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I. Prefatory Notes

1. Rules and sums. Teacher, invite your grade scholar to check some of the following rules and
continue them up to, say, 13. The “rules” are given in the leftmost column and calculations up to
5 follow. Explain the meaning of 3 and let your pupil write in heir notebook the terms integer,
positive integer, triangle number, odd number, square number, tetrahedral number, pyramidal
number and cubic number, depending on how far hey gets. (There is even a 4-dimensional simplex
of five points, each connected to each other, in the second-last line.)

Your grade scholar should get to know at least the triangle, square, tetrahedral and cubic numbers
as well as the positive integers. A keen pupil will be eager to calculate, and will be interested in
the relationships among these kinds of number. By all means offer a calculator. (I've been using
a 1994 Texas Instruments TI81, which has variables, graphics and is programmable, but lots of
others are even better. The main material later in Ezxcursions in Computing Science is developed
in the MATLAB® language, so that is also an alternative, albeit more sophisticated.)

(Be prepared for digressions if you offer your grade scholar a calculator as powerful as the pro-
grammable graphics calculators I am suggesting. Hey will want to explore all the other buttons,
t00.)

You and your grade scholar can take this material at a number of different levels. The simplest, for
example, would be just to explore the calculations started below, without attempting to understand
the patterns. This could provide experience to be amplified later by second and third passes through
the material.

*Copyleft ©T. H. Merrett, 2008, 2009, 2013, 2015. Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation in a prominent place. Copyright for
components of this work owned by others than T. H. Merrett must be honoured. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to republish from: T. H. Merrett, School of Computer Science, McGill University, fax 514
398 3883. The author gratefully acknowledges support from the taxpayers of Québec and of Canada who have paid
his salary and research grants while this work was developed at McGill University, and from his students and their
funding agencies. The present Notes are based on the teaching and ideas of Eugene Lehman.



15

10

Zn

An

15

10

3

n(n+1)/2 1

2n-1

odd

25

4 16

22n-1 1

*kkkk*x
*kkkk*k
kkk*k*%k
*kkk*k*k
*kkkk*x

*kk*k
*k k%
*k k%
*k*k*%

* k%
* k%
* %%

25

16

n2

* %
K Ex
T} o} ¥ aKx geky
N o) F FaKid R M
X .J
X
6 0 x ** ***
— N % KK xRk
x X
X
(0)} o * kK
— * KRk
<t <t **H

n+ ZA n-1 1
SAq
x4

35

10 20

4

n(n+1)(n+2)/6 1



n 1 2 3 4
*
* o
* * 5 ot
ba kM
**k% *kk*k *kk*k
******** **********
FEREF
*kkk%k
>On 1 5 14 30 55
Apt2ldn-1 1 5 14 30 55
n(n+1/2)(n+1)/3 1 5 14 30 55
* k% *********
* ***** ********* *************
** ******* *kkkk*k
On *********
1 7 19 37 61
> On 1 8 27 64 125
On (Th,® 1 8 27 64 125
n+6An-1+6 S5h-2 1 8 27 64 125
> (7, 1 9 3 100 225
A+6LT-16%,_o 1 9 36 100 225
9 3 100 225

An’

2. Some visualizations. Here are some visual intuitions behind the sameness of some of the rows

in the sum tables.
Why is the nth triangle number n(n+1)/2? Here is a n by n+1 “rectangle” (parallelogram) made

from two triangles.
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Why is the nth tetrahedral number n(n + 1)(n + 2)/6? Here is a n by n + 1 by n + 2 hexahedron
(rectangular “cube”) made from six tetrahedra.
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Why do hexagonal numbers sum to cubes?
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3. Rules and differences
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4. Rules and programming. We can use a programmable calculator to find the numbers in the
sum and difference tables. Here are two programs for the TI81, followed by a brief explanation of
how to enter and run the first.

Prgmi: TRIANGLE
Input N
N*(N+1)/2 —T
Disp T

Prgm2: TETRAHED
Input N

Nk (N+1)*(N+2) /6 —T
Disp T

Creating Prgm1:

PRGM button; select EDIT; ENTER button.
TypeT R I A N G L E; ENTER button.
PRGM button; select I1/0; select Input; ENTER.
ALPHA button; type N; ENTER.



ALPHA button; type N; type * (

ALPHA button; type N; type + 1 ) / 2

STO button; ALPHA button; type T

PRGM button; select 1/0; select Disp; ENTER.
ALPHA button; type T

QUIT button (2nd QUIT).

Running Prgm1:

PRGM button; select EDIT; ENTER button.

ENTER button.

After the prompt (?) enter a number (e.g., 5) and ENTER
The answer appears (e.g., 15).

Here are the same two programs written in MATLAB.

% function t = triangle(n) THM 080708
% (In file triangle.m)

% find triangle number n

function t = triangle(n)

t = nx(n+1)/2;

% function t = tetrahed(n) THM 080708
% (In file tetrahed.m)

% find tetrahedral number n

function t = tetrahed(n)

t = n*x(n+1)*(n+2)/6;

To run the first, in MATLAB’s Command Window write, say
triangle(3)

and the response is

ans =

6
These programs should not need explanation. Here is a fancier one.

On the TI81
Prgm3: SUMN
Input N

N—S

Lbl L

N —1-N

If N=20
Goto F

S + N—S
Goto L

Lbl F

Disp S

where to enter the label Lbl L from the EDIT PRGM state:

PRGM button; select CTL; select Lbl; ENTER
ALPHA button; type L

and to enter the condition If N = O from the EDIT PRGM state:
PRGM button; select CTL; select If; ENTER



ALPHA button; type N
select TEST button; select =; ENTER; type O

What this does is: if the condition (N = 0) is true, execute the next line (Goto F), otherwise skip
that line and execute the following line.

Finally, to enter the control transfer, Goto F:
PRGM button; select CTL; select Goto; ENTER
ALPHA button; type F

which will jump the running program to the label F at the end (the program was written to let the
label F suggest finish and the label L suggest loop) so that execution escapes the loop Lbl L ..
Goto L and displays the result of the sum.

In MATLAB

% function s = sumN(n) THM 080709

% (In file sumN.m)

% Sum integers from 1 to n

function s = sumN(n)

s = 0;

for k = 1:
s =s +

end

n
k;

The nice thing about the MATLAB program is that we can easily change it to sum consecutive
triangle numbers instead of just consecutive integers:

% function s = sumTriangle(n) THM 080709
% (In file sumTriangle.m)

% Sum triangle numbers from 1st to nth

function s = sumTriangle(n)

s = 0;
for k = 1:n

s = s + triangle(k);
end

This is called invoking the function triangle() (or “calling” the function). It is very handy to be
able to write the code for triangle independently and then just use it in another program.

To do this with the TI81 program, we must rewrite Prgml: TRIANGLE so that it has no input or
output (Input, Disp) but just accepts and returns values via variables. We cannot use N, however,
in both SUMTRIAN and TRIANGLE because we gave different meanings to N in the original programs,
and they will interfere with each other.

The sums programs have a single loop. A program to find the sums of all pairs of squares or cubes
has a double loop, one nested inside the other. It also needs a place to store all its results so
that they can be displayed. Here is an example calculation, for squares of the first three positive
integers, to show what we need.

ANe|1 2 3
1 [2 5 10
2 8 13
3 18



The storage space needed for up to n squares is clearly the triangular number n(n + 1)/2, which is
6 in this case for n = 3.

