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I. Prefatory Notes

1. Fields and slopes. A function of two variables is called a “field” by the physicists, maybe
because it might be describing a topography in which the height of the surface above, say sea level,
is a function of two coordinates, say the longitude and latitude.

To be precise, physics would call this a scalar field (because the height is a single number at each
point) in two dimensions (because of the two coordinates). We will soon encounter more ambitious
types of field.

An example is
f(x, y) = xy

Here is what the surface xy looks like, plus a few of its values.
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What do we mean by the slope of this field?

The rate at which the surface rises depends on what direction we are going in. Given the two
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coordinates, x and y, we evidently have two preferred directions to go in.

Looking at the numbers, we see that for y = 1, xy increases by 1 for each increase of x by 1: its
slope is 1 when y = 1.

When y = 2 the slope with respect to x is 2.

When y = 0 the value of xy is constant (0) so its slope = 0.

When y = −1, xy goes down as x goes up, with a slope of −1.

So it seems that the slope with respect to x of xy is y. This makes sense if we consider that we’re
fixing y at a constant value each time: the slope with respect to x of a constant times x is just that
constant. So

slopexxy = y

Similarly, we can fix x at different values and look at the slope as we go in the y-direction along
that x-value. We get

slopeyxy = x

x         y       xy.
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We can take this further and find second slopes. We can repeat the processes we did for the values
of xy in the two cases of slopexxy = y and slopeyxy = x; or we can just write it formally.

slopexslopexxy = slopexy = 0

slopeyslopexxy = slopeyy = 1

slopexslopeyxy = slopexx = 1

slopeyslopeyxy = slopeyx = 0

(See how y is a constant with respect to x and vice-versa.)

The only nonzero result for xy is

slopeyslopexxy = 1 = slopexslopeyxy

Not surprisingly these two results are the same: it should not matter in which order we take the
slopes.

2. “Reality” and coordinates. The physics notion of “field” is in a sense more solid than the
mathematics notion of a function because it purports to describe something “real”.

We’ll take a limited view of “reality”: “real” means existence independent of the coordinate system.

A coordinate system is a construct which we build in order to describe a field as a function, often
in a way convenient to us, but quite unrelated to the “reality” of the field we’re describing.

For example, if we rotated the coordinate system we’ve used to be able to describe our field as xy,
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this description would no longer be correct, although the field did not go away and we must still
be able to find a description of it.

Here’s the rotation from x, y to x′, y′—and its inverse, which we’ll find more useful.

(

x′

y′

)

=

(

c s
−s c

)(

x
y

) (

x
y

)

=

(

c −s
s c

)(

x′

y′

)

where the rotation angle is θ, say, so c is cosθ and s is sinθ.

You’ll notice that the rotation matrix is opposite to the usual rotation, with −s in the first column
not the second. This is because we are rotating the coordinate system not the object.

Here’s a diagram to help you work through the differences, first for an arbitrary angle (top) then
for a right angle (bottom).

Any angle

1   0( )

c  −s
s   c( )

x

y

x

y

x

y

x’

y’

x’
y’

x’

y’
x

y

y

x

’

’

(−)

( )

c   s
−s  c( )

0   1
−1  0

Rotating the object Rotating the coordinate system

Right angle

0  −1

It’s best to think of the arbitrary angle as small, so c ≈ 1 and s ≈ 0—but both positive. Then you
can see why x′ < x and y′ > y when we rotate the object, but the opposite when we rotate the
coordinate system.

We can redescribe the field in the new coordinate system by using the inverse transformation

(

x
y

)

=

(

cx′ − sy′
sx′ + cy′

)

so

xy = (cx′ − sy′)(sx′ + cy′)

= cs(x′2 − y′2) + (c2 − s2)x′y′

=
1

2
s2(x′2 − y′2) + c2x′y′

where the last line reexpresses the c, s expressions in terms of c2 = cos(2θ) and s2 = sin(2θ): this

will be handy a little later in this Note.

Here are plots of the field in the two coordinate systems, side by side. This is meant to show that
the field has not changed, although of course the sets of values for which it is plotted have conformed
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to the corresponding coordinate systems. For concreteness, I’ve shown the rotation angle to be 45o.
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What in the math can we point to to say that the field has an existence independent of the
coordinate suystem describing it? Nothing so far.

But if the field is “real” then so are its slopes, and we can find a connection between the transfor-
mation we’ve just seen describing the coordinate rotation, and the corresponding transformation
of the slopes.

From our discussion in Note 1 about two-dimensional slopes, you should be able to do for x′ and
y′ what we did there for x and y.

slopex′(cs(x′2 − y′2) + (c2 − s2)x′y′) = 2csx′ + (c2 − s2)y′

slopey′(cs(x′2 − y′2) + (c2 − s2)x′y′) = −2csy′ + (c2 − s2)x′

This looks as if it could be written as a matrix equation so we’ll put x′ and y′ into a vector and
the slopes into another vector. We’ll also here take a notational step and write, more briefly, and
more conventionally.

slopex = ∂x

slopey = ∂y

slopex′ = ∂x′

slopey′ = ∂y′

Thus
(

∂x′

∂y′

)

cs(x′2 − y′2) + (c2 − s2)x′y′ =

(

2cs c2 − s2
c2 − s2 −2cs

)(

x′

y′

)

=

(

s2 c2

c2 −s2

)

(

x′

y′

)

This matrix looks almost like a rotation matrix. We could make it so by swapping columns. And
if we swap rows in the vector at the same time, the equation is still correct.

(

s2 c2

c2 −s2

)

(

x′

y′

)

=

(

c2 s2

−s2 c2

)

(

y′

x′

)

But our objective is to express ∂x′ and ∂y′ in terms of ∂x and ∂y. Now we know from Note 1 (and
using the new notation)

(

∂x

∂y

)

xy =

(

y
x

)

and the transformation at the beginning of this Note is
(

x′

y′

)

=

(

c s
−s c

)(

x
y

)
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so we won’t do the swap just yet, but plug these two in.

(

∂x′

∂y′

)

xy (in terms of x′, y′) =

(

s2 c2

c2 −s2

)

(

x′

y′

)

=

(

s2 c2

c2 −s2

)

(

c s
−s c

)(

x
y

)

=

(

s2 c2

c2 −s2

)

(

c s
−s c

)(

∂y

∂x

)

xy

=

(

s2 c2

c2 −s2

)

(

s c
c −s

)(

∂x

∂y

)

xy

=

(

c s
−s c

)(

∂x

∂y

)

xy

and this is the same matrix that gives x′, y′ from x, y.

(Warning: it’s going to turn out that it is not the same matrix but the transpose of its inverse.
We’ll need new notation to find this out. In this example it’s the same thing.)

Note that in the last line of the chain of equations above I took a quick step to multiply the
s2, c2 matrix by the s, c matrix to get the c, s matrix: you can check this out by algebra, using

c2 + s2 = 1 = c22 + s2
2, or you can do the Excursion that combines the double rotation with the

single rotation back.

What about second slopes? We can write them as follows.

(

∂x

∂y

)

(∂x ∂y)xy =

(

0 1
1 0

)

(

∂x′

∂y′

)

(∂x′ ∂y′)xy =

(

∂x′

∂y′

)

(x′ y′)

(

s2 c2

c2 −s2

)

=

(

1 0
0 1

)

(

s2 c2

c2 −s2

)

=

(

s2 c2

c2 −s2

)

or we can apply our coordinate transformation twice to the final result

(

c s
−s c

)(

0 1
1 0

)(

c −s
s c

)

=

(

s2 c2

c2 −s2

)

So the same transformation works for second slopes as for first slopes, but just applied twice.

Every index transforms the same way. This is the math that says that an indexed variable has an
existence independent of the coordinate system describing it.

The reason is that if we can write a relationship, say,

Rjk− 1

2
Rgjk = κT jk
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then the same relationship holds in a new coordinate system

Rj′k′ − 1

2
Rgj′k′ = κT j′k′

after the coordinate transformation {j, k} → {j′, k′}.
The math has not changed even though the coordinate system has.

But note that matrix notation begins to get tricky. We must transpose matrices at the right places
to get things right.

We need new notation which does not get tangled up in transposition.

Third slopes will make life impossible for matrices. The slopes themselves have three indices, not the
two that matrices can express or the one that vectors can express. And to go from one three-index
set of slopes to the transformed three-index set of slopes, we’ll need to apply the transformation
three times. Matrix/vector notation fails us.

3. Index notation and tensors. The new notation we need keeps track of indices explicitly. Thus,
a transformation matrix, X, has elements

Xjk

Its transpose is
Xkj

and since each of these stand for an ordinary number, we can write them in any order in a product.
All this is much easier than dealing with matrices. And we are not limited to one or two indices
but can use any number.

We will, however, need indices for coordinates, too, so we must give up x and y and call them

x1 and x2

and similarly
x1′ and x2′

Thus
xj′ = Xj′kxk

expresses the transformation. We could have written

xj′ = ΣkXj′kxk

with an explicit summation over the index k, but since k appears only on the right-hand side of
the version that does not have the Σ (it is a “dummy index”), it is reasonable to interpret k as an
index to be summed over. (This is the “Einstein summation convention”.)

Note that the index notation in
xj′ = Xj′kxk

generalizes the transformation to any number of dimensions. First, leaving x and y behind and
introducing the parametrization xk allows more (or less) than two dimensions. Second, replacing

the explicit sum by Σk and then by the summation convention completes this parametrization.

To prove that the transformation from unprimed to primed coordinates applies also to slopes of all
orders, we will need a further generalization for any linear transformation.

This involves perceiving that the (matrix) coefficients in a linear transformation are themselves
slopes.

x′ = cx+ sy = (∂xx
′)x+ (∂yx

′)y

y′ = −sx+ cy = (∂xy
′)x+ (∂yy

′)y
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or
xj′ = (∂xkxj′)xk

and, to avoid sub-subscripts (actually, I’m using midscripts, so “sub-midscripts” might best describe
the above) we can rewrite this without ambiguity as

xj′ = (∂kxj′)xk

Now it is a rule of slopes that

∂x′f(x(x′, y′), y(x′, y′)) = (∂xf)(∂x′x) + (∂yf)(∂x′y)

and similarly for ∂y′f :

∂y′f(x(x′, y′), y(x′, y′)) = (∂xf)(∂y′x) + (∂yf)(∂y′y)

So, together in matrix form, without the common f

(

∂x′

∂y′

)

=

(

∂x′x ∂x′y
∂y′x ∂y′y

)(

∂x

∂y

)

which we compare with the inverse transformation

(

x
y

)

=

(

∂x′x ∂y′x
∂x′y ∂y′y

)(

x′

y′

)

and we see immediately that the transformation from ∂k to ∂k′ is the transpose of the matrix of

the transformation from xk to xk′.

∂j′ = (∂j′xk)∂k vs. xk = (∂j′xk)xj′

We see that this notation is very compact: we must be very finicky to use it fluently.

The first-slope transformation
∂k′ = (∂k′xk)∂k

is the generalization of the first specific result in Note 2.

We can also show the second-slope transformation, provided that we make the assumption that the
transformation does not depend on xj′: ∂j′(∂k′xk) = 0.

Since
∂k′ = (∂k′xk)∂k

then

∂j′∂k′ = ∂j′((∂k′xk)∂k)

= (∂k′xk)∂j′∂k

= (∂k′xk)(∂j′xj)∂j∂k

or, using a single symbol with two indices for the second slope

∂j′k′ = (∂j′xj)(∂k′xk)∂jk
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This generalizes the matrix multiplication we had for two-dimensional second slopes in Note 2: we
see that the same transformation (matrix) applies to each index; we also see where the matrix must
be transposed if we look carefully at the order of indices in the last product (∂k′xk)∂jk

The generalization also brings out explicitly the assumption we must make for it to work, This
is an assumption we’ll be prevented from making later, introducing new considerations to the
mathematics.

We see the pattern and can go on to write the third-slope transformation without worrying about
the limitations of matrices

∂j′k′ℓ′ = (∂j′xj)(∂k′xk)(∂ℓ′xℓ)∂jkℓ

(Of course, for the field xy the third slopes are zero, but you can now try another field, say x2y2.)

A mathematical construct such as this, which, when the coordinate system is changed, transforms
the same way on each index, is called a tensor. Tensors imply a certain “reality”, in the sense
we’ve been discussing, for the entities they describe: tensor relationships do not change even if the
coordinate system has been transformed.

For a coordinate transformation which is independent of the coordinates themselves (the assumption
we made above), the slopes of a field are tensors. In a more general coordinate transformation, the
slopes are not tensors, as we’ll see in Note 11.

Since our notation can describe both tensors and non-tensors, we can discuss, generally, proto-
tensors or protors.

4. Protors. Index notation is powerful, as we have just seen, but it is finicky, as we said, and it has
two drawbacks in comparison with matrix notation. The first drawback is that it cannot suppress
the indices and work with the whole aggregate of numbers that constitute a matrix or tensor or
protor. The second drawback is related: that the only way to calculate specific examples is to write
out all the (finicky) index values.

We cannot go back to matrices, but matrices are generalized by another structure (which, re-
markably, was devised to manipulate the very large amounts of data held in secondary-storage
databases).

This structure is the relation. The relational form of an array (vector, matrix, ..) is most commonly
shown as a table giving indices and values all on the same footing.

Let’s go back to the x, y to x′, y′ transformation in Note 2 for our first example.

(

x′

y′

)

=

(

c s
−s c

)(

x
y

)

or
xj′ = Xj′kxk

x′( j′ x′ )
1 x′

2 y′

or

x′( j′ x′ )
1 x1

′

2 x2
′

X( j′ k X )
1 1 c
1 2 s
2 1 −s
2 2 c

x( k x )
1 x
2 y

or

x( k x )
1 x1

2 x2

We are free to put as data (anything below the line under the descriptors) any symbols we like. The
descriptors on the other hand contain all the indices, but no indexed variables, The symbol in front
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of the parenthesis is the relation name. The symbols between the parentheses are the attributes.
Note that it is possible to reuse the relation name as the attribute below which we can list the
values in the vector or matrix.

So, how do we express matrix multiplication? We can do so independently of the data and using
only the relation name and the attributes.

This is done with two independent but interacting “algebras”, the relational algebra and the at-
tribute algebra. Here are the expressions to combine X with x.

let x’ be equiv + of X * x by j’
x’ ← [j’,x’] in (X ijoin x)

The first statement is of the attribute algebra. Every symbol in it, X,x, j′ and x′, is an attribute
of some relation. The new attribute, x′, is defined by this statement to be a sum of the products
of attributes X and x, grouped by each value of attribute j′.

The second statement is of the relational algebra. The symbols X,x and x′ in it are relations and in
addition the symbols j′ and x′ in the square brackets are attributes. This creates the new relation
x′ by “joining” relations X and x in a way which we’ll describe next, and then “projects” only the
attribute j and the newly defined atttribute x′.

We get away with polymorphic (ambiguous) reuse of names x,X and x′ as both relations and
attributes because the syntax makes clear which is which. But I’m not going to dwell on the syntax
here, because it was devised for much more general operations than what we will need for tensors
and protors. All we’ll be needing is matrix and similar multiplications. For this, the index notation
of Note 3 is sufficient, so we will not use relational or attribute algebra syntax after this, even
though we will use relational representations to write out the detail and do the calculations.

But we must show what calculations are accomplished by the relational/attribute syntax so that
we can adapt these calculations to tensors and protors in general.

We start out with the join (called ijoin, for “intersection join”, in the syntax, and, more conven-
tionally, “natural join” by the database community).

Here is how we join relations X(j’,k,X) and x(k,x): match rows of X and x that share values of
k, and keep all attributes.

X ijoin x( j’ k X x )
1 1 c x
1 2 s y
2 1 −s x
2 2 c y

Here is how we apply the attribute algebra first to take the product X × x, then to sum these
products within groups of j′.

X ijoin x( j’ k X x ) X*x x’

1 1 c x cx cx+ sy
1 2 s y sy cx+ sy
2 1 −s x −sx −sx+ cy
2 2 c y cy −sx+ cy

Finally, we complete the relational algebra statement by projecting only attributes j′ and the new
x′. (Note that duplicate rows are not included.)

x’( j’ x’ )
1 cx+ sy
2 −sx+ cy
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For a second example, let’s try transforming the second slopes of xy. (We go back to using xy for
the sake of concrete results.)

(

c s
−s c

)(

1
1

)(

c −s
s c

)

=

(

s2 c2

c2 −s2

)

(∂j′xj)(∂k′xk)∂j,k = ∂j′,k′

Since we’re dropping the relational/attribute algebra syntax we can avoid the redundant relation
names.

Note that rows with value 0 can be omitted.

relation 1
j’ j ∂j′xj

1 1 c
1 2 s
2 1 −s
2 2 c

relation 2
k’ k ∂k′xk

1 1 c
1 2 s
2 1 −s
2 2 c

relation 3
j k ∂j,k

1 2 1
2 1 1

Looking for common attributes to join on, we could join relations 1 and 3 (left to right, above) on
j or relations 2 and 3 on k. We choose the latter. After the join we multiply values, sum, and
project (the summing is trivial in this example: each sum has only one term).

k’ k j ∂j′xj ∗ ∂j,k

1 1 2 c ∗ 1
1 2 1 s ∗ 1
2 1 2 −s ∗ 1
2 2 1 c ∗ 1

k’ j ∂j′xj ∗ ∂j,k

1 1 s
1 2 c
2 1 c
2 2 −s

Repeating this process with this result and relation 1 above is less trivial, both in multiplication
and in summing. Note that rows may be rearranged at will, and so may columns as long as the
attribute still labels its column.

j’ j ∂j′xj

1 1 c
2 1 −s
1 2 s
2 2 c

j k’ ∂j′xj ∗ ∂j,k

1 1 s
1 2 c
2 1 c
2 2 −s

( j’ j k’ ∂j′xj ∂j′xj ∗ ∂j,k ) Σ∂j′xj ∗ ∂k′xk ∗ ∂j,k

1 1 1 c s 2cs
1 1 2 c c c2 − s2
2 1 1 −s s c2 − s2
2 1 2 −s c −2cs
1 2 1 s c (see 112)
1 2 2 s −s (see 111)
2 2 1 c c (see 211)
2 2 2 c −s (see 212)

So finally
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j’ k’ ∂j′k′

1 1 s2
1 2 c2
2 1 c2
2 2 −s2

In summary, a relation is a labelled set of columns with each row being unique and listed in no
particular order. In the special relations we’re using here, the last, or value, column has a value
in each row such as a matrix element. All the preceeding columns are indices with integer (or
sometimes symbolic) values. If the value column is 0 for any row, the entire row is omitted.
Vectors are represented as binary relations (two columns) and matrices as ternary relations.

There is no reason to stop at ternary relations, with two index columns. Third slopes will be
quaternary, with three index columns; fourth slopes will have pentuples for rows and so on. (So we
could speak of “n-tuples” in general, being the rows of relations of “arity” n.)

To illustrate these higher orders we must pick another example field, such as f(x, y) = x2y2. Here
are the untransformed slopes.

1st slopes
α ∂αx

2y2

1 2xy2

2 2x2y

2nd slopes
α β ∂αβx

2y2

1 1 2y2

1 2 4xy
2 1 4xy
2 2 2x2

3rd slopes
α β γ ∂αβγx

2y2

1 1 2 4y
1 2 1 4y
1 2 2 4x
2 1 1 4y
2 1 2 4x
2 2 1 4x

4th slopes
α β γ δ ∂αβγδx

2y2

1 1 2 2 4
1 2 1 2 4
2 1 1 2 4
1 2 2 1 4
2 1 2 1 4
2 2 1 1 4

The join-product-sum process works equally well at these higher arities.

We define a protor in terms of this relational representation of indexed variables, whether they are
tensors or not.

An n-protor is an (n + 1)-ary relation with n index columns and one column of values. If these
values are symbolic and would depend on positions as given by the coordinates, the protor is a
protor field. Otherwise, that is, if the symbolic values depend only on a parameter such as the
angle of rotation in c and s, or if the values are simply numbers, the protor is a constant protor.

Note that all vectors and matrices are protors, although they are not necessarily tensors.

Note again that any row whose value column is zero is simply omitted.

5. The protor calculator 1. The relational and attribute algebras are implemented in the algebraic
data programming language Aldat which interprets syntax such as that used in Note 4. For two
reasons we shall rewrite the parts relevant to protors in MATLAB. The first reason is that, because
of the power of Aldat, it requires us to learn new ways of thinking about data aggregates, which
we won’t need if we stick to the familiar MATLAB. The second reason is that we’ll need symbolic
math, which is not implemented in any current version of Aldat, although it fits seamlessly into
the attribute algebra.

For present purposes, the protor calculator consists of two MATLAB functions. First, slopes(),

slopes(in,vars)

e.g.,
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>> syms x y
>> slopes(x*y,[x,y])
ans =
[ x, y]
[ y, x]
>> slp1x2y2 = slopes(x^2*y^2,[x,y])
slp1x2y2 =
[ x, 2*x*y^2]
[ y, 2*x^2*y]
>> slp2x2y2 = slopes(slp1x2y2,[x,y])
slp2x2y2 =
[ x, x, 2*y^2]
[ x, y, 4*x*y]
[ y, x, 4*x*y]
[ y, y, 2*x^2]

>> slp3x2y2 = slopes(slp2x2y2,[x,y])
slp3x2y2 =
[ x, x, y, 4*y]
[ x, y, x, 4*y]
[ x, y, y, 4*x]
[ y, x, x, 4*y]
[ y, x, y, 4*x]
[ y, y, x, 4*x]
>> slp4x2y2 = slopes(slp3x2y2,[x,y])
slp4x2y2 =
[ x, x, y, y, 4]
[ x, y, x, y, 4]
[ x, y, y, x, 4]
[ y, x, x, y, 4]
[ y, x, y, x, 4]
[ y, y, x, x, 4]
>> slp5x2y2 = slopes(slp4x2y2,[x,y])
slp5x2y2 = allzeros

From these examples we see how protors are represented as MATLAB arrays, one row per tuple.
The first column of each result gives the index the slope has been taken with respect to. This
is why it is appropriate to use the symbolic names rather than integers for the indices. (The
MATLAB code rearranges the rows of each result, so you must look a little carefully to find the
correspondences between input rows and output rows.)

The second MATLAB function is joinred().

joinred(in1,col1,in2,col2)

e.g.,

>> syms c s
>> X = [1,1,c;1,2,s;2,1,-s;2,2,c]
X =
[ 1, 1, c]
[ 1, 2, s]
[ 2, 1, -s]
[ 2, 2, c]

>> v = [1,x;2,y]
v =
[ 1, x]
[ 2, y]
>> joinred(X,2,v,1)
ans =
[ 1, c*x + s*y]
[ 2, c*y - s*x]

Here we joined X with v by matching the 2nd column of X with the 1st column of v.

The protor calculations to find the slopes of x2y2 transformed by

(α′ α X )
1 1 c
1 2 s
2 1 −s
2 2 c
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are

∂α′ = Xα′α∂αx2y2

∂α′β′ = Xα′αXβ′β∂αβx2y2

∂α′β′γ′ = Xα′αXβ′βXγ′γ∂αβγx2y2

∂α′β′γ′δ′ = Xα′αXβ′βXγ′γXδ′δ∂αβγδx2y2

joinred(X,2,slp1x2y2,1)

joinred(X,2,joinred(X,2,slp2x2y2,2),2)

joinred(X,2,joinred(X,2,joinred(X,2,slp3x2y2,3),3),3)

joinred(X,2,joinred(X,2,joinred(X,2,joinred(X,2,slp4x2y2,4),4),4),4)

with the following results

1st slopes
α′ ∂α′x2y2

x 2xy(cy + sx)
y 2xy(cx− sy)

2nd slopes
α′ β′ ∂α′β′x2y2

x x 2(cy)2 + 8csxy + 2(sx)2

x y 2cs(x2 − y2) + 4xy(c2 − s2)
y x 2cs(x2 − y2) + 4xy(c2 − s2)
y y 2(sy)2 − 8csxy + 2(cx)2
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3rd slopes
α′ β′ γ′ ∂α′β′γ′x2y2

x x x 12cs(sx+ cy)
x x y −4s3x+ 8cs(cx − sy) + 4c3y
x y x −4s3x+ 8cs(cx − sy) + 4c3y
x y y 4c3x− 8cs(sx+ cy) + 4s3y
y x x −4s3x+ 8cs(cx − sy) + 4c3y
y x y 4c3x− 8cs(sx+ cy) + 4s3y
y y x 4c3x− 8cs(sx+ cy) + 4s3y
y y y −12cs(cx − sy)

4th slopes
α′ β′ γ′ δ′ ∂α′β′γ′δ′x

2y2

x x x x 24c2s2

x x x y 12cs(c2 − s2)
x x y x 12cs(c2 − s2)
x x y y 4c2 − 16c2s2 + 4s2

x y x x 12cs(c2 − s2)
x y x y 4c2 − 16c2s2 + 4s2

x y y x 4c2 − 16c2s2 + 4s2

x y y y −12cs(c2 − s2)
y x x x 12cs(c2 − s2)
y x x y 4c2 − 16c2s2 + 4s2

y x y x 4c2 − 16c2s2 + 4s2

y x y y −12cs(c2 − s2)
y y x x 4c2 − 16c2s2 + 4s2

y y x y −12cs(c2 − s2)
y y y x −12cs(c2 − s2)
y y y y 24c2s2

It is important to note the column chosen for the joining attribute of the original slope: it is always
the last index column.

This is because joinred() does not work with attribute names the way Aldat would, but with
their positions. It outputs index columns in the order in which they appear in the input protors,
omitting the join index from both protors.

For fourth slopes, for example, with inputs X (four times) and ∂αβγδ, we have the following inter-

mediate steps.

Xδ′δ, ∂αβγδ → ∂δ′αβγ

Xγ′γ, ∂δ′αβγ → ∂γ′δ′αβ

Xβ′β, ∂γ′δ′αβ → ∂β′γ′δ′α

Xα′α, ∂β′γ′δ′α → ∂α′β′γ′δ′

(So we must be careful if we decide to check the intermediate steps of the calculation: the index
columns are not labelled with their attributes so we must keep track of their positions.)

6. Divergence and Curl. The first slope of the scalar field xy, ∂αxy, is its gradient. This is a

vector field giving the direction and magnitude of the steepest slope at each point.

Here are pictures of the gradients of xy and of xy rotated by 45 degrees to cs(x′2−y′2)+(c2−s2)x′y′.
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Slopes of xy in position
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y’

Slopes of (x’2−y’2)/2 in position

x’

The divergence and curl are two important properties of vector fields, producing respectively a
scalar and a tensor field.

