and the booleanRevPolEval function of
Week 11 to parse and evaluate expressions such as ab+cd.

2. How must the grammar implemented by parsexp be changed to accommodate parentheses in
the input, such as in a(b+c)d?

3. How many function calls are generated by a function which calls itself thrice and recurses to
depth n (the initial call being at level 1, the next three at level 2, and so on to level n).

4. The inventor of chess is legendarily said to have been invited by his grateful head of state to
name any reward he wished [Gam47, pp.7–8]. He asked for one grain of wheat for the first
square of the chessboard, two for the second, double that for the third, double it again for
the fourth square, and so on. How many bushels of wheat did the monarch have to produce?

5. Use MATLAB to calculate the interest growth formula, v = v0(1 + i)p, for the value, v, of a
quantity which has grown at interest i × 100% per period over p periods. For small interest
rates of 1%, 2%, 5%, .., compare this with eip. Given that e0.72 ≃ 2, what is a quick way to
find out how many years it takes for your money to double if invested at small interest rates?

6. The following table gives the gross domestic product (GDP) per capita in 1820 for various
regions of the world, and the annual percentage growth rate for each of these regions. (I have
interpolated this data from [Sac05, Chap. 2], who cites his sources.)

Region Western Eastern Former US, Canada Latin Japan Asia Africa
Europe Europe USSR Oceania America (not Japan)

1820 GDP/cap. 1500 800 800 1200 800 800 800 800
% growth/ann. 1.5 1.2 1.0 1.7 1.2 1.9 0.9 0.7

Use MATLAB to calculate the GDP per capita in 2000, 180 years later, and discuss the
poverty gaps.

7. Rewrite peanoStep with a stopping condition for n == 1. Why is this not as good?

8. Write a three-dimensional Peano curve drawing program. Here is the basic unit.
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9. Write a two-dimensional Z-order program to draw the Peano curve not using recursion but
by interleaving bits of the coordinates.
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10. Look up the “Hilbert curve” and write a MATLAB program to draw it to any depth of
self-similarity.

11. a) Find the induction step in a proof that integers that are a multiple of 9 have digits (in the
representation based on 10) whose sum is also a multiple of 9.
b) Reverse the induction step from (a) to get a proof of the converse, namely that if the digits
of the integer sum to a multiple of 9 then the integer is itself a multiple of 9.
c) Show that, if somebody mistakenly swaps two digits when writing down an integer, the
difference between the wrong integer and the correct one is a multiple of 9.
d) Every 11 years two people whose birth dates differ by a multiple of 9 will have ages which
are reverses of each other (e.g., 37 and 73) subject to some practical considerations. e) Repeat
(a) and (b) for multiples of 3 (both the integer and the sum of its digits). Can one of these
arguments (i.e., 3 or 9) be deduced from the other?

12. Use induction to prove that the multinomial coefficient

p!

m1!m2!...mℓ!

is the multiplier of term
xm1

j1
xm2

j2
...xmℓ

jℓ

for ℓ different subscripts j1, j2, ..jℓ in the expansion of

(x1 + x2 + .. + xℓ)
p

Refer to Excursion Multinomial coefficients in Week ii.

13. Confirm that Euler’s formula, E + F = V + 2, is true for a triangle drawn on a sphere, where
E is the number of edges (3), F is the number of faces (2: the regions inside and outside the
triangle) and V is the number of vertices (3). (For a triangle drawn on a plane, the outside
face goes to infinity, so the formula is also true.)
Find the induction steps that show that Euler’s formula holds for any polygon or for any
collection of polygons.

14. Hexagonal numbers, 1, 7, 19, 37, 61, 91, 127, .., are the numbers of dots that can be used to
show filled hexagons of sides 1, 2, 3, ..

19

1 2

71

3

a) Show by mathematical induction that the sums of hexagonal numbers up to any point,
starting at 1, are always perfect cubes (1, 8, 27, 64, ..).
b) Show the same, but this time by visualizing each hexagon as the front three faces of a
cube, whose interior can be seen to be filled by all the preceding hexagons.