The “data structure” provided by programming languages, and some calculators, for such a storage
requirement is an array or matriz of numbers. Such an array might have the name A and hold
n x n = n? numbers, each “addressed” by values of the indices (singular: indez) j and k, as shown
above for 3 x 3.

Element j =2 and k =3 of A, A(j,k) = A(2,3) is 13 in the above example.
Here is the MATLAB program to calculate the sums of pairs of up to n squares.

% function SSD = squareSumDiff (n) THM 080720
% (Stored in file squareSumDiff.m)
% Generate matrix containing sums and differences of first n squares.
function SSD = squareSumDiff (n)
for j = 1:n
for k = 1:n
if j>k SSD(j,k) = j~
else SSD(j,k) = j
end % if j>k
end % for k = 1:n
end % for j = 1:n

(Note that instead of wasting the space below the diagonal of this matrix, which we don’t need
(why?), the program stores the differences as well as the sums of the squares.)

The TI81 program is limited to 6 x 6 matrices.
Prgm4: SQUARESD
1—7J

Lbl A

1—K

Lbl B

if J>K

Goto C

JA2 + KA2—[A] (J,K)
Goto D

Lbl C

JA2 — KA2—[A] (J,K)
Lbl D

K + 1—K

If K>6

Goto E

Goto B

Lbl E

J+ 1-=J

If J>6

Goto F

Goto A

Lbl F

Disp [A]

The array name [A] is entered by pushing the 2nd button then the 1 button.
Note the nesting of the loops in both programs, although it is much easier to see in the MATLAB



program.

5. Reasoning with rules. Now that we have the idea, from the rules in the first three Notes and
from the programs in Note 4, that a letter such as N or n can be used simply to stand for any
number, we can start doing calculations with letters.

We can only make statements this way that are true for any number. So we cannot always say, for
instance, 2 X n = 3, because that would be true only for a particular value of n, i.e., n = 3/2.

We can always say things such as 2 X (n+ 1) = 2 x n 4+ 2 because that is true for every possible
number that could be represented by n. (In fact, because there cannot be any confusion, we often
omit the x and write just 2(n + 1) = 2n + 1. We could not do this for numbers only: 2 x 3 is 6,
but 23 is not.)

Let’s show that the sum of all positive integers up to n (any number n, but you can start by trying,
say n = 3 and n = 4 to see if it works) is n(n + 1)/2. The analog of the visualization in Note 2, in
which we combined two triangles to get a rectangle, is to take half of

1 + 2 +3 . +m=2) +(n-1) +n +
n +Mn-1 +n-2) . +3 +2 +1
Sincel+n=2+(n-1)=3+n—-2)=..=n—-2)+3=(n—1)+2=n+1 and since there

are n of these sums, all equal, we see that twice the sum from 1 to n is n(n + 1), which is what we
hoped to show.

Here is an argument that n? = n +2A,,_;. Note how it can all be written out in a single chain. It
is based on the argument we just made that A,, = n(n + 1)/2. Note the modification for A,_;.

n+27A,_1 = n+2n—-1)n/2
= n+(n—1)n
n+n?—n

n2

We can make a similar, if slightly longer, argument about cubes.
n+6A,_14+6%,2 = n+6(n—1)n/2+6(n—-2)(n—1)n/6

n+B+n—2)(n—1)n

n+(n+1)(n—1)n

= n+(n*-1n
= n+n—-n
n3

We can show that the sum of odd numbers, 2n — 1 for n = 1,2, 3, .., is a square number.

S@n—1) = Y2n-31

= 2Xn-—X1
= 2A,—n
= nn+1)—n

Finally, here is the sum of squares, using n? = n + 2A,,_; from above.

Yn? = Y(n+24,1)



Yn + QZAn_l

An+2@n—1
_ n(n—1)+2(n—1)n(n—|—1)
2 6
1 n-1
— (=
n(n + )(2+ 3 )
= n(n+1)73+2é1_2

= nn+1)2n+1)/6
= nn+1/2)(n+1)/3

6. Square roots and cube roots are the ways of going backwards from squares and cubes, respec-
tively.

Thus, since 32 = 9, we use the sign / togo the other way

V9 =3

Since 2% = 8 (so you see it is very important not the get the order mixed up) we go the other way
by a modified / sign
V8 =2

There are alternative symbols, too. See the table:

n o1 2 3 4 5 6 7 8
ni,\/m,sqre(n) 1 1.4142.. 1.7321.. 2 2.2361.. 2.4495.. 2.6458.. 2.8284..
n3, ¥n 1 1.2599.. 14422.. 1.5874. 1.7100.. 1.8171.. 1.9129.. 2

7. Primes. A prime number is a positive integer with exactly two different divisors, itself and 1.
For example, 2, 3 and 5 are prime. 4 is not (1, 2 and 4 are its divisors). 1 is not (why?).

To check that a number is prime, we could try dividing it by every positive integer smaller than
itself.

This would be wasteful in two ways. First, we need not try dividing it by any even number bigger
than 2, because if such an even number divides it exactly then so do 2 and whatever times 2 equals
the even number, and vice-versa. So we need only try 2 and then odd numbers between 2 and
itself.

Second, we don’t need to check any potential divisors bigger than the square root of the number,
because all bigger integers, if they do go in exactly, will just be the result of dividing by one of the
integers smaller than the square root.

For example, for 50, test 2, 3, 5 and 7 only (72 = 49;82,92 > 50): the test of 2 will reveal 25 as a
divisor, so we need not test 25; if we went on to test 5 that would reveal 10 as a divisor so we need
not test 10.

Here is a TI81 program which tries 2 then all odd numbers from the integer just below v/ N. (Note
that the program starts by making sure N is an integer and at least 2. If not, it stops without
producing any result.)

Prgmb: PRIME

Input N
If N # iPart(N) If N is not an integer.
Stop

10



If N<2
Stop

If N=2
Goto P
If N/2
Goto G
iPart( ./ (N)) — D D is test divisor.
If D/2 iPart(D/2)

D—1—D Make D odd.
Lbl L Loop back to here.
IfD=1 We haven’t found any divisor.
Goto P

N/D — V

If V = iPart (V) D divides N exactly.
Goto F

D—-—2—D Next smaller odd number.
Goto L Loop back.
Lbl P N is prime.
Disp "PRIME"

Stop

Lbl F N has divisor.
Disp "DIVISOR"

Disp D

Stop

Lbl G

Disp "EVEN"

The only new programming operations are Vo and iPart which gives the integer part (e.g.,
iPart(2.1) is 2, iPart(2) is 2, iPart(—2.2) is —2).
Here is the (much shorter) MATLAB program. In MATLAB, floor() does the same for positive

integers as iPart () does on the TI81. The mod () function gives as shorthand way of writing what
is in the comment following it.

iPart (N/2) If N is even.

% function p = prime(n) THM 080709

% (In file prime.m)

% test n for primacy using 2 and odd integers up to sqrt(n)
function p = prime(n)

if n==floor(n) & n>1 % test for plural integer.
p = true;
if n7=2
if mod(n,2) == 0 % if n/2 == floor(n/2)
p = false;
else
for k = 3:2:sqrt(n)
if mod(n,k) == 0 % if n/k == floor(n/k)
p = false;
break

end % if mod(n,k) == 0
end % for k = 3:2:sqrt(n)
end % if mod(n,2) == 0
end % if n~=2
end % if n==floor(n) and n>1

11



8. Multiplication: rectangles. We can think of multiplication as building “rectangles” in any
number of dimensions. Here are some examples.
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13
12
11
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9. Division: slopes. We can think of division as generating sloping lines. Here are some examples.
(The notation +2 etc. means 1/2 etc., the reciprocals.)

