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I. Prefatory Notes

1. Matrix multiplication. Teacher, help your grade scholar master the multiplication of 2x2
matrices outlined below and then encourage hem to invent a few 2x2 matrices to exercise on. Try
3x3, 2x3, and other n x m matrices as well. A grade scholar who enjoys calculating will like
this work for a while and will appreciate all the more the revelations later in these Notes of what
matrices mean and how they can be applied.

Polynomials in Week iii add and subtract in fairly straightforward ways. They become more
intriguing when multiplied, divided and factored. In these Notes we look at a quite different
assemblage of numbers, the matriz.

A matrix is a rectangular array of numbers. We will focus on 2x2, square rectangles.

Here are two 2x2 matrices multiplied together.

4 5 « 12 3\ (73 32
3 12 5 4 )  \ 96 57
Here is how we get this answer.

4 5 « 12 3\ 4x12+5x5 4x3+5x4
3 12 5 4 ) \3x12+12x5 3x3+12x4

A picture will help even more.
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3883. The author gratefully acknowledges support from the taxpayers of Québec and of Canada who have paid
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Matrix multiplication is not necessarily commutative.
12 3 o 4 5\ (57 96
5 4 3 12 )  \ 32 73
2. Vectors. Matrices do not have to be square. Here are two rather special 2x1 matrices.
1 0
(o) (1)
Using the matrix multiplication rule
4 5 « 1y [ 4
3 12 0) \ 3
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(2 3)<(0)-(3)

2x1 matrices are called vectors. (So are 1x2 matrices.)

(o) ()

are special because any other vector can be made up from them.
T 1 0

(3) = (o) e (V)
4 1 0

(3) (o) v (V)

This introduces two new operations on matrices: scalar multiplication and addition, both easy.

2 (1)=(5)
(1)+(5)=(5)

3. Identity matrix. Notice how the first multiplication in Note 2 “selects” the first column of the
matrix, and the second multiplication “selects” the second column.

The two vectors

For example,

Scalar multiplication

Addition

We can actually lump together these two multiplications.
4 5 « 10\ (4 5
3 12 0 1) \\3 12
10 o 4 5\ (4 5
0 1 3 12 )\ 3 12

So we have a special square matrix, called the identity.

(o)

The identity matrix plays the same role in matrix multiplication that 1 does in number multipli-
cation.

And, swapped

4. Matrix inverse. Given a matrix, what matrix multiplied by it gives the identity? This will be
the inverse of the given matrix.

A fairly simple rule gives the inverse for a 2x2 matrix. The rule starts: Swap the diagonal elements
and change the signs of the off-diagonal elements.

Try
4 5 « 12 =5\ (33 0
3 12 -3 4 ) 0 33



This is almost the identity: we must just divide by 33.

Before we say what this 33 is, notice carefully just why the swap and the sign change give the
off-diagonal zeroes in the result.

Try multiplying the two diagonal elements of the original matrix, then subtracting the product of
the off-diagonal elements. This is called the determinant of the 2x2 matrix and in this case it is

33.
12 =5
-3 4

(4 5)>< _(1 0)
3 12 4x12—-5x3 \0 1

So the rest of the inversion rule is: Divide the new matrix by the determinant of the original matrix.
Now you have the inverse of the original.

The convention is to use an exponent —1 to signify the inverse.

(32)<(s2) =(a )

We do not usually talk about matrix division because the important operation is inversion, and
inversion is enough to give us division.

12 3\ (4 5 1 /135/33 —48/33
5 4 3 12 o 48/33  —9/33
is what we would mean if we could say
12 3\ . (4 5\ _ (135/33 —48/33
5 4 )"\ 3 12 ] 48/33 —9/33
(By the way, the matrix we got here is in a special class, called “antisymmetric” matrices: the

off-diagonal element(s) above the diagonal differ only in their sign from their counterpart(s) below
the diagonal. Can you see why this result had to turn out anti-symmetric?)

If its determinant is zero, a matrix is not invertible. (Why?). Such a matrix is called singular.
Singular matrices play the role in matrix “division” that 0 plays in number division. But note that
there will be more than one singular matrix.

5. Vectors in space. Now let’s see what all these matrices and their strange operations might
mean and might be useful for.

We start with vectors, specifically the “column vectors” (2x1 matrices) we have been using. These
are just pairs of numbers, and so are useful for working with two-dimensional space.