19

1 2

71

3
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c) Penrose [Pen94, pp.66–77] argues that proofs such as the above visualization cannot be cap-
tured by computational rules such as induction—a visualization can always be found which
transcends any currently complete computational system—and hence that mind cannot be
programmed. (See the Excursion in Week 11 on non-stopping computations.) Don’t take my
word for it: read the whole book!
Penrose’s argument could explain AI’s apparent lack of significant progress, over half a cen-
tury, towards its main goal, the construction of an intelligent program. AI has, however,
provided significant benefits to computer science, in the LISP and Prolog programming lan-
guages, the idea of expert systems, techniques used in data mining, and many other paradigms.
Penrose does believe that an intelligent machine can be constructed—it just cannot be a pro-
gram based on current computers.

15. The excursion in Week i about the twenty-five primes less than 100, and the follow-up ex-
cursion in Week iii, give two tricks for finding whether integers are multiples of certain other
integers, depending on the base b in which the calculations are done. First, the base-b “digits”
of any integer which is a multiple of b + 1 alternate-sum to zero (e.g., multiples of 11 in base
10), and conversely. Second, the base-b “digits” of any integer which is a multiple of b − 1,
or of its divisor, sum to a multiple of b − 1, or of the same divisor (e.g. 3 and 9 in base 10),
and conversely.
Use induction to prove these rules both ways. E.g., show that if an integer is a multiple of 11
(base 10) then its digits alternate-sum to 0, and also that if the digits of an integer (base 10)
alternate-sum to zero then the integer is a multiple of 11.

16. Use induction to show that the difference f2
n − fn−1fn+1 of terms in the Fibonacci sequence

(Week ii) alternates between +1 and −1.

17. a) Given that the area of a triangle with vertices (x1, y1), (x2, y2) and (x3, y3) is half of
∣

∣

∣

∣

∣

∣

x1 x2 x3

y1 y2 y3

1 1 1

∣

∣

∣

∣

∣

∣

= (x1y2 − x2y1) + (x2y3 − x3y2) + (x3y1 − x1y3) = ◦
3

∑

j=1

xjyj+1 − xj+1yj

(Week 8 Note 6) where, in the last sum, j + 1 = 4 wraps around to j + 1 = 1, use induction
to show that the area of any polygon with vertices (x1, y1), .., (xn, yn) is

1

2
◦
n

∑

j=1

xjyj+1 − xj+1yj

where j + 1 = n + 1 wraps around to j + 1 = 1.
Hint. The sum must follow the vertices of the polygon in counterclockwise order. Change a
polygon of k − 1 sides to one of k sides by drawing a triangle based on one of the sides and
adding the triangle area to the area of the original polygon: what gets cancelled?
b) A similar argument can be used to find the centroid of any polygon, which is the point on
which the polygon would balance if it were made by cutting it out of a sheet of material with
uniform density. The x coordinate of the centroid is the average value of x taken over the
whole polygon, and the y coordinate is the average value of y.
Suppose that the centroid of a triangle is (see (f) in the next excursion)

1

6A
( ◦

3
∑

j=1

(xj + xj+1)(xjyj+1 − xj+1yj), ◦
3

∑

j=1

(yj + yj+1)(xjyj+1 − xj+1yj))

where A is the area of the triangle as in (a) above. Use induction to show that the centroid
of any polygon is

1

6A
( ◦

n
∑

j=1

(xj + xj+1)(xjyj+1 − xj+1yj), ◦
n

∑

j=1

(yj + yj+1)(xjyj+1 − xj+1yj))
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where A is the area of the polygon as in (a) above.
What difference does it make if j increases in a clockwise direction or if it increases in a
counterclockwise direction? Why? How does this relate to considerations leading to the
“interval algebra” (Week 7c, Notes 6 and 1)?
c) Convince yourself that, in general,

◦
n

∑

j=1

(any quantity symmetric in j and j + 1)(xjyj+1 − xj+1yj)

is true for n if it is true for n = 3. This and the special cases in (a) and (b) above illustrate
the Kelvin-Stokes theorem. Look this up! (You will need integral calculus and the differential
calculus of vectors. The next excursion is a very preliminary introduction to differential and
integral calculus.)
The magic in the Kelvin-Stokes theorem is that it enables us to calculate quantities involving
the whole of a region (polygon) by looking only at the boundary.