8

12

16

14 7 14/3 / 712 /14/5 713 2 714 14/9 - 7/5 14/11 7/6 14/13 1

13 13/2 13/3 13/4 13/5 13/6713/7 13/8 13/9 13/10 13/11 13/12 1 13/14
12 6 4 3 12/5 2 12/t 3/2 43 6/5 12/11 1 12/13 6/7
11 11/2 A1/3 A1/4 11/5 711/6 11/7-11/8 11/9 11/10 1 11/12 11/13 11/14
10 5 10/3 5/2 2 5/3 10/7  5/4 10/9 1 10/11 10/12 10/13 5/7
9 9/2 3 9/4 ~ 9/5 3/2 97 9/8 1 9/10 9/11 3/4 9/139/14
8 4 8/3 2 8/5~ 4/3  8/7 1 8/9 4/5 8/11 2/3 8/13 4/7
7 712/ 713 714 75 716 1 718 7/9 7/10—7/11 7/12 7/13 2

6 3 2 3/2 6/5 1 6/7 34 2/3 3/5 6/11 =2 6/13 3/7
5 5/2 ~ 5/3~ 5/4 1 5/6 5/7—5/8 5/9 =<2 5/11 5/12 5/13 5/14
4 2 4/3 1 4/5 213 4AlT =2 4/9 2/5 4/11 =3 4/13 27
3 3/2 1 3/4—3/5 2 3/7 3/8 =3 3/10 3/11 +4 3/13 3/14
2 1 213 =2 2/5 =3 207 =4 20 =5 2/11 =6 2/13 =7

1 +2 +3 +4 =5 +6 +7 +8 +9 +10 =+11 =12 +13 =+14
1 2 3 4 5 6 7 8 9 10 11 12 13 14

On the other hand, division is also just multiplying by the reciprocal, so 3/2 is just 3 x (1/2), and
we can also imagine this as a 3-by-(1/2) rectangle.

12



10. Negative numbers. Arithmetic with negative numbers
is sometimes difficult. This is not surprising: even the idea
of zero needed getting used to and did not enter western
mathematics until the Muslim mathematicians passed it on
from the Hindu mathematicians.

To make negative arithmetic concrete let’s use the example
of temperature. We can model the addition operation as a
rise in temperature and the subtraction operation as a drop.
Temperatures in “temperate” climates such as Canada’s of-
ten go below 0°C, where they are called “minus”, meaning
negative, temperatures.

(It is important to distinguish the two uses of the — sign. It
can operate on two quantities, as in 3 — 2, which is usually
prononced “three minus two”. Or it can operate on only one
quantity, as in —7, which should be pronounced “negative
seven”. In the temperature example, we’ll pronounce 3 — 2
as “three drop two” and —7 as “minus seven”.)

The arithmetic of 3 — 2 is easy: 3 —2 = 1. It is 2 — 3 that is
trickier. 2 — 3 = —1, generally prononced “two minus three
equals negative one” but, for temperature, pronounced “two
drop three equals minus one”.

Temperature make this clearer. If it was 2°C yesterday but
dropped by 3C° overnight, it must be —1°C by morning.

Negative numbers make us rethink multiplication, too. For
positive numbers we have thought of multiplication as gener-
ating rectangles, so 2 x 3 gives a 2-by-3 rectangle of area 6.
When we multiply negative numbers we must take a further
step, namely multiplying by —1.

Multiplying by —1 is the operation of changing direction on the line of numbers. Thus, on the
thermometer, if the temperature has risen 3C°, then changing direction would make it drop 3C°:
we say it has risen —3C°.

If we multiply a second time by —1, we change direction again, which on a line can only mean that
we are again going in the original direction: —1 x —1 = 1. (Or, being fussy, (—1) x (=1) =1.)

So multiplying two negative numbers, say
—2x=3=(-1x2)x(-1x3)=—-1x—-1x2x3=2x3=6

requires us to deal with the —1s first, then to think about rectangles.

To multiply a positive by a negative number, take the same steps, but note that the result is
negative
2x -3=2x(-1x3)=-1x2x3=—-1x6=—6

11. Pictures of rules. Use your calculator or MATLAB to draw the following pairs of “railway
tracks”.

13
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-10 I I I I I I I I I
-10 -8 -6 -4 -2 0 2 4 6 8 10

On the TI81
RANGE button; select Xmin; type (=) 10;
(Note that (=), “negative”, is different on the calculator from —, “minus”. (-)is an “adjective”,

modifying a single number. — is a “verb”, operating between two numbers.)
Still in RANGE:

select Xmax; type 10;

select Xscl; type 1;

select Ymin; type (-)10;

select Ymax; type 10;

select Yscl; type 1;

select Xres; type 1.

Now press the Y= button; select Y;; type X|T;

GRAPH button.

This will plot one of the lines. The other lines may be described under Yo, Y3 and Y4 after pressing
Y= again. Let’s get this far in MATLAB, too, before thinking about how to get the other lines.

In MATLAB, create a file railwayTracks.m

% railwayTracks.m THM 090113
% plot pairs of straight lines: equally separated "railway tracks"

X =-10:1:10;

Y1 = X;

plot(X,Y1,’b’)

axis([-10 10 -10 10])

grid on

and then type railwayTracks in the command window.

We get the parallel track by adding a “constant” to Y = X. You can try Yo = X + 1 on the
calculator. In MATLAB, this would be Y2 = X + 1 and you must change the plot() line to
plot(X,Y1,’b’,X,Y2,°b’). Look carefully at the result. It is not what the figure shows. You’ll
see in a moment that I did not use 1 as the constant.

We get a line going in a different direction by multiplying X by a constant. I used Y3 = 3X on the
calculator. (Y3 = 3*X in MATLAB and change plot () to plot(X,Y1,’b’,X,Y2,’b’,X,Y3,°b’).)

The multiplier of X is called the “slope” because it gives the direction of the line. For the first two

14



lines, the slope is 1, For the third line it is 3.

The fourth line is another line of slope 3, but moved upwards by adding another constant. Try
Y4 = 3xX+1. This is not what I used.

How did I get two pairs of lines separated by equal distances? In fact, if you look closely, those
separations are both 1, going perpendicularly from one track to the next in each pair of railway
tracks. Try making the constants v/s2 + 1, where s is the slope. That is, v/12 + 1 for the first pair
and v/3% + 1 for the second.

12. Nonlinear plots. MATLAB and the calculator can also plot the other expressions we have
seen this week. Let’s try plotting the rule that gives triangular numbers (and the sum of 1+..4n),
n(n + 1)/2, the rule that gives square numbers, n?, and the rule that gives tetrahedral numbers
(the sum of triangular numbers), n(n + 1)(n + 2)/6.