Instead of discussing the divergence and curl of the gradient we’ve just seen of xy (since both are
in fact zero) we’ll look at some new vector fields as examples.

They are
(

f x

f y

)

=

(

x
y

)

rp−1 and

(

hx

hy

)

=

( −y
x

)

rp−1

where r =
√

x2 + y2 (and so
(

∂x

∂y

)

r =

(

x
y

)

1
r ).

The first can illustrate divergence but has zero curl. The second can illustrate curl but has zero
divergence.

Here is what these two fields look like for p = −1. We can see intuitively that the first diverges
and that the second curls.

15



−2 0 2
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Radial field of magnitude r−1.

−2 0 2
−3

−2

−1

0

1

2

3
Tangential field of magnitude r−1.

Both divergence and curl can be found from the first slopes.

div = ∂xf x + ∂yf y

curl = ∂xhy − ∂yhx

We can derive these same results from a physical, and microscopic, viewpoint. We’ll use three-
dimensional vocabulary despite this being a two dimensional example. “Area” means the length of
a segment of the boundary and “volume” means the area of the region enclosed by the boundary.
We start with a “field” which can be thought of as a flow per unit area, convert that into a total
flow at one boundary, find the net flow over the region (which is a difference, which over a small
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enough region can be found by a slope), and finally find that net flow per unit volume in the region.

Divergence

f
θ

r
r∆
∆

This example is a field in the radial direction,
with “flow” per unit “area” f = rp and “vol-
ume” of the region = r∆θ∆r.

• total flow at boundary: fr∆θ =
rp+1∆θ;

• net flow from region = slope of this =
(p + 1)rp∆r∆θ;

• net flow per unit volume = (p + 1)rp−1

(which is zero if p = −1, the classical
gravitational field in 2D).

In x-y coordinates, the field is (x, y)rp−1 and

div = ∂x(xrp−1) + ∂y(yr
p−1)

= rp−1 + x(p− 1)rp−2x

r

+rp−1 + y(p− 1)rp−2 y

r
= 2rp−1 + (x2 + y2)(p− 1)rp−3

= (p + 1)rp−1

(In 3D this is (p + 2)rp−1 which is zero for
f = 1/r2; in d dimensions the generalization
is (p − 1 + d)rp−1.)

Curl

h

r
r
∆θ

∆

This example is a field in the tangential direc-
tion, also with “flow” per unit “area” h = rp

and “volume” of the region = r∆θ∆r.

• total flow at boundary: hr∆θ =
rp+1∆θ;

• net flow perpendicular to region = slope
of this = (p+ 1)rp∆r∆θ;

• net flow per unit volume = (p + 1)rp−1

(which is again zero if p = −1).

In x-y coordinates, the field is (−y, x)rp−1 and

curl = ∂x(xrp−1)− ∂y(−yrp−1)

= rp−1 + x(p− 1)rp−2x

r

−(−rp−1 − y(p− 1)rp−2 y

r
)

= 2rp−1 + (x2 + y2)(p − 1)rp−3

= (p + 1)rp−1

This is a simple variant on the divergence. A
similar discussion to that for divergence holds
for higher dimensions.

We notice a remarkable thing in each case. The divergence and curl depend on the magnitude as
well as the direction of the vector field, and for p = −1 both are zero. This is just the value of p
we used to generate the intuitive pictures we showed above. Intuition says the one field diverges
and the other curls, but calculation says that each field does neither.

The intuitive pictures look much the same with p = −2, and in this case divergence and curl are
neither zero. (However, in three dimensions, p = −2 does make divergence and curl vanish in the
analogous fields.)

In general, for vector fields f and h

div.f = ∂jf j
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(curl× h)jk = ∂jhk − ∂khj

where div.f is just the notation for the dot product of two vectors giving a scalar, but curl× h is
notation which can be considered to define a two-index tensor.

Thus in three dimensions

div.f = ∂xf x + ∂yf y + ∂zf z

(curl× h)xy = ∂xhy − ∂yhx

(curl× h)yz = ∂yhz − ∂zhy

(curl× h)zx = ∂zhx − ∂xhz

See the Excursions for the examples

f =





x
y
z



 rp−1

h =





z − y
x− z
y − x



 rp−1

We can show that divergence is invariant—it has the same form no matter what the coordinate
system is—using a general argument in index notation.

We have found (Note 3)
∂j′ = (∂j′xj)∂j

so of course

∂j = (∂jxj′)∂j′

= (∂jxj′)(∂j′xk)∂k

and so

(∂jxj′)(∂j′xk) = δjk
def
=

{

1 if j = k
0 otherwise

i.e., these two are inverses of each other.

We also know (Note 3)
xj′ = (∂jxj′)xj

because, if for coefficients a, b, ..
xj′ = ax1 + bx2 + ..

then

a = ∂1xj′

b = ∂2xj′

and so on.

To go from the divergence ∂jf j to ∂j′f j′ in the new coordinate system xj′ = (∂jxj′)xj we need two
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steps: 1) transform the slopes ∂j′ = (∂j′xj)∂j; 2) transform the axes f j → f j′ which is the same

linear transformation as xj → xj′.

We’ll write it in reverse

∂j′f j′ = (∂j′xj)∂j(∂kxj′)f k

= (∂j′xj)(∂kxj′)∂jf k

= ∂jf j

In the second line, we’ve repeated our earlier assumption that the transformation (∂kxj′) does not

depend on the coefficients xj (Note 3). (If it does, the invariant form of the divergence is somewhat

different, as we shall see in Note 15.)

In the third line we use the fact that the two transformations (for slopes and for coordinates) are
inverses of each other (Note 3).

7. Classical gravity. Newton proposed that the gravity of a body such as the Sun or the Earth is a
force, acting instantaneously at a distance, directed toward the body with a magnitude proportional
to 1/r2 with r the distance from the body.

From the point of view of Euclidean geometry, this is an almost inevitable perspective on the
influence of the body, which must be diluted with r in proportion to the area that the influence
must affect at that distance: 4πr2.

In two dimensions, the “area” the influence gets spread over at distance r from the body is 2πr.
So 2D gravity would be a 1/r force.

Newtonian gravity came to be regarded as a field, xj/r3, or, in 2D xj/r2. These are both examples

of the xjrp−1 field of Note 6, with p = −2 in 3D and p = −1 in 2D.

The source of this gravitational field would be the body that causes it, and was related by Newton
to the mass of that body.

Mathematically, it makes sense to relate the source to the divergence of the field. (Since the field is
incoming—directed towards the origin at the body—that divergence will be negative. Mathemati-
cally the slope of an inverse power is also negative.)

Here we run into a problem. We found in Note 6 that the divergence of xjrp−1 is (p + d − 1)rp−1

in d dimensions: zero in both cases.

Well, of course, that’s the divergence anywhere in the space with the r1−d field in it. And there
is no source anywhere in that space, so the divergence should be zero. (Indeed, from Euclid’s
perspective, it is quite natural that the divergence should be zero.)

The source is only at the origin, r = 0, and we haven’t put it in. Mathematically, the fields r1−d

have a singularity here, so physically we can’t go all the way to r = 0.

We’ll need a new field in the space around the origin that represents the body and the source.

Suppose a body of massmb occupies a sphere of radius rb and has uniform density ρ = mb/(4πr
3
b/3).

Then we can show that, anywhere inside that sphere (imagine a very thin hole bored all the way
along a diameter), the field is radial and proportional to ρr, i.e.,

ρ

(

x
y

)

Then the divergence is nonzero and proportional to ρ. This mass density will be the source of the
gravitational field.
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p

r

d

r

θ

p

In the figure, we imagine a spherical shell of matter which is creating a field at point p a distance
rp from the centre of the shell. We can put point p on the z-axis without losing generality, because
the coordinate system can always be set up so that the z-axis contains p.

The angle θ is the usual coordinate of a location on the shell, and the angle φ is not shown because
of symmetry about the z-axis.

m

α

α

field inside

field outside

ρr

r2

br

ρdensity

density  0

We need two arguments. First that the spherical shell, of radius r, thickness ∆r and mass m =
4πr2∆rρ attracts anything outside that shell (at radius rp > r) proportionally to m/r2p as if the
mass were all at a point source at the origin.

The second argument is that the attraction of this same shell for anything inside it (at radius
rp < r) is zero.

These arguments require some setting up and rearranging of variables, followed by a two-dimensional
antislope over (effectively) φ from 0 to 2π and θ from 0 to π.
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p

r

d

r

rc
θ

α

p

c = cos
s = sin

θ
θ

rs

First some geometry. Equating (rs)2 = (rs)2 in the two Pythagorean triangles sharing that side,

d2 − (rp − rc)2 = r2 − (rc)2

so
2rprc = r2p + r2 − d2

where c = cos θ. We’re going to need s = sin θ as well, because, with a small change in θ

∆(2rprc) = ∆(r2p + r2 − d2)

gives
−2rprs∆θ = −2d∆d

by taking slopes with respect to θ on the left and with respect to d on the right: note that d and
θ co-vary—as θ goes from 0 to π, d goes from rp − r to rp + r.

Because of symmetry—each part of the shell is part of a ring all the same distance d from point
p—we will need only the z-component of the field, not the component along line d. So we need a
factor

cosα =
rp − rc
d

=
2r2p − 2rprc

2rpd

=
d2 + r2p − r2

2rpd

21



rs

θ

φ

r
rs

∆
∆

θ
φ

c = cos
s = sin

θ
θ

r

The contribution of a little part of the mass of the shell

∆m = ρ(∆r)(∆θ)rs(∆φ)

at distance d from p to the field at p is thus

∆f ≈ ∆m

d2
cosα

=
ρr(∆r)rs(∆θ)(∆φ)

d2

d2 + r2p − r2
2rpd

=
ρr(∆r)d(∆d)(∆φ)

rpd2

d2 + r2p − r2
2rpd

Including the whole ring, φ = 0 to 2π, replaces ∆φ by 2π. And including the whole shell, θ = 0 to
π, which is to say, d = rp − r to rp + r, requires the antislope of this.

f ∝ antisloped=rp−r:rp+r
2πrρ

2r2p

d2 + r2p − r2
d2

=
πrρ∆r

r2p
antisloped=rp−r:rp+r

(

1 +
r2p − r2
d2

)

=
πrρ∆r

r2p



2r −
r2p − r2
d

∣

∣

∣

∣

∣

rp+r

rp−r





=
πrρ∆r

r2p
4r

=
4πr2∆rρ

r2p

=
m

r2p

where m = 4πr2∆rρ is the mass of the whole shell.

Thus the shell acts gravitationally as if the entire mass were concentrated at the point that is the
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centre of the sphere.

A solid sphere is made up of concentric shells, and the same argument applies to each of them.

So a spherical body acts gravitationally on any point exterior to it as though its whole mass was
concentrated at its centre.

p

p θ
rc α d

r

c = cos
s = sin

θ
θ

rs

r

What about a point inside a spherical shell? The argument above applies except that now, as θ
ranges from 0 to π, d ranges from r − rp to r + rp

f ∝ πrρ∆r

r2p



2rp −
r2p − r2
d

∣

∣

∣

∣

∣

r+rp

r−rp





=
πrρ∆r

r2p
× 0

So a spherical shell has no gravitational effect on a point inside it.

From these two results it follows that a point p in a narrow tunnel through a solid sphere of uniform
density ρ, at a distance r from the centre, will experience a field, due to all shells of radius < r,
proportional to

m

r2
=

4πr3ρ/3

r2
=

4

3
πrρ

Thus we have results for the gravitational field at points a) in free space with a spherical mass m
centred a distance r away and b) within a sphere of mass density ρ.

To turn the proportionalities into equalities we need Newton’s gravitational constant GN so that
the field represents the acceleration of the point p towards the centre of mass,

a) free space

f = −GNm

r2

b) within sphere

f = −4

3
πrGNρ

These fields are vector fields, because the acceleration is directed, so strictly

a) free space

f j = −GNm

r3
xj

b) within sphere

f j = −4

3
πxjGNρ

Each field can, if we wish, be expressed as the gradient of a scalar field, called the gravitational
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potential

a) free space

f = GNm grad
1

r

b) within sphere

f = −2

3
πGNρ grad r2

Going the other way, we notice an important property of the divergence of the gravitational field.

a) free space

div · f = 0

b) within sphere

div · f = −4πGNρ

These are the same result if we consider that, in free space, the density of matter ρ = 0. And this
is a general result, which can be taken as an abstract formulation of classical gravity.

div · f = −4πGNρ

Or, in terms of the potential, φ (f = grad φ),

div · grad φ = −4πGNρ

Note for future reference that this is formed from second slopes of the potential φ.

8. Gypsum coordinates. It is sometimes appropriate to use a coordinate system in which the
basis vectors are neither orthogonal nor of unit length. An example is a coordinate system which
indexes sites in a crystal with integers. Here is a two-dimensional representation of gypsum.

(0,0)

Gypsum sand at White Sands, New Mexico MAM

α
β
γ

= 90

= 90

= 90

o

o

o

118
o

Gypsum (plaster, chalk, alabaster, ..) in 2D

0.65 nm

1.52 nm

α

γ

a
b

cβ

(2,1)(1,1)

(1,2)

(monoclinic crystal: depth is 0.57 nm orthogonal)

(0,2)

(0,1)

(2,0)(1,0)
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Gypsum is a monoclinic crystal of CaSO4.2H2O, occurring naturally in great quantities in, for
example, White Sands New Mexico and used for fertilizer, drywall (γυψoς means “plaster”) and,
as alabaster, for sculpture. It provides a simple example of a non-orthogonal coordinate system.

2

0.65 nm

0.75 nm

e

e

e

e

1

1

2

2

ε

ε

1.52 nm

1.75 nm

1

Here is a diagram showing three different sets of basis vectors for (2-dimensional) gypsum. The
conventional basis ǫ1 and ǫ2 is orthonormal. We’ve been using “midscripts” so far in these Notes,

and will continue to do so for orthonormal basis vectors and for coordinate systems based on them.

The basis vectors that parallel the natural axes of gypsum, e1 and e2, are written with subscripts,
and coordinates based on them will be written with superscripts.

A third pair of basis vectors, e1 and e2, is complementary, in the sense that ej .ek = δj
k:

e1.e1 = 1

e2.e1 = 0

e1.e2 = 0

e2.e2 = 1

i.e., the complementary basis is orthogonal to the gypsum basis, and normal to it in the above
sense. The complementary basis vectors are written with superscripts and coordinates based on
them will be written with subscripts.

Here are the cosines and sines for the gypsum basis and the complementary basis. (Numerical
values are for (two-dimensional) gypsum. Angles are in degrees.)

c1 = cos(6 e1) = cos 0 = 1

s1 = sin(6 e1) = sin 0 = 0

c2 = cos(6 e2) = cos 118.43

s2 = sin(6 e2) = sin 118.43

c1 = cos(6 e1) = cos 28.43 = s2

s1 = sin(6 e1) = sin 28.43 = −c2

c2 = cos(6 e2) = cos 90 = −s1

s2 = sin(6 e2) = sin 90 = c1

The lengths of the basis vectors are in nanometers. We define sin(6 e2 − 6 e1) = s21 = sin 118.43

ℓ1 =| e1 |= 1.52

ℓ1 =| e1 |= 1/(ℓ1s21) = 0.75

ℓ2 =| e2 |= 0.65

ℓ2 =| e2 |= 1/(ℓ2s21) = 1.75

Here are the (gypsum) basis vectors in terms of the orthonormal basis.
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e1 = ℓ1(c1ǫ1 + c2ǫ2) e2 = ℓ2(s1ǫ1 + s2ǫ2)

(e1 e2) = (ǫ1 ǫ2)

(

ℓ1c1 ℓ2c2
ℓ1s1 ℓ2s2

)

= (ǫ1 ǫ2)

(

c1 c2
s1 s2

)(

ℓ1
ℓ2

)

And similarly for the complementary basis,

(e1 e2) = (ǫ1 ǫ2)

(

c1 c2

s1 s2

)(

ℓ1

ℓ2

)

v

0.65 nm

0.75 nm

e

e

e

e

1

1

2

2

ε

ε

1.52 nm

1.75 nm

1

2

v

vv

v

2

2

1

1

Now we show an arbitrary vector v. (To make the example concrete, the figure above shows
(v1, v2) = (1, 1) with respect to the orthonormal basis.) The contravariant coefficients v1, v2 and

the covariant coefficients v1, v2 are defined below. Note the orthogonality of e2 and e1, and of e1

and e2, and how the coefficients are found by dropping lines from the end of v parallel to the other
axis.

(We’ll use this terminology from now on, so here is a useful mnemonic. Note the lengths of (numbers
of letters in) the prefixes.

co:sub covariant components are subscripted
contra:super contravariant components are superscripted

Remember that components for an orthonormal basis are “midscripted”.)
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Contravariant

v = v1ǫ1 + v2ǫ2 = (ǫ1 ǫ2)

(

v1

v2

)

= v1e1 + v2e2

= v1ℓ1(c1ǫ1 + s1ǫ2) + v2ℓ2(c2ǫ1 + s2ǫ2)

= (v1ℓ1c1 + v2ℓ2c2)ǫ1 + (v1ℓ1s1 + v2ℓ2s2)ǫ2

= (ℓ1c1 ℓ2c2)

(

v1

v2

)

ǫ1 + (ℓ1s1 ℓ2s2)

(

v1

v2

)

ǫ2

= (ǫ1 ǫ2)

(

ℓ1c1 ℓ2c2
ℓ1s1 ℓ2s2

)(

v1

v2

)

= (ǫ1 ǫ2)

(

c1 c2
s1 s2

)(

ℓ1
ℓ2

)(

v1

v2

)

Covariant

v = v1ǫ1 + v2ǫ2 = (ǫ1 ǫ2)

(

v1

v2

)

= v1e
1 + v2e

2

= v1ℓ
1(s2ǫ1− c2ǫ2) + v2ℓ

2(−s1ǫ1 + c1ǫ2)

= (v1ℓ
1s2 − v2ℓ2s1)ǫ1 + (v1(−ℓ1c2) + v2ℓ

2c1)ǫ2

= (ℓ1s2 − ℓ2s1)
(

v1
v2

)

ǫ1 + (−ℓ1c2 ℓ2c1)

(

v1
v2

)

ǫ2

= (ǫ1 ǫ2)

(

ℓ1s2 −ℓ2s1
−ℓ1c2 ℓ2c1

)(

v1
v2

)

= (ǫ1 ǫ2)

(

s2 −s1
−c2 c1

)(

ℓ1

ℓ2

)(

v1
v2

)

= (ǫ1 ǫ2)

(

s2 −s1
−c2 c1

)

(

1
ℓ1s21

1
ℓ2s21

)

(

v1
v2

)

So we have the two relationships

(

v1

v2

)

=

((

c1 c2
s1 s2

)(

ℓ1
ℓ2

))−1
(

v1

v2

)

(

v1
v2

)

=

((

c1 c2

s1 s2

)(

ℓ1

ℓ2

))−1
(

v1

v2

)

The definition of the dual basis, from which we get the relationships linking cj, sj and ℓj to ck, sk

and ℓk as

(

1
1

)

=

(

e1

e2

)

(e1 e2)

=

(

ℓ1
ℓ2

)(

c1 s1
c2 s2

)

(

ǫ1

ǫ2

)

(e1 e2)

(

c1 c2

s1 s2

)(

ℓ1

ℓ2

)

=

(

ℓ1
ℓ2

)(

c1 s1
c2 s2

)(

c1 c2

s1 s2

)(

ℓ1

ℓ2

)

=

(

ℓ1
ℓ2

)(

c1 s1
c2 s2

)(

s2 −s1
−c2 c1

)(

ℓ1

ℓ2

)

=

(

ℓ1
ℓ2

)(

s21
s21

)(

ℓ1

ℓ2

)

=

(

ℓ1s21ℓ
1

ℓ2s21ℓ
2

)

where the fourth line is due to the perpendicularities e1 ⊥ e2 and e2 ⊥ e1:

(

c1

s1

)

=

(

s2
−c2

) (

c2

s2

)

=

( −s1
c1

)

and the values we gave at the beginning of this Note

ℓ1 =
1

ℓ1s21
ℓ2 =

1

ℓ2s21
follow from the last line.

Similarly we can show that the dot product of (v1 v2) with its superscripted counterpart gives the
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length of an arbitrary vector v.

(v1 v2)

(

v1

v2

)

= (v1 v2)

((

ℓ1

ℓ2

)(

c1 s1

c2 s2

))−1 ((
c1 c2
c2 s2

)(

ℓ1
ℓ2

))−1
(

v1

v2

)

= (v1 v2)

(

s2 −c2
−s1 c1

)−1

s21

(

ℓ1
ℓ2

)(

ℓ1
ℓ2

)−1 ( c1 c2
s1 s2

)−1
(

v1

v2

)

= (v1 v2)

(

c1 c2
s1 s2

)

1

s21
s21

(

ℓ1
ℓ2

)(

ℓ1
ℓ2

)−1 ( s2 −c2
−s1 c1

)

1

s21

(

v1

v2

)

= (v1 v2)

(

s21
s21

)

1

s21

(

v1

v2

)

= (v1 v2)

(

v1

v2

)

So covariant and contravariant coordinates are complementary in the important sense that they
must be used together to calculate lengths or distances and even angles between two different
vectors.

(u1 u2)

(

v1

v2

)

= (u1 u2)

(

v1
v2

)

=| u || v | cos θ

where θ is the angle between u and v, and

| u |2= (u1 u2)

(

u1

u2

)

= (u1 u2)

(

u1

u2

)

and similarly for | v |2 the square of the length of v.

When we must use non-orthonormal basis vectors we’ll find we need both contra- and co-variant
coordinates.

Index notation. We can do all this more generally using index notation.

ej = ǫmXmj = ǫmℓjtmj

where the trigonometric terms t1j = cj and t2j = sj;

ek = ǫnXn
k = ǫnℓktnk

with the trigonometric terms t1k = ck and t2k = sk.

Find the superscripted X in terms of the subscripted X.

δk
j = eje

k = ǫmXmjǫnXn
k

= XmjXn
kǫmǫn

= XmjXn
kδmn

= XmjXm
k

So the superscripted X is the inverse of the subscripted X. To work this out in detail we must
write the elements out in array form, making the trigonometric terms explicit again.
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Xmj m 1 2

j = 1 ℓ1c1 ℓ1s1
2 ℓ2c2 ℓ2s2

Xn
k k 1 2

n = 1 ℓ1c1 ℓ2c2

2 ℓ1s1 ℓ2s2
=

(Xmj)
−1

n
k k 1 2

n = 1 ℓ2s2/ℓ1ℓ2s21 −ℓ1s1/ℓ1ℓ2s21
2 −ℓ2c2/ℓ1ℓ2s21 ℓ1c1/ℓ1ℓ2s21

where s21 = c1s2 − c2s1. (These tables can be thought of as relations formatted so as to make it
easy to see the inverse in the 2-by-2 case. Each could also be written as a three-column, four-row
representation of the relation.)

There are multiple solutions to this, even with the restriction that (ck)2 + (sk)2 = 1. We choose
the solution that gives positive lengths in the gypsum example.

ℓ1 =
1

ℓ1s21

ℓ2 =
1

ℓ2s21

c1 = s2
s1 = −c2
c2 = −s1
s2 = c1

We can now show that the components of an arbitrary vector give its length as the dot product of
subscripted with superscripted components.

vmǫm = v = vjej = vjǫmXmj

= vje
j = vjǫmXm

j

vmǫm = vjXmjǫm

vm = vjXmj

vmXm
k = vjXmjXm

k = vk

vmǫm = vjXm
jǫm

vm = vjXm
j

vmXmk = vjXm
jXmk = vk

The second line on each side above follows from the first because all the components of ǫm are

independent so for the sums to be equal, each of the corresponding coefficients must be equal.

The third lines follow because Xm
j and Xmk are inverses, as we found from the orthonormality of

the sub- and superscripted basis vectors to each other.

Thus

vkvk = vmXm
kXnkvn = vmvm

again because the two variants of X are inverses of each other.

The final right-hand side is the length-squared of v expressed in the orthonormal coordinate system.
So the left-hand side, vkvk, equals this length-squared.

Generally, the dot product of two vectors is written as the sum of the products of corresponding
sub- and superscripted coordinates.

(For triclinic crystals, such as turquoise, angles β and γ are also not right angles, and we would
need to do all the above in three dimensions.)

We have started in this Note to use the same symbol to mean different, indeed opposite, things,
and so the relational version of these protors will need an improved notation.

We had
XmjXm

k = δk
j
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so that X is its own inverse, depending on the position of the sub/superscript.

Representations which do not show sub/superscripts, such as matrix or relational representations,
must be augmented to be clear.

So we’ll say explicitly whether each index is mid, up (super) or down (sub) as follows

Xmu = (Xmd)−1T

for matrices, or
Xmd(m, j,X) and Xmu(m,k,X)

for relations.

We will call this “mud” notation for the three possible index positions.

Note that the indicators m, u and d are themselves typeset as midscripts, because midscript indices
will not be used much from now on: the notation is effectively “ud” notation. (Note that we can

“transpose”, say Xmu as Xum, and so swap the index columns, but this makes no effective difference

to any relational calculations.)

9. The metric. We can find a direct relationship between contravariant and covariant components
by eliminating the orthonormal (midscripted) basis from the two versions of v in the previous Note.

(

v1

v2

)

=

(

c1 c2
s1 s2

)(

ℓ1
ℓ2

)(

v1

v2

)

(

v1

v2

)

=

(

c1 c2

s1 s2

)(

ℓ1

ℓ2

)(

v1
v2

)

So if we know only, say, the contravariant (superscripted) components, we can write the length in
terms of them only.

(

v1
v2

)

=

(

ℓ1

ℓ2

)−1 (
c1 c2

s1 s2

)−1
(

v1

v2

)

=

(

ℓ1

ℓ2

)−1 (
c1 c2

s1 s2

)−1 (
c1 c2
s1 s2

)(

ℓ1
ℓ2

)(

v1

v2

)

=

(

ℓ1
ℓ2

)

s21

(

s2 −s1
−c2 c1

)−1 ( c1 c2
s1 s2

)(

ℓ1
ℓ2

)(

v1

v2

)

=

(

ℓ1
ℓ2

)

s21
s21

(

c1 s1
c2 s1

)(

c1 c2
s1 s2

)(

ℓ1
ℓ2

)(

v1

v2

)

=

(

ℓ1
ℓ2

)(

1 c21
c21 1

)(

ℓ1
ℓ2

)(

v1

v2

)

=

(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)(

v1

v2

)

where c21 = c2c1 + s2s1 is cos(6 e2 − 6 e1) = c21.