18. Calculus. a) In Week 8 Note 10 we encountered the slopes of functions and found

slope c = 0; slope x = 1; slope x2 ≃ 2x

where I’m using ≃ to mean “exactly equal to in the limit that the step size is arbitrarily
small”.
More generally, we can use the binomial theorem to show

slope xk =
(x + ∆x)k − xk

∆x
=

(xk + kxk−1∆x + · · ·) − xk

∆x
≃ kxk−1

We also saw (Excursions of Week 8) that

slope sin(θ) = cos(θ); slope cos(θ) = −sin(θ)

Suppose that k above can be a negative integer (Week ii, Note 7) and show that

slope tan(θ) = sec2(θ)

b) We can also find slopes of slopes (slope2), slopes of slopes of slopes (slope3) and so on.
Thus

slope2x2 ≃ 2; slope2xk ≃ k(k−1)xk−2; slope3xk ≃ k(k−1)(k−2)xk−3; slope2sin(θ) ≃ −sin(θ)

What is slope4sin(θ)? What is slope2eiθ (see Week 4 Note 9)?
c) Use arguments similar to those in (a) to show that

slope f(x) + g(x) ≃ slope f(x) + slope g(x)

slope f(x)g(x) ≃ g(x)slope f(x) + f(x)slope g(x)

slopexf(g(x)) ≃ slopeyf(y)slopexg(x)

(Hint for the last, the chain rule: let g be g(x) and g + ∆g be g(x + ∆x), and explore.)
d) The antislope operator maps a function to the function whose slope it is. From (a) we can
work out some examples.

antislopex c ≃ cx antislope x ≃ x2/2; antislope x2 ≃ x3/3

12



But wait! The antislope is not unique. Since the slope of any constant function is 0, we can
add an arbitrary constant to the result of the antislope operator. Mathematicians usually
call this C or c, but we can call it zeroslope or 0slope or, if we need more than one, z1, z2, ...

antislopex c ≃ cx + 0slope ; antislope x ≃ x2/2 + 0slope

What is antislope2c0?
Show that antislope slope f(x) = f(x) = slope antislope f(x).
e) Antislope and area are almost magically related. This is the Fundamental Theorem of
Calculus. First, the change in the area under f(x) as x extends to x + ∆x is approximately

∆area =
f(x + ∆x) + f(x)

2
∆x ≃ f(x)∆x

and so we can call the slope of the area

slopex area = ∆area/∆x ≃ f(x)

Compare this with: slope antislope f(x) = f(x).
Second, the area from a to b under slope f(x) (to keep the equation below manageable,
we abbreviate slope f(x) as f ′(x)) can be estimated by looking at equally-spaced successive
values of x: x0 = a, x1, x2, .., xn = b

area slope f(x) ≃ f ′(x1)∆x + f ′(x2)∆x + .. + f ′(xn)∆x

= (
f(x1) − f(x0)

∆x
+

f(x2) − f(x1)

∆x
+ .. +

f(xn) − f(xn−1)

∆x
)∆x

= f(b) − f(a)

(Note the resemblance of the cancellation of all the intermediate points to the cancellation of
the polygon edge in the previous excursion when we add a new triangle. Turn this argument
into a proof by induction! The magic is similar to the magic of Kelvin-Stokes: a whole area
can be found by looking only at the end points. Note that the total area is basically the sum
of a whole bunch of small areas.)
Compare this with: antislope slope f(x) = f(x).
The magic here is that the whole area from a to b under slope f(x) depends only on f(b)−f(a).
The practical result is that the area from a to b under f(x) is

antislope f(x) |x=b −antislope f(x) |x=a .

Note that we can forget about the arbitrary constants because we took the difference.
f) For f(x) = x let’s relate

antislope x |x=n −antislope x |x=0= n2/2

to the sum (Week i, Notes 1,2)

Σn
k=0k = n(n + 1)/2 = (n2 + n)/2.