10

™ T 1 T T T T
\ triangular \ triangular |/
gl square 4 08l \ . square
\ tetrahedral \ tetrahedral
\\\\ //
6 061 \ /A
\ /
4p 045 \ / 1
2+ 0.2 \ / T
or or \/\/ 1
-2 -0.2 T
-4 -0.4
s -0.6
_gl- B -0.8f
~10 i i i i i i i i i -1

i i i i i i i
-10 -8 -6 -4 -2 0 2 4 6 8 10 -3 -25 -2 -15 -1 -05 0 0.5 1

Here is the MATLAB program that gives the zoomed plot on the right.

% nonlinPlot.m THM 090113
% plot rules for triangular, square, tetrahedral numbers

X =-3:.1:1;

Y1 = X.x(X+1)/2;

Y2 = X.72;

Y3 = X.x(X+1) .*(X+2)/6;
plot(X,Y1,’b’,X,Y2,’r’,X,¥Y3,’g’)

axis([-3 1 -1 1])

grid on
legend(’triangular’,’square’,’tetrahedral’)

Note that n in the expressions has been renamed X for the program. This is not necessary in
MATLAB, but is consistent with the railwayTracks program and with the calculator.

Since the slope of a nonlinear expression in X changes with X, it cannot simply appear as s in the
expression itself. Here are a picture of the slopes of X? at X = —3/2,—1/2, 1/2 and 3/2, and the
MATLAB program that made the plot.

15



4 ‘ ‘ ‘ : ‘ ‘ w % parabSlope.m THM 090113

square

a5\ Sope=3 /) % slope of the rule for square numbers

\\\ slope -1 / X=-2:.1:2;
Y /T Y1 = X.72;
bl \ Y2 = -3%X - 9/4;
' Y3 = -X - 1/4;
2} ~ v ~ 1 Y4 =X - 1/4;

\ Y5 = 3%xX - 9/4;
e ] plot(X,Y1,’r’,X,Y2,°b’ ,X,Y3,’b’,X,Y4,°b’,
1t 1 X,Y5,°b’)
axis([-2 2 -.1 4])

o8 grid on
of ‘ ‘ N7 ‘ ‘ 1 legend(’square’,’slope = -3’,’slope = -1°,
2 15 1 05 0 05 1 15 2 slope = 1’,’slope = 3’,’Location’, ’Best’)

13. Summary
(These notes show the trees. Try to see the forest!)

1. Squares and cubes and how to find them using odd and hexagonal numbers or triangle and
tetrahedral numbers, and how to sum them using triangle, tetrahedral numbers and the like;
pyramidal numbers.

2. Visualizing the relationships among these kinds of number.
3. Programs to calculate some of these kinds of number.

4. Differences of positive integers, their squares and cubes; how far we can go on finding differ-
ences.

5. Letters representing any number: the rules for working with letters are the same as the rules
of arithmetic.

Square roots and distances; cube roots.
Prime numbers and programs to test for primacy.

Multiplication as rectangle, division as slope.

© 0 N >

Negative numbers.

10. Plotting: the rules make pictures.

IT. The Excursions

You’ve seen lots of ideas. Now do something with them!

(Some excursions are credited to the people who are not necessarily their originators but who
suggested them to me.)

1. Mathematical truth Does 1 4+ 1 always = 27 Think about a drop of rain on the car window
(1) encountering a nearby raindrop (4 1): do they remain 2 raindrops or become 1 (1 + 1
= 1)?7 Think about lending a friend your pet female rabbit (1) while your family goes away
on an assignment for a year or two, and your friend already has a pet male rabbit (4 1): are
you sure there will be exactly 2 rabbits when you return, or does, maybe, 1 + 1 = 7 in this
case?

Mathematical truths are different from scientific truths. If a counterexample is found for a
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scientific statement (such as “the sun rises every morning (in Montreal)”), that statement is
not a scientific truth. Mathematical statements are abstractions from important situations
(most of the times we can think of, 1 + 1 = 2) and it is being useful that makes them
important: they help us reason in the situations where they do apply, or they give us useful
ideas to understand such relevant situations.

Think of some situations where counting and adding are useful, and of some situations where
they are not.

. Counting in tongues. Find out how to count from 0 to a million—1 in as many different
languages as possible. How many different words does each language need to do this? Which
language has the fewest different words? How many more words does it take to count from a
thousand to a million—1? From a hundred to a thousand—1? (Travellers’ phrase books are
usually easier to use for this research than translation dictionaries.)

. How does 2n — 1 reveal that it describes all the odd numbers? Hint; What describes the even
numbers? If you ask me to get at least five apples and offer to repay me 2% per apple, you
know you will be paying me at least 10$. If I buy an extra apple, how much more must you

pay?

. In the representation of odd numbers in Note 1, how many asterisks are there per side of each
diagram? How would I get 2n — 1 out of this?

123456789 10 =100
Find a way to replace some of the blanks by + so that the above is true. If a blank is not
replaced by + then the digits either side of it are combined to form a multi-digit number, e.g.,
1+2+ 3 =6, 12+ 3=12 + 3 = 15, 1+23=1+ 23 = 24, 123 =123.
Can you do it with only the nine digits 1 .. 9 = 1007 What if you use other operators as
well as +: —, x, =7

. Squares. Find pairs of square numbers which:

a) sum to another square (Find three examples and say which can be calculated from which
others. Such sets are called Pythagorean triples. Look up Pythagoras of Samos 580-572 BCE
to 500-490 BCE);

b) sum to a prime number (A prime is a positive integer which has exactly two different
divisors, itself and 1. Why is 1 not a prime under this definition?);

¢) sum to a number, not necessarily square or prime, which is also the sum of two other
squares.

d) Find a number whose square and cube sum to the square of twice itself (n? + n3 = (2n)?
Try (2n)? —n? = n?).

. Cubes. Find pairs of cubic numbers which:

a) sum to a prime number (Think laterally!);

b) sum to a number which is also the sum of two other cubes (The smallest such is called
Ramanujan’s number: look up Srinivasan Ramanujan, 1887-1920.).

c) A Fermat triple is three numbers, k, m,n, such that kP +nP = mP for any integer p > 2. Can
you find any for p = 37 Look up Pierre Fermat (1601-1665) and “Fermat’s Last Theorem”.
d) Find three adjacent positive integers whose cubes sum to the cube of the next integer.

e) Show that 1, 345, 7+9+411, 13+15+17+19, 21423+25+27+29 and so on are cubes. Use
results in the sum table and the difference table to argue that this is generally true. (Note
the average value and the number of entries in each of these groups.)

. Simplex numbers. Instead of thinking about simplices as piles of asterisks (or blocks or
balls), let’s think of them as stick figures. Then we can distinguish wvertices, edges, faces,
solids, and so on, which we can abbreviate V, E, F, S, etc., respectively. (A “vertex” means
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a point or a corner, an “edge” is a single straight-line segment, a “face” is a single flat 2-
dimensional facet, a “solid” is a 3-dimensional volume.)
Here are pictures and numbers for 2, 3 and 4 dimensions.

d V E F S

0 rule"+"

1 o

21 A 3 3 1 a-f-b 4 dimensions

3 & 4 6 4 1 rule V" b a
a

a4 As 10 10 5 1 ;

5 T e B e - | o d

a) Check that the numbers are right. You may have a little difficulty seeing that there are
10 faces and 5 solids in four dimensions. Use the diagram on the right, which shows the one
vertex, v, that has been added to the 3-D simplex (tetrahedron) to turn it into a 4-D simplex,
and which shows the four vertices that were already present in the tetrahedron, a,b, ¢ and d.
In addition to the 6 triangular faces already in the tetrahedron, there will be 6 more: use v
and the existing 6 edges from the tetrahedron ab, bc, cd, da and ac and bd. These last two
are shown as little arcs.