This matrix
(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)

is called the metric g because it enables us to calculate lengths from a given set of coordinate
components. Note that g is a symmetrical matrix. Check that it is a diagonal matrix if the
coordinate axes are orthogonal to each other, and the identity matrix if they are orthonormal.

It is called the metric because it turns coordinates into lengths or distances. (This reinforces the
notion, which is a fact, that unnormalized coordinate systems do not directly tell us about distances
between points.) It can be found directly from distances. Here is a point p a distance d from the
origin.
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1

2

1 1

2

2 1

ξ

d

p

1

2ξx2

x

(All expressions in this diagram, except p, represent distances.)

In terms of the orthonormal coordinates

d2 = ξ1
2 + ξ2

2

In terms of the gypsum coordinates x1 and x2

ξ1 = ℓ1x
1 + ℓ2c21x

2

ξ2 = ℓ2s21x
2

d2 = ℓ21(x
1)2 + ℓ22(x

2)2 + 2ℓ1ℓ2c21x
1x2

where c21 = cos(6 2− 6 1) and s21 = sin(6 2− 6 1), or, in matrix form,

d2 = (x1 x2)

(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)(

x1

x2

)

So it is easy to read the metric off from the coordinate axes.

A perhaps even easier way of finding the metric from the coordinate axes is

gdd =

(

e1

e2

)

· (e1 e2) =

(

e1.e1 e1.e2

e2.e1 e2.e2

)

For gypsum this is also

gdd =

(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)

From this, g can be decomposed into the product of the matrix that transforms from orthonormal
coordinates with the transpose of that matrix.

gdd =

(

e1

e2

)

· (e1 e2)

=

(

ℓcc1 ℓ1s1
ℓ2c2 ℓ2s2

)

(

ǫ1

ǫ2

)

(ǫ1 ǫ2)

(

ℓcc1 ℓ1c2
ℓ2s1 ℓ2s2

)

=

(

ℓcc1 ℓ1s1
ℓ2c2 ℓ2s2

)(

1
1

)(

ℓcc1 ℓ1c2
ℓ2s1 ℓ2s2

)

=

(

ℓcc1 ℓ1s1
ℓ2c2 ℓ2s2

)(

ℓcc1 ℓ1c2
ℓ2s1 ℓ2s2

)
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or, generally (and we see the transpose only on the apparently swapped positions of m and k)

gjk = ej.ek

= Xmjǫj.ǫnXnk

= XmjδmnXnk

= XmjXmk

Similarly g−1 gives lengths if we must use the covariant components only.

(v1 v2)

(

v1

v2

)

= (v1 v2)

(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)(

v1

v2

)

= (v1 v2)
1

ℓ21ℓ
2
2(1− c21)

(

ℓ22 −ℓ1ℓ2c21
−ℓ1ℓ2c21 ℓ21

)(

v1
v2

)

Thus, in mud notation, guu = gdd
−1.

10. Fields in gypsum. We can also transform fields such as the radial field (in orthonormal
coordinates)

(f 1 f 2) = rp−1(x1 x2)

and the tangential field
(h1 h2) = rp−1(−x2 x1)

to gypsum coordinates.

First we review the results for fields in orthogonal coordinates.

r =
√

x1
2 + x2

2
(

∂1

∂2

)

r =
1

r

(

x1

x2

)

So, for f

(

∂1

∂2

)

(f 1 f 2) =

(

∂1

∂2

)

rp−1(x1 x2)

= rp−1
(

1
1

)

+ (p− 1)rp−3

(

x1

x2

)

(x1 x2)

and

div.f = (p+ 1)rp−1

curl× f = 0

And for h
(

∂1

∂2

)

(h1 h2) =

(

∂1

∂2

)

rp−1(−x2 x1)

= rp−1
(

1
−1

)

+ (p − 1)rp−3

(

x1

x2

)

(x1 x2)
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and

div.h = 0

curl× h = (p + 1)rp−1

Now we transform to gypsum coordinates. We’ll be interested in the contravariant x.

(x1 x2)

(

ǫ1

ǫ2

)

= (x1 x2)

(

e1

e2

)

= (x1 x2)

(

ℓ1c1 ℓ1s1
ℓ2c2 ℓ2s2

)

(

ǫ1

ǫ2

)

and in both contravariant and covariant f and h

(f1 f2)

(

ℓ1c1 ℓ1s1
ℓ2c2 ℓ2s2

)

= (f 1 f 2) = (f1 f2)

(

ℓ1c1 ℓ1c2
ℓ2s1 ℓ2s2

)−1

(note the transposed inverse), and similarly for h.

The divergence is a scalar and so must combine covariant and contravariant, taking the covariant
slope of the contravariant coordinates.

div.f = ∂jf
j div.h = ∂jh

j

where we note that the covariant ∂j means slopexj , the slope with respect to the contravariant
coordinates.

The curl is generally a two-index tensor. (Since it is antisymmetric, it has only one independent
component in two dimensions, so we’ve been getting away with writing it as a scalar.) We don’t

want a mixed tensor (one index up, the other down) so of the four possibilities, curljk, curlkj , curl
j
k

and curljk we’ll choose the first—both indices covariant—because it will be the easiest to use in
future. Thus

curl× f = ∂1f2 − ∂2f1 curl× h = ∂1h2 − ∂2h1

Here are the preliminaries for x

(x1 x2) = (x1 x2)

(

ℓ1c1 ℓ1s1
ℓ2c2 ℓ2s2

)

so

r =
√

x1
2 + x2

2

=
√

(ℓ1c1x1 + ℓ2c2x2)2 + (ℓ1s1x1 + ℓ2s2x2)2

=
√

(ℓ1x1)2 + 2ℓ1ℓ2c21x1x2 + (ℓ2x2)2

where, again, c21 = c1c2 + s1s2 is the cosine of the angle between the axes e1 and e2. (And we’ll
soon need the counterpart, s21 = c1s2 − c2s1, the sine of that angle.)

We will need
(

∂1

∂2

)

r =
1

r

(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)(

x1

x2

)

Here are the divergences of f and h in gypsum coordinates.

(f1 f2) = (f 1 f 2)

(

ℓ1c1 ℓ1s1
ℓ2c2 ℓ2s2

)−1
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= rp−1(x1 x2)

(

ℓ1c1 ℓ1s1
ℓ2c2 ℓ2s2

)(

ℓ1c1 ℓ1s1
ℓ2c2 ℓ2s2

)−1

= rp−1(x1 x2)

(

∂1

∂2

)

(f1 f2)

= rp−1
(

1
1

)

+ (p− 1)rp−3
(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)(

x1

x2

)

(x1 x2)

from which, summing the diagonals and using the above expression for r,

div.f = ∂jf
j = (p+ 1)rp−1

as before: divergence is an invariant scalar.

Next, h

(h1 h2) = (h1 h2)

(

ℓ1c1 ℓ1s1
ℓ2c2 ℓ2s2

)−1

= rp−1(−x2 x1)

(

ℓ1c1 ℓ1s1
ℓ2c2 ℓ2s2

)−1

= rp−1(x1 x2)

( −ℓ1s1 ℓ1c1
−ℓ2s2 ℓ2c2

)(

ℓ1c1 ℓ1s1
ℓ2c2 ℓ2s2

)−1

= rp−1(x1 x2)

( −ℓ1s1 ℓ1c1
−ℓ2s2 ℓ2c2

)(

ℓ2s2 −ℓ1s1
−ℓ2s2 ℓ2c2

)

1

ℓ1ℓ2s21

= rp−1(x1 x2)

( −ℓ1ℓ2c21 ℓ211
−ℓ22 ℓ1ℓ2c21

)

1

ℓ1ℓ2s21
(

∂1

∂2

)

(h1 h2) = rp−1
( −ℓ1ℓ2c21 ℓ211

−ℓ22 ℓ1ℓ2c21

)

1

ℓ1ℓ2s21

+(p− 1)rp−3
(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)(

x1

x2

)

(x1 x2)

(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)

1

ℓ1ℓ2s21

= rp−1
( −ℓ1ℓ2c21 ℓ211

−ℓ22 ℓ1ℓ2c21

)

1

ℓ1ℓ2s21

+(p− 1)rp−3
(

ℓ21x
1 + ℓ1ℓ2c21x

2

ℓ1ℓ2c21x
1 + ℓ22x

2

)

(−ℓ1ℓ2c21x1 − ℓ22x2 ℓ21x
1 + ℓ1ℓ2c21x

2)

and, summing the diagonals
div.h = 0

These results on divergence can be captured generally, using

fm = Xmjf
j

= Xm
kfk

XmjXm
k = δk

j

XmjXn
j = δmn

XmjXmk = gjk

Xm
jXm

k = gjk

Xmj = ∂jxm

Xm
k = ∂kxm

Xm
k = ∂mxk

∂jf
j = Xmj∂m(Xn

jfn)

= XmjXn
j∂mfn

= δmn∂mfn

= ∂mfm
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where we’ve used the inverse of Xnj in the first line and in the second line, and the assumption

that the transformations X do not depend on the coordinates.

Here are the curls of f and h in gypsum coordinates.

(f1 f2) = (f 1 f 2)

(

ℓ1c1 ℓ2c2
ℓ1s1 ℓ2s2

)

= rp−1(x1 x2)

(

ℓ1c1 ℓ1s1
ℓ2c2 ℓ2s2

)(

ℓ1c1 ℓ2c2
ℓ1s1 ℓ2s2

)

= rp−1(x1 x2)

(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)

(

∂1 ∂2
)

(f1 f2) = rp−1
(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)

+(p− 1)rp−3
(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)(

x1

x2

)

(x1 x2)

(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)

and, since all the matrices are symmetric,

curl× f = 0

Next, h

(h1 h2) = (h1 h2)

(

ℓ1c1 ℓ2c2
ℓ1s1 ℓ2s2

)

= rp−1(x1 x2)

( −ℓ1s1 ℓ1c1
−ℓ2s2 ℓ2c2

)(

ℓ1c1 ℓ2c2
ℓ1s1 ℓ2s2

)

= rp−1(x1 x2)

(

1
−1

)

ℓ1ℓ2s21

(

∂1 ∂2
)

(f1 f2) = rp−1
(

1
−1

)

ℓ1ℓ2s21

+(p− 1)rp−3
(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)(

x1

x2

)

(x1 x2)

(

1
−1

)

ℓ1ℓ2s21

= rp−1
(

1
−1

)

ℓ1ℓ2s21

+(p− 1)rp−3
(

ℓ21x
1 + ℓ1ℓ2c21x

2

ℓ1ℓ2c21x
1 + ℓ22x

2

)

(−x2 x1)ℓ1ℓ2s21

so that, subtracting the off-diagonals and using the contravariant r

curl× h = (2rp−1 + (p− 1)rp−3r2)ℓ1ℓ2s21

= (p+ 1)rp−1 detX

where

ℓ1ℓ2s21 = det

(

ℓ1c1 ℓ2c2
ℓ1s1 ℓ2s2

)

the determinant of the transformation or, alternatively the square root of

g = det

(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)
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11. Polar coordinates. A commonly-used alternative coordinate system is polar, with the distance
from the origin r and the angle θ as the two coordinates.

r =
√

x2 + y2

θ = atan(y, x)

x = r cos θ

y = r sin θ

We introduce the idea of local coordinate systems in which an observer at point (r, θ) describes a
vector (∆r,∆θ) in terms of how much r and θ must change from the observer’s standpoint (r, θ) to
the top of the vector at (r + ∆r, θ + ∆θ). (That’s in terms of coordinates. In terms of lengths we
need (r + ∆r, rθ + r∆θ).)

In order to measure distances correctly, the local basis vectors must have length 1 in the r direction
and have length r in the (orthogonal) θ direction, because the length s satisfies

s2 = (∆r)2 + (r∆θ)2

So we have
(

er

eθ

)

=

(

c s
−rs rc

)

(

ǫx

ǫy

)

(Please remember that, since these are vectors, i.e., two-dimensional intervals, they are described
independently of their locations, i.e., their starting points.)

This is an orthogonal but not normalized coordinate system with metric

gdd =

(

er.er eθ.er

er.eθ eθ.eθ

)

=

(

1
r2

)

So the contravariant coordinates for a vector v in this basis are given by

(vx vy) = v = (vr vθ)

(

er

eθ

)

= (vr vθ)

(

c s
−rs rc

)

(

ǫx

ǫy

)

Because the polar coordinate basis is not orthonormal it must have a different dual basis with
metric

guu = gdd
−1 =

(

er.er eθ.er

er.eθ eθ.eθ

)

=

(

1
1/r2

)

and with transformation matrix the transpose of the inverse of the ǫj → ek transformation

(

er

eθ

)

=

(

c s
−s/r c/r

)

(

ǫx

ǫy

)

And we can check

guu =

(

er

eθ

)

(er eθ) =

(

c s
−s/r c/r

)

(

ǫx

ǫy

)

(ǫx ǫy)

(

c −s/r
s c/r

)

=

(

c s
−s/r c/r

)(

c −s/r
s c/r

)

=

(

1
1/r2

)

(er eθ)

(

er

eθ

)

= (ǫx ǫy)

(

c −rs
s rc

)(

c s
−s/r c/r

)

(

ǫx

ǫy

)

= (ǫx ǫy)

(

ǫx

ǫy

)

=

(

1
1

)
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Here is a vector v, shown in three different locations, two of them at two different local polar
coordinate systems.

ε

ε

y

x

rev

v

eθ

(r,θ) = (2,π/6)

(r ,θ ) = (3,π/4)

er

v

eθ

1

2

The components of the vector v in the three systems are

(vx vy) = (0
√

2)

(vr vθ) = (vx vy)

(

c −s/r
s c/r

)

(vr vθ) = (vx vy)

(

c −rs
s rc

)

(r θ) = (2 π/6)

(c s) = (
√

3/2 1/2)

(vr vθ) = (1/
√

2
√

3/(2
√

2))

(vr vθ) = (1/
√

2
√

6)

(r θ) = (3 π/4)

(c s) = (1/
√

2 1/
√

2)

(vr vθ) = (1 1/3)

(vr vθ) = (1 3)

and you can easily check the contravariant components (1 1/3) at (r θ) = (3 π/4) in the diagram.
And note that the length of v is

√
2 in all systems.

2 = (0
√

2)

(

0√
2

)

=

(

1√
2

√
3

2
√

2

)(

1/
√

2√
6

)

=

(

1
1

3

)(

1
3

)

Now let’s work with contravariant coordinates at the two locations, calling the first location 1 (at,
say, (2 π/6)) and the second location 2 (at, say, (3 π/4)), and labelling the c and s accordingly.

(

vx

vy

)

=





c1 −r1s1

s1 r1c1





(

v1
r

v1
θ

)

=

(

c1 −s1

s1 c1

)

(

1
r1

)

(

v1
r

v1
θ

)
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(

vx

vy

)

=





c2 −r2s2

s2 r2c2





(

v2
r

v2
θ

)

=

(

c2 −s2

s2 c2

)

(

1
r2

)

(

v2
r

v2
θ

)

To go directly from location 1 to location 2 we must eliminate the orthonormal coordinates (v1 v2).

(

v1
r

v1
θ

)

=

(

1
1/r1

)

(

c1 s1

−s1 c1

)(

vx

vy

)

=

(

1
1/r1

)

(

c1 s1

−s1 c1

)(

c2 −s2

s2 c2

)

(

1
r2

)

(

v2
r

v2
θ

)

=

(

1
1/r1

)

(

c21 −s21

s21 c21

)

(

1
r2

)

(

v2
r

v2
θ

)

where c21 and s21 are again, respectively, the cos and sin of the difference in angles θ2− θ1.

This transformation between the coordinate system at point 1 and the coordinate system at point
2 introduces something new.

The transformation now depends on the coordinates (r1, θ1) and (r2, θ2). It will no longer be possible

to commute the operation of taking slopes with the transformation.

∂rX(r, θ) 6= X(r, θ)∂r

∂θX(r, θ) 6= X(r, θ)∂θ

So we will have to adjust our idea of tensors (Note 3) to this new situation: a tensor will still
transform identically on all indices, but the transformation will need to be more subtle, particularly
where slopes are concerned.

We’ll soon need the above transformation from v2 to v1 in index notation.

v1
j = X12

j
j′v2

j′

X12
j
j′ = X1m

jX2mj′

v2
j′ = X21

j′

j v1
j

X21
j′

j = X2m
j′X1mj

X12
j
ℓX21

ℓ
k = δj

k

v1j = X21
j′

j v2j′

v2j′ = X12
j
j′v1j

12. The affine connection. To adjust the operation of slope to the new, coordinate-dependent,
transformation, we must now consider transformations between two coordinate systems located
arbitrarily closely together, say

r1 = r

θ1 = θ

r2 = r + ∆r

θ2 = θ + ∆θ

for sufficiently small ∆r, ∆θ.

Then
(

v1
r

v1
θ

)

=

(

1
1/r1

)

(

c21 −s21

s21 c21

)

(

1
r2

)

(

v2
r

v2
θ

)
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becomes
(

v1
r

v1
θ

)

=

(

1
1/r

)

(

c21 −s21

s21 c21

)

(

1
r + ∆r

)

(

v2
r

v2
θ

)

and since ∆θ is small, c21 = cos(θ2− θ1) = cos(∆θ) ≈ 1 and s21 = sin(θ2− θ1) = sin(∆θ) ≈ ∆θ, we

now have
(

v1
r

v1
θ

)

≈
(

1
1/r

)(

1 −∆θ
∆θ 1

)(

1
r + ∆r

)

(

v2
r

v2
θ

)

≈
((

1
1

)

+

(

0 −r∆θ
∆θ/r ∆r/r

))

(

v2
r

v2
θ

)

eliminating powers of ∆r and ∆θ higher than the first.

We can write this transformation as
X = I + ∆X

and we see that ∆X is linear in the small change (∆r, ∆θ).

So we’d like to express ∆X as the product of something with the vector (∆r ∆θ).

Unfortunately there is no way that “something” can be a matrix—try it! We’re going to need to
go to three indices,

∆Xj
ℓ = Γj

kℓ∆
k

so we’ll switch to relations (Note 4).

∆Xud(j ℓ ∆X )
r θ −r∆θ
θ r ∆θ/r
θ θ ∆r/r

∆(k ∆ )
r ∆r
θ ∆θ

And here’s the Γ that will do it—try it!

Γudd(j k ℓ Γ )

r θ θ −r
θ r θ 1/r
θ θ r 1/r

Γ is called the affine connection because it is a linear connection between coordinate systems which
are translated and linearly deformed from one another. It is also commonly named after Elwin
Bruno Christoffel.

Notice that Γ is symmetric on k and ℓ.

Notice also that the index positions are dictated by the contravariance of the coordinates being
transformed.

v1
j = (δj

k + ∆xj
k)v2

k

∆Xj
ℓ = Γj

kℓ∆
k

The dummy indices, over which summations are performed, are alternatively up and down, to keep
the result a tensor, and the other indices match partners across the = signs.

Because it arises from very small changes in the coordinates, we can obtain Γ directly from slopes.
We’ll investigate the slopes of the basis vectors ek

∂jek
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Since the basis vectors located at point xj change as xj changes, ∂jek reflects this change.

We’ll use transformation X from Note 10 and earlier

f j = Xm
jfm

f jej = f = fmǫm

= fmδmnǫn

= fmXm
jXnjǫn

so
ej = Xnjǫn

or
ǫn = Xn

jej

Thus

∂jek = ∂j(Xnkǫn)

= ∂j(Xnk)ǫn

= ∂j(Xnk)Xn
ℓeℓ

= Γℓ
jkeℓ

where we’ve defined
Γℓ

jk
def
= ∂j(Xnk)Xn

ℓ

Let’s see if they are the same as before in polar coordinates.

(

er

eθ

)

=

(

c s
−s/r c/r

)

(

ǫx

ǫy

)

∂d(j ∂ )

r sloper

θ slopeθ

Xdu(n k X )

1 r c
1 θ −rs
2 r s
2 θ rc

(∂X)ddu(j k n ∂ )

θ r 1 −s
θ r 2 c
r θ 1 −s
r θ 2 c
θ θ 1 −rc
θ θ 2 −rs

Xmu(n ℓ X )

1 r c
1 θ −s/r
2 r s
2 θ c/r
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(∂X ⊲⊳ X)ddmu(j k n ℓ ∂XX )

θ r 1 r −cs
θ r 2 r cs
θ r 1 θ s2/r
θ r 2 θ c2/r
r θ 1 r −cs
r θ 2 r cs
r θ 1 θ s2/r
r θ 2 θ c2/r
θ θ 1 r −rc2
θ θ 2 r −rs2
θ θ 1 θ cs
θ θ 2 θ −cs

(X∂X)ddu(j k ℓ X∂X )

θ r θ 1/r
r θ θ 1/r
θ θ r −r

Γudd(ℓ j k Γ )

r θ θ −r
θ r θ 1/r
θ θ r 1/r

Γudd is what we got before.

We can also show the symmetry: since

Xmj = ∂jxm

is itself a slope

Γℓ
jk = (∂j(∂kxm))Xn

ℓ

= (∂k(∂jxm))Xn
ℓ

= Γℓ
kj

And we can show that
∂je

k = −Γk
jℓe

ℓ

To do this, note that

gkk′ = XmkXmk′

∂jgkk′ = Xmk∂jXmk′ +Xmk′∂jXmk

= gℓkXm
ℓ∂jXmk′ + gℓk′Xm

ℓ∂jXmk

= gℓkΓ
ℓ
jk′ + gℓk′Γℓ

jk

where we’ve used gdd to lower indices in Xmu. We use this new relationship in the following.

We assume an analogue to Γ which we’ll call H and we’ll show that H = −Γ. We know, from the
definition of Γ,

Γℓ
jkeℓ = ∂jek

Here is the analogous definition of H and what follows from it.

Hk
jℓe

ℓ = ∂je
k = ∂j(g

kk′

ek′)

= ∂j(g
kk′

)ek′ + gkk′

∂jek′

= gℓkHk′

jℓek′ + gℓk′

Hk
jℓek′ + gkk′

∂jek′

= Hk′

jℓg
ℓkgk′ℓ′e

ℓ′ +Hk
jℓe

ℓ + gkk′

Γℓ
jk′gℓℓ′e

ℓ′

0 = Hk′

jℓg
ℓkgk′ℓ′ + gkk′

Γℓ
jk′gℓℓ′

= Hℓ
jk′gℓkgℓℓ′ + gkk′

Γℓ
jk′gℓℓ′
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and it suffices for the latter to hold that

Hℓ
jk′ = −Γℓ

jk′

In the above derivation the following explanations may help. In line 3 we introduced H as the
analogue of Γ in taking the slope of the metric. In line 5 we cancelled two terms and then equated
the coefficients of eℓ′ because that vector itself is not zero. In line 6 we exchanged names of two
dummy indices: k′ ↔ ℓ.

When we introduced the metric gdd in Note 9 we got away from the orthonormal coordinate system

we had started with and became able to work purely in the general coordinate systems we’re now
transforming into each other.

We should be able to do that, too, with the affine connection Γ. We have derived Γ in terms of the
slope of the orthonormal-to-general transformation, X, but we also know that g is the product of
X with its transpose.

So can we find Γudd in terms of slopes of gdd? A clue is the relationship we’ve just derived. Since

gkk′ = XmkXmk′ we showed that ∂jgkk′ = gℓkΓ
ℓ
jk′ + gℓk′Γℓ

jk

We can write this down twice more permuting the indices and then add the first two and and
subtract the third to eliminate all but one of the Γudd s.

∂jgkk′ = gℓkΓ
ℓ
jk′ + gℓk′Γℓ

jk

∂k′gjk = gℓjΓ
ℓ
k′k + gℓkΓ

ℓ
k′j

∂kgk′j = gℓk′Γℓ
kj + gℓjΓ

ℓ
kk′

2gℓkΓ
ℓ
jk′ = ∂jgkk′ + ∂k′gjk − ∂kgk′j

Γℓ
jk′ =

1

2
gℓk(∂jgkk′ + ∂k′gjk − ∂kgk′j)

Note that the symmetry of Γudd follows from the symmetry of gdd.

The affine connection Γudd depends only on the metric gdd (and it involves slopes of gdd). This

means that we can work with spaces—such as the 2-D surface of a sphere—for which there is no
obvious orthonormal coordinate system to build on.

The properties of a coordinate system are determined by the metric alone.

13. Parallel transport and geodesics. The components of a vector v also vary, as we have seen,
as the location of the coordinate system giving those components is changed. We can describe this
variance using Γudd.

Since
v = vjej

we can find the component vk

v · ek = vjeje
k = vjδk

j = vk

So the slope of a component

∂jv
k = ∂j(v · ek)

= ∂j(v) · ek + v · ∂je
k

= ∂j(v) · ek − v · Γk
jj′e

j′

= ∂j(v) · ek − Γk
jj′v

j′
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where ∂j(v) · ek is the kth contravariant component of the slope of the vector v.

What if ∂j(v) = 0? This means that the vector does not change as we move its location from one
local coordinate system to another. That is, since the origin of v can be anywhere in the space (a
vector is an interval, not an absolute position), the vector v can be thought of as moving parallel
to itself.

This is parallel transport.

∂jv
k = −v · Γk

jj′e
j′

We can use it to create geodesics. A geodesic may be described as the shortest path between two
points. Or we can explore a more useful definition.

In a flat space, a geodesic is a straight line, the original concept given by the shortest-path definition.

In a curved space (which we haven’t come to yet) such as the 2-D surface of a sphere, a geodesic
is a segment of a “great circle”, the line resulting from cutting the sphere by a plane through its
centre.

It is fairly apparent, and an alternate definition which is better for us is, that a geodesic can be
generated by a small vector, moved repeatedly parallel to itself by placing its origin at its previous
tip.

v′k = vk + ∆vk

where
∆vk = (∂jv

k)∆j = −Γk
jj′v

j′∆j

so
v′k = (δk

j′ − Γk
jj′∆

j)vj′

(Note the sign difference from the beginning of Note 12: why?)

We can illustrate geodesic generation for polar coordinates in a plane because we already have,
from Note 12 (in the mud notation a d and a u are omitted because they are dummy variables and

summed over)

Γu−d∆− =

(

0 −r∆θ

∆θ/r ∆r/r

)

A MATLAB function [v, origin] = geodPlanePolarStep(v,origin) can calculate

v = v −
(

0 −r∆θ

∆θ/r ∆r/r

)

v

and the new origin
(

r + ∆r

θ + ∆θ

)

given vector

v =

(

∆r

∆θ

)

and its origin (r, θ).