(why does it make no difference if we start the sum at 0 or at 1?)
If we multiply each term k by the width w separating it from the next term, w = 1, we get
an approximation to the area under the triangle.

13



n/2
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n

k
0

0
1
2
3

n

...
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n  + n

2
n
2

2

2

Now let’s split each strip into two strips of only half the width, w = 1/2. The new area is

1

2
Σ2n

k=0

k

2
=

1

2

2n(2n + 1)

4
=

(n2 + n/2)

2
.

2n
2

1 2 3 n... 2k
0

0
1
2
3

n

...

Shape   Area
n  + n/2

n
2

2

2

We are closer.
Show that splitting each of the original strips into m strips of width w = 1/m each gives

1

m
Σmn

k=0

k

m
=

1

m

mn(mn + 1)

2m
=

(n2 + n/m)

2
.

so as m becomes arbitrarily large, the area calculated by summing f(x)∆x becomes arbitrarily
close to the area given by the antislope.
Check that this is also true for the area under x2 from 0 to n, using the antislope and the n2

summation formula from Week i, Notes 1 and 2.
g) As examples, let’s find the area under the triangle with vertices (0, 0), (b, 0), (t, h), and
then the average values of x and y in this triangle to find the centroid needed in (b) of the
previous excursion.
The equations of the lines from (0,0) to (t, h) and from (b, 0) to (t, h) are, respectively,

y = hx/t and y = (x − b)h/(t − b)

The antislopes are, respectively (omitting the 0slope constants)

hx2/2t and x(x/2 − b)h/(t − b)

and these must be evaluated at x = t and x = 0 for the first and at x = b and x = t for the
second.
Show that the differences sum to bh/2, i.e., the usual triangle area of half base times height.

14
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0.2

0.4

0.6

0.8

1

(0,0) (b,0)

(t,h)

(Note that we can choose the x- and y-axes so that the triangle has these particular vertices
without loss of generality. But the above calculation assumes 0 ≤ t ≤ b: re-do it for the other
two possibilities, t < 0 or b < t.)
The second example is to find the centroid. For the x-coordinate we must take the antislopes
of, respectively

y = hx2/t and y = x(x − b)h/(t − b)

and evaluate these as above. Show that this gives

(b + t)bh/6

which when divided by the area gives the x-coordinate of the centroid. Check that this makes
sense for t = b/2.
For the y-coordinate we must re-write the line equations in terms of y

x = ty/h and x = (t − b)y/h + b

respectively, and then find the antislope of the difference

(t − b)y2/h + by − ty2/h

and evaluate this at y = h and y = 0.
Finally show that these calculations give the same centroid coordinates as the sums in (b) of
the previous excursion, applied to the triangle (0, 0), (b, 0), (t, h).
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1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0.8

1

1.2

1.4

1.6

1.8

2

x−centroid y−centroid

Triangle

(0,0) (b,0)

(t,ht)
(th,h)

(0,0)

h) As a further example, let’s confirm that the area of a circle is πR2. We start by measuring
angles in units based on the length of the part of the circumference of the circle of radius R
swept out by angle θ. Since π is defined as the ratio of full circumference to diameter of any
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circle, this length is 2πR for a full rotation, πR for an about-face, and πR/2 for a right-angle.
It makes sense to define a unit angle (called a radian) such that the arc of circumference of
a unit circle (R = 1) traced by that angle has length 1. In these units we can say that

r∆θ∆r

is the small area between two radii separated by angle ∆θ and between distances r and r+∆r
from the centre. To sum all these little areas up for a quarter-circle of radius R, we need to
evaluate

sumrr∆r∆θ = antisloperr∆θ =
1

2
r2∆θ

at 0 and R, and evaluate the θ-antislope of that

sumθ
1

2
R2∆θ = antislopeθ

1

2
R2

at 0 and π/2, getting πR2/4 for the quarter-circle, and so πR2 for the full circle.

r   0

r

R

0
r

A similar two-dimensional antislope calculation can be done on ∆x∆y for 0 ≤ y ≤
√