Use the same diagram to imagine 4 new solids in addition to the 3-D tetrahedron abcd: a new
tetrahedron can be constructed by replacing each of a,b, ¢ and d in turn bt the new vertex v.
b) Check that the two rules are right. What is the reason the vertex counts go up by 1 each
time we add a dimension? What is the reason we add, say, the numbers of edges and faces
from the previous row to get the number of faces for the current row?

¢) What will the next row be (5 dimensions)? And the next? Now you're thinking in any
number of dimensions.

d) What about 1 dimension and 0 dimensions? Can you apply the rules backwards and draw
the corresponding figures?

e) Look for a line (not necessarily horizontal or vertical) of numbers in the table which gives
the triangular numbers, and for a line giving the tetrahedral numbers.

. Hypercube numbers. Similarly, let’s think of squares, cubes, etc. as stick figures and
count vertices, edges, faces, solids, etc. for these, as in the previous Excursion.

d V E F s
tesseract

0 rule"+"
1 ab

at+2b
20 O 4 4 1
3 () 8 12 6 1 rule&"'V"
4 6 32 24 8 1 4
. U I Ay a

a) Check the numbers. Again, 4 dimensions might appear to be a barrier, so the diagram on
the right is an expansion of the picture in the table for the “tesseract”, which is the name of
a 4-hypercube (a 4-dimensional cube). It is two cubes, one shown inside the other, with all 8
corresponding pairs of vertices connected.

(Also shown, below the tesseract, is another way of imagining this 4-dimensional figure: think
of what a square would look like laid out on a piece of cardboard ready to be cut out and
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

folded; then extend this thinking to a bunch of connected cubes in 3-D instead of connected
squares in 2-D. The black shows the complete cubes; the red shows the outline. Count the
number of cubes. Imagine which edges and faces must coincide when it is all “folded” up and
count all distinct edges and faces to check the table.)

b) Check the rules: why do the vertices double and why is there a factor of 2 in the a + 2b7
¢) What are the numbers in the row for 5 dimensions? 6 dimensions?

d) What are the numbers and the diagrams in the rows for 1 dimension and 0 dimensions?

Write n? as the sum of two triangles of different sizes and nothing else.
Write n? as the sum of six tetrahedra of different sizes and nothing else.
How would you stack ten ears of sweet corn on a dish?

(Ken Murata) How would you display ten nectarines for a party?

How many different dominos are there? Each repre- eccoo oo e
sents a pair of numbers from 0 (blank) to 12. There PP .I ® o
are no duplicate dominos. The two numbers may be

the same. Here is (8,11)—which is the same as (11,8). ecocli®®®

The connection between powers and triangle numbers, tetrahedral numbers and so on is given
by Stirling numbers, which take relationships such as

n?=n+20,_;

and
n®=n 464, 1+6 P,
to any number of dimensions. Look up Stirling numbers.

Find a way to write the nth pyramidal number as two tetrahedral numbers, and a way to
write the nth square number as three pyramidal numbers.

Supposing that ¢, = n(n+1)(n +2)/6,

s
show that 4,1 has the corresponding form ‘ﬁ'\)(:}*j = KE*? +

(n+1)((n+1)+1)((n+1)+2)/6.

Compare the constants we got at the end of the differencing processes for n? and n? with the
denominators of the formulas giving the triangular numbers and the tetrahedral numbers,
respectively.

Show that the sum of the reciprocals of all the triangular numbers is 2. (Hint: 1/(n(n+1)) =
1/n—1/(n+1).) What is the sum of the reciprocals of all the tetrahedral numbers?

What does the following series sum to?

1 1 1

V21v3) | (B (Vo 1 o)

Show that (Ag)? —d %4 = d*(d* —1)/12 = Ap,_, — S}_5, where St is the nth 4-dimensional
simplex (see Excursion Simplex numbers), St = n(n+1)(n+2)(n+3)/24. These complicated
expressions are interesting because they each give the number of ways a d-dimensional space
can curve. To find out what this means you must carry on to Book 11c, on general relativity.
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22.

23.

24.

Rewrite the TI81 Prgmil: TRIANGLE and invoke it from Prgm3: SUMN modified to sum
triangle numbers instead of integers.

Simplexes: higher-dimensional triangles. A simplex is a generalization of the triangle:
a triangle is a “2-simplex”, i.e., a simplex in two dimensions. Let’s count components, or
“parts of space”, in the 2-simplex: it has 3 wvertices or corners; it has 3 edges; and it has one
face, i.e., the triangle itself.

A 3-simplex is a tetrahedron, formed by adding one vertex, in a third dimension, to the 2-
simplex. It has, of course, 4 vertices; it has 6 edges—the three of the triangle plus three more
connecting the new vertex to each of the three old ones; it has 4 faces (hence the “tetra”
in “tetrahedron”: “efpwr” means “base” in Greek—or “seat”, except on busses where they
are “fecec”’—and mathematics has extended it to mean “face”); and finally it has one other
component, itself, for which we have no category name in English.

We can back down to one dimension: remove a vertex from a triangle to get a 1-simplex,
which has 2 vertices, 1 edge, and no higher-dimensional parts of space.

Backing all the way down to zero dimensions, a 0-simplex is a single point, i.e., 1 vertex and
no more.

a) Now confirm the following table for simplexes of up to seven dimensions. (You’ll need to
look for patterns in the numbers: nobody can visualize a simplex in that many dimensions.
What is the rule for getting the next row?)

d Dimensions d-simplex v vertices e edges f faces
0 point 1
1 line 2 1
2 triangle 3 3 1
3 tetrahedron 4 6 4 1
4 5 10 10 5 1
5 6 15 20 15 6 1
6 7 21 35 35 21 7 1
7 8 28 56 70 56 28 8 1

Find a pattern of numbers very similar to this in Week_ii. b) Build a model tetrahedron, say
out of pipe cleaners. What must you add to it to build a 4-simplex?

Hypercubes: higher-dimensional squares. a) By thinking in the same way as for the
previous Excursion, you can confirm the following table for the generalizations of squares to
any number of dimensions. What is the rule for getting the next row this time?

d Dimensions d-hypercube v vertices e edges f faces

0 point 1

1 line 2 1

2 square 4 4 1

3 cube 8 12 6 1

4 tesseract 16 32 24 8 1

5 32 80 80 40 10 1

6 64 192 240 160 80 12 1
7 128 446 572 560 320 104 14 1

b) Build a model cube out of pipe cleaners. What must you add to it to build a tesseract?
Also build a model cube out of cardboard by cutting out and folding up a single shape. Using
the numbers in the table for the tesseract can you draw the 3-dimensional shape that would
have to be “folded up” to make a tesseract?
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25.

26.

27.

28.