This step can be iterated n times by
ends = geodesicPlanePolar(v,start,n,stepsize)

which reduces v to a vector in the same direction but divided in length down to stepsize, and
starting the iteration at origin start

Here is a result with, initially
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direction of v start n stepsize

1 2 1000 0.01
1/2 π/6

  5

  10

  15

30

210

60

240

90

270

120

300

150

330

180 0

Plane polar geodesic starting at (2      0.5236) in direction (1         0.5)

We see the 1000 steps as a straight line—a geodesic in this flat space, never mind that it is all
calculated in terms of varying polar coordinates.

Note that the vector v = (1 1/2)T appears in the initial coordinate system at (r, θ) = (2, π/6) as
a vector from the origin at (r, θ) = (2, π/6) to the point (1∆r, (1/2)r∆θ)

x

y

v

1/2

1

1

θ)(r,

ε

ε

e

e r

θ

14. Absolute slopes. From Note 13 we have

(∂jv) · ek = ∂jv
k + Γk

jℓv
ℓ

and we can see that neither ∂jv
k nor Γk

jℓv
ℓ is a tensor, even though vk is. Hence neither ∂j nor Γk

jℓ
is a tensor.

For vk transforms as
v2

k′

= X21
k′

k v1
k

but

∂2j′v2
k′

= X21
j
j′∂1j(X21

k′

k v1
k)

6= X21
j
j′X21

k′

k (∂1jv1
k)

44



because X21 now generally depends on the coordinate x1
j.

We want to claim that (∂jv) · ek is a tensor, because v and ek both certainly are tensors, being
vectors independent of any coordinate system.

Let’s check an example, using the radial field f = rrp−1 in polar coordinates.

(

f r

f θ

)

=

(

c s
−s/r c/r

)

(

f x

f y

)

=

(

c s
−s/r c/r

)(

x
y

)

rp−1

=

(

c s
−s/r c/r

)(

c
s

)

rp

=

(

rp

0

)

and
(

∂r

∂θ

)

=

(

c s
−sr cr

)

(

∂x

∂y

)

In Cartesian coordinates (x, y) the metric g is independent of x, y: it is the identity matrix gjk = δjk.

So the affine connection, being a combination of slope g with respect to the coordinates, is 0.

So we have in orthogonal coordinates (we’ll call them the 0-system, so the affine connection Γ′
1 = Γ0)

((

∂x

∂y

)

f

)

· (ǫx ǫy) =

(

∂x

∂y

)

(f x f y) + Γ0kjℓf ℓ

=

(

∂x

∂y

)

(f x f y)

=

(

∂x

∂y

)

(x y)rp−1

=

(

1
1

)

rp−1 + (p− 1)rp−3
(

x2 xy
xy y2

)

where Γ0 = 0 gives the second line and the fourth line was worked out in Note 10.

In polar coordinates (system 1)

((

∂r

∂θ

)

f

)

· (er eθ) =

(

∂r

∂θ

)

(f r f θ) + Γ1
kjℓf ℓ

=

(

∂r

∂θ

)

(rp 0) + Γ1udd ⊲⊳ f u

= p
(

1
)

rp−1 +

(

1

)

rp−1

=

(

p
1

)

rp−1
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where Γ1udd ⊲⊳ f u in line 2 expresses the join of

Γ1udd(k j ℓ Γ )

r θ θ −r
θ r θ 1/r
θ θ r 1/r

with
f u(ℓ f )

r rp

But we can get this result by tensor transform of (∂jf) · ek (using x = cr, y = sr):

We need
(

er

eθ

)

=

(

1
1/r2

)(

er

eθ

)

=

(

1
1/r2

)(

c s
−rs rc

)

(

ǫx

ǫy

)

=

(

c s
−s/r c/r

)

(

ǫx

ǫy

)

and

(er eθ)

(

vr

vθ

)

= (ǫx ǫy)

(

c −s/r
s c/r

)(

vr

vθ

)

= (ǫx ǫy)

(

vx

vy

)

so
(

vr

vθ

)

=

(

c s
−rs rc

)

(

vx

vy

)

and, since ∂j transforms as does vj ,

(

∂r

∂θ

)

=

(

c s
−rs rc

)

(

∂x

∂y

)

Thus

((

∂r

∂θ

)

f

)

· (er eθ) =

(

c s
−rs rc

)

f · (ǫx ǫy)

(

∂x

∂y

)

(

c −s/r
s c/r

)

=

(

c s
−rs rc

) [(

1
1

)

rp−1 + (p− 1)

(

c2 cs
cs s2

)

rp−1
](

c −s/r
s c/r

)

=

(

1
1

)

rp−1 + (p − 1)
(

1
)

rp−1

=

(

p
1

)

rp−1

Here (∂jf) · ek = ∂jf
k + Γk

jℓf
ℓ transforms as a tensor—although the individual components each

do not.

We conclude that (∂jf) · ek is a tensor and should be used instead of ∂jf
k which is not.

We need a notation for the “absolute slope”

Djf
k def

= (∂jf) · ek = ∂jf
k + Γk

jℓf
ℓ
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This tells us how much the vector field v changes itself as we move along coordinate j, without
being misled by “changes” in its components due to the changing coordinate system.

15. Gradient, divergence and curl with absolute slope. Now that we have absolute slopes, we
use them everywhere we formerly used slopes. In Cartesian coordinates, or coordinate systems
whose transformation from Cartesian is independent of the coordinates, the results are the same
as before. In other coordinate systems the regular slopes are wrong because they do not transform
as tensors. The absolute slopes do.

A source of variety, and confusion, is that there are both covariant and contravariant absolute
slopes. We’ve introduced the covariant one Dj, which is always used, for reasons this Note tries
to make clear. But there is also the contravariant absolute slope, Dj, which is equally valid in
principle if not in practice.

a) Here are the four possible combinations of absolute slope

Co-co

Djvk = ∂jvk − Γℓ
jkvℓ

Co-contra

Djv
k = ∂jv

k + Γk
jℓv

ℓ

Contra-co

Djvk = ∂jvk − gjj′Γℓ
j′kvℓ

Contra-contra

Djvk = ∂jvk + gjj′Γk
j′ℓv

ℓ

The bottom two are simple transformations of the two above, using the metric guu to raise the

index j from down to up.

The relationship between the top two needs work. Here we derive co-co from co-contra.

We must show that all that changes between the two is the sign on the affine connection Γudd—and

of course a necessary repositioning of the indices to keep up and down consistent.

Djvk = Dj(gkk′vk′

)

= gkk′Djv
k′

= gkk′∂jv
k′

+ gkk′Γk′

jℓv
ℓ

= ∂j(gkk′vk′

)− (∂jgkk′)vk′

+ gkk′Γk′

jℓv
ℓ

= ∂j(gkk′vk′

)− (gk′ℓ′Γ
ℓ′
jk + gkℓΓ

ℓ
jk′)vk′

+ gkk′Γk′

jℓv
ℓ

= ∂jvk − (gk′ℓ′Γ
ℓ′

jk + gkℓΓ
ℓ
jk′ − gkℓΓ

ℓ
jk′)vk′

= ∂jvk − gk′ℓ′Γ
ℓ′

jkv
k′

= ∂jvk − Γℓ
jkvℓ

In the above, the second line follows from the important fact that the absolute slope of the metric
is zero: the metric is constant. We show this below, but first continue commenting on the above
derivation.

The third line is the co-contra absolute slope which we showed in Note 14.

The fourth line uses the rule for the slope of a product.

The fifth line uses the expansion of ∂g from Note 12.

Then it is just index rearrangement, cancellation and lowering the index of v.

Now we show that the metric is always constant. We use

Γℓ
jk =

1

2
gℓρ(∂jgkρ + ∂kgjρ − ∂ρgjk)
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from Note 12 and an extension, which we do not prove, of the absolute slope (co-co) applied to
variables of more than one index.

Djgkk′ = ∂jgkk′ − Γℓ
jkgkk′ − Γℓ

jk′gkℓ

= ∂jgkk′ − 1

2
δρ
k′(∂jgkρ + ∂kgjρ − ∂ρgjk)−

1

2
δρ
k(∂jgk′ρ + ∂k′gjρ − ∂ρgjk′)

= ∂jgkk′ − 1

2
(∂jgkk′ + ∂kgjk′ − ∂k′gjk + ∂jgkk′ + ∂k′gjk − ∂kgjk′)

= 0

b) There are two possible gradients, now using absolute slopes in place of the ordinary slope.

Co

DjS = ∂jS

Contra

DjS = ∂jS

These need no affine connection because the field whose slope is being found has no indices.

c) One of the four varieties of curl, co-co, has a particularly simple form, because of the symmetry
of Γ.

Co-co

Djvk −Dkvj = ∂jvk − Γℓ
jkvℓ

−∂kvj + Γℓ
kjvℓ

= ∂jvk − ∂kvj

Co-contra

Djv
k −Dkv

j = ∂jv
k + Γk

jℓv
ℓ

−∂kv
j − Γj

kℓv
ℓ

Contra-co

Djvk −Dkvj = ∂jvk − gjj′Γℓ
jj′v

ℓ

−∂kvj + gkk′

Γℓ
kk′vℓ

Contra-contra

Djvk −Dkvj = ∂jvk − ∂kvj

+gjj′gkk′

(∂j′gℓk′ − ∂k′gℓj′)v
ℓ

d) We saved divergence for last because the co-contra form can be simplified, with some work, to
a form involving

√
g, the square root of the determinant of gdd.

We’ll give an unexplained derivation immediately below, and explain it after presenting all four
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versions.

Co-co

Djvj = ∂jvj − Γℓ
jjvℓ

= ∂jvj −
1

2
gℓρ(∂jgjρ + ∂jgjρ − ∂ρgjj)vℓ

= ∂jvj +
1

2
gℓρ(∂ρgjj)vℓ − gℓρ(∂jgjρ)vℓ

Co-contra

Djv
j = ∂jv

j + Γj
jℓv

ℓ

= ∂jv
j +

1

2
gjℓ′(∂jgℓℓ′ + ∂ℓgjℓ′ − ∂ℓ′gjℓ)v

ℓ

= ∂jv
j +

1

2
gjℓ′∂ℓgjℓ′v

ℓ

+ (
1

2
gjℓ′∂jgℓℓ′ −

1

2
gjℓ′∂ℓ′gjℓ)v

ℓ

= ∂jv
j +

1

2
gjℓ′∂ℓgjℓ′v

ℓ

= ∂jv
j +

1

2
tr(G−1∂ℓG)vℓ

= ∂jv
j +

1

2
(∂ℓ ln detG)vℓ

= ∂jv
j + (∂ℓ ln

√
g)vℓ

= ∂jv
j +

1√
g
(∂ℓ
√
g)vℓ

=
1√
g
∂ℓ(
√
gvℓ)

Contra-co

Djvj = ∂jvj − gjj′Γℓ
j′jvℓ

Contra-contra

Djvj = ∂jvj + gjj′Γj
jℓv

ℓ

The co-contra version is the one that is used. The derivation needs some amplification. In line 5, G
is defined as the matrix gdd, the covariant metric tensor. Line 6 starts a derivation, for any matrix

G, which takes us back to line 5: see below. Line 7 uses the conventional definition g = detG.

Here is the derivation that takes us from line 5 to line 6 in the co-contra argument above.

∂ℓ ln detG ≈ 1

∆xℓ
∆ ln detG

=
1

∆xℓ
(ln det(G+ ∆G)− ln detG)

=
1

∆xℓ
ln

(

det(G+ ∆G)

detG

)

=
1

∆xℓ
ln det(G−1(G+ ∆G))

=
1

∆xℓ
ln det(1 +G−1∆G)

≈ 1

∆xℓ
ln(1 + tr(G−1∆G))

≈ 1

∆xℓ
tr(G−1∆G)

≈ tr(G−1∂ℓG)

And even this derivation needs comment. The jump from det in line 5 to trace in line 6 follows
because the ∆G produces dth powers of shrinkingly small quantities in the determinant everywhere
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except on the diagonal. For example, in 2D, d = 2:
∣

∣

∣

∣

1 + g11∆g11 g12∆g12
g21∆g21 1 + g22∆g22

∣

∣

∣

∣

= 1 + g11∆g11 + g22∆g22 +O(∆2)

The step in line 7 uses the expansion ln(1 + x) = x+ x2/2 + .., stopping at the linear term.

16. Spherical polar coordinates. The three-dimensional extension of plane polar coordinates
involves two angles.

φ

e

xε

yε

zε

θ

er
eφ

θ,φ)(r,

r sin(  )θ

θ

from which we can read off the metric

gdd =





1
r2

r2s2





where we can continue to abbreviate sinθ as s because there is no dependence on angle φ in the
metric. (And c = cos θ.)

From the metric we can get the affine connection

Γudd(j k ℓ Γ )

r θ θ −r
r φ φ −rs2
θ r θ 1/r
θ θ r 1/r
θ φ φ −cs
φ r φ 1/r
φ φ r 1/r
φ θ φ c/s
φ φ θ c/s

We can move on to parallel transport and geodesics on the surface of a sphere. This means retaining
in the affine connection only those terms independent of r,

Γudd(j k ℓ Γ )

θ φ φ −cs
φ θ φ c/s
φ φ θ c/s

To transport a vector v parallel to itself, winding up as vector v′ we had in Note 13

v′j = (δj
k − Γj

kℓ∆
ℓ)vk

Here the small change ∆ℓ in coordinates is
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∆u(ℓ ∆ )

θ ∆θ

φ ∆φ

so the reduced join Γ∆ = Γ ⊲⊳ ∆ is

Γ∆ud(j k Γ∆ )

θ φ −cs∆φ
φ θ −cs∆φ
φ φ c/s∆θ

(

0 −cs∆φ
(c/s)∆φ (c/s)∆θ

)

given as a relation on the left and as a matrix on the right.

A MATLAB routine like that for plane polar geodesics in Note 13 can use parallel transport to
track geodesics on the surface of the Earth.

Here is the plot from the invocation
ends = geodesicLongLat([-60;66.5],Montreal’,Inuvik’,80,0.01)

where Montreal is at (−73.6, 45.5) degrees and the initial direction is not directly towards Inuvik
at (−133o43′, 68o21′) but in direction (-60,66.50), greatly shortened by a factor 100. (This is
an equirectangular projection from the sphere onto the plane: φ and θ are each mapped directly
(linearly) to x and y respectively.)

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

Spherical polar geodesic starting at (−73.6         45.5) in direction (−60         66.5)

Here is the great circle continuing entirely around the globe: I did not lift the pen as it switched
from −180 to 180 degrees of longitude.
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100
Spherical polar geodesic starting at (−73.6         45.5) in direction (−60         66.5)
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We can use our general results from Note 15 on divergence and curl to examine a “magnetic” field
and a “rotation” field, respectively, on the surface of a sphere.

Divergence. Here is the “magnetic” field, vθ = 1 = vθ and vφ = 0− vφ.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

The divergence must be a scalar and only co-contra and contra-co forms can give scalars, so we try
both.

Co-contra

∂jV
j + Γj

jℓV
ℓ = cos θ/ sin θ

1√
g
∂ℓ(
√
gV ℓ) =

1

sin θ
∂θ(sin θV

θ)

= cos θ/ sin θ

Contra-co

∂µV
µ + Γµ

µλV
λ = cos θ/ sin θ

1√
g
∂λ(
√
gV λ) =

1

sin θ
∂θ(sin θV

θ)

= cos θ/ sin θ

These results make sense as the divergence of the magnetic field from north pole to south pole:

θ 0 π/4 π/2 3π/4 π

cosθ 1 1/
√

2 0 −1/
√

2 −1
sinθ 0 1/

√
2 1 1/

√
2 0

cosθ/sinθ ∞ 1 0 −1 −∞

Curl. Here is the “rotation” field, vθ = 0 = vθ, vφ = sin θ and vφ = 1/ sin θ. (Note that we must
now accommodate the non-normalized coordinate system by multiplying or dividing by sinθ for the
down and up second coordinates respectively.
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Here is the result from the simplest approach, co-co.

DjVk −DkVj = ∂jVk − ∂kVj

= ∂θVφ − ∂φVθ

= ∂θ sin θ − ∂φ0

= cos θ

We can check these results with microscopic calculations following on from the microscopic deriva-
tions of div and curl we made in Note 6 for flat space.
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Divergence

f

∆
∆φθ

φ

a

θ

This example is a field of constant magnitude
f in the θ direction, the “area” it applies to
is a sin θ∆φ and the “volume of the region is
(a∆θ)(a sin θ∆φ) = a2sinθ∆θ∆φ.

• total flow at boundary = fa sin θ∆φ;

• net flow from region = slope of this =
f cos θ∆θ∆φ;

• net flow per unit area =

(f/a)(cos θ/ sin θ)

which agrees with the divergence above
and is also plausibly inversely propor-
tional to the radius a of the sphere: at
infinite radius the surface would be flat
and have no divergence (except maybe
at the poles).

Curl

f
∆

∆φθ

φ

a

θ

This example is a field of constant magni-
tude f sin θ in the φ direction (for a covari-
ant system), the “area” it applies to is again
a sin θ∆φ and the “volume of the region is
again (a∆θ)(a sin θ∆φ) = a2sinθ∆θ∆φ.

• total flow at boundary = fa sin2 θ∆φ;

• net flow perpendicular to region = slope
of this = 2f cos θ sin θ∆θ∆φ;

• net flow per unit area = (f/a)(2 cos θ),
which agrees with the curl above (apart
from the 2) and is again plausibly in-
versely proportional to the radius a of
the sphere.

17. Curvature. How can we tell if we live in curved space? Suppose we were two-dimensional
creatures who can measure angles in a triangle. Then in flat, Euclidean, space, the angles would
total π in any triangle. But in curved space, the total would differ from π. Here is the example
of a sphere (which has “positive curvature”) with a particular triangle whose excess angle is π/2.
(Other triangles on a sphere will have different excess angles, but which will all be positive.)

excess angle =

2
π

Excess Angle for Triangles

α
γ

β
α β

γ

α+β+γ = π α = β = γ = 

− π =3π
2

π
2
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The excess angle may be measured by parallel transport. In a flat space a vector, transported
parallel to itself around a closed curve (for example a triangle), will return to its original orientation.
In a curved space it will not. Here is the same triangle on the sphere: we see that the final position,
4, of the vector differs by π/2 from its original position, 1.

Excess Angle by Parallel Transport

A =∆ π
2

4
1,4

3

2
21

3

excess angle

We no longer need triangles but can parallel-transport a vector around an arbitrary closed curve.
The diagram shows that this is the same as parallel-transporting the vector around each of a whole
bunch of parallelograms decomposing the area contained within the curve: each internal edge will
be traversed in both directions, cancelling out the effects of all internal edges and leaving only the
effect of the boundary, i.e., the curve itself.

For Arbitrary Curve

.. so just add up contributions

except on outer boundary

from each parallelogram

.. all loops cancel,

So we can focus on an infinitesimal parallelogram.

b’

Q

Ra’

For Infinitesimal Parallelogram

P

S

1

5

2

3
4

b

a

The analysis of this involves parallel-transporting the vector, which we’ll call v, around the paral-
lelogram, and parallel-transporting the edges a and b to give the other edges, respectively a′ and
b′, of the parallelogram itself.

There are three preliminaries.

First, a and b must be parallel-transported to a′ and b′.

b′ν = bν − ΓP
ν
γδa

γbδ
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a′ν = aν − ΓP
ν
γδb

γaδ

because the change in coordinate for moving a, ∆x = b and the change in coordinate for moving b,
∆x = a.

Note that in the four dimensions of timespace it is conventional to use Greek indices. More Greek
letters are available and free of alternative meanings than Roman. We will find that curvature
becomes really interesting in four or more dimensions. So we’re going to switch to Greek letters
for the remaining Notes.

Second, note that Γ has a midscript, P , to indicate that the Γ has been calculated as at point P .
Since we will also need Γ at points Q and S, this brings us to the second preliminary. We will need
the slope of Γ to approximate the infinitesimal transportation from P to these points.

ΓQ
µ
νλ = ΓP

µ
νλ + aαslopeαΓP

µ
νλ

ΓS
µ
νλ = ΓP

µ
νλ + bαslopeαΓP

µ
νλ

The third preliminary is a similar transportation of the vector v which is to be transported around
the entire parallelogram.

vQ
λ = vP

λ − ΓP
λ
αβa

αvP
β

vS
λ = vP

λ − ΓP
λ
αβb

αvP
β

We’ll work out the expression for the transport of v from P to Q to R, from which we can easily
get the transport of v from P to S to R by swapping a and b. Then we put the first together with
the negative of the second to get the transport of v from P to Q to R to S and back to P .

So we start work with only the first of each of the above three pairs of preliminary equations. We
break down ∆PQR = ∆PQ + ∆QR, where ∆PQv = vQ− vP etc.

∆PQvµ = −ΓP
µ
νλa

νvP
λ

∆QRvµ = −ΓQ
µ
νλb

′νvQ
λ

= −(ΓP
µ
νλ + aαslopeαΓP

µ
νλ)(bν − ΓP

ν
γδa

γbδ)(vP
λ − ΓP

λ
αβa

αvP
β)

= −ΓP
µ
νλb

νvP
λ + ΓP

µ
νλΓP

ν
γδa

γbδvP
λ + ΓP

µ
νλb

νΓP
λ
αβa

αvP
β − aα(slopeαΓP

µ
νλ)bνvP

λ + ..

where the terms left out in the last equality are those of orders higher than ab: the approximation
is linear.

Thus (and we drop the P midscript since it now appears everywhere),

∆PQRvµ = −Γµ
νλa

νvλ − Γµ
νλb

νvλ + Γµ
νλΓν

γδa
γbδvλ + Γµ

νλb
νΓλ

αβa
αvβ − aα(slopeαΓµ

νλ)bνvλ + ..

Now for the inverse of the path back: swap a and b.

∆PSRvµ = −Γµ
νλb

νvλ − Γµ
νλa

νvλ + Γµ
νλΓν

γδb
γaδvλ + Γµ

νλa
νΓλ

αβb
αvβ − bα(slopeαΓµ

νλ)aνvλ + ..

Subtracting the latter from the former we get a lot of cancellation and we can factor the abv part
out of every term.

∆PQRSPvµ = −Rµ
λαβa

αbβvλ

where
Rµ

λαβ
def
= slopeαΓµ

βλ − slopeβΓµ
αλ + Γµ

ανΓ
ν
βλ − Γµ

βνΓ
ν
αλ
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is the Riemann curvature tensor. (Note the grouping of λ and µ: this is the convention.)

Understanding this tensor is not immediate, so let’s try examples.

First, plane polar coordinates, with metric gαβ and affine connection Γα
βγ

g dd(α β g )
r r 1
θ θ r2

Γ udd(α β γ Γ )
θ θ r 1/r
θ r θ 1/r
r θ θ −r

The slopes of the affine connection are with respect to r. The first three lines below are calculated
and then rearranged into the second three lines for the second term in the curvature tensor.

slopeαΓµ
λβ(α µ λ β slopeΓ )

r θ θ r −1/r2

r θ r θ −1/r2

r r θ θ −1
−slopeβΓµ

λα r θ θ r 1/r2

θ θ r r 1/r2

θ r θ r −1

giving four terms, since the first of each triple cancel each other.

Here are the two products of affine connections with each other. The first is calculated (five lines)
and the second is a rearrangement, swapping α with β and not retaining the join index, ν.

Γµ
ναΓν

λβ(µ ν α λ β ΓΓ )

θ θ r θ r 1/r2

θ θ r r θ 1/r2

r θ θ θ r −1
r θ θ r θ −1
θ r θ θ θ r2

−Γµ
νβΓν

λα θ r θ r −1/r2

θ θ r r −1/r2

r r θ θ 1
r θ r θ 1
θ θ θ θ −r2

Here there are three pairs of cancellations—the first, fourth and fifth in each of the five-row sets—
leaving again four terms.

Finally, combining the two sets of four terms—one set from the slope calculations and one set from
the product—we find they all cancel. So the excess angle will be zero in plane polar coordinates.
That is exactly what should happen, since the space is flat. It has zero curvature.

The second example is curved: the surface of a sphere with metric gαβ and affine connection
Γα

βγ .

gdd(α β g )

θ θ r2

φ φ r2s2

Γudd(α β γ Γ )

θ φ φ −sc
φ θ φ c/s
φ φ θ c/s

where s = sin θ and c = cos θ. So the slopes are with respect to θ. We follow the same procedure
as for plane polar.
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slopeαΓµ
λβ(α µ λ β slopeΓ )

θ θ φ φ s2 − c2
θ φ θ φ −1/s2

θ φ φ θ −1/s2

−slopeβΓµ
λα φ θ φ θ c2 − s2

φ φ θ θ 1/s2

θ φ φ θ 1/s2

Cancellations again reduce these six rows to four.

Γµ
ναΓν

λβ(µ ν α λ β ΓΓ )

θ φ φ θ φ −c2
θ φ φ φ θ −c2
φ φ θ θ φ c2/s2

φ φ θ φ θ c2/s2

φ θ φ φ φ −c2
−Γµ

νβΓν
λα θ φ θ φ c2

θ θ φ φ c2

φ φ θ θ −c2/s2
φ θ φ θ −c2/s2
φ φ φ φ c2

Three pairs of cancellations reduce these also to four rows.

But the four rows from the slopes combine with the four rows from the products to produce a
non-zero curvature tensor.

R
µ
λαβ(µ λ α β R )

θ φ θ φ s2

φ θ θ φ −1
θ φ φ θ −s2
φ θ φ θ 1

Let’s look at
∆vµ = −Rµ

λαβa
αbβvλ

directly on the sphere for a small parallelogram of sides

a u(α a )
φ ∆φ

b u(β b )
θ ∆θ

The result is, with θ as the first and φ as the second index,

∆v = −
( −s2

1

)

v∆θ∆φ

∆v is thus orthogonal to v, and it turns v counterclockwise, as you can see in the two base cases

v ∆v
(

1
0

) (

0
−1

)

∆θ∆φ

v ∆v
(

0
1

) (

1
0

)

s2∆θ∆φ

The factor of s2 reflects a) a factor s = sin θ reducing the area ∆θ∆φ as θ moves from equator to
(either) pole, and b) a factor s multiplying the φ component of the test vector v to give its length.