R2 − x2

and then 0 ≤ x ≤ R for the same quarter-circle, but we haven’t discussed finding antislopes of
square roots. We should get the same answer, πR2/4, and this could tell us how to calculate
such antislopes: geometrical arguments and alternative approaches are often the basis of
“tables of integrals” that can be looked up for antislope calculations.

y

x

i) You will need conventional terminology and notation if you explore calculus further, al-
though “slope” and “antislope” should be more suggestive and clear for beginners.
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slope derivative d
dx

slopex, slopey partial derivative ∂
∂x , ∂

∂y

antislope integral
∫

dx

area definite integral
∫ b
a dx

In this notation, the statement of the Kelvin-Stokes theorem of the previous excursion is, for
any continuous and differentiable functions P (x, y) and Q(x, y),

∫ ∫

(
∂Q

∂x
− ∂P

∂y
)dxdy =

∮

(Pdx + Qdy)

where the double integral is definite, over a given two-dimensional region and the integral
with a circle on it is also definite, over the closed boundary of the given region. You will need
practice and more study to understand this equation.
j) Note that the slope operator gives linear approximations to functions, whether linear or not
themselves, at any point to which it applies. Differential calculus thus connects the nonlinear
math of Weeks 10–12 with the linear math of Weeks 1–9.

19. Continuity. The “magic” of the last two excursions seems to be very powerful. In each
case, quantities involving the interiors of regions can be calculated by looking only at the
boundaries. This magic must come from very strong assumptions, and it is only fair to bring
these to light.
The strong assumption in each case is that of continuity.
a) We start with a function where the sum over all the equally-spaced values ((e) of the
previous excursion) does not give the area under the function. Consider tan(x) evaluated at
xj = (j + 1

4)π (which is 1) for j = 0, .., n. Plot tan(x) from 0 to, say, 2.5π and see that the

true area under the function is not n× 1. Refine the calculation by using xj = (j + 1
2)π

2 : the
values alternate from 1 to −1. But the area under the curve is not 0.

−1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

(j + 1/4)

(j + 1/2) /2

b) In fact, tan(x) is discontinuous at x = (j + 1
2)π for all j. We must refine all our above

definitions of slope and antislope by taking limits as ∆x becomes arbitrarily small. Then the
≃ becomes = in all the equations. For its slope to exist everywhere, a function must at least
be continuous everywhere. How can we check this?
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A check for continuity is the “epsilon-delta” test, which is best seen as a challenge-game
for two players. Player D, who is claiming continuity at point (a, b), tells player E, who
is challenging: “I will concede that function f (i.e., y = f(x)) is not continuous at (a, b)
(b = f(a)) if you can find a positive number ǫ with | y − b |< ǫ such that I cannot find a
positive number δ which matches it by making | x − a |< δ.”
Let’s try this with f(x) = 1/x at point (1,1) on the function curve.
E: “I choose ǫ to be 0.1”
D: “OK, I match with δ = 0.09”
D followed a procedure to get this δ: E is allowing y to be in the range 1− ǫ < y < 1 + ǫ, i.e.,
0.9 < y < 1.1. This puts x in the range 1/1.1 < x < 1/0.9, i.e., 0.9090.. < x < 1.1111... So
if δ = 0.09, as D said, the range of x is 1 − 0.09 < x < 1 + 0.09, i.e., 0.91 < x < 1.09. This
makes the range of y to be 1/1.09 < y < 1/0.91 which is 0.9174.. < y < 1.0989.. and this is
tighter than the range E originally specified, and y will be in this range for any x in the range
D specified, so D wins.
E can now say “I choose ǫ to be 0.01”, but D can follow the same procedure and find a
winning δ. D can do this for any ǫ E choses, so E cannot win and D need not concede that
1/x is not continuous at (1,1). Hence, the epsilon-delta test says 1/x is continuous at (1,1).
Now let’s try the game with f(x) = 1/x at x = 0. Woops, 1/x is not defined for x = 0, so
we’ll have to complete the function, say by including point (0,0) on it. So we’ll test continuity
at point (0,0).
E: “I choose ǫ to be 0.1”
Now D is stuck, because the procedure will give −10 < x < 10 so D could choose δ = 11. This
will satisfy ǫ for the extremes of y = 1/x namely y = −1/10 = −0.1 and y = 1/12 = 0.0833..
but it will not satisfy ǫ for x in the middle of its range, say x = 1: y will then be 1, which is
bigger than ǫ.
The whole epsilon-delta procedure amounts to trying to contain f(x) in a box centered at
(a, b) with height 2ǫ, chosen by E, and width 2δ, sought by D to match the ǫ and contain all
intermediate values of the function.