Hyperdipyramids: higher-dimensional squares, part 2. An octahedron is a “dipyra-
mid”: two pyramids based on a square, with one apex above and one below the square. It can
also be thought of as having vertices at (+1,0,0), (0,£1,0) and (0,0,+£1) in a 3-dimensional
coordinate system. The 4-dimensional generalization adds two more points and connects each
to each vertex of the octahedron. It also doubles the number of parts of space one dimension
down: the octahedron has 8 triangular faces, the 4-dipyramid has 16 tetrahedral components.
a) Confirm the following table for dimensions 1 to 7.

d Dimensions d-dipyramid v vertices e edges f faces

0 point 1

1 line 2 1

2 square 4 4 1

3 octahedron 6 12 8 1

4 8 24 32 16 1

5 10 40 80 80 32 1

6 12 80 160 240 192 64 1
7 14 104 320 560 572 446 128 1

b) What is the relationship between hyperdipyramids and hypercubes? Each is the “dual” of
the other: what does this mean?

c¢) The suffix “gon” (Greek ywria angle) is used for 2-dimensional figures, “hedron” (Greek
edpwr base) is used for 3-dimensional figures, and “tope” (Greek Twrmwo place) is used for
figures of any dimensionality, including 2 and 3, but usually restricted to dimensions 4 and
up. The prefix usually counts, in Latin, the number of components whose dimension is one
less than the dimensionality of the full figure. Thus, a square is a quadragon, a cube is a
hexahedron, a 4-simplex is a pentatope, a tesseract is an octatope, and a 4-dipyramid is a
hexadecatope.

Coexeter [Cox63] says that only simplexes, hypercubes and hyperdipyramids exist as regular
figures in arbitrarily high dimensions. (A regular figure has all sides the same length, all
faces, if applicable, the same size, and so on.) How many different regular figures are there
in two dimensions? Three dimensions? Four? Five?

“Martian arithmetic” (Eugene Lehman.) Martian arithmetic uses +, —, x, / and " in the
proper way, but scrambles the meanings of the ten digits 0,1,2,3,4,5,6,7,8,9. The Marinaris
Stone, discovered on the Moon and identified as an ejectum from a Martian asteroid strike,
contains the only clues:

a) 8x7 =8

e) 7" =6

c)7-33=-1

b) 4x9 = 39

d) 51/2 = 2

f) 3465 = 69

What are 7 (in Martian and Earthian) in
h) 7+7 =9

g) 40494 =7

Choose two specific successive values of n to work through the argument in Note 5 about the
sum of the first n positive integers. (For instance, 100 and 101.)

For each step in the arguments in Note 5, explain which property of arithmetic on “any
number n” allows the step to be made.
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29.

30.

31.

32.

(Via Alan Malkin.) Here are two 3-triangles filled with in-

tegers from 1 to Az = 6. Note that all three sides of each 1
triangle sum to the same total, 9 in one case, 12 in the other. 6 b5 2 1
How many other sums can you find, and what are the corre- 2 4 3 4 3 5

sponding 3-triangles?

(Eugene Lehman.) Eugene usually takes the 17:00 train home after a day of teaching un-
necessarily advanced mathematics in the school, but last week a class was cancelled and he
took the 16:00 train. Shirley always drives to the station arriving just in time to meet the
17:00 train. Since she was not there yet when Eugene arrived on the 16:00 train last week,
he started walking along her route. When they met she picked him up and took him straight
home, arriving there half an hour earlier than usual. How long did Eugene walk?

Use letters, t for the usual arrival of the 17:00 train, d for Shirley’s usual round-trip drive,
variants ¢’ and d' for the corresponding times and durations last week, and w for how long
Eugene walked last week, make an equation relating the usual commute with last week’s, and
see what arithmetic on the letters tells you.

(Eugene Lehman.) The bank teller made a mistake and instead of withdrawing and giving
you D dollars and C' cents, which you asked for, gave you instead C dollars and D cents. You
had spent 5 cents in a chewing gum machine before you counted up and found you now had
exactly twice what you had asked for. How much was that?

a) Show that 98C' — 5 = 199D. The process of arriving at this equation from the equation
you should start with is called ” The Balance”, or, to the Arabs who invented it, “al jabr”: if
you add anything on one side of the “=" you must also add it on the other side, or else the
equation will get out of balance; if you subtract anything from one side of the “=" you must
also subtract it from the other. This is true whether you are doing arithmetic on letters or
just on numbers.

b) (a) gave you one equation in two unknowns. Think of a second equation in C' and D which
is approximately true, from the statement of the problem, and see what the two equations
give you. You may have to modify your approximation, but after just a little trial and error
you should find a solution.

c) Write a calculator program instead of (b), which takes, say, C' through all possible values
(what are they?) and uses (a) to find, say, D for each one. It can stop the first time you find
a D which is an integer (whole number).

d) Integer problems such as this are called Diophantine. Look up Diophantus (~ 200~ 284).

(Wofgang Rasmussen.) A jug contains exactly one litre of white wine. A second jug contains
exactly one litre of red wine.

a) Suppose you take a ladleful of white wine from the first jug and pour it into the second.
Then take exactly the same amount of the mixture from the second jug and pour it back into
the first. Show that, after this, the amount of red wine in the first equals the amount of white
wine in the second. Hint: let W litres be the amount of white now in the second jug. How
much red is in the second jug? How much white is in the first jug? How much red is in the
first jug?

b) What if you had used a teaspoon instead of a ladle? A half-litre cup? The whole litre?
What if you had done several transfers (an even number) with exactly the same amounts
going each way?

¢) Another way to look at (a) is to show, assuming red and white molecules are the same
size, that the number of molecules of red in the ladle going from jug 2 back to jug 1 is the
same as the number of molecules of white left in jug 2 after the mixture has been transferred
to jug 1. Hint: let m be the number of molecules in a ladleful and w be the number of white
molecules left in jug 2 at the end.

d) You are led to a table in a darkened room, on which you are told that there are a couple of
decks of cards, all face-down except for 10 that have been turned face-up. You are instructed
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33.

34.

35.
36.

37.
38.

to make a second pile from among the cards in that pile, such that the number of face-up
cards is exactly the same in the two piles, old and new. You are allowed to do anything you
like with the cards, but not damage them or turn on a light. How do you do it?

(Ramanujan’s address.) Ramanujan lived at address R on a one-sided street of N houses
(houses are numbered consecutively from 1 to N, including R); he could never remember
his own address (unlikely for Ramanujan, who was friends with every number) but he could
remember that the sum of the addresses below but not including his equalled the sum of the
addresses above but not including his; how many houses were on the street and where did he
live?

a) Why does this problem involve finding triangular numbers which are also square numbers?
Try writing three columns, n, A, and O,, and rows for n = 1..10 or 12. Can you find two
solutions among these numbers?

b) Can you think of a shortcut? Why must either both N/2 and N + 1 or both N and
(N +1)/2 be squares?

c¢) If Ramanujan’s street contains between 50 and 500 houses how long is it and where does
he live?

d) Write a program to find subsequent pairs (R, N). Look for patterns in the results.

Check the roots of Note 6 and confirm in particular that (v/n)? = n and (/n)3 = n.

What are /32 4+ 42, /52 + 122, /92 4+ 122, /82 + 152, /62 + 827

On a new sheet of paper (which will have right angles at each corner) carefully measure 4cm
down from the top left corner and 3cm rightwards from the same corner. Carefully measure
the length of the line connecting the two points you marked at the edges.

Measure 5cm rightwards from the bottom left corner and 12cm upwards. How long is the
connecting line?

Measure 12cm leftwards from the bottom right corner and 9 cm upwards, and complete and
measure the triangle. Measure 8cm left and 15cm down from the top right corner.

Cut out the four triangles you have just drawn and see what kinds of patterns you can make
with them. Make extra copies of the triangles and more patterns. Find a fifth triangle with
the same property you noticed in the first four and make still more patterns.