Here is a view from the ceiling of a classroom with a floor tiled with large dark and light linoleum
tiles, and of the six people currently in the classroom. (It’s not that they are all looking at the
ceiling and not paying attention, but that I couldn’t draw both the floor and the faces of the people
at their desks in any other way.)
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Everybody’s name (one letter each) is also shown, and so are their positions (two numbers—a
vector—each).

Positions must be measured from some starting point, and by convention they are all measured
from the origin, the point (0,0).

So we had to show the origin and, for symmetry, it appears in the centre of the picture. It could
be anywhere else, such as the bottom left-hand corner (a frequent scientific convention) or the top
left-hand corner (the usual computer graphics convention) or somewhere completely outside the
picture.

Wherever it has been put, the origin is the point of reference for all positions, hence its name.

Putting the origin at the centre of the picture allows us to show negative numbers on the same
footing as positive.

Note how “M” is positioned 3 tile widths right of “E” (who happens to be sitting at the origin)
and 2 tile heights above. So these two numbers form the two components of the position of “M”.

“L” on the other hand is directly opposite “M” relative to the origin. By convention (again) right-
wards and upwards are indicated by positive numbers and leftwards and downwards by negative.
So “L”’s position consists of two numbers which are the respective negatives of “M”’s numbers, —3
and —2.

Vectors can be written either horizontally as 1x2 matrices or vertically as 2x1 matrices. It was
convenient to write them horizontally in the picture but in the text we will stick to column vectors.
These are more common than row vectors, and I myself have some trouble with left and right which
I do not have with top and bottom. It is important to distinguish the first from the second element
since the first element of a vector conventionally describes the left-right direction in space while the
second describes the up-down direction. In row vectors the first element is the left one. In column



vectors it is the top one.

Here are the vectors corresponding to the positions of the six people in the classroom. One other
vector is added because we do not have anybody seated at the position given by the second special
vector.

() ()¢ () () (2 ¢

These seven vectors can also be lumped into a single 2x7 matrix.
010 3 2 -3 3
100 -1 -1 -2 2

6. Positions and intervals. So far the vectors just stand for positions in space. They can also
stand for intervals.

For example, the interval from “A” to “N” is N — A:

(1)-(4)=(o)

Note that this is the same vector as the position of “J”.

So vectors representing intervals also represent them relative to the origin: they don’t start at the
first position.

We would really need four numbers to give both the interval and its starting point. But we already
have these four numbers in the two vectors N and A. So it is economical just to take the two
numbers in N — A as the interval. But this can be a confusing convention and takes getting used
to.

A similar convention also holds when we interpret ordinary numbers as positions along a line (such
as the Celcius temperature scale) or as intervals on the line (such as how much the temperature
went up today (positive interval) or down last night (negative interval)).

Thus we can interpret addition and subtraction of vectors. Two vectors representing positions
can be subtracted to give the vector representing the interval between. Two vectors representing
position and interval respectively can be added to give the new position (again a vector) that is
the given interval away from the first position.

7. Transforming space. How can we interpret multiplication? By the rule for matrix multiplication
we cannot multiply two vectors (except only if the first is a row vector and the second a column
vector, but we are sticking to column vectors): why?

So we must return to multiplying 2x2 matrices and column vectors.

Recall from Note 2 that the two special column vectors “select” the two columns of the matrix
when multiplied by the matrix. But these special vectors just describe the intervals of one step
(tile) rightward and one step upward in the classroom space. So we can easily read the effect of
multiplying these special vectors by the matrix.

For an example, I'm going to modify the matrix a little from

4 5

3 12
by dividing the first column by 5 and the second by 13. (What is special about the triplets 3,4,5
and 5,12,137 The answer may give a hint about why I am making this change, but it will not



become clear until Week 2.)
4/5  5/13\ [ 0.8 0.38
3/5 12/13 ) — \ 0.6 0.92

Here is the effect of this matrix on the left-right unit vector (a “unit” vector has length 1)

(05 092 )% (0)=(55)

and here is the effect on the up-down unit vector

0.8 0.38 « 0\ (038

0.6 0.92 1) 092
and we see that multiplying by the matrix has had the effect of bending the left-right unit vector
upwards to a new vector, and bending the up-down unit vector rightwards to another new vector.

0
(o

1
0 1)
Vin 0

The red arrows show the changes to the special vectors.