−2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

o
c

2
2

o
c

2
2

Find the procedure for D to defend continuity of tan(x) everywhere except at x = (i + 1
2 )π

for any i, and use it to show that tan(x) is not continuous at these points.
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Use epsilon-delta to show that the step function

f(x) = ⌊x⌋ = the integer value that = x or is next belowx

is discontinuous at integer values of x but otherwise continuous.
Show that the slope of an absolute value,

slope | x |

is discontinuous at (0,0) but otherwise continuous.
c) Fractals can exhibit discontinuity not only at a single point or at a mere countable infinity
of discrete points, but everywhere. The triadic Koch curve, while continuous everywhere, has
no slope anywhere, or, we could say, has slope which is discontinuous everywhere.
The initiator for the triadic Koch cuve is a straight line segment, and the generator step
divided this segment into three and replaces the middle third by two edges of the same
length, producing a four-piece segment which is no longer straight. Each of the four pieces
is in turn subdivided into three and each subdivision is transformed in the same way. This
process is repeated ad infinitum resulting in the continuous but slopeless curve.

d) The idea of continuity is one of the most imaginative inventions of mathematics, and the
epsilon-delta test captures continuity remarkably. Look into the history of the idea of conti-
nuity.
Continuity requires us to include irrational numbers, which have infinitely long decimal rep-
resentations and so, if nature abhors infinities, continuity is unlikely to occur in nature. But
continuity is a very powerful abstraction as we began to see in the previous excursion. Where
it can be applied to model physical situations, continuous mathematics supports important
deductions and is a useful complement to the discrete math and programming we have been
using in these excursions so far.
Note that “algebraic” irrationals such as the square root of two can be finitely specified simply
by stating the algebraic equation that they satisfy.
Give a finite specification of π, which is a “transcendental” irrational satisfying no algebraic
equation.
Metaphysics is the philosophy of disputing what is truly “real”. Plato said that mathemat-
ical abstractions really exist in some intellectual space: there is, for instance, an ideal circle
somewhere, according to platonists, from which everybody’s idea of a circle is derived. Find
out if most mathematicians are platonists and, if so, suggest why!
(We do not dwell on metaphysics in these excursions, but must confess that metaphysics is
involved right from their beginning, namely the Popperian epistemology in Week 1. Perhaps
you would best wait until you are sixty before indulging in this branch of philosophy.)

20. Series. In part (g) of the excursion on calculus, above, we encountered
√

R2 − x2 and did
not try to find the area under it. If we could do so, we would have a way of calculating π, by
comparing the result with the area we found using polar coordinates.
Let’s work on the related function,

√
1 + x.

(How can you express
√

R2 − z2 in terms of
√

1 + x?)

a) Since this can be written (1 + x)1/2, let’s think about (1 + x)m more generally. For m
an integer, this leads to the binomial coefficients. Here they are (ignore the Aha! and Oho!
columns for the moment).
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m Oho! −1 0 1 2 3 4 .. m Aha! 1/2
x0 1 1 1 1 1 1 1 1
x1 −1 1 2 3 4 "×m/1 −1/2
x2 1 1 3 6 "×(m − 1)/2 1/8
x3 −1 1 4 "×(m − 2)/3 −1/16
x4 1 1 "×(m − 3)/4 5/128
: : : :

Work out (1+x)0, (1+x)1, (1+x)2, (1+x)3 and (1+x)4 to confirm these coefficients. While
doing this, find the induction step for the proof that the coefficient of xn in the expansion of
(1 + x)m is the sum of two previous coefficients (of xn−1 and xn in (1 + x)m−1). (Note that
this is a general result if we suppose all coefficients not shown to be zero, i.e., those for n < 0
and n > m.)
b) The Aha! column is Isaac Newton’s aha! [Wes80, p.117]: he wondered about using the

same formula for non-integer m. If this works, we have an expansion for (1 + x)1/2 =
√

1 + x

√
1 + x = 1 − x

2
+

x2

8
− x3

16
+

5x4

128
− ..