What is the pattern that finds Pythagorean triples which include two adjacent integers?

a) Explore the sequence
13717
1727571277

in which each fraction is made from the preceding fraction 7 by the rule

n n + 2d

N
d n—+d

starting with %
Look for a pattern in the sequence of squares of these fractions.
b) Explore the sequence made by the rule

n n? + 2d>
LT
d 2nd
starting with %

Is there any overlap with the previous sequence?

c¢) Now try

n + sd

n+d

n
— —
d
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39.

40.

for any given number s, say s = 2, s = 3, s = 3/2, .. Compare these new sequences with

n  n®+sd?
n_ nTsa
d 2nd

for the corresponding s.

Find the twenty-five prime numbers less than 100. Hint: it is fastest to eliminate as many
non-primes (composites) as possible, instead of checking many numbers for being prime, even
if you have available the prime-finding programs. Write down 2 and odd numbers > 1 unless
they are divisible by 3, by 5 or by 7.

(Numbers are divisible by 3 if the sum of their digits is divisible by 3: e.g., the number 1023.
Numbers are divisible by 5 if the last digit is 0 or 5, and 0 will not happen for odd numbers.
All that is left is to check divisibility by 7.)

Why do we not need to go beyond 77

The Sieve of Eratosthenes is a more sophisticated method to test if a positive integer is prime.
Instead of checking 2 and all odd numbers above 2 as divisors, the “sieve” checks only primes
up to the square root of the number. (The first argument in Note 7 applies not only to even
divisors but to all composite divisors.)

a) Look up the Sieve of Eratosthenes (Epatoofevns, Eratosthenes of Cyrene, 276-195 BCE).
To program this you will need a table of prime numbers, which you add to every time you
discover a new prime. Think about how you would use an array to do this.

b) Leonhard Paul Euler (1707-83) discovered (or invented) an application of the Sieve which
converts an infinite sum over all numbers into an infinite product over all primes. Show that
the “harmonic series”

1 1 1 1 1 1 1 1 1 1 1 1
(=l4g+g+ trtetotgtstptatnta -

2 3 4 5 6 7 8 9 10 13
satisfies . L1 11 . .
1— =) =1 —
A A A A R TR TIE
and then 1 q L1 ) )
1—-)1-2)=1 —
( 3)( 2>C +5+7+ +13+
and 1 1 1 111
1- ) (1-2)1-2)=1 —
(=== =145+t
So, eventually,
1

¢= 1/Hp(1 - 5)

where II, means take the product over all primes, p.
(Actually the harmonic series becomes arbitrarily large, and Euler’s “product formula” is
more interesting for the generalization

B 1 1,1 1 1 1 1 1
(s) = Ittt gttt Tt T
1 1 1 1

= (1 -5)0-5)0- =)0 -).)

which does have a finite value for every s # 1. Georg Friedrich Bernhard Riemann’s (1826—
66) “zeta function” ((s) is thoroughly chronicled by [Der03], who discusses its relationship
with the primes: knowing the zeros of the zeta function will tell us how the primes are

24



41.

42.

43.

44.

45.

distributed—mnot the zeros at every even negative integer value of s but those in the 2-number
plane off the 1-number line.)

¢) How do we know that there are infinitely many primes? EvkAedns, Euclid of Alexandria
~300 BCE, argued that if IV is the last prime then 2 x 3 x 5 x .. Xx N — 1 is either prime or
has a prime factor larger than IV, so there can be no last prime in either case.

Rectangular numbers: multiplication a) Make “rectangles” in two or three or more
dimensions in as many different ways as you can for as many different integers as you like,
building on the table in Note 8. For each “rectangle” write in numbers the multiplication it
represents.

b) Use the two-dimensional rectangular numbers to show that multiplication is commutative

axb=bxa
Use the three-dimensional rectangular numbers to show that multiplication is associative
(axb)xec=ax(bxc)
What other arithmetic operations are commutative and associative?

(Eugene Lehman: How much is your name worth?)

a) Calculate the value of your name by multiplying the letters coded a = 1$, b = 2§, .., z =
26$. For example, Eugene = 5 x 21 X 7 x 5 x 14 x 5§ = 2 x 3 x 52 x 73$ = 51450$; Lehman =
12x5x8x13x1x14%8 =206 x 3 x 5 x 7 x 13$ = 87360%

b) Now find a word or short phrase that will sell for exactly a million dollars. (Hint: which
letters are divisors of 1 000 0007)

(Eugene Lehman) Two of the guests at a birthday party turn out to have the same birthday
as the celebrant, even though all three are not necessarily the sme age. Figure out all their
ages from the following facts.

i) The three ages multiply to 36.

ii) The three ages sum to the number of people at the party.

iii) The eldest of the three is from the U.S.

Also say why (iii) is needed.

Al jabr The Arabic term for “the balance” describes the process of keeping equations bal-
anced: we can do any arithmetic operation on one side of the equation and as long as we
match it with the same operation on the other, the two sides are still equal.

a) Suppose we happen to know that ¢ = 1+1/¢. How can we find out that ¢ —¢—1 = 0 by
(i) multiplying both sides by the same thing and (ii) subtracting the same thing from both
sides?

b) Diophantine equations are restricted to integer solutions. Al jabr applies for addition,
subtraction and multiplication but not always for division. Inspect Eugene’s bank teller ex-
cursion, above, from this point of view.

¢) The mystery of cancellation. Al jabr also applies to fractions, in an even more limited
way. Only multiplication and division can be done to both the numerator and the denomi-
nator if we want to reach a fraction having the same value. Thus in Note 10, 8/12 is shown
as 2/3 because we can divide both the top and the bottom by 4.

But if we add the same number to both numerator and denominator we do not get a fraction
having the same value: try adding 3 to both top and bottom of 1/2.

Slopes: division a) Extend the division diagram in Note 9 to as many divisions as you like.
Explain the appearance of more than one fraction on some of the lines. In the full diagram,
which would go on forever upwards and rightwards, what would be the smallest number of
fractions on any one line?
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b) Figure out the following diagram and add some more fractions in their approximate posi-
tions on the horizontal line of numbers from 0 to 1.

78 1 98

89 87

O 1111 121 2 1 3234 1 5435 2 5 37
9876 594 7 3 8579 2 9758 3 7 49

(51FN
olul
~lo
ol
vl

5
4

~lo
wls
o=

(1N

1/3=2/6<3/6=1/2

3/7 =27/63 < 28/63 = 4/9

n/d <m/c or n/d =m/c or n/d>mlc
n/d <mlc or n/d > m/c
n/d <m/c or nd mic

if a<b and If c thensa c

if a<b and k¥ a then a=bh)

. a<b and I¥ aiffa=b
ifa=b then € b and $ a)

c) Al jabr works for inequalities as well as equalities. Just above we see that 3/7 < 4/9
because we can multiply top and bottom of the first by 9, to give a fraction of the same value,
and we can multiply top and bottom of the second by 7, to give a fraction of the same value
as 4/9. Since 27<28, so 27/63<28/63.
Show that if Z—ll < 73 then

ni ni + ng no

di — di+do T d2
d) Show that division is palindromic

b/c

I < |

c b/a

What other arithmetic operations are palindromic?
e) Approximate arithmetic An example of division is speed

s=d/t

The speed s is the distance d travelled divided by the time t taken.
Palindromically we can calculate how long it will take to make a trip if we know the distance
and the speed (or, at least, the average speed)

t=d/s

If we are driving 100Km on a quiet highway at the speed limit of 100Km/hour, we know it
will take us an hour. But if the highway gets busy and we are only making 90Km /hour we
can calculate 100Km/(90Km/hour) = 1.11 hours or about 67 minutes.