Something neat happens if we lower the one up-index
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gµδR
δ
λαβ(µ δ λ α β gR )

θ θ φ θ φ r2s2

φ φ θ θ φ −r2s2
θ θ φ φ θ −r2s2
φ φ θ φ θ r2s2

If we remove the column for δ, the join index, we see that Rµλαβ has some symmetries

Rµλαβ(µ λ α β gR )
θ φ θ φ r2s2

φ θ θ φ −r2s2
θ φ φ θ −r2s2
φ θ φ θ r2s2

namely

Rµλαβ = −Rλµαβ

Rµλαβ = −Rµλβα

Rµλαβ = Rαβµλ

Let’s see if we can confirm these symmetries.

We must anticipate two advanced results. The first is that, by the meaning of tensors, a tensor
relationship which holds in one coordinate system also holds in any coordinate system. Excursion
Absolute slope and curvature shows that the curvature tensor is indeed a tensor in this definition.

The second advanced result is that, in a small enough region, a curved space is locally flat, and
that in this case, we can find coordinates in which the slope of the metric vanishes—although the
slope of this slope may not. See Excursion Local flatness.

So we look at the curvature tensor in such a coordinate system. The affine connection, being a
combination of slopes of the metric, vanishes, but its slope does not.

Rµ
λαβ = ∂αΓµ

λβ − ∂βΓµ
λα

Γµ
λβ =

1

2
gµδ(∂βgδλ + ∂λgδβ − ∂δgλβ)

∂αΓµ
λβ =

1

2
gµδ(∂α∂βgδλ + ∂α∂λgδβ − ∂α∂δgλβ)

∂βΓµ
λα =

1

2
gµδ(∂β∂αgδλ + ∂β∂λgδα − ∂β∂δgλα)

Rµ
λαβ =

1

2
gµδ(∂α∂λgδβ − ∂β∂λgδα + ∂β∂δgλα − ∂α∂δgλβ)

Rµλαβ =
1

2
(∂α∂λgµβ − ∂β∂λgµα + ∂β∂µgλα − ∂α∂µgλβ)

= A−B + C −D

In the above, the first line is the short, locally flat, version of the curvature tensor; the second line
is the definition of the affine connection; the third line is the slope of the affine connection, given
that gµδ has zero slope; the fourth line swaps α and β in the third line to give the term to be
subtracted; the fifth line is the difference of the third and fourth lines; the sixth line gets rid of the
leading g term by lowering the first index; and the seventh line abbreviates each of the respective
terms so that we can use them in the following rearrangements of the indices.

Rµλαβ = A−B + C −D
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Rλµαβ = D − C +B −A
Rµλβα = B −A+D − C
Rαβµλ = C −B +A−D

which proves the symmetries.

There is another symmetry which is not obvious from the 2-dimensional example of the surface of
a sphere. This is the cyclic symmetry

Rµλαβ +Rµβλα +Rµαβλ = A−B + C −D + E −A+ F − C +B − E +D − F
= 0

where A,B,C and D are as before, taking advantage of the symmetry of ∂α∂β and of gαβ , and
where E and F are additional terms which, as we see, cancel.

The cyclic symmetry reduces to the swap symmetries we saw first, unless all the indices are different.
Thus the cyclic symmetry says nothing for a space under four dimensions.

Back in two dimensions, the single independent number in the Riemann tensor is simply related to
the Gaussian curvature,

K = −R1212

g

Karl Friedrich Gauss’ “Theorema Egregium” (1827?) established the curvature (that is, the “inner”
curvature) of a 2D surface in terms of the metric tensor and its derivatives—that is by knowing
only measurements which creatures living in that surface can make. K relates the excess angle to
the area bounded by the curve traversed, in the limit that the area becomes arbitrarily small.

∆θ = K∆area

Bernhard Riemann subsequently generalized this result to any number of dimensions.

On a sphere we can talk about large areas because the curvature is constant, i.e., independent of
location on the sphere. (The symmetry of the sphere should make this apparent: what is there to
differentiate any particular location from any other?) So the excess angle for the 1/8 of the sphere
at the beginning of this Note is π/2 and its area is

4πr2

8
=
π

2
r2

so K = 1/r2.

The derivation of K from Rµλαβ usually goes from the full expression for R above to the even more
cumbersome expression Gauss derived for K. Here is a simpler derivation.

For a small angle formed by changing a vector v by ∆v the definition of angle in radians allows us
to say

∆θ =
|∆v |
| v |

We know that
∆vµ = −Rµ

λαβa
αbβvλ

and can work with this to get the infinitesimal area and the R1212.

In two dimensions, indices take on only two values which we’ll call 1 and 2. And the area of a
parallelogram of sides a and b is, using Cartesian coordinates

axby − aybx = | a || b | (cos φ sin(φ+ θ)− cos(φ+ θ) sinφ)

= | a || b | sin(φ+ θ − φ)

= | a || b | sin θ
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where a is inclined angle φ from the x-axis and b is inclined angle θ from a. The final result is the
area between two vectors of the magnitudes given and separated by angle θ.

We’ll actually need a1b2 − a2b1 but the transformation from (x, y) to non-orthonormal coordinates
is familiar (e.g., Note 8, Note 11) and we can invent a transformation matrix to write

(

a1

a2

)

=

(

p r
q s

)−1
(

ax

ay

)

=
1√
g

(

s −r
−q p

)

(

ax

ay

)

where
√
g = ps− qr, and similarly for b.

So

a1b2 − a2b1 =
1

g
[(sax− ray)(−qbx + pby)− (−qax + pay)(sbx− rby)]

=
1

g
[(ps− qr)axby − (ps− qr)aybx]

=
1√
g
(axby − aybx)

We can always find a coordinate system in which the metric tensor is diagonal, so we can assume this
without losing generality. (Make the basis orthogonal: choose a coordinate transformation which
is an orthogonal matrix, so its inverse is its transpose. This is a diagonalizing transformation.)

Putting this all together

∆vµ = −Rµ
λαβa

αbβvλ

= −Rµ
λαβ(aαbβ − aβbα)vλ restricting α < β

= −gµνRνλαβ(aαbβ − aβbα)vλ

= −gµµRµλαβ(aαbβ − aβbα)vλ

= −
(

g11R1212(a
1b2 − a2b1)v2

g22R2112(a
1b2 − a2b1)v1

)

=

(

g11v2

−g22v1

)

(−R1212)(a
1b2 − a2b1)

=

(

g11v2

−g22v1

)

(−R1212)(axby − aybx)/
√
g

= V(−R1212)(axby − aybx)/
√
g

In the second line we restrict α < β and use the antisymmetry of Rµ
λαβ on the last two indices.

In the third line we change Rµ
λαβ to Rµλαβ . In the fourth line we use our assumption that gjk is

diagonal. In the fifth line we restrict to the two indices 1 and 2 and to the four nonzero values of
Rµλαβ . The seventh line rewrites the sixth in terms of the area in orthonormal coordinates. The
last line gives the vector part a name V to use in the following.

The norm of this is just the norm of the vector part V times the factors outside (which we see are
coming pretty close to the product of R1212 and the area over g). We start with the square of the
norm.

| V |2 = gjkVjVk

= g11(g
11v2)2 + g22(g

22v1)2

= g11(v2)2 + g22(v1)2

= (g22(v
2)2 + g11(v

1)2)/g

= | v |2 /g
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So the norm of V is the norm of the original vector v divided by
√
g. Note incidentally that V

is orthogonal to v: take the inner product vjgjkVk. This means that the norm of the new vector
v + ∆v is the same as that of v.

From all this we see that the excess angle, which is the ratio of norms, is

∆θ =
|∆v |
| v |

= −R1212(axby − aybx)/g

= −R1212∆area/g

as claimed.

18. Negative curvature. A two-dimensional surface has negative curvature if it curves oppositely
in opposite dimensions. A hyperboloid of revolution is a good example.

−2
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2
−2

0
2

−3

−2

−1

0

1

2

3

y

One−sheet hyperboloid of revolution

x

z

This is an x-z hyperbola rotated about the z-axis, so we should study hyperbolas first.

In Week iv we found that hyperbolas emerge from shear matrices in the same way that circles
emerge from rotation matrices. Here are the results of applying a very small rotation or a very
small shear to a point in space, then applying it repeatedly to the previous result.
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Rotation

(

c −s
s c

)

c2 + s2 = 1
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1
locus due to matrix 0.99985   −0.017452 starting 1  0T

x

y

Here, c = 0.99985 and s = 0.017452:
a very small rotation.

Shear

(

ch sh
sh ch

)

ch2 − sh2 = 1

1 1.5 2 2.5 3 3.5 4
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locus due to matrix 1.0002    0.020001 starting 1  0T

x
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Here, ch = 1.00020 and sh = 0.02000:
a very small shear.

I’ve used symbols ch and sh respectively for “hyperbolic cosine” and “hyperbolic sine”1 because
they give the x and y coordinates, respectively, just as do cos and sin for circles.
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locus due to matrix 1.0002    0.020001 starting 1  0T
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p

O

cosh

sinh

BA
1

The discussion in Excursion What functions for ch, sh? argues for the following parametrization.

ch = cosh p =
1

2
(ep + e−p)

sh = sinh p =
1

2
(ep − e−p)

1I preferred to use the Hebrew khaf and shin for these but LATEX does not support Hebrew other than ℵ.
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Now three dimensions: the hyperboloid. The extension is easy: the only change is to rotate
in the x-y plane.

x = cosh(p) cos(θ)

y = cosh(p) sin(θ)

z = sinh(p)

We are interested in the metric and hence the affine connection and hence the curvature tensor.

The incremental distance as we change θ obeys

(∆s)2 = cosh(p)2(∆θ)2

because cosh(p) = ch is the radius of that section of the rotated hyperbola.

Similarly, but less obviously,
(∆s)2 = cosh(2p)(∆p)2

because the vertical distance squared (i.e., dependent on p but not on θ) from the origin to any
point (r, z) = (

√

x2 + y2, z) on the hyperboloid—that is, the radius of the arc from p to p+ ∆p—is

cosh(p)2 + sinh(p)2 = cosh(2p)

So the metric is

gdd =

(

cosh(2p)
cosh(p)2

)

We can follow the now well-practiced calculation to find the affine connection.

Γλ
µν =

1

2
gλβ(slopeν gµβ + slopeµ gνβ − slopeβ gµν)

Γudd(λ µ ν Γ )

p p p th2

p θ θ −1
2 th2

θ p θ th
θ θ p th

where th = tanh(p) and th2 = tanh(2p).

The next step is the Riemann curvature tensor. I’ll find−Rdddd because the 2-dimensional curvature

is −R1212/g.

−Rµναβ = gµλ(slopeα Γλ
νβ − slopeβ Γλ

να + Γλ
γαΓγ

νβ − Γλ
γβΓγ

να)

−Rdddd(µ ν α β R )

p θ p θ −1
2th th2− 1

ch2

p θ θ p 1
2 th th2 + 1

ch2

θ p p θ −1
2 th th2 + 1

θ p θ p 1
2 th th2− 1

making it seem for a moment that a symmetry is broken. But

−1

2
th th2− 1

ch2
= −ch2

ch2
=

1

2
th th2− 1
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Furthermore it is easy to see that the expression for −R1212 is always negative, so the Gaussian
curvature K = −R1212/g is also always negative.

K = −R1212

g

= −
ch

2

ch2

ch2ch2

= − 1

ch2
2

We also see that the curvature is not constant.
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The (negative) curvature is maximum at p = 0, the most bent part of the hyperbola and hyper-
boloid. It approaches zero asymptotically as the hyperboloid approaches a 45-degree cone, which
can be made from a flat sheet of paper and so has zero curvature.

There is no surface embedded in our usual Euclidean 3-dimensional space which has constant
negative curvature. But we can find an esoteric such surface, a “pseudo-sphere”, if we look at yet
another way to represent ch and sh for a hyperbola.

parameter ch sh ch−1 sh−1

−iπ4 < p < iπ4 cos(p) i sin(p) acos(ch) asin(−i sh)

Note, for example, that

ch2 + sh2 = cos2 p− sin2 p = cos(2p) = ch2

This is based on a central result on two-dimensional numbers (and i is just the “number”—imagine
that!—representing the 90-degree rotation)

eiθ = cos θ + i sin θ

ep = cosh p+ sinh p

where I’ve given also the corresponding relationship on hyperbolic cosine and sine.

So we’ve just set parameter p = iθ. But this has the effect of making one axis “imaginary”: instead
of (x, z) = (cos p, i sin p) we can use (x, ζ) = (cos p, sin p) where ζ = −iz.
Let’s explore the surface of a sphere in x-y-ζ coordinates, i.e.,

x = cos θ cosφ

y = cos θ sinφ

ζ = sin θ
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In the metric we can retain r sin θ because it gives a horizontal direction, i.e., parallel to the x-y
plane. But we must change the other direction so that, where r2 = x2 + y2,

r2 + (iζ)2 = r2 − ζ2

is a distance. So the metric has a sign change in the (θ, θ) entry (which we’ve been writing first,
before (φ, φ), for spheres).

g dd =

( −r2
r2s2

)

reverting to the abbreviations s for sinθ (and c for cosθ).

Following our usual calculations, we get affine connection and curvature tensor for this pseudo-
sphere with some sign changes from the results for the sphere.

Γ udd(λ µ ν Γ )
θ φ φ cs
φ θ φ c/s
φ φ θ c/s

−R uddd(µ ν α β R )
θ φ θ φ −s2
θ φ φ θ s2

φ θ θ φ −1
φ θ φ θ 1

So

−R dddd(µ ν α β R )
θ φ θ φ r2s2

θ φ φ θ −r2s2
φ θ θ φ −r2s2
φ θ φ θ r2s2

And

K = −R1212

g
=

r2s2

−r4s2 = − 1

r2

a negative constant over the whole surface.

19. The Ricci tensor. In Excursion Number of components of the curvature tensor we show that
the Riemann curvature tensor has d2(d2 − 1)/12 independent components in d dimensions. It is of
interest to compare this with the ∆d independent components of a symmetric d-by-d matrix, e.g.,
a symmetric d-dimensional tensor of two indices.

d 1 2 3 4
d2(d2 − 1)/12 0 1 6 20

∆d 1 3 6 10

So, for up to three dimensions, a 2-index tensor can in principle contain all the information of the
full Riemann curvature tensor.

Such a 2-index tensor is the Ricci tensor

Rλβ = Rµ
λµβ = gµδRδλµβ
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and we can see that it is symmetric by the symmetries of gµδ = gδµ and Rδλαβ = Rαβδλ

The Ricci tensor is arrived at by contracting two indices of the Riemann tensor, one up and one
down so that Ricci is a tensor too.

If we contract again we get the curvature scalar

R = gλβRλβ = gλβgµδRδλµβ

We can go the other way and write the Riemann tensor explicitly in terms of the curvature scalar
R in d = 2 dimensions and in terms of R and the Ricci tensor in d ≤ 3 dimensions.

2D. To start, you should check that the symmetries of Rµλαβ require, in two dimensions when
µ, λ, α, βǫ{1, 2}, that the only nonzero components out of the 16 possible will be

R1212 = −R1221 = −R2112 = R2121

Then you can show

R = gλβgµδRδλµβ

= (g11g22 − g12g21)R1212 + (g22g11 − g21g12)R2121

=
2

g
R1212

where g = g11g22 − (g12)
2 is the determinant of the inverse of guu, g = 1/(g11g22 − (g12)2).

Still in two dimensions, you can also show that

Rµλαβ = (gµαgλβ − gµβgλα)
R1212

g

Here, for this and the previous result for R, are the nonzero components of the relations Rµλαβ and
gµαgλβ − gµβgλα

µ λ α β R gg−
1 2 1 2 r g
1 2 2 1 −r −g
2 1 1 2 −r −g
2 1 2 1 r g

where r = R1212 and g = g11g22 − g12g21.
So we have the Riemann curvature in two dimensions in terms of the curvature scalar.

Rµλαβ =
1

2
(gµαgλβ − gµβgλα)R

Incidentally

Rλβ = gµδ(gδµgλβ − gδβgλµ)
R1212

g

= (δµ
µgλβ − δµ

βgλµ)
R1212

g

= (2gλβ − gλβ)
R1212

g

= gλβ
R1212

g
= gλβ

R

2
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3D+. In three dimensions we need the Ricci tensor as well as R to give Rµλαβ completely.

Rµλαβ = gµαRλβ − gµβRλα − gλαRµβ + gλβRµα −
1

2
(gµαgλβ − gµβgλα)R

In three or more dimensions d this generalizes to

Rµλαβ =
1

d− 2
(gµαRλβ− gµβRλα− gλαRµβ + gλβRµα)− 1

(d− 1)(d− 2)
(gµαgλβ − gµβgλα)R+Cµλαβ

where Cµλαβ is the Weyl tensor, which in four or more dimensions, picks up all the leftovers not
accounted for by the Ricci tensor and the scalar R.

Excursion Paraboloid part (e) illustrates a use of the Ricci tensor.

20. More protor calculator. Building on Note 5 and the Excursions implementing ⁀slope() and
joinred(), we have one major function to add to the protor calculator,

function(conn,curv uddd,curv dddd) = metr2curv(metr,invmetr,indices)
Fairly self-evidently, metr2curv() computes the Riemann curvature tensor (curv uddd and curv dddd
forms) via the affine connection (conn) given the metric tensor (metr and its inverse invmetr). It
requires metr and invmetr in protor form, and a list of symbolic indices for the slope() operation.

Here is a sample invocation for the three-dimensional paraboloid of Excursion Paraboloid (part (e)).

1 >> syms a r theta phi
2 >> gparab3 = [r,r,1/(1-a/r);theta,theta,r^2;phi,phi,r^2*sin(theta)^2]
3 gparab3 =
4 [ r, r, -1/(a/r - 1)]
5 [ theta, theta, r^2]
6 [ phi, phi, r^2*sin(theta)^2]
7 >> invgparab3 = [r,r,1-a/r;theta,theta,1/r^2;phi,phi,1/r^2/sin(theta)^2]
8 invgparab3 =
9 [ r, r, 1 - a/r]

10 [ theta, theta, 1/r^2]
11 [ phi, phi, 1/(r^2*sin(theta)^2)]
12 >> [connParab3,curvParab3_uddd,curvParab3_dddd] = metr2curv(gparab3,invgparab3,[r,theta,phi])
13 connParab3 =
14 [ phi, phi, r, 1/r]
15 [ phi, phi, theta, cos(theta)/sin(theta)]
16 [ phi, r, phi, 1/r]
17 [ phi, theta, phi, cos(theta)/sin(theta)]
18 [ r, phi, phi, r*sin(theta)^2*(a/r - 1)]
19 [ r, r, r, a/(2*r^2*(a/r - 1))]
20 [ r, theta, theta, r*(a/r - 1)]
21 [ theta, phi, phi, -cos(theta)*sin(theta)]
22 [ theta, r, theta, 1/r]
23 [ theta, theta, r, 1/r]
24 curvParab3_uddd =
25 [ phi, r, r, phi, a/(2*r^3*(a/r - 1))]
26 [ r, phi, r, phi, (a*sin(theta)^2)/(2*r)]
27 [ r, theta, r, theta, a/(2*r)]
28 [ theta, r, r, theta, a/(2*r^3*(a/r - 1))]
29 [ phi, theta, theta, phi, a/r]
30 [ theta, phi, theta, phi, - sin(theta)^2 - sin(theta)^2*(a/r - 1)]
31 [ phi, r, phi, r, -a/(2*r^3*(a/r - 1))]
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32 [ r, phi, phi, r, -(a*sin(theta)^2)/(2*r)]
33 [ r, theta, theta, r, -a/(2*r)]
34 [ theta, r, theta, r, -a/(2*r^3*(a/r - 1))]
35 [ phi, theta, phi, theta, -a/r]
36 [ theta, phi, phi, theta, sin(theta)^2 + sin(theta)^2*(a/r - 1)]
37 curvParab3_dddd =
38 [ phi, r, phi, r, -(a*sin(theta)^2)/(2*r*(a/r - 1))]
39 [ phi, r, r, phi, (a*sin(theta)^2)/(2*r*(a/r - 1))]
40 [ phi, theta, phi, theta, -a*r*sin(theta)^2]
41 [ phi, theta, theta, phi, a*r*sin(theta)^2]
42 [ r, phi, phi, r, (a*sin(theta)^2)/(2*r*(a/r - 1))]
43 [ r, phi, r, phi, -(a*sin(theta)^2)/(2*r*(a/r - 1))]
44 [ r, theta, r, theta, -a/(2*r*(a/r - 1))]
45 [ r, theta, theta, r, a/(2*r*(a/r - 1))]
46 [ theta, phi, phi, theta, r^2*(sin(theta)^2 + sin(theta)^2*(a/r - 1))]
47 [ theta, phi, theta, phi, -r^2*(sin(theta)^2 + sin(theta)^2*(a/r - 1))]
48 [ theta, r, r, theta, a/(2*r*(a/r - 1))]
49 [ theta, r, theta, r, -a/(2*r*(a/r - 1))]
50 >> riccParab3 = contract(curvParab3_uddd,1,3)
52 riccParab3 =
52 [ phi, phi, -sin(theta)^2 + sin(theta)^2*(a/r - 1) - (a*sin(theta)^2)/(2*r)]
53 [ r, r, -a/(r^3*(a/r - 1))]
54 [ theta, theta, -a/(2*r)]
55 >> Xparab3_ud = [r,r,sqrt(1-a/r);theta,theta,1/r;phi,phi,1/r/sin(theta)]
56 Xparab3_ud =
57 [ r, r, (1 - a/r)^(1/2)]
58 [ theta, theta, 1/r]
59 [ phi, phi, 1/(r*sin(theta))]
60 >> riccParb3norm = transform(riccParab3,Xparab3_ud)
61 riccParb3norm =
62 [ phi, phi, -(sin(theta)^2 + sin(theta)^2*(a/r - 1)

- (a*sin(theta)^2)/(2*r))/(r^2*sin(theta)^2)]
63 [ r, r,

a/r^3]
64 [ theta, theta,

-a/(2*r^3)]

In the above code, I’ve added line numbers for this discussion. You can compare the results with
the calculations in Excursion Paraboloid (part(e)) as we go along.

Lines 1–11 set up the symbolic variables and the metric and its inverse.

Line 12 is the invocation of metr2curv() with these parameters.

Lines 13–23 show the affine connection calculated by metr2curv().

Lines 24–36 show the uddd Riemann tensor and lines 37–49 show Rdddd, both as calculated by

metr2curv(): to get the results of Excursion Paraboloid, some of these must be simplified manually,
because MATLAB is sloppy about symbolic calculation.

Line 50 invokes another function contract() to contract Riemann Ruddd to Rdd (Ricci), and lines

51–54 show the result, in agreement with Excursion Paraboloid.

Lines 55–59 define the normalizing transformation matrix and line 60 uses the function transform(),
discussed in Note 5, to take the final step in Excursion Paraboloid: compare with the result in lines
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61–64.

The implementation of metr2curv() is based on other functions and so the full code is short.

% function [conn,curv_uddd,curv_dddd] = metr2curv(metr,invmetr,indices) THM 140130
% Use metr2conn(), conn2curv(), matmult() to calculate Riemann_dddd from metr
% metric_dd), invmetr (inverse metric_uu) and indices
% In metr: the metric tensor dd: 2 cols indices, 1 col values
% invmetr: the inverse metric tensor uu: 2 cols indices, 1 col values
% indices syms: (row) vector of all index values (Greek, Latin)
% Out curv: the Riemann_dddd curvature tensor
% Uses metr2conn(), conn2curv(), joinred()
function [conn,curv_uddd,curv_dddd] = metr2curv(metr,invmetr,indices)
conn = metr2conn(metr,invmetr,indices); % display test only
% NB may need to improve MATLAB’s simplification of conn before continuing:
curv_uddd = conn2curv(conn,indices);
syms allzeros %140429 deal with flat space
if curv_uddd==allzeros
curv_dddd = allzeros;

else
curv_dddd = joinred(metr,2,curv_uddd,1);

end

The two steps are encapsulated in two new functions.

First, find the affine connection.
conn = metr2conn(metr,invmetr,indices);

This in turn requires a couple of auxiliary functions not discussed in Note 5, and we can give the
full code.

% function conn = metr2conn(metr,invmetr,indices) THM 140129
% Combine slopes(), nozeros(), swapcols(), mergesum(), joinmult(), scalarmult()
% and reduce() to calculate the affine connection given the metric, its inverse
% and the set of indices to differentiate with respect to.
% In metr: the metric tensor - 2 columns of indices dd, 1 column of values
% invmetr: the inverse of the metric tensor - ditto but indices uu
% indices: (row) vector of all indices involved, usde by slope()
% NB all entries in these arrays are syms : invocation must be preceded by,
% e.g., syms theta phi r; g = [theta,theta,r^2;phi,phi,r^2*sin(theta)^2]; etc.
% Out conn: the Christoffel symbols - 3 columns of indices udd, 1 col. values
function conn = metr2conn(metr,invmetr,indices)
di_g = nozeros(slopes(metr,indices)); % display test only
preG = nozeros(mergesum(1,nozeros(...
mergesum(1,di_g,-1,swapcols(di_g,1,2))),1,swapcols(di_g,1,3)));
conn = reduce(scalarmult(1/2,joinmult(invmetr,2,preG,2)),2);

The two auxiliary functions for metr2conn() are a merge

% function out = mergesum(sign1,in1,sign2,in2) THM 140127
% Merge two relations on their (commensurate) index columns, incorporating the
% given sign for the value column and summing (with signs) if match.
% In sign1, sign2, integer: the respective signs for the two value columns
% hell, it can be any numeric weight or even another sym
% in1, in2: the size#In2-ary relations of size#In1 tuples each to merge
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% Out out: the merged result.
% Used by metr2conn(), conn2curv(), abslopes(), mergesum()

and a routine to swap indices

% function out = swapcols(in,col1,col2) THM 140127
% Swap two index columns (i.e., avoid last column) in symbolic relation in .
% In in: sizeIn2-ary relation stored as array 1 row per tuple
% col1, integer: column to be swapped with col2
% col2, integer: column to be swapped with col1
% Out out: the relation with index columns swapped
% Used by metr2conn(), conn2curv(), abslopes(), mergesum()
% Related but not reduced to movecols(), permcols()

These are straightforward to implement except that, for mergesum(), MATLAB precludes inequal-
ity comparisons on symbolic variables so I could not use merge logic but had to find matches first
and then append unmatched tuples from each operand.

Here is a sample run of mergesum(), simple enough to show how it needs to be built.