The big jump is that this expansion is infinite: there is a term for any non-negative power of
x. Such a sum is called a series and this one is infinite. Newton did not blanch.
Show that the induction step you found in (a) is true even for non-integer m.
c) Even a Newton aha! is not necessarily a proof. We should at least persuade ourselves that
this infinite series does give

√
1 + x. We can do this by squaring the series.

Maybe we should square any infinite series while we are at it. That will also help with the
series for (1+x)3/2 (m = 3/2) and other half-integers. Let the series be 1+a1x+a2x

2+a3x
3+..

and its square be 1 + A1x + A2x
2 + A3x

3 + ..

1 a1 a2 a3 a4 a5 ..
1 1 a1 a2 a3 a4 a5

a1 a1 a2
1 a1a2 a1a3 a1a4 a1a5

a2 a2 a1a2 a2
2 a2a3 a2a4 a2a5

a3 a3 a1a3 a2a3 a2
3 a3a4 a3a5

a4 a4 a1a4 a2a4 a3a4 a2
4 a4a5

a5 a5 a1a5 a2a5 a3a5 a4a5 a2
5

:

The coefficients in the square are just the diagonal sums of these entries, starting at 1 then
moving down-and-right in a wave, A1 = a1 + a1, A2 = a2 + a2

1 + a2 and so on.

Check this, and then use it to find the coefficients for (1 + x)1/2: A1 = 1, A2 = 0, A3 = 0, ...
Show that these agree with Newton’s aha!
Show that the first term in the expansion of (1 + x)1/k must be 1/k.

c) We now have expansions for (1 + x)ℓ/k for any non-negative rational ℓ/k. What about
negative powers? 1/(1 + x) = (1 + x)−1 brings us to the Oho! column, a second from
Newton [Wes80, p.120]. This time, Newton went directly to the theorem you proved in (a)
and said that the coefficient of xn in the expansion of (1+x)0 must be the sum of two previous
coefficients (of xn−1 and xn in (1 + x)−1).
Considering all coefficients of (1 + x)0 to be zero, except for the single 1, show that the Oho!
column follows from the m = 0 column and this rule.
Multiply the resulting series by 1/(1 + x) to check.

d) Now that Newton had ways to represent (1+x)ℓ/k for any rational ℓ/k, he could differentiate
and integrate such expressions. Show that the expansions for the slope is given by the
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expansions in the table in (a) above, but with the xn in the first column replaced by nxn−1.
Show that the expansions for the antislope change xn to xn+1/(n + 1).

e) Use these results to find the antislope of
√

1 − x2 and hence to find the area under this
curve from 0 to 1. Use this to calculate π to as many places as you wish. Turn it into a
MATLAB program to calculate it further.
f) Note that there is no slope that equals 1/x. So what is the antislope of 1/x? Try finding
the antislope of 1/y where y = 1 + x.
g) Functions that can be represented as series, finite or not, of powers of x, can be calculated

just as you calculated π in (e). Suppose f (1)(x) is the slope of f(x), f (2)(x) is the slope of the

slope, f (3)(x) is the slope of that, and so on. (Recall that the existence of each of these slopes
requires the continuity of the function it is the slope of, and that this is a strong assumption.)
Then , if

f(x) = a0 + a1x
1 + a2x

2 + a3x
3 + ..,

show that a0 = f(0), a1 = f (1)(0), a2 = f (2)(0)/2, .. ak = f (k)(0)/k!, and so that for small x,

f(x) = a0 + f (1)(0)x + f (2)(0)x2/2 + f (3)(0)x3/6 + ..