However it is not legal in many jursidictions to use a calculator or a pencil and paper while
driving, even at 10Km /hour under the speed limit. Nor is it safe, especially on a busy highway.
So we would like to do this kind of calculation in our head.

Here is an approximation. Since we are driving 10% slower than the speed that would get us
there in an hour, it should take us 10% longer than the 60 minutes, i.e., 66 minutes.

This is pretty close. If we were driving 50% slower, though, the time would be double, not
just 50% longer.

Make a table of speeds, both under and over 100Km /hour by 1%, 2%, 5%, 10% 20% and 50%,
and put into it the exact and the approximate calulations of how many minutes the trip will
take. When is the approximation close enough to make no difference to the nearest minute?
(By the way, how much time do you actually save by driving 100Km at 20% over the speed
limit? Since it will cost you more than 20% more fuel, and possibly a heavy fine to boot, is
it worth it?)
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47.

(Brocot fractional approximation) The Brocot algorithm [Hay08, Ch.7] finds fractional ap-
proximations to given numbers, motivated by the mid-19th century need to design gear ratios.
Here it finds successive approximations to 191/23, starting at the underestimate 8/1 and the
overestimate 9/1. 17/2 = (849)/(1+1) will be closer than either because it averages both
numerator and denominator. 9/1 had a larger error than 8/1, so it gets replaced and the next
“average” is of 8/1 and 17/2: 25/3. Eventually we get the exact answer, 191/23, since this
was itself a fraction all along. But we see that 108/13 and 83/10 are approximations to it, if
we could not make a gear with 191 teeth, for example.

| |
8\ a1
.
</17/2

\
25/3

58/7

NG

83/10

\
108/13

\
191/2

The diagram shows the successive approximations positioned to the left and to the right of
191/23 according to their error. Be careful: this error is not measured G — N/D, where
the goal G is the number sought (191/23 in this case) and N and D are the numerator and
denominator, respectively, of the approximation. Rather, the “error” is GD — N, otherwise
the algorithm does not give the final 191/23. (The final result also depends on the choice of
the initial straddling approximations, in this case 8/1 and 9/1.)

Write a program for your calculator or in MATLAB to implement Brocot’s algorithm. Let
it input both the number to be approximated and the tolerance acceptable, and read the
initial straddling approximations from an array of twice three elements: the numerator, the
denominator, and the error which your program will calculate at each step. Replace the old
approximation that has the greater “error” GD — N by the “averaged” approximation.

The tolerance should be compared with the true error, G — N/D.

Experiment with your program. For instance 191 and 0 can be input as goal and tolerance,
and the array [8,1,0;9,1,0] as the straddling approximations. Or 7 and 0.01, straddled by
[3,1,0;4,1,0], gives the sequence of fractions 3/1, 4/1, 7/2, 10/3, 13/4, 16/5, 19/6 and 22/7,
the last being the classical schoolchild approximation to 7. Or (1++/5)/2 and 0.001, straddled
by 1/1 and 2/1, gives the first dozen terms of the Fibonacci sequence (Week ii Note 2).

(Eugene Lehman) How many times and exactly when do the hour and minute hands coincide
on an analog clock, starting at one second after midnight and ending the following noon?

a) Try an approximate solution to start with, by saying to the nearest minute what time the
first coincidence will occur. (Not at midnight, since we are starting just after the midnight
coincidence.) Then step this forward, stopping before you go past noon.

b) By how much does this approximation get wrong the last coincidence before noon? What
corrections to all the other coincidence timings will fix this error? Confirm that the final
coincidence is exactly at noon. Work with fractions for this part.

c) Repeat (b) but this time work with decimals. You will need a way of writing infinitely
repeating decimals. A convention is the bar: 0.232323.. = 0.23. Be careful when adding two
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infinitely repeating decimals written this way.
d) Check your work in (c) by calculator, which should show enough decimal places to give
the right idea.

a) Invent and work through a number of examples of temperature drops and rises, across 0°C,
above 0°C and below 0°C, until you are comfortable with working with negative arithmetic.
How would you interpret and calculate a drop of —8C°? a rise of —8C°?

b) Martin Gardner imagined a room full of good and bad people. He supposed that adding is
sending people into the room and subtracting is calling people out of the room. He supposed
that good people are positive and bad people are negative. Thus adding +5 to the room
sends in 5 good people, while adding —5 sends in 5 bad people. Subtracting +5 calls out 5
good people and subtracting —5 calls out 5 bad people.

Multiplying by +3 is adding 3 times. Multiplying by —3 is subtracting 3 times. So (—3) x (—5)
successively subtracts —5 3 times, thereby increasing the goodness of the room by 15 people.
Work through several examples of this “model” of arithmetic.

c¢) Find and practice with some other “model”s of negative arithmetic—ones, for instance,
which might be suitable for people who do not live in climates where the temperature can drop
below freezing. Can you find any persuasive ones which involve placing the numbers along
a straight line and reversing direction for multiplication by —17 (Hint. Look up Margaret
Atwood’s CBC Massey Lectures, 2008, Toronto, House of Anansi Press.)

d) What is 2 x —4 x 3 x —6 x —7?7 Why does an odd number of negative values in a product
give a negative result? Why does an even number of negative values in a product give a
positive result?

a) Modify the railwayTracks program, or the corresponding plot on your calculator, to
explore a variety of slopes and separations of straight-line (“linear”) equations. Can you
work out a rule for the value of X that makes Y = 07 (If you use the TRACE button and the
arrow keys on your calculator, you can display values of X and Y to test your rule.)

b) What constant must be added to a line of slope s to give a second line, also of slope s but
a distance a apart from it, measuring the distance perpendicular to the two lines, as in Note
117

a) Write and run a calculator program to plot the nonlinear expressions of Note 12.

b) What are the rules for finding the values of X that make Y = 0 in the nonlinear plots of
Note 127

c) The general form of a “quadratic” expression is a X2 +bX +¢, and of a “cubic” expression is
AX3+BX?+CX+D. Work out the values of a, b and c for the triangular and square number
expressions. Work out the values of A, B,C and D for the tetrahedral number expression.
d) Using the expression 2X + c in a plotting program, find ¢ by trial and error so that this
straight line just touches the X? curve at X = 1. (The straight line is then said to be “tangent”
to the curve, and its slope, 2, is the slope of the curve at the point of tangency.

At most and at least how many times do linear, quadratic and cubic expressions cross the
horizontal y = 0 line? Any horizontal line?

Ramanujan called the integers his friends. Now we know enough about the integers to begin
to give each one a “personality”. We can do this by noting whether or not the integer is
prime, is a triangular number, is square, is a sum of squares, and so on.

Make a table such as the following, with all the possible properties of integers discussed in
these Notes, and fill it out for as many integers as you like. Can you find two integers with
identical “personalities”, i.e., the same columns have /s in them?

| |-+ odd prime A DO cube » O+ 0 hexag tetrahed

Y YY Y 7

28



53. Any part of the Preliminary Notes that needs working through.
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