1 >> mergesum(1,[1,1,phi;2,2,theta],2,[1,1,theta;2,1,phi])
2 ans =
3 [ 1, 1, phi + 2*theta]
4 [ 2, 2, theta]
5 [ 2, 1, 2*phi]

Here is one for swapcols() showing how the specifed columns are simply interchanged.

1 digk1k2 =
2 [ xi, xi, xi, 2*k1^2*xi]
3 [ xi, xi, eta, eta*k1*k2]
4 [ xi, eta, xi, eta*k1*k2]
5 [ eta, xi, eta, k1*k2*xi]
6 [ eta, eta, xi, k1*k2*xi]
7 [ eta, eta, eta, 2*eta*k2^2]
8 >> digk1k2_12 = swapcols(digk1k2,1,2)
9 digk1k2_12 =

10 [ xi, xi, xi, 2*k1^2*xi]
11 [ xi, xi, eta, eta*k1*k2]
12 [ eta, xi, xi, eta*k1*k2]
13 [ xi, eta, eta, k1*k2*xi]
14 [ eta, eta, xi, k1*k2*xi]
15 [ eta, eta, eta, 2*eta*k2^2]

The second step of metr2curv() uses the affine connection to get the Riemann curvature.

function curv = conn2curv(conn,indices)
uses slopes(), nozeros(), swapcols(), mergesum(), joinmult(), reduce(), and permcols()
in straightforward ways to generate Ruddd from Γudd. In addition it needs

% function out = permcols(in,perm) THM 140128
% Permute index columns of relation in according to perm
% e.g., alpha,mu,nu,beta->mu,nu,alpha,beta uses [2,3,1,4]
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% In in: relation to be permuted
% perm integer (row) vector: the permutation
% Out out: the permuted relation
% Used by conn2curv(), bianchi()
% Related but not reducible to movecols(), swapcols()

to permute columns, as in

1 gamma =
2 [ eta, eta, eta, eta*k2^2*(eta^2*k2^2 + 1) + eta*k1^2*k2^2*xi^2]
3 [ eta, xi, xi, eta*k2*k1^3*xi^2 + eta*k2*(eta^2*k2^2 + 1)*k1]
4 [ xi, eta, eta, k1*xi*eta^2*k2^3 + k1*xi*(k1^2*xi^2 + 1)*k2]
5 [ xi, xi, xi, k1^2*xi*(k1^2*xi^2 + 1) + eta^2*k1^2*k2^2*xi]
6 >> permcols(gamma,[2,3,1]) % NB for this e.g., same as [3,2,1]
7 ans =
8 [ eta, eta, eta, eta*k2^2*(eta^2*k2^2 + 1) + eta*k1^2*k2^2*xi^2]
9 [ xi, xi, eta, eta*k2*k1^3*xi^2 + eta*k2*(eta^2*k2^2 + 1)*k1]

10 [ eta, eta, xi, k1*xi*eta^2*k2^3 + k1*xi*(k1^2*xi^2 + 1)*k2]
11 [ xi, xi, xi, k1^2*xi*(k1^2*xi^2 + 1) + eta^2*k1^2*k2^2*xi]

With these hints you should be able to implement the two new functions, metr2curv() and
contract() and their auxiliaries.

(A further addition to the protor calculator is given in Note 30 (Part II): curv2einstein() calcu-
lates the “Einstein tensor” given the curvature and metric tensors.)

21. Summary.

(These notes show the trees. Try to see the forest!)

This long Part evolves the mathematics underlying general relativity, Einstein’s theory of gravity.
It works from the notion of fields (in physics) to how to account for the (mathematical) coordinate
system used to describe a field, to the notions of divergence and curl with the former illustrated
by a discussion of classical gravity. It stretches the discussion of coordinate systems to include
non-orthonormal coordinates (using the gypsum crystal as example) and introduces the metric. It
stretches coordinates further to consider coordinate systems which themselves depend on the coor-
dinates (e.g., polar coordinates) and introduces the affine connection, which is needed to calculate
slopes, for instance, because the coordinates themselves change as we move from place to place.
This leads to parallel transport and geodesics and to “absolute slopes” which tell us how the field
itself changes from point to point independently of the coordinate changes. Divergence and curl
must be rewritten using absolute slopes.

The final stretch is to curved space, Gauss’ result that we can detect intrinsic curvature of the
space we live in without having to get “outside”, and Riemann’s capturing of this in general in
the curvature tensor. Curvature can be positive, zero (flat) or negative. Finally we look at a
simplification of the four-index Riemann curvature tensor, with loss of information in four or more
dimensions, to the two-index Ricci tensor.

This mathematics needs new notation, the index notation and, for calculations, a generalization of
matrices to a special kind of relation we call a protor. MATLAB implementations of some of the
suite of programs giving the protor calculator are outlined in the course of the Part.

Here is the table of contents.

72



Note 1 p. 1 Fields and slopes.
Note 2 p. 2 “Reality” and coordinates.
Note 3 p. 5 Index notation and tensors.
Note 4 p. 8 Protors.
Note 5 p. 11 The protor calclator 1.
Note 6 p. 13 Divergence and Curl.
Note 7 p. 18 Classical gravity.
Note 8 p. 23 Gypsum coordinates.
Note 9 p. 29 The metric.
Note 10 p. 31 Fields in gypsum.
Note 11 p. 35 Polar coordinates.
Note 12 p. 37 The affine connection.
Note 13 p. 41 Parallel transport and geodesics.
Note 14 p. 43 Absolute slopes.
Note 15 p. 46 Gradient, divergence and curl with absolute slope.
Note 16 p. 49 Spherical polar coordinates.
Note 17 p. 53 Curvature.
Note 18 p. 61 Negative curvature.
Note 19 p. 65 The Ricci tensor.
Note 20 p. 67 More protor calculator.

73



Here are some useful results.
Metric Affine connection Riemann curvature

Cartesian
gdd(j k g )

x x 1
y y 1

Gypsum

gdd(j k g )

x x ℓ21
x y ℓ1ℓ2c21

y x ℓ1ℓ2c21

y y ℓ22

Plane polar

gdd(j k g )

r r 1
θ θ r2

Γudd(j k ℓ Γ )

r θ θ −r
θ r θ 1/r
θ θ r 1/r

Spherical polar

gdd(j k g )

r r 1
θ θ r2

φ φ r2s2

s = sin θ c = cos θ

Γudd(j k ℓ Γ )

r θ θ −r
r φ φ −rs2

θ r θ 1/r
θ θ r 1/r
θ φ φ −cs
φ r φ 1/r
φ φ r 1/r
φ θ φ c/s
φ φ θ c/s

Spherical 2D

gdd(j k g )

θ θ r2

φ φ r2s2

Γudd(j k ℓ Γ )

θ φ φ −cs
φ θ φ c/s
φ φ θ c/s

Rdddd(µ λ α β R )

θ φ θ φ r2s2

φ θ θ φ −r2s2

θ φ φ θ −r2s2

φ θ φ θ r2s2

Hotplate

gdd(j k g )

ρ ρ 1/(1 + k2ρ2)
φ φ ρ2/(1 + k2ρ2)

(See Spherical 2D) (See Spherical 2D)

Hyperboloid

gdd(j k g )

p p cosh(2p)
θ θ cosh2(p)

Γudd(λ µ ν Γ )

p p p tanh(2p)
p θ θ − 1

2
tanh(2p)

θ p θ tanh(p)
θ θ p tanh(p)

Rdddd(µ ν α β R )

p θ p θ cosh2(p)/ cosh(2p)
p θ θ p − cosh2(p)/ cosh(2p)
θ p p θ − cosh2(p)/ cosh(2p)
θ p θ p cosh2(p)/ cosh(2p)

Paraboloid 2D

gdd(j k g )

r r 1/(1 − a/r)
θ θ r2

Γudd(α β γ Γ )

r r r a
2r(a−r)

r θ θ a − r
θ r θ 1/r
θ θ r 1/r

Rdddd(α β γ δ R )

r θ r θ −a/2/(a − r)
r θ θ r a/2/(a − r)
θ r r θ a/2/(a − r)
θ r θ r −a/2/(a − r)

Paraboloid 3D

gdd(j k g )

r r 1/(1 − a/r)
θ θ r2

φ φ r2 sin2 θ

Γudd(α β γ Γ )

r r r a/2r(a − r)
r θ θ a − r
r φ φ (a − r) sin2 θ
θ r θ 1/r
θ θ r 1/r
θ φ φ − cos θ sin θ
φ r φ 1/r
φ φ r 1/r
φ θ φ cos θ/ sin θ
φ φ θ cos θ/ sin θ

Rdddd(α β γ δ R )

r θ r θ −a/2/(a − r)
r θ θ r a/2/(a − r)
θ r r θ a/2/(a − r)
θ r θ r −a/2/(a − r)
r φ r φ −a sin2 θ/2/(a − r)
r φ φ r a sin2 θ/2/(a − r)
φ r r φ a sin2 θ/2/(a − r)
φ r φ r −a sin2 θ/2/(a − r)
θ φ θ φ −ar sin2(θ)
θ φ φ θ ar sin2(θ)
φ θ θ φ ar sin2(θ)
φ θ φ θ −ar sin2(θ)
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22. Curved timespace.

23. Gravitational redshift.

24. Spherically symmetric gravity.

25. Schwarzschild orbits and black holes.

26. Rotationally symmetric gravity.

27. Kerr orbits and black holes.

28. Tides.

29. Light orbits.

30. The source of gravity.

31. Cosmology.

32. Negative pressure and dark energy.

33. Gravitational irreversibility.

34. Alternatives to geometry.

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Slopes commute? (Note 1.) Does slopeyslopex = slopexslopey? The formulae in the
diagram below makes it appear simple to show that it is generally true, but it is subtle
because of the different orders of taking the limits. The first limit in ∂x∂y (slopex slopey)
is the y-limit shown—bringing R and S to P and Q respectively—while the second limit
brings Q and S to P and R. This is no problem unless there is a discontinuity in the PQRS
region. Suppose there were a Queen-Anne-style “eye” discontinuity just along the PQ edge,
including Q, as shown in red. Then taking the x-limit first will have no problems—the Q to
P shrinkage will take place along either the upper or the lower path (it doesn’t matter) and
avoid the discontinuity; then the RS to PQ shrinkage will be straightforward. But taking the
y-limit first will hit the discontinuity at Q and give an undefined slope for the ratio shown
with the red division line.

Q

+ aa

∆+b b

f( ∆+ aa ∆+b b f(f(
∆b ∆b

∆a

∆b
∆a ∆a

f( ∆+ aa ∆+b b f( ∆+b b f( ∆+ aa f(

∆+b b

∼

∼
f( ∆+ aa

x

y

f

P

R

S
b

a

) b), , , )a a,b)
x y f x,y

slope    slope    (    )y x f x,y

slope    slope    (    )

, ) a, ) , ) a,b)b

x
y

limit
limit

∆

2. (Note 2.) Use a rotation matrix twice to show that c2 = cos(2θ) and s2 = sin(2θ).

3. (Note 2.) Show that
(

s2 c2

c2 −s2

)

(

s c
c −s

)

=

(

c s
−s c

)
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4. a) Given f(g(x)) show that ∂xf = (∂gf)(∂xg):
start with

∂xf ≈ f(g(x+ ∆x))− f(g(x))

∆x

=
f(g(x+ ∆x))− f(g(x))

g(x+ ∆x)− g(x)
g(x+ ∆x)− g(x)

∆x

b) Given f(g(x), h(x)) show that ∂xf = (∂gf)(∂xg) + (∂hf)(∂xh):
start with

∂xf ≈ f(g(x+ ∆x), h(x+ ∆x))− f(g(x), h(x))

∆x

=
f(g(x+ ∆x), h(x+ ∆x))− f(g(x+ ∆x), h(x)) + f(g(x+ ∆x), h(x)) − f(g(x), h(x))

∆x

c) Take the next step and confirm the “rule of slopes” cited in Note 3.

5. Look up the programming language Aldat, e.g., http://www.cs.mcgill.ca/∼tim/aldat/welcome.html
and, for tutorial detail, http://www.cs.mcgill.ca/∼tim/cs612/

6. Implement slopes(in,vars) from Note 5 in MATLAB. Use MATLAB’s diff(expr,var)
repeatedly to do the symbolic slope calculations, building up the extra indices in the new
first column. It should also call a function nozeros(in) at the end to eliminate any rows
with zero in the value column. (I cheated in showing the examples because my implemen-
tation of slopes() does not call nozeros(), so I should have shown the invocations as
nozeros(slopes(..)).)

7. a) Implement joinred(in1,col1,in2,col2) from Note 5 in MATLAB. You can write sep-
arate functions reduce(in,col) and joinmult(in1,col1,in2,col2) so that joinred() is
implemented as

nozeros(reduce(joinmult(in1,col1,in2,col2),col1))
The task of joinmult() is to implement the natural join (ijoin) on two relations in1 and
in2 using col1 and col2 as join columns, and to multiply the two last (value) columns of
each relation. Reduce() then groups the index columns into sets differing only on col1, and
sums the last (value) column.
b) Your implementation should manage columns as specified at the end of Note 5. You can
show, also, that

joinred(joinred(..(joinred(protor,1,X,2),..),1,X,2),1,X,2)
will apply coordinate transformation X to every index in protor, and so you can implement
transform(protor,X) for a protor of any number of indices.

8. For the three-dimensional examples from Note 6,

f =





x
y
z



 rp−1

h =





z − y
x− z
y − x



 rp−1

show that






∂x

∂y

∂z






(f x f y f z) =





1
1

1



 rp−1 +





x2 xy xz
yx y2 yz
zx zy z2



 (p− 1)rp−3
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and






∂x

∂y

∂z






(hx hy hz) =





1 −1
−1 1

1 −1



 rp−1+





(z − y)x (x− z)x (y − x)x
(z − y)y (x− z)y (y − x)y
(z − y)z (x− z)z (y − x)z



 (p−1)rp−3

.

9. In Note 6 show that
(

x
y

)

rp−1 = grad
rp+1

p+ 1

10. What is the significance of the divergence vanishing for p = −1 in two dimensions and for
p = −2 in three?

11. Apply to curl the argument in Note 6 for the invariance of the divergence, assuming that
the coordinate transformation does not depend on the coordinates, and show that its form is
invariant.

12. Show that the vector field that is the slopes of f(x, y) = xy (Note 1) has zero divergence and
curl (Note 6).
It does not, however, have zero shear, defined as

shear q = ∂xqy + ∂yqx

Show that this form is also invariant under the assumption that the transformation coefficients
are independent of the coordinates.

13. Newton’s constant. Given that the acceleration due to gravity at the surface of the Earth
is about 10m/s2, the radius of the Earth is about 6.4Mm (6.4 × 106m), and the mass of the
Earth (found from the orbit of the Moon or of artificial satellites) is about 6Ykg (Y = yotta
= 1024), what is Newton’s gravitational constant GN (see Note 7) in m-s-kg units (and what
are the units)?

14. Gauss’ law says
∫

V
div.f =

∫

S
f .n

using conventional integral signs to mean, respectively, the antislope taken over the whole
volume V and over the whole surface S. Show that the classical gravitational field

f .n =
4

3
πrGNρ

where f .n is the part of f normal to the surface of a sphere of radius r, satisfies Gauss’ law
when the volume and surface are those of that sphere.

15. Message through the Earth. If you could drill a tunnel through the Earth, going straight
from a point on the surface, through the centre, to the opposite point on the surface, you
could drop a bottle with a message in it and it would take 42 minutes for the trip to the other
side.
This Excursion is not to calculate the 42 minutes (although the data in Excursion Newton’s
constant on the Earth’s radius and surface gravitational acceleration will enable you to cal-
culate it afterwards), but to plot the motions of the bottle.
Your MATLAB program can imagine the tunnel running down the z-axis and the bottle
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starting with zero velocity at z = 1 Earth radius. Then, since acceleration is proportional to
z (Note 7)

v = v − z ×∆t

z = z + v ×∆t

is the heart of your program. You should get a nice cosine curve, if you use small enough ∆t,
with period 2π (and you can adjust the plot so it shows 84 minutes instead of 2π).
Of more interest is the difference between this bottle and a second bottle you dropped five
minutes later with a P.S.
Here are the trajectories of the two bottles (red for the message, blue for the P.S.) and of the
difference in their z positions (green).
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Note that the difference is also sinusoidal and goes periodically to zero: the two bottles each
fall back down the tunnel if they are not caught at the other side, and so will meet each other
a few minutes after the message reaches the surface. (So, anticipating the P.S. and wanting
to avoid a lot of broken glass going up and down, you actually drilled a parallel tunnel for
the P.S., both tunnels still effectively through the centre of the Earth, so there will be no
crashes.)
This is not the usual trajectory for bodies moving without (non-gravitational) influence. For
example, two bodies in uniform motion maintain their separation and do not meet—or meet
at most once.

78



0 5 10 15 20 25 30

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Free motion: position vs time for [dt,n] = 0.01,200

t, minutes

z,
 E

ar
th

 r
ad

ii

We will be asking: what kind of geodesic (Note 13) must bodies follow in order to meet
periodically. Preparing for that is the purpose of this Excursion.
(Wheeler [Whe90, Ch.4] has an elaborate qualitative discussion of this project.)
You can also do all these calculations analytically and even figure out when the two bodies
pass each other (if it’s not obvious).

16. Falling traffic lights with two blue UFOs. The second kind of gravitational influence
happens outside the Earth. One body falling is again not very informative, so we shall look
at two bodies. In fact we’ll look at four, quartering a vertical circle about 200 earth radii
above the North pole.
Here is a traffic light, disassembled into its red and green lights, but dropped with red still
on top and green still on the bottom, plus two blue UFOs falling with it on either side.

N
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I’ve exaggerated the horizontal distance but reduced the vertical in this picture. I’ve also
shown the circle defined by the four test masses in dashed lines, and the fall lines for each
mass. We’ll call the angles from the vertical of the two non-vertical dashed lines (the “UFO”s’
fall lines) θ and −θ, a little in defiance of the convention for spherical polar coordinates.
It is clear that the two outlying bodies will approach each other as they follow their fall lines.
What about the upper and lower bodies?
Your MATLAB program can start with

z = [180, 200, 220, 200]

s = sin[0.0, 0.1, 0.0,−0.1]

x = z. ∗ s

and zero velocities vz and vx for all four bodies.

Then the loop must be based on (Note 7)

az = −100./z. ∧ 2

ax = az. ∗ s
vz = vz + az ∗∆t

vx = vx + ax ∗∆t

Here is the result from two perspectives. In the second I’ve drawn the circle at the start and
the ellipse at the end showing how the circle was distorted. (Note that MATLAB plots the
time upwards.
The gravitational effect this shows is what the gravity of the Moon does to the oceans of the
Earth, and how the gravity of the Earth locked the Moon’s rotation so that one side now
always faces us.
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While the bodies at θ and −θ approach each other along their fall lines, the other two, upper
and lower, bodies draw apart from each other because the 1/r2 acceleration is greater for the
lower body.
This decreasing and increasing separations of pairs of bodies, depending on their orientation
relative to each other, is characteristic of gravitation outside but near a source of gravity.
We also will want to ask, as in the previous Excursion, what kind of geodesics (Note 13) are
being followed.
(Wheeler [Whe90, Ch.5] also discusses this qualitatively. You can imagine the two skydivers
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on the cover of that book as the two test bodies at θ and −θ. There would have to be a third
skydiver below them, and a fourth above, taking the picture, to complete the configuration.
And they’d be jumping from a lot further than the atmosphere.)
Again, you can do these calculations analyticlly.

17. Calculate and confirm the lengths I’ve given in Note 8 for e1 and e2, their angles, and the
three ways of showing that the length of v is

√
2.

18. Show directly that the metric for a coordinate system in which the axes e1 and e2 are ǫ1 and

ǫ2 respectively rotated towards each other each by an angle (in one case positive and in the

other case negative) given by c and s as

(

1 2cs
2cs 1

)

Check this against the more general result of Note 9.

19. Show that gud = I = gdu, i.e., gj
k = δj

k the identity matrix. Hint: how must you use gjℓ to

change gℓk to gj
k?

20. From Note 10 show that

r2 = (x1 x2)

(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)(

x1

x2

)

so
(

∂1

∂2

)

r =
1

r

(

ℓ21 ℓ1ℓ2c21
ℓ1ℓ2c21 ℓ22

)(

x1

x2

)

21. Using gjk = XmjXmk, g
jk = Xm

jXm
k and Xm

jXn
j show that gjℓg

ℓk = δk
j and ∂j = Xmj∂m.

22. Using the notation at the end of Note 11, with g and X meaning either of g1 or g2 and X1 or

X2 respectively, show that

gjj′ = XmjXmj′

gjj′ = Xm
jXm

j′

23. Levi-Civita symbol, alternating tensors. Show that the Levi-Civita symbol is not a
tensor.
a) Levi-Civita defined a family of symbols, with one index for each dimension, in terms of
even and odd permutations. Thus

ǫmm(j k ǫ )

x y 1
y x −1

ǫmmm(j k ℓ ǫ )

x y z 1
y z x 1
z x y 1
y x z −1
x z y −1
z y x −1
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Let’s transform ǫjk from Cartesian x, y, where gC =

(

1
1

)

to ǫj
′k′

in polar r, θ, where

gP =

(

1
r2

)

(Note 11).

(

er

eθ

)

=

(

c s
−rs rc

)

(

ǫx

ǫy

)

(er eθ)

(

vr

vθ

)

= (ǫx ǫy)

(

c −rs
s rc

)(

vr

vθ

)

= (ǫx ǫy)

(

vx

vy

)

(

vr

vθ

)

=

(

c s
−s/r c/r

)

(

vx

vy

)

and the transformation is vj′ = Xj
j′vj with

Xj
j′(j j’ X )

x r c
y r s
x θ −s/r
y θ c/r

So Xj
j′Xk

k′

ǫjk is

j’ k’ XXǫ
r θ 1/r
θ r −1/r

which is ǫj
′k′

/
√
g where g = det gP and ǫj

′k′

is again the Levi-Civita symbol.

ǫj
′k′

(j’ k’ ǫ )
r θ 1
θ r −1

So the Levi-Civita symbol does not transform into itself and is not a tensor.
b) But the corresponding alternating tensor is

1√
g
ǫjk

(Note that g disappears in Cartesian coordinates because

1√
gC

ǫjk = ǫjk.)

c) The Levi-Civita symbol has an important connection with determinants. For example

g =

∣

∣

∣

∣

g11 g12
g12 g22

∣

∣

∣

∣

= g11g22 − g12g21 = g1j′g2l′ǫ
j′k′
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Now notice
g2j′g1k′ǫj

′k′

= g21g12 − g11g22 = −g
while

g1j′g1k′ǫj
′k′

= g11g12 − g12g11 = 0

g2j′g2k′ǫj
′k′

= g21g22 − g22g21 = 0

So we can immediately get the covariant form of the Levi-Civita symbol

ǫjk = gjj′gkk′ǫj
′k′

= gǫjk

And, for the alternating tensor,
√
gǫjk = g

1√
g
ǫjk

so the co- and contravariant forms are
√
gǫjk and ǫjk/

√
g respectively.

This generalizes to the d-index alternating tensor in d dimensions.
d) The alternating tensor can also be used to show that the curl is a tensor, given that the
absolute slope (Note 14) is a tensor. In three dimensions

(curl × v)jk =
√
gǫjkℓ

1√
g
ǫℓmnDmvn

= Djvk −Dkvj

= ∂jvk − ∂kvj

(and Note 15 derives the third line).
The product of the three tensors involved must give a tensor.
(In 3D it is possible to define the curl as a “pseudo-vector”, using only one alternating tensor

(curl× v)ℓ =
1√
g
ǫℓmnDmvn

but pseudo-vectors are odd beasts because they do not transform properly under reflection.
They have three components only in 3D, and should generally be thought of as antisymmetric
2-index tensors as in the first definition above.)
e) Write a MATLAB function out = leviCivita(n) which uses recursion to calculate the
Levi-Civita symbol on n indices. Don’t try to use it for n >≈ 5: why?

24. Physical tensors. Look up the tensors of polarizability, conductivity and inertia in [FLS64,
Ch.31]. They are all 2-index tensors defined as relating one vector to another. So they all
transform properly and so are tensors.
Feynman also discusses the tensor of stress, defined as linking each of the three components
of force applied to each of three directions of surface area of a very small cube internal to a
body—he suggests a block of jello. This is a 2-index protor and to show that it is a tensor
we must show that it, too, relates two vectors to each other. Study Feynman’s argument.
He goes on to discuss a corresponding 2-index strain tensor, which gives the responses of
the jello to the stress. The relationship between stress and strain is, in general, given by a
4-index protor, which must also be a tensor since both stress and strain are tensors. And the
piezoelectric field, a vector, relates to the stress tensor via the 3-index piezoelectric coefficients,
also, necessarily, a tensor.
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25. Orthonormal polars. Working with an orthonormal basis often gives simpler results and
is an easy transformation if the basis is already orthogonal, as in polar coordinates.
We have

(

er

eθ

)

=

(

c s
−rs rc

)

(

ǫx

ǫy

)

gdd =

(

c s
−rs rc

)(

c −rs
s rc

)

=

(

1
r2

)

i.e., (∆s)2 = (∆r)2 + (r∆θ)2. We would like

(

er̂

eθ̂

)

=

(

1
1/r

)(

er

eθ

)

=

(

1
1/r

)(

c s
−rs rc

)

(

ǫx

ǫy

)

gdd =

(

c s
−s c

)(

c −s
s c

)

=

(

1
1

)

so (∆s)2 = (∆r̂)2 + (∆θ̂)2.
We can describe the new basis as

er̂ = [1, 0]

eθ̂ = [0, 1/r]

What is the orthonormal basis for the metric

(∆s)2 = −(1− 2m/r)(∆t)2 + (∆r)2/(1− 2m/r) + r2((∆θ)2 + (sin θ∆φ)2)?

Is there a singularity in the new metric?

26. What is the affine connection for gypsum coordinates?

27. Use the derivation at the end of Note 12 that

Γℓ
jk′ =

1

2
gℓk(∂jgkk′ + ∂k′gjk − ∂kgk′j)

to calculate the affine connection for the plane polar metric.