Recall also from Note 2 that any vector is a combination of the two special vectors. So any vector
is part left-right unit vector and part up-down unit vector. The left-right part will be bent by the
matrix multiplication in the way we have just seen. The up-down part will be bent leftwards as we
also saw.

8. Rotations. Let’s look at this in a special case, the matrix
4/5 -3/5 0.8 —0.6
3/5 4/5 06 038

Multiply every position in the classroom by this matrix and see where everybody moves to. (I'll
use the lumped vectors, the 2x7 matrix, to write this more compactly.)

0.8 —0.6 010 3 2 -33\ (-6 .8203 22 —12 1.2
06 08 )1 00 -1 -1 —2 2 )~ 8 6 0 1 04 —34 34
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9. Shear. All rotation matrices have determinant 1. (Check this for Note 8.) We can find other
matrices which also have determinant 1.

An example is a shear matrix. The matrix we started with in Note 1 shears space as we saw in
Note 7: it squeezes it in one direction and lets it squirt out in another direction, like a toothpaste
tube. That matrix also does other things to the space so let’s see if we can purify the notion of
shear.

First, we can make the distortion symmetrical. This takes a “symmetric” matrix, such as
4/5 3/5\ (0.8 0.6
3/5 4/5 ) — \ 0.6 0.8

However, the determinant is no longer 1. (What is it?)

To get determinant 1 for the symmetric matrix

a b

b a
we need a? — b? = 1. This can also be done with a Pythagorean triple.
For example, (5/4)? — (3/4)? =1, so

5/4 3/4\ ([ 1.25 0.75
3/4 5/4 )~ \ 0.75 1.25
is a symmetric, det=1 matrix. We call such matrices (pure) “shear” matrices.

Here is the effect on the classroom space.
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10. Summary
(These notes show the trees. Try to see the forest!)

. Matrix multiplication.
. Vectors.

. Identity matrix.

. Matrix inverse.

1
2
3
4
d.
6
7
8

Vectors in space.

. Positions and intervals.
. Transforming space.

. Rotations.

9.

Shear.

IT. The Excursions
You've seen lots of ideas. Now do something with them!

1. “Transpose” the operations in Note 2 by rewriting each 2x1 matrix as a 1x2 matrix. When
you transpose each matrix in a multiplication, note that the multiplication rule can no longer
work. So you must also exchange the two matrices. Try

4 3

(10)x<5]2>:(43)

Using these two ideas, rework all the matrix calculations in these Notes into their transposes.



10.

11.

. What is

(1)

><<4 5)
4x12—-5x%x3 3 12

. Are the following matrices singular?

2 4 2 6 2 8
1 2 1 3 1 4
What is the pattern? Do all singular matrices obey this pattern? Can any non-singular

matrix obey it? How does this pattern transform space? (Draw the effect on the two special
unit vectors.)

. What is the condition that the determinant of the antisymmetric matrix

(%)

be 1?7 How can this be achieved by Pythagorean triples?

. a) Write down a rotation matrix based on the Pythagorean triple 5, 12, 13.

b) Multiply this both ways with the rotation matrix from Note 8: does matrix multiplication
commute for rotation matrices? Does this make sense?

¢) What are the inverses of these rotation matrices?

d) What is the vector that is twice the angle from horizontal as that made by

(5/2)

What is the corresponding Pythagorean triple?

. Calculate the effect of the first symmetric matrix of Note 9 on the seven vectors of the

classroom in Note 8 and compare this with the shear matrix by drawing the transformed
space.

. a) How do

(o)) o) (D) G0 () )

transform under the shear matrix of Note 97 Draw the new space.
b) Which of these vectors are appropriately called “invariant” vectors of the matrix?

. a) Write down a shear matrix based on the Pythagorean triple 5, 12, 13.

b) Multiply this both ways with the shear matrix from Note 9: does matrix multiplication
commute for shear matrices?

¢) What are the inverses of these shear matrices?

d) What are the invariant vectors of your new shear matrix?

. Draw the classroom of Note 8 as transformed by any of the 2x2 matrices discussed in these

Notes or that you have invented yourself.

The “MAT” in the MATLAB programming language stands for matrices. The TI81 calculator
and its successors can also do matrix operations. Learn how to use these or equivalent software
to check the calculations in these Notes and your own exercises.

Any part of the lecture that needs working through.
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