Use this “Taylor’s series” to find expansions for sin(x), cos(x), eix where i2 = −1, and ex.
Use a method such as that of (b) above to find the expansion for the inverse of a function
for which an expansion is known. Use this to find the expansion for the inverse of ex, which
is ln(x) the “natural logarithm” of x. Compare your result with your result for (f) above,
recalling that (f) dealt with a function of 1 + x.
h) Getting into infinite series requires us to think about convergence. Does the series
1− x + x2 − x3 + .. have a finite value for any value of x in (c) above? Try some values for x
to explore this question. What about the other series in this excursion, especially the series
for π? What about the series 1/x : 1/1 + 1/2 + 1/3 + 1/4 + ..?

21. Our program for gcd is not totally safe. It needs to be protected against x < y and against
negative inputs. Using only if statements and further calls to gcd itself, add these protections
to the code.

22. Express factorial as a recursive function. What are the starting and inductive steps needed
to prove that your approach is correct?

23. Look up the legend of the “Towers of Hanoi” and write a recursive program to end the
Universe.

24. Look up John McCarthy (1927–) and the functional programming language LISP. How can
the syntax of a language be identical to the syntax of the data it processes? Write a LISP
function to reverse the elements of a list.

25. Rewrite the branch-drawing program of Note 6 using gplot() in MATLAB.

26. Look up Prusinkiewicz and Lindenmayer’s The Algorithmic Beauty of Plants [PL90] and write
MATLAB programs for some of the other branching structures on p.25.

27. Write a translator to convert the symbolic strings, that give rewriting rules, into programs
to draw the recursive pictures. (Advanced skills and a better language than MATLAB are
required.)

28. We first encountered the idea of dimension in this course as the number of orthogonal (or,
more generally, linearly independent) vectors in the basis of a space, i.e., the number of
coordinates needed to locate a point in the space. The dimension of a space, from this point
of view, is thus an integer.
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Fractals such as the Koch curve

or the Sierpinski carpet
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introduce non-integer dimensions. Let’s ask what happens as the scale of measurement
changes, for ordinary figures such as edge, square or cube, and for these two fractals. We
generalize the terms “length”, “area”, “volume” and so on to, simply, “measure”, which we
give in the table below for a variety of scales, s, which depend on the resolution, r. The
measure of edge and Koch curve will be their length, of square and Sierpinski carpet will be
their area, and of cube will be its volume. In the examples in this table, the linear scale is
refined by a factor 1/3 at each step. We start with scale s = 1 at the lowest resolution, r = 0,
then s = 1/3 at the next resolution, r = 1, and so on.

r s edge square cube Koch Sierpinski
0 1 s s2 s3 s s2

1 1/3 3s 32s2 33s3 4s 8s2

2 1/9 32s (32)2s2 (33)2s3 42s 82s2

: : : : : : :
r 1/3r 3rs (32)rs2 (33)rs3 4rs 8rs2

Note that for the non-fractals, edge, square, cube, etc., the general form is (3d)rsd where d is
the number of dimensions, 1, 2, 3, etc. For the Koch curve, the form is 4rs, which we could
call (3d)rs if we say 3d = 4, i.e., d = log 4/ log 3 = 1.2618595. For the Sierpinski carpet, the
form is 8rs2, which we could call (3d)rs2 if we say 3d = 8, i.e., d = log 8/ log 3 = 1.8927893.
(Note the subtlety that we did not use the same d as the power of s in these calculations:
the power of s is the topological dimension, and this is 1 for the Koch curve, which can be
straightened into a line, and 2 for the Sierpinski carpet, which can be squeezed into a plane.)
Look up the Sierpinski triangle and calculate its dimensionality.
What is the (fractal) dimension of the Peano curve?
Construct a fractal of dimension 1.5.
In the limit, what is the length of the Koch curve? the area of the Sierpinski carpet?
Find a fractal of dimension < 1. What is its measure? Where is it discontinuous?

29. Write a set of MATLAB functions to mimic the object-oriented Counter class without using
arrays as storage. Explain why not using the arrays is a little misleading in a general discussion
of the advantages of automatic instantiation.

30. Any part of the Preliminary Notes that needs working through.
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