∂d(j ∂ )

r sloper

θ slopeθ

gdd(k k’ g )

r r 1
θ θ r2

∂gddd(j k k’ ∂g )

r θ θ 2r

∂gddd(j k k’ ∂g )

r θ θ 2r
θ θ r 2r
θ r θ −2r

guu(ℓ k g )

r r 1
θ θ 1/r2

(1
2∂g ⊲⊳ g)d−du(j k k’ ℓ ∂gg )

r θ θ θ 1/r
θ r θ θ 1/r
θ θ r r −r

Γudd(ℓ j k’ Γ )

r θ θ −r
θ r θ 1/r
θ θ r 1/r
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28. Show that the result
(

v1
r

v1
θ

)

=

((

1
1

)

+

(

0 −r∆θ
∆θ/r ∆r/r

))

(

v2
r

v2
θ

)

at the beginning of Note 12 gives

∆vj = −Γj
kℓ∆

kvℓ

consistent with result
∂je

k = −Γk
jℓe

ℓ

at the end of Note 12.

29. Note 12 derives the affine connection for plane polar coordinates more directly than by apply-
ing the general formula as in the previous Excursion, by taking the slopes of the components
of a vector v. Give another direct derivation by taking the slopes of the basis vectors.
Find

∆

(

er

eθ

)

=

(

er′

eθ′

)

−
(

er

eθ

)

by finding

(

er′

eθ′

)

from

(

ǫx

ǫy

)

and

(

ǫx

ǫy

)

from

(

er

eθ

)

then combining to get

(

er′

eθ′

)

directly from

(

er

eθ

)

in terms of r′ = r + ∆r, c21 = cos(θ′ − θ) and s21 = sin(θ′ − θ) as ∆r

and ∆θ shrink.

(

er′

eθ′

)

=

(

c′ s′

−r′s′ r′c′

)

(

ǫx

ǫy

)

=

(

c′ s′

−r′s′ r′c′

)(

c −s/r
s c/r

)(

er

eθ

)

=

(

c21 s21/r
−r′s31 r′c21/r

)(

er

eθ

)

→
(

1 ∆θ/r
−(r + ∆r)∆θ r(r + ∆r)/r

)(

er

eθ

)

=

((

1
1

)

+

(

∆θ/r
−r∆θ ∆r/r

))(

er

eθ

)

So

∆

(

er

eθ

)

=

(

∂rer ∂θer

∂reθ ∂θeθ

)

=

(

∆θ/r
−r∆θ ∆r/r

)(

er

eθ

)

and because of the independence of ∆r and ∆θ from each other, we can get the following
from ∂jek = Γℓ

jkeℓ

Γudd(ℓ j k Γ )

r θ θ −r
θ r θ 1/r
θ θ r 1/r
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30. Following the arguments of Note 14, show that the field

(f x f y) = (−y x)rp−1

becomes (f r f θ) = (0 rp−1).
Show that

((

∂x

∂y

)

f

)

· (ǫx ǫy) =

(

1
−1

)

rp−1 + (p − 1)

( −xy x2

−y2 xy

)

rp−3

Show that
((

∂r

∂θ

)

f

)

· (er eθ) =

(

p/r2

1

)

rp

a) by taking the absolute slope, and
b) by transforming from

((

∂x

∂y

)

f

)

· (ǫx ǫy)

Show that absolute slopes
(

p/r1
2

1

)

r1
p

and
(

p/r2
2

1

)

r2
p

transform into each other in the limit as (r1 θ1) and (r2 θ2) become arbitrarily close.

31. Check that the transformation to spherical polar coordinates from Cartesian is ej = Xmjǫm

so ǫm = Xm
jej :





er

eθ

eφ



 =





sθcφ sθsφ cθ
−rcθcφ −rcθsφ rsθ

−rsθsφ rsθcφ 0











ǫx

ǫy

ǫz













ǫx

ǫy

ǫz






=





sθcφ −cθcφ/r −sφ/(rsθ)
sθsφ −cθsφ/r cφ/rsθ

cθ sθ/r 0









er

eθ

eφ





where cθ = cos θ, sθ = sin θ, cφ = cosφ and sφ = sinφ.

Check that XmjXm
k = δk

j and that XmjXmk = gjk with gjk the spherical metric of Note 16.

32. For spherical polar coordinates (Note 16) derive the affine connection from the metric.
First, using ∂d(k, ∂),

gdd(ℓ ρ g )

r r 1
θ θ r2

φ φ r2s2

∂grmddd(k ℓ ρ ∂g )

r θ θ 2r
r φ φ 2rs2

θ φ φ 2r2cs
θ r θ 2r
φ r φ 2rs2

φ θ φ 2r2cs
θ θ r −2r
φ φ r −2rs2

φ φ θ −2r2cs
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Next we join on ρ, which we can later remove to give Γj
kℓ.

guu(ℓ ρ g )

r r 1
θ θ 1/r2

φ φ 1/(rs)2

guu ⊲⊳ ∂gddd(j ρ k ℓ d∂g )

r r θ θ −r
r r φ φ −rs2
θ θ r θ 1/r
θ θ θ r 1/r
θ θ φ φ −cs
φ φ r φ 1/r
φ φ φ r 1/r
φ φ θ φ c/s
φ φ φ θ c/s

Finally we combine the affine connection with small changes in the spherical polar coordinates,
using ∆u(µ,∆), to get the matrix for Γ∆. (The join index, µ, can be removed to get the matrix

on β and λ. Note that the (φ, φ) entry is the sum of two terms.)
Γ∆ud−(β λ µ Γ∆ )

r θ θ −r∆θ
r φ φ −rs2∆φ
θ r θ ∆θ/r
θ θ r ∆r/r
θ φ φ −cs∆φ
φ r φ ∆φ/r
φ φ r ∆r/r
φ θ φ ∆φc/s
φ φ θ ∆θc/s

λ r θ φ

β
r
θ
φ





0 −r∆θ −rs2∆φ
∆θ/r ∆r/r cs∆φ
∆φ/r ∆φc/s ∆r/r + ∆θc/s





This is for spherical polar coordinates in all three dimensions. Now we restrict ourselves to the
two-dimensional surface of a sphere of fixed radius. All terms containing r can be dropped,
and ∆r = 0. Here is the Γ∆ matrix.

λ θ φ

β
θ
φ

(

0 −cs∆φ
∆φc/s ∆θc/s

)

33. Develop the MATLAB function geodesicLongLat(..) used to plot geodesics on the surface
of the Earth in Note 16.

34. Show that two objects each following a separate geodesic on the sphere (Note 16: great circle)
are separated from each other by a distance cosφ

√

2(1 − cosα) where the great circles are in
planes separated by angle α, which is small enough that the angle φ, increasing with time,
can be considered to give the location of each body as it progresses around the great circle.
The two objects could be the two bottles in the Excursion Message through the Earth: compare
that result with this.

35. Show that co-contra gives the same result, cosθ, for the rotation (curl) field in Note 16 as
co-co. Show that the two contra- approaches get cos θ/ sin θ and that this is plausible.

36. Hotplate geometry. a) Show that the circumference of a circle drawn on a sphere of radius
R, with the circle’s centre at θ = 0 and radius ρ = rθ as measured along the surface of the
sphere is

πR sin

(

ρ

R

)

= 2πρ

(

1− ρ2

3!R2
+ ..

)
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Compared with the circumference of 2πρ that a Euclidean geometer would expect, show that
this corresponds to an expansion of the rulers used to measure the circumference by a factor

1

1− ρ2

3!R2 + ..
≈ 1 +

ρ2

3!R2

b) Now imagine a flat 2D “hot plate” which heats up rulers and everything else on it so that
they expand by a factor

f(ρ, φ) = 1 + k2ρ2

That is, in this case, the plate is cool in the middle and gets hotter in concentric rings as we
move from the centre to edge.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Hot plate expansion factor contours

1 2 3 4 5 ..

(In general, f is an expansion field, depending on both coordinates, ρ and φ, but for now it
depends only on ρ and we will just write it f .)
What is the geometry of the hot plate? Careful! Rulers on the hot plate expand no matter
which direction they’re lined up with, so not only will the circumference appear to shrink
inversely as the rulers expand, but the radius of a circle will not be measured as ρ but as
about

1 (ρ = 0 to ∆ρ) +
1

f
(ρ = ∆ρ to 2∆ρ) +

1

f
(ρ = 2∆ρ to 3∆ρ) + ..

or, exactly

r = antislope |ρ0
1

f
= antislope |ρ0

1

1 + k2ρ2

(To calculate this, recall that slopes of inverse functions are reciprocals, e.g.,

y = x2 : slopexy = 2x ; slopeyx =
1

2x
=

1

2
√
y

So

t = tanu : slopeut = 1 + t2 ; slopetu =
1

1 + t2
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Hence antislope 1
1+t2 = u = atan t.)

So

r = antislope |p0
1

1 + k2ρ2
=

1

k
atankρ

or

ρ =
1

k
tan kr

and

2πρ

f
=

2πρ

1 + k2ρ2

=
2π

k

tan kr

1 + tan2 kr

=
2π

k
sin kr cos kr

=
2π

2k
sin 2kr

Compare this to a sphere of radius R

2πρ

f
= 2πR sin

r

R

and we have that the geometry of the 1+k2ρ2 hot plate is that of a sphere of radius R = 1/2k.
c) To show that the mapping from sphere to 1 + k2ρ2 hot plate is complete we must show
that the metrics are the same.
For a sphere

(∆s)2 = (∆ρ)2 +R2 sin2 ρ

R
(∆φ)2

where ρ is the radial distance as measured on the surface of the sphere.
For the hot plate, the distance is that of plane polar coordinates, all divided by the expansion
factor

(∆s)2 =
1

f2
((∆ρ)2 + ρ2(∆φ)2)

=
1

(1 + k2ρ2)2
((∆ρ)2 + ρ2(∆φ)2)

Now
∆ρ = (sloperρ)∆r = (1 + tan2 kr)∆r

so
∆ρ

f
= ∆r

Also, as above,
ρ

f
=

1

k

tan kr

1 + tan2 kr
=

1

2k
sin 2kr

So

(∆s)2 = (∆r)2 +
1

(2k)2
sin2(2kr)(∆φ)2

where r is the radial distance as measured by the ruler on the hot plate.
The correspondence is exact (except, as Feynman points out [Fey97, p.120], at the one point
at infinity (the south pole)).
d) The idea of a “hot plate” expansion field f(ρ, φ) is not limited to imitating the surface of a
sphere. Create other interesting geometries. (See [?] for a proposal by Poincaré for a hotplate
geometry with temperature T = a2 − r2 which is coolest (0) on the boundary at r = a.)
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37. Absolute slope and curvature. The curvature tensor, derived using parallel transport at
the beginning of Note 17, is also the commutator of the absolute slope.

[Dk,Dk′ ]vj = DkDk′vj −Dk′Dkvj = −Rℓ
jkk′vℓ

We use

Dk′vj = ∂k′vj − Γℓ
k′jvℓ

Dktk′j = ∂ktk′j − Γℓ
kjtk′ℓ − Γℓ

kk′tℓj

So that

DkDk′vj = ∂kDk′vj − Γℓ
kjDk′vℓ − Γℓ

kk′Dℓvj

= ∂k(∂k′vj − Γℓ
k′jvℓ)− Γℓ

kj(∂k′vℓ − Γℓ′
k′ℓvℓ′)− Γℓ

kk′(∂ℓvj − Γℓ′
ℓjvℓ′)

Dk′Dkvj = ∂k′Dkvj − Γℓ
k′jDkvℓ − Γℓ

k′kDℓvj

= ∂k′(∂kvj − Γℓ
kjvℓ)− Γℓ

k′j(∂kvℓ − Γℓ′

kℓvℓ′)− Γℓ
k′k(∂ℓvj − Γℓ′

ℓjvℓ′)

So, subtracting and doing a lot of cancellation, and one swap of dummy variables ℓ and ℓ′,

[Dk,Dk′ ]vj = (∂k′Γℓ
kj − ∂kΓ

ℓ
k′j + Γℓ′

kjΓ
ℓ
k′ℓ′ − Γℓ′

k′jΓ
ℓ
kℓ′)vℓ

= −Rℓ
jkk′vℓ

It is also true that
[Dk,Dk′ ]vj = Rj

ℓkk′v
ℓ

and that higher-rank tensors just generate additional terms, e.g.,

[Dk,Dk′ ]tjj′ = Rj
ℓkk′t

ℓ
j′ −Rℓ

j′kk′t
j
ℓ

Since the absolute slope is a tensor, so are products and commutators of absolute slopes.
Thus, the curvature protor is indeed a tensor. It is also the only second slope of the metric
tensor, gdd, that is a tensor.

38. Bianchi identities. Using the result of Excursion Absolute slope and curvature, the cyclic
symmetry of the curvature tensor from Note 17

Rµλαβ +Rµβλα +Rµαβλ = 0

and, of course, the other symmetries and antisymmetries of Rdddd, prove the “Bianchi identi-

ties”
DλRµναβ +DνRλµαβ +DµRνλαβ = 0

a) For any (non-commutative) operator D show the “Jacobi identity”

[Dλ, [Dµ,Dν ]] + [Dν , [Dλ,Dµ] + [Dµ, [Dν ,Dλ] = Dλ(DµDν −DνDµ)− (DµDν −DνDµ)Dλ

+Dν(DλDµ −DµDλ)− (DλDµ −DµDλ)Dν

+Dµ(DνDλ −DλDν)− (DνDλ −DλDν)Dµ

= 0
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b) Expand the first of the three terms of the Jacobi identity, applied to an arbitrary vector,
with D now the absolute slope and replace the commutators by the curvature tensor using
the above Excursion.

[Dλ, [Dµ,Dν ]]Aα = Dλ[Dµ,Dν ]Aα − [Dµ,Dν ]DλAα

= −Dλ(Rγ
αµνAγ) +Rγ

λµνDγAα +Rγ
αµνDλAγ

= −(DλR
γ
αµν)Aγ −Rγ

αµνDλAγ +Rγ
αµνDλAγ +Rγ

λµνDγAα

= −(DλR
γ
αµν)Aγ +Rγ

λµνDγAα

Similarly for the second and third

[Dν , [Dλ,Dµ]]Aα = −(DνR
γ
αλµ)Aγ +Rγ

νλµDγAα

[Dµ, [Dν ,Dλ]]Aα = −(DµR
γ
ανλ)Aγ +Rγ

λµνDγAα

So

0 = −(DλR
γ
αµν +DνR

γ
αλµ +DµR

γ
ανλ)Aγ

+(Rγ
λµν +Rγ

νλµ +Rγ
λµν)DγRα

and the second term vanishes because it is just the triple of the cyclic symmetry of Rdddd with

the first index raised, say by multiplying with gαγ . Thus

0 = DλR
γ
αµν +DνR

γ
αλµ +DµR

γ
ανλ

= Dλg
γβRβαµν +Dνg

γβRβαλµ +Dµg
γβRβανλ

= gγβ(DλRβαµν +DνRβαλµ +DµRβανλ)

giving the Bianchi identities sought (after using the other symmetries to swap indices around).
We use the arbitrariness of Aγ to get the first line - which itself gives the Bianchi identities
for Ruddd. We use the constancy of the metric under absolute slope to step from the second

line to the third.

39. Divergence-free curvature. Use the Bianchi identities to show that the “Einstein tensor”

Rµν − 1

2
Rgµν

has zero divergence.
Contract the Rdddd Bianchi identities first with gβµ then with gαν and finally raise an index

with gµλ.

0 = gβµ(DλRβαµν −DνRβαµλ +DµRβανλ)

= DλRαν −DνRαλ +Dµg
βµRβανλ

0 = gαν(DλRαν −DνRαλ −Dµg
βµRαβνλ)

= DλR−Dνg
ανRαλ −Dµg

βµRβλ

= DλR−DνR
ν
λ −DµR

µ
λ

= DλR− 2DνR
ν
λ

0 = gµλ(DλR− 2DνR
ν
λ)

= Dλg
µλR− 2DνR

νµ

= Dν(g
µνR− 2Rµν)
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Note that the constancy of the metric means its absolute slope is zero so that we can add
Λguu to the Einstein tensor and still have zero divergence

Dµ(Rµν − 1

2
Rgµν + Λgµν) = 0

Λ has significance in cosmology and so is called the cosmological constant—even though
Einstein, who introduced it in 1917 (to stop the universe from contracting under gravity),
later considered it “the biggest blunder of my life”: with it he could have anticpated Hubble’s
1929 discovery of the expanding universe.

40. Number of components of the curvature tensor. The symmetries of R in Note 17
severely reduce the number of independent terms in the curvature tensor. Instead of d4 terms
we can show that there are

1

12
d2(d2 − 1)

independent numbers in d dimensions.

d d2(d2 − 1)/12
1 0
2 1
3 6
4 20

(The single value in 2 dimensions is, for instance, the r2s2 we found above for the surface
of the sphere. This value appears in four different entries with varying sign, but it is one
independent value.)
Here is the demonstration, first in three dimensions then in four.
Rµλαβ can be examined in terms of the µλ pair of indices and the αβ pair. Each of these
pairs, in three dimensions, can take on ∆2 = 3 values: 12, 13, 23: call them x, y and z,
respectively. The reverses, 21, 31, 32, just change sign because of the antisymmetry, and the
values 11, 22, 33 represent 0. (∆n is the nth triangular number.)
Rµλαβ is all possible combinations of x, y and z, with the symmetry of swapping any two of
these index-pairs also limiting these values to ∆∆2 = ∆3 = 6, as we calculated above with
the formula.

x y z
x a b c
y b d e
z c e f

(We can also see, with a little thought, that there are 4 different occurrences, with varying
sign, of the values for a, d and f , and 8 for b, c and e. This leaves 45 zeros among the 34 = 81
elements of the 3-D tensor.)
In four dimensions, the same argument gives ∆∆3 = ∆6 = 21 different terms. This must be
corrected, because the cyclic symmetry takes one of these different values away. The number
of ways we can select four different values from d numbers is d(d − 1)(d − 2)(d − 3)/4!, i.e.,
d!4 (“d choose 4”) or S4

d−3 (the d− 3rd 4-simplex number). That is 1 when d = 4 in the 4-D
case. So the number is reduced to 20 as in the above table.
Given that ∆n = n(n+ 1)/2 you can combine ∆∆d−1

with S4
d−3 to get the above formula for

the number of independent elements in the curvature tensor.

41. Angular excess at fixed latitude. Here is how angular excess develops as we traverse a
curve on a sphere.
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As we proceed along the Equator (lat = 0, θ = π/2), for instance, holding a pointer in front of
us which we maintain parallel to itself for the whole circuit, the pointer stays in the direction
we are going.
If we do the same thing arbitrarily close to the North Pole, we must keep turning left while
the pointer stays in its fixed direction. This is because the geodesic is a “polar equator”,
proceeding straight ahead of us at our start, down to the Equator, then the South Pole, then
back up behind us. Each time we turn to the left, our (right) arm holding the stick must
bend a little further to the right, giving the increasingly clockwise direction shown at the top
of the map. The pointer makes a full rotation as we walk around the Pole.
The effect is less extreme at lower latitudes. For instance, on the Tropic of Cancer (lat =
30, θ = π/2 − π/6 = π/3), the pointer will wind up pointing backwards, having made half a
rotation.
Effectively the pointer keeps trying to follow a “straight line” (a great circle or geodesic)
while we keep turning away. So as we turn away the pointer diverges increasingly from
the direction we’re headed. A picture of great circles touching each of three latitudes at
hypothetical starting points at longitude −180o (φ = 0) will help visualize this process. We
must imagine a new great circle redefining the direction the pointer wants to keep at each
step we take along the latitude.
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Spherical polar geodesic starting at (−180   60) in direction (1  0)
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Another way of looking at this is to think of walking with one foot on each side of the latitude
circle we’re following. At the Equator, we can take equal-length strides with each foot. But
at the Tropic of Cancer our northern foot must take shorter strides than our southern foot,
because the latitude circle the northern foot follows is shorter than the latitude circle to the
south. So we are effectively turning all the time towards the north.
We can calculate all this. We’ll use the affine connection for a sphere directly instead of the
curvature tensor.

Γudd(α β γ Γ )

θ φ φ −cs
φ θ φ c/s
φ φ θ c/s

remembering that c = cos θ and s = sin θ.
Since, for parallel transport, the change in coordinates of a vector v is due entirely to the
change in position

∆vβ = −Γβ
µλ∆µvλ

we can write the slope of v with respect to position ∆

slopeµv
β ≈ ∆xβ

∆µ
= −Γβ

µλv
λ

Specializing to the spherical surface we have two slope equations for slopes with respect to
longitude φ as we stick to fixed latitude θ.

slopeφv
θ = cs vφ

slopeφv
φ = −(c/s) vθ

These are “coupled” slope equations which we must separate into pure equations in one
variable each. We can do that by taking the slope again and then using the other equation
to eliminate.

slopeφslopeφv
θ = cs slopeφv

φ

= −c2vθ

slopeφslopeφv
φ = −(c/s) slopeφv

θ

= −c2vφ

Both equations are the same so the two variables, vθ and vφ, have the same behaviour. From
the first picture above we can see that this behaviour is oscillatory—a full cycle in the traversal
at the North Pole, half a cycle in the traversal at the tropic of cancer, and zero cycles when
we traverse the Equator. We could try eicφ (or e−icφ) as a solution for each of the variables
v = vθ(φ) and v = vφ(φ) but we would like to keep the numbers one-dimensional so we try
instead

vθ = A cos cφ+B sin cφ

vφ = C cos cφ+D sin cφ

slopeφv
θ = −cA sin cφ+ cB cos cφ

slopeφv
φ = −cC sin cφ+ cD cos cφ

where I’ve shown the slopes, too, enough to make clear that the second slopes will just give
back −c2 times the original variables.
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Each of these solutions has two undetermined constants. If you take the second slopes you’ll
see that the constants don’t get pulled out of the original proposed solution, so the slopes
alone cannot determine the constants. (Typically, a slope equation has one undetermined
constant for each slope.)
We must use starting conditions to fix the constants. We decided to start at φ = 0 the
International Date Line, with an initial pointer

(

vθ
0

vφ
0

)

So setting φ = 0 in the solutions we see that

A = vθ
0

C = vφ
0

and using the slopes of the solutions and the original equations we also find (hint: both sides
of the equations below were multiplied by c)

B = svφ
0

D = −1

s
vθ
0

So now we know the pointer at any position, assuming that we have walked along a fixed
latitude starting at the International Date Line, with initial pointer. Let’s say it is initiallly
pointing straight ahead of us along the line of latitude:

(

vθ
0

vφ
0

)

=

(

1
0

)

Embodying these solutions into the function fixedLatCircle(noTheta,noPhi,v0) and in-
voking fixedLatCircle(7,17,[1;0]) gives the arrows shown above, a 7 by 17 grid. (Hint:
multiply the equation for vφ(φ) by s = sin θ to show arrows of the same length at all latitudes
on the equiangular projection.)
We can find the angular difference between the initial and final position φ = 2π at each
latitude.

cosα =
gjkv

j
0v

k(2π)

gjkv
j
0v

k
0

| v0 |2 cosα = vθ
0v

θ(2π) + s2vφ
0 v

φ(2π)

= (vθ
0)

2 cos 2πc+ vθ
0v

φ
0 s sin 2πc+ s2(−vφvθ(sin 2πc)/s + (vφ

0 )2 cos 2πc)

= ((vθ
0)

2 + s2(vφ
0 )2) cos 2πc

= | v0 |2 cos 2πc

so the angle the pointer finally winds up pointing at is

α = 2πc

The excess angle, because we’ve gone around a full circle each time, with “interior angles”
summing to 2π, is 2π minus this

∆ = 2π(1− c) = 2π(1− cos θ0)
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In the above calculations I have set the radius of the sphere to 1 because it does not figure
in either the plot or the angle calculation. For the final step, next, I set it to r, so the metric
now

gdd =

(

r2

r2s2

)

To check the curvature (which is constant on a sphere) we need the area contained by this
constant-latitude circle with the North Pole at the centre.

area = antislopeφ=0:2πantislopeθ=0:θ0

√
g

= r2antislopeφ=0:2πantislopeθ=0:θ0
sin θ

= 2πr2(− cos θ)θ0
0

= 2πr2(1− cos θ0)

and the ratio of these two is the curvature, 1/r2.

42. Local flatness. In Note 17 I claimed that curved space is “locally flat” in the sense that the
slope of the metric vanishes, and so, then, do the affine connections or Christoffel symbols. (It
is in fact the definition of a manifold that we can always find a transformation to a coordinate
system in which the slope of the metric vanishes. We’ll deal always with manifolds.)
The way to do this is to measure the coordinates along geodesics.
In Note 13 we gave the parallel transport that creates a geodesic as

x′α = (δα
λ − Γα

νλ∆ν)xλ

where ∆ν is a small displacement in the ν-direction from the start point of the geodesic.
(In fact, if we choose orthogonal geodesics we can make an orthonormal basis so that the
metric is just the identity matrix up to first order in displacements.)
We’ll take this as the transformation from new local coordinates xλ = ∆λ in the basis of the
geodesics, to original local coordinates xα which are small changes in the global coordinate
system

xα = (δα
λ − Γα

νλx
ν)xλ

We can call this the transformation (matrix)

Xα
λ = δα

λ − Γα
νλx

ν

If the geodesic in the original coordinate frame is gαβ then its transformation is

gλµ = Xα
λX

β
µgαβ

which we can see easily in matrix terms

(x1, x2)gdd

(

x1

x2

)

= ∆S

= (x1, x2)gdd

(

x1

x2

)

= (x1, x2)XTgddX

(

x1

x2

)

So gdd = XTgddX and, of course, in index notation transposition is conveyed simply by the

indices.
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We expand gdd, using a Taylor’s series, in terms of small displacements xγ about the point P

we’ve chosen as origin

g(P + x)αβ = g(P )αβ + ∂νg(P )αβx
ν +O(x2)

(If we write any function f(P + x) as a series in powers of x

f(P + x) = f(P ) + ax+ bx2 + cx3 + ..

we can find successive slopes with respect to x and then let x→ 0

slopef(P + x) = a+ 2bx+ 3cx2 + ..→ a

slope slopef(P + x) = 2b+ 6cx+ ..→ 2b

slope slope slopef(P + x) = 6c+ ..→ 3!c

:

and so we get the coefficient a for the first order in x, b for second order, and so on.)
Here is the whole transformation, taken to first order in xν

gλµ = Xα
λX

β
µgαβ

= (δα
λ − Γα

νλx
ν)(δβ

µ − Γβ
νµx

ν)(g(P )αβ + ∂νg(P )αβx
ν + ..)

= g(P )λµ + [∂νg(P )λµ − Γα
νλg(P )αµ − Γβ

νµg(P )βλ]xν + ..

and the term in square brackets, multiplying xν , vanishes because of the geodesic.
We can illustrate this for the surface of a sphere.

gdd(α β g )

θ θ r2

φ φ r2s2

Γudd(α β γ Γ )

θ φ φ −sc
φ θ φ c/s
φ φ θ c/s

By analogy with the discussion of geodesics in Note 16 we have the transformation as a matrix

λ 1 2

α
1
2

(

1 csx2

−x2c/s 1− x1c/s

)

and the transformation of gdd is

(

1 −x2c/s
csx2 1− x1c/s

)(

r2

r2(s2 + 2x1cs)

)(

1 csx2

−x2c/s 1− x1c/s

)

Note the first-order term added to s2 = sin2(θ) to take it to sin2(θ + x1).
Worked out to first order this gives

(

r2

r2s2

)

which is the metric we started with: the two infinitesimal directions do lie along geodesics,
and they are orthogonal, diagonalizing the metric. The basis vectors are not normalized to
unit length, however, so the metric is not the identity matrix. The result is independent of x
to first order, so the first slope of the metric with respect to the parameter θ is zero, so the
spherical surface is locally flat in these coordinates.
You can show that the metric is also unchanged and has zero first slope for plane polar
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coordinates

gdd(α β g )

r r 1
θ θ r2

Γudd(α β γ Γ )

θ θ r 1/r
θ r θ 1/r
r θ θ −r

and for the hyperboloid of revolution (see Note 18)

gdd(α β g )

p p cosh(2p)
θ θ cosh(p)2

Γ udd(α β γ Γ )
p p p tanh(2p)
p θ θ −1

2 tanh(2p)
θ p θ tanh(p)
θ θ p tanh(p)

It is interesting to take the above expansions to second order. The metrics we start and end
with are (now omitting the overlines on the x-coordinates):
For the surface of a sphere (c = cos θ, s = sin θ, c2 = cos 2θ):

(

r2

r2(s2 + 2csxθ + 2c2x
θxθ)

) (

1 + c2xφxφ −c2xθxφ

−c2xθxφ s2 + c2s2xφxφ − (1 + s2)xθxθ

)

For plane polar coordinates:

(

r2

r2 + 2rxr + 2xrxr

) (

1 + xθxθ −xrxθ

−xrxθ r2 + r2xθxθ + xrxr

)

And for the hyperboloid of revolution (c = cosh p, s = sinh p, c2 = cosh 2p):

(

c2 + 2s2xp + 2c2xpxp

c2 + 2csxp + c2xpxp

) (

c2 + ((2 − s2
2)/c2)xpxp + s2xθxθ ((s2

2/(2c2) − s2)xpxθ

((s2
2/(2c2) − s2)xpxθ c2 + (s2

2/(4c2))xθxθ + (1 − s2)xpxp

)

All the resulting metrics are symmetrical, as they should be. This means that they can each
be diagonalized. The eigenvalues, λ, of a symmetrical 2-by-2 matrix satisfy

(

A B
B D

)(

x
y

)

= λ

(

x
y

)

So
(

A− λ B
B D − λ

)(

x
y

)

= 0

which requires the determinant to vanish

0 =

∥

∥

∥

∥

A− λ B
B D − λ

∥

∥

∥

∥

= λ2 − (A+D)λ+AD −B2

So

λ =
1

2

(

(A+D)±
√

(A−D)2 + 4B2

)

These two possible values for λ are the two elements in the diagonalized matrix. Note that
in each of the three matrices B is quadratic in x, in fact involves a product of two different
xs. So the 4B2 term will be quartic. We’ll limit the diagonal matrices to quadratic in x, so
the B terms vanish and we’re left with the matrix

(

A
D

)
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in each case: just the diagonal elements of the metrics shown above to second order.
What are the eigenvectors corresponding to these two eigenvalues, and hence what is the
orthogonal matrix (its transpose is its inverse) that diagonalizes the metric?
In each case we can write

gαβ = g(<origin>)αβ +Qαβµνx
µxν

where g(< origin >) means g() evaluated at xµ = 0 and where the symbol Qαβµν has the
following meanings.

For sphere (<origin>= θ)

Qdddd

(α β µ ν Q )
θ θ φ φ r2c2

φ φ θ θ r2(c2 − 2)
φ φ φ φ r2s2

For polar (<origin>= r)

Qdddd

(α β µ ν Q )
θ θ θ θ 1
φ φ θ θ r2

φ φ φ φ −1

For hyperboloid (<origin>= p)

Qdddd

(α β µ ν Q )
p p p p (2− s22)/c2
θ θ p p 1− s2
θ θ θ θ s22/(4c2)

I’ve taken the diagonal form of the metric in each case: the nondiagonal forms will add two
terms to Q each time. What are they?

43. The boundary of boundary is zero. In three dimensions, curvature can be calculated, as
in Note 17, by the difference resulting from parallel transport of a vector around loops in the
six faces of an infinitesimal cube.

We see that these loops counteract each other totally along the twelve edges of the cube
because each edge borders two faces.
What does this say about total curvature, i.e., the sum of all six curvature results?
Note that the faces are the boundary of the cube and the edges are the boundaries of the
boundary. See [Whe90, Ch.7] for a longer discussion.
In a four-dimensional infinitesimal hypercube, what is the boundary of the boundary, and
what does it say about the sum of all curvatures?

44. a) Calculate the curvature tensor for spherical coordinates

(∆s)2 = (∆r)2 + r2(∆θ)2 + r2 sin θ(∆φ)2

b) Calculate the curvature tensor for spherical coordinates limited to the surface of a sphere

(∆s)2 = r2(∆θ)2 + r2 sin θ(∆φ)2
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45. What is the rule for the number of vertices, edges, faces and other parts of a d-dimensional
hypercube? (Columns to the right of the column headed d.)

∆d | R(d) | d V E F
0 0 0 1
1 0 1 2 1
3 1 2 4 4 1
6 6 3 8 12 6 1

10 20 4 16 32 24 8 1

The columns to the left are ∆d, the triangular numbers, and | R(d) |, the number of different
elements of the curvature tensor from Excursion Number of components of the curvature
tensor.
Why do the number of different elements of the curvature tensor differ from the number of
faces F?

46. Curvature of lines. The curvature of a line is defined as the rate of change, per unit length
along the line, of the angle of the tangent to the line.

θ

∆

y∆∆ s

x

a) Show that the curvature of a circle is the reciprocal of its radius r.
The arc length subtended by angle θ is s = rθ, so

slopesθ = 1/slopeθs = 1/r

b) Show that the length ∆s along a small segment of any curve y(x) is

∆s =
√

1 + (slopexy)
2∆x

so

slopexs =
√

1 + (slopexy)
2

c) Similarly, show that for a parametric curve x(p), y(p)

∆s ≈
√

(slopepx)
2 + (slopepy)

2∆p
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So
slopeps =

√

(slopepx)
2 + (slopepy)

2

d) For curve y(x) again show that

slopesθ = slopesx slopexθ

= slopexθ/slopexs

= slopex(atan(slopexy))/slopexs

=
slopexslopexy

1 + (slopexy)
2

1
√

1 + (slopexy)
2

=
slopexslopexy

(1 + (slopexy)
2)3/2

So the radius of the “osculating circle”, which is the circle that matches the curvature of the
curve at the point (x, y) under consideration, is

r =
(1 + (slopexy)

2)3/2

slopexslopexy

This is known as the radius of curvature, and is the reciprocal of the curvature.
e) For the parametric curve x(p), y(p) show that

slopesθ = slopesp slopexθ

= slopepθ/slopeps

=
slopepatan(slopepy/slopepx)

slopeps

=
slopep(slopepy/slopepx)

1 + (slopepy)
2

1
√

(slopepx)
2 + (slopepy)

2

=
slope2

py slopepx− slope2
px slopepy

((slopepx)
2 + (slopexy)

2)3/2

and the radius of curvature is the reciprocal of this.
f) Show that a line has no intrinsic curvature, i.e., a 1-dimensional creature living in the line
can never tell if the line is curved or not.

47. For a curved surface in two dimensions, show that

z =
ξ2

2ρ1
+

η2

2ρ2

for suitable internal (to the surface) coordinates (ξ, η), where ρ1 and ρ2 are the radii of the
two osculating circles [MTW73, p.335].
Here is a one-dimensional cross-section of the surface (red) showing the tangent plane (co-
ordinates (x, y)) at a given point, and a paraboloid of revolution used to approximate the
surface at that point.

z =   (ax   + 2bxy + dy  )/2

x

y

z
2 2
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a) We want to transform (x, y) to (ξ, η) so that z = (k1ξ
2+k2η

2)/2 instead of z = (ax2+bxy+
dy2)/2. We rotate within the tangential plane by an angle θ using c = cos θ and s = sin θ.

z =
1

2
(x y)

(

a b
b d

)

y

(

x
y

)

=
1

2
(ξ η)

(

c −s
s c

)(

a b
b d

)(

c s
−s c

)(

ξ
η

)

=
1

2
(ξ η)

(

ac2 − 2bcs+ ds2 (a− d)cs + b(c2 − s2)
(a− d)cs + b(c2 − s2) as2 + 2bcs + dc2

)(

ξ
η

)

To make this diagonal we want

z =
1

2
(ξ η)

(

k1

k2

)(

ξ
η

)

so we need
0 = (a− d)cs + b(c2 − s2) = (a− d)s2/2 + bc2

where s2 = sin(2θ) and c2 = cos(2θ), so

s2

c2
=

2b

d− a
or

θ = atan
2b

d− a
And, of course,

k1 = ac2 − 2bcs + ds2

k2 = as2 + 2bcs + dc2

b) We want to show that k1 = 1/ρ1 and k2 = 1/ρ2, the radii of the two osculating circles,
and hence that k1 and k2 are linear curvatures.
So, in directions ξ and η we approximate the surface by circles of radius ρ1 and ρ2 respectively.

ρ   = η   + (ρ −  )

ρ
ρ

z
2

η

z 22

2

2
1

1
1 1 2 2

ξ

ρ
ρ

ρ   = ξ   + (ρ −  )
z

2 2 2z

The discussion is the same for each circle, so here it is for the ξ-circle with radius ρ1.

0 = z2 − 2ρ1z + ξ2

z = ρ1 ± ρ1

√

1− ξ2/(2ρ2
1)

≈ ρ1(1± (1− ξ2/(2ρ2
1)))

= ξ2/(2ρ1)

where we choose the − sign because that is the lower part of the circle seeking z(ξ).
Combining ξ- and η- directions,

z =
ξ2

2ρ1
+

η2

2ρ2
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which, from (a), tells us k1 = 1/ρ1 and k2 = 1/ρ2, so k1 and k2 must be curvatures.
c) Show that the metric of the surface is

(

k2
1ξ

2 + 1 k1k2ξη
k1k2ξη k2

2η
2 + 1

)

using
(∆s)2 = (∆z)2 + (∆ξ)2 + (∆η)2 = (k1ξ∆ξ + k2η∆η)

2 + (∆ξ)2 + (∆η)2

48. In four dimensions, why are there six degrees of freedom for space transformations (three
Lorentz, three rotation) and why must the Riemann curvature have twenty independent
components [FMW03, pp.104,5]?
a) Show that a p-index transformation of d-dimensional variables xα → x′α has dSp

d elements,
where Sp

d is the number for the p-dimensional simplex of size d (see, e.g., Week ii, Note 6),
that is

S1
d = d : 1, 2, 3, 4, ..

S2
d = ∆d : 1, 3, 6, 10, ..

S3
d = +3d : 1, 4, 10, 20, ..

and so on (e.g., Week i Notes 1–6).
Since the transformation elements have the forms of partial slopes

p = 1 index ∂α′xµ

p = 2 indices ∂α′∂β′xµ

p = 3 indices ∂α′∂β′∂γ′xµ

etc., we must count partial slopes while remembering that ∂α′∂β′ = ∂β′∂α′ .
Here it is in d = 2 dimensions.

p = 1
∂1′x

1 ∂2′x
1

∂1′x
2 ∂2′x

2 dS1
d = d× d = 4

p = 2
x1 ∂1′ ∂2′

∂1′
√ √

∂2′
√ dS2

d = d∆d = 2× 3 = 6

and similarly for x2.

p = 3 x1
∂1′ ∂1′ ∂2′

∂1′
√ √

∂2′
√ dS3

d = d+3d = 2× 4 = 8

x1
∂2′ ∂1′ ∂2′

∂1′

∂2′
√

and similarly for x2.

Once you’ve made the argument in general, here’s a summary of dSp
d for d, p = 1..4

d\p 1 2 3 4
1 1 1 1 1
2 4 6 8 10
3 9 18 30 45
4 16 40 80 140
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b) Show that the number of (p−1)st slopes of the d-dimensional metric tensor gdd is ∆dS
p−1
d .

For p = 1 we have the ∆d components of the (symmetric) metric tensor: S0
d = 1.

For p = 2, each of these components has S1
d = d slopes.

For p = 3, by the reasoning in (a), each component has S2
d = ∆d slopes.

Check the generalization and then calculate

d\p 1 2 3 4
1 1 1 1 1
2 3 6 9 12
3 6 18 36 60
4 10 40 100 200

c) When d = 4 compare the bottom rows of the two tables

p 1 2 3 4
freedom to transform: 16 40 80
metric components: 10 40 100
net freedom: 6 0 -20

Note that the Riemann curvature tensor, with 20 independent components, is formed by
second slopes of the metric tensor.
Note that the 6 first slopes of the metric can in principle be transformed away: this gives us
a locally flat space to work with.

49. What functions for ch, sh? The two symbols in Note 18, ch and sh, will be functions of
some parameter, just as c and s (cos() and sin()) are functions of the angle. What functions?
What parameter?
The choice of functions does not matter, in principle, just as long as they satisfy the constraint
ch2 − sh2 = 1. In practice, one will turn out better than the rest. Let’s explore. Each of the
following satisfy the constraint on ch and sh.

parameter ch sh ch−1 sh−1

−π
4

< θ < π
4

1
cos(2θ)

= sec(2θ) sin(2θ)
cos(2θ)

= tan(2θ) 1
2
asecch 1

2
atansh

0 < p < ∞ 1
2
(p + 1

p
) 1

2
(p − 1

p
) ch + sh = ch +

√

ch2 − 1 ch + sh = sh +
√

sh2 + 1

−∞ < p < ∞ 1
2
(ep + e−p) 1

2
(ep − e−p) ln(ch + sh) = ln(ch +

√

ch2 − 1) ln(ch + sh) = ln(sh +
√

sh2 + 1)

The overlapping plot shows that all give the same hyperbola: the exact dependence on the
parameter does not matter. The only relationship that matters is ch2 − sh2 = 1.
(I’ve written the first parameter as a half-angle so it ranges between the asymptotes of the
hyperbola. This does not guarantee that the point (ch, sh) is located at that angle from the
origin.)
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0

1
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3

4
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Three parametric hyperbolas

x

z

 

 
sec & tan
p ± p−1

ep ± e−p

In all these cases, we can find functions corresponding to the other trigonometric functions:

th =
sh

ch
tan

sch =
1

ch
sec

csh =
1

sh
csc

cth =
1

th
cot

and relationships such as
th2 + sch2 = 1

But we can only get an analogue of the trigonometric doubling relationships

c2 − s2 = c2

2cs = s2

and their generalizations (here c2 and s2 are cos(2θ) and sin(2θ) respectively) with the third

option.

parameter ch2 + sh2 2ch × sh

−π
4 ≤ θ ≤ π

4
1+sin(2θ)2

cos(2θ)2 2 sin(2θ)
cos(2θ)2

0 ≤ p ≤ ∞ ch(p2) sh(p2)
−∞ ≤ p ≤ ∞ ch(2p) sh(2p)

This explains why the third choice of parameter and functions is used:

cosh p =
1

2
(ep + e−p)

sinh p =
1

2
(ep − e−p)
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Furthermore, the slopes of these hyperbolic functions remind us of trig.

slope cosh(p) = sinh(p)

slope sinh(p) = cosh(p)

So this is the convenient parametrization.
Now that convenience—well, let’s call it elegance—has dictated our choice of parametrization,
what does the parameter mean? Not very obviously, and not very helpfully, it is the area OAP,
shown in Note 18, between the line connecting the origin with the point and the hyperbola
itself.
We can see this most easily by taking the antislope with respect to z (in the figure on p.3) of
the difference (remember, x2 − z2 = 1)

xon the hyperbola − z
ch

sh
=

√

z2 + 1− z
√

sh2 − 1

sh

This is taken from z = 0 to sh.
The antislope is (from a table of integrals then applying the limits then finding a term which
cancels the second term above)

ln(sh +

√

sh2 + 1) = ln(sh + ch) = p

It is just the parameter we came up with and which gives the functions all those neat trig-like
properties.

50. How far does the notion of negative curvature in Note 18 fit the tidal motion of Excursion
Tides for the discussion of classical gravity in Note 7?

51. Hyperboloid. Show that the Gaussian curvature for the hyperboloid is the product of the
reciprocals of its two radii of curvature

K =
1

r1

1

r2

a) The radius of curvature r1 is the distance to the z-axis along a line normal to the hyper-
boloid.

2(    , 1)

33

3

Radii of curvature for hyperboloid of revolution

(x  ,y  ) =

r  =

r  =1

2

P P

106



(Note in this figure that the dashed osculating circle is actually in a plane perpendicular to
the page.)

Show that r1 = ch2
1/2 = cosh(2p)1/2 in the notation of Note 18 ([Whe90, p.137] has a nice

picture).

r = cosh p

z = sinh p

∆r = slopepr∆p = sinh p∆p

∆z = slopepz∆p = cosh p∆p

So the equation of the straight line tangent to the hyperboloid is, for some a,

z =
∆z

∆r
r + a = r coth p+ a

And the equation of the normal—the line perpendicular to the hyperboloid—is

z = −∆r

∆z
r + b = −r tanh p+ b

Since (r, z) = (cosh p, sinh p) is on both of these lines, then in particular

z = 2 sinh p

so the normal line is
z = −(r cosh p+ 2 sinh p)

This crosses the z-axis at (0, 2 sinh p) giving distance to (cosh p, sinh p)

r21 = cosh2 p+ sinh2 p = cosh(2p)

b) The other radius of curvature r2 is clearly in the opposite direction. To find it we can use
the general results in Excursion Curvature of lines.
We use the parametric form of the hyperbola, x = cosh p and y = sinh p to get

r2 =
(sinh2 p+ cosh2 p)3/2

sinh2 p− cosh2 p
= −(cosh(2p))3/2

c) Thus
1

r1

1

r2
=

1

cosh2(2p)

which is what we found for the Gaussian curvature K in Note 18.

52. Paraboloid. Show that the radii of curvature of the paraboloid of revolution generated by

x = a

(

1 +

(

y

2a

)2
)

are

r1 = a

(

1 +

(

y

2a

)2
)3/2

and

r2 = −2a

(

1 +

(

y

2a

)2
)3/2
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r =  125/8

r =  125/4
(x  ,y  ) = (5/4,1)P P

1

2

x

y

x  = (2a − x)  + y2 2 2

2a

(Note in the figure that the dashed osculating circle is actually in a plane perpendicular to
the page.)
a) The two radii are directed along the normal to the paraboloid. The centre of the osculating
circle with radius r1 is the axis of revolution x = 0.
The tangent to the parabola has slope slopexy

4ax = y2 + 4a2

4a = 2y slopexy

slopexy =
2a

y

so the slope of the normal is the negative reciprocal of this and the equation of the normal
line is

y = −yP

2a
x+ b

where (xP , yP ) is the point on the parabola where the normal crosses, and b can be found by
setting (x, y) = (xP , yP )

b = yP

(

1 +
xP

2a

)

so

y = yP

(

1 +
xP − x

2a

)

When x = 0, on the axis of rotation,

y = b = yP

(

1 +
xP

2a

)

The distance from this point to (xP , yP ) is

r21 = x2
P +

(

xP yP

2a

)2

= x2
P

(

1 +

(

yP

2a

)2
)

= a2

(

1 +

(

yP

2a

)2
)2(

1 +

(

yP

2a

)2
)
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giving the first result above.
b) The second radius comes from the result for y(x) in the Excursion Curvature of lines.

r2 =
(1 + (slopexy)

2)3/2

slopexslopexy

=

(

1 +
(

2a
y

)2
)3/2

−2a
y

2a
y

= −2a

(

1 +
(

2a
y

)2
)3/2

(

2a
y

)3

= −2a

(

(

y

2a

)2

+ 1

)3/2

giving the second result above.
Thus the Gaussian curvature

K =
1

r1r2
=

1

2r21

= − 1

2a2

(

1 +

(

y

2a

)2
)3

= − a

2x3

c) Calculate the metric to affine connection to curvature using the general results of Note 18
and show that this gives the same Gaussian curvature for the paraboloid of rotation.
First the metric. Here is Wheeler’s argument [Whe90, pp.156–8], based on Apollonius, that

(∆s)2 =
(∆r)2

1− a/r

s

r

4a(r−a)

r=∆s
∆

��
��
��

��
��
��r∆

1

2
ar

3

4 r  1   a/r

r  1   a/rr∆

�����
�����
�����

�����
�����
�����r

2aa0

r

109



The two shaded green triangles are similar, the smaller one being microscopic in size but
formed between two sets of very close line pairs connecting the point P on the parabola a)
to the axis of rotation (the lines in the pair are parallel) and b) to the focus (the lines in the
pair are not parallel but are close enough together to be considered so).
The four steps in the figure are subtraction (1) followed by three Pythagorean triangles (2),
(3), (4).
Including the dependence on the angle θ in the dimension perpendicular to the page, we have
the metric

(∆s)2 =
(∆r)2

1− a/r + r2(∆θ)2

From this, show that the affine connection is

Γudd(α β γ Γ )

r r r a
2r(a−r)

r θ θ a− r
θ r θ 1/r
θ θ r 1/r

and that the Riemann curvature is

Rdddd(α β γ δ R )

r θ r θ −a/2(a− r)
r θ θ r a/2(a − r)
θ r r θ a/2(a − r)
θ r θ r −a/2(a− r)

so the Gaussian curvature is

K = −Rrθrθ

g

=
a/2/(a − r)
r2(1− a/r)

= − a

2r3

We relate this to part (b) above by noting that r and x have the same meaning in the two
diagrams.
d) What are the curvatures in three dimensions?
Check first that what we’ve just solved is a two-dimensional problem, namely the surface of the
paraboloid, even though we’ve shown an extraneous third dimension (the vertical dimension
in the figures) so that we can visualize the paraboloid.
The two dimensions in the problem are

(a) the circular dimension in which we circle around the axis of rotation (symmetry) a
distance r from it (in parts (a) and (b) this distance is called x)—the (θ, θ) component
of the metric is r2;

(b) the inward-outward dimension in which we approach or recede from the centre of sym-
metry along the paraboloid—the (r, r) component of the metric is 1/(1 − a/r).

The curvature of this two-dimensional space we have just seen to be

K = − a

2r3
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The three-dimensional extension we’d like to look at goes from circular symmetry to spherical
symmetry. To keep in mind an extraneous dimension in which to embed the new, three-
dimensional construct, we must think of an infinity of “axes of rotation” pointing in all
directions so that we have circular symmetry in all directions.
Fortunately we don’t have to visualize four dimensions (and the “fourth” dimension has
nothing to do with time, by the way) because curvature always involves only two-dimensional
elements.
So we must think, in the three “real” dimensions, of the curved space we’re now considering,
about a (cubic) sample volume of six equal (two-dimensional) faces.
The “circular” dimension of the two-dimensional paraboloid of the previous parts of this
Excursion now becomes two circular dimensions, each maintaining constant distance r from
the centre of symmetry. We’ll imagine two of the faces of our sample volume as small parts
of the spherical surfaces of radius r and r + ∆r respectively.
So the curvature of the closer of these faces is

Kfacing =
1

r21
=

a

r3

This leaves four more faces of our sample volume, each one sideways-on to the centre of
symmetry. Since two edges of any of these faces is a constant distance from the centre,
traversing them is along a circular dimension. The other two edges are in the inwards-
outwards dimension, approaching and receding from the centre.
So each of the sideways-on faces has curvature

Ksideways =
1

r1r2
= − a

2r3

There are two of these sideways edges for each facing edge, so that the total curvature can
be found from three faces.

Ktotal = Kfacing + 2Ksideways

=
a

r3
− 2

a

2r3

= 0

This is an important property of the paraboloid of “two-dimensional revolution” (i.e., about a
sphere) and plays the same role in gravity that the divergence-free 1/r2 field plays in classical
3-D gravity (Note 7).
e) Obtain these same three curvatures from the Ricci tensor.
Extend the 2-D metric of the paraboloid to 3-D by changing the circle (metric component r2)
to a sphere (metric components r2, r2 sin2 θ).
With metric







1
1−a/r

r2

r2 sin2 θ







find the affine connection
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Γudd(α β γ Γ )

r r r a/2r(a− r)
r θ θ a− r
r φ φ (a− r) sin2 θ
θ r θ 1/r
θ θ r 1/r
θ φ φ − cos θ sin θ
φ r φ 1/r
φ φ r 1/r
φ θ φ cos θ/ sin θ
φ φ θ cos θ/ sin θ

and the Ricci tensor

Rdd(α β R )

r r a
r3(1−ra/r)

θ θ − a
2r

φ φ − a
2r sin2 θ

Transform to orthonormal coordinates (Excursion Orthonormal polars)





√

1− a/r
1/r

1/(r sin θ)











a
r3(1−a/r)

− a
2r
− a

2r sin2 θ











√

1− a/r
1/r

1/(r sin θ)





=





a
r3

− a
2r3

− a
2r3





as required.
Note that the total curvature is the trace of this matrix.

53. Look up [Wei72, pp.144–6] for a derivation of the Riemann curvature tensor in terms of the
curvature scalar, the Ricci tensor and the Weyl tensor in three or more dimensions (Note 19).

54. Implement the MATLAB functions metr2curv() and contract() of Note 20 and their aux-
iliary functions.

55. Look up Karl Friedrich Gauss (1777–1855). What is Gaussian curvature? What other ideas
are named after Gauss—in numerical analysis, in statistics, in field theory, in magnetism?

56. Look up Georg Friedrich Bernhard Riemann (1826–1866), Gauss’ student. What is Riemann
curvature? What other ideas are named after Riemann—Riemann surface, Riemann’s con-
jecture?

57. Apart from books cited in particular Excursions above, three other books I’ve learned from
are [McC57, Che10] and [Har03].

58. Any part of the Prefatory Notes that needs working through.
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