
Excursions in Computing Science:
Week 9. Many Dimensions: Data Compression and

Content

T. H. Merrett∗

McGill University, Montreal, Canada

May 5, 2009

I. Prefatory Notes
1. With two-dimensional numbers, we can make a vector space of any number of dimensions.

Let’s try 5 dimensions.

Here’s a clue.

4
∑

k=0

eik2π/5 = 0

2*

2 /5

2 /5

2 /5

2 /5

0

4*

3*

Let’s try vectors F 5
j k = 1√

5
eijk2π/5

jk k = 0 1 2 3 4

j =

0
1
2
3
4















0
0
0
0
0





























0
1
2
3
4





























0
2
4
1
3





























0
3
1
4
2





























0
4
3
2
1





























F 5
0 k

F 5
1 k

F 5
2 k

F 5
3 k

F 5
4 k















(F0) (F1) (F2) (F3) (F4) Fk

∗Copyleft c©T. H. Merrett, 2006, 2009 Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and full citation in a prominent place.
Copyright for components of this work owned by others than T. H. Merrett must be honoured. Abstracting
with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or fee. Request permission to republish from: T. H. Merrett, School of
Computer Science, McGill University, fax 514 398 3883. The author gratefully acknowledges support from
the taxpayers of Québec and of Canada who have paid his salary and research grants while this work was
developed at McGill University, and from his students and their funding agencies.

1

Note 1. It’s jk mod 5, e.g., 3*2 mod 5 = 6 mod 5 = 1

Note 2. (Fk)j = F 5
j k = 1√

5
eijk 2π/5, not just jk.

If we use the conjugation operator, *: i→ −i, these vectors are normalized:

F ∗
0 .F0 =

4
∑

j=0

1√
5
e−ij0 2π/5 1√

5
eij0 2π/5 =

1

5

4
∑

j=0

1 = 1

F ∗
1 .F1 =

4
∑

j=0

1√
5
e−ij1 2π/5 1√

5
eij1 2π/5 =

1

5

4
∑

j=0

ei(j−j)1 2π/5 =
1

5

4
∑

j=0

1 = 1

F ∗
k .Fk =

4
∑

j=0

1√
5
e−ijk 2π/5 1√

5
eijk 2π/5 =

1

5

4
∑

j=0

ei(j−j)k2π/5 =
1

5

4
∑

j=0

1 = 1

They are orthogonal:

F ∗
0 .F1 =

4
∑

j=0

1√
5
e−ij0 2π/5 1√

5
eij1 2π/5

=
1

5

4
∑

j=0

eij(1−0)2π/5 = 0

F ∗
0 .F2 =

4
∑

j=0

1√
5
e−ij0 2π/5 1√

5
eij2 2π/5

=
1

5

4
∑

j=0

eij(2−0)2π/5 = 0

Thus they are orthonormal:

F ∗
l .Fk =

4
∑

j=0

1√
5
e−ijl2π/5 1√

5
eijk2π/5

=
1

5

4
∑

j=0

eij(k−l)2π/5

= δl k
def
= if l=k then 1 else 0

It’s a 5-dimensional space.

And we can do this for any n: use a regular n-gon and its stars instead of the pentagon.
What’s important is that they are closed figures.

So we have n-dimensional space.

2. Is it good for anything?

It’s actually a matrix (a row of column vectors): it’s a transformation, just like rotation,
(

c −s
s c

)

:

2

(c,−s)
(

c
−s

)

= 1 ; (s, c)
(

s
c

)

= 1 ; (c,−s)
(

s
c

)

= 0 ; (s, c)
(

c
−s

)

= 0

or shear,

γ
(

1 −v
−v 1

)

:

(1,−v)
(

1
−v

)

= 1/γ2 ; (−v, 1)
(−v

1

)

= 1/γ2 ; (1,−v)
(−v

1

)

= 0 ; (−v, 1)
(

1
−v

)

= 0

So we can transform vectors in 5-dimensional space.

~f ′ = F ~f ; ~f = F ∗T ~f ′

It’s called the Fourier transform (more precisely, DFT, the discrete Fourier transform).

What could these vectors be? Let’s try functions.

E.g., f(x) = x2














f0

f1

f2

f3

f4















=















0
1
4
9
16















MATLAB:

E5 = (0,0,0,0,0;
0,1,2,3,4;
0,2,4,1,3;
0,3,1,4,2;
0,4,3,2,1];

F5 = exp((i*2*pi/5).*E5)./sqrt(5);
parabPlus = [0;1;4;9;16];
parabPlFT = F5*parabPlus

parabPlFT =

13.4164
-2.3541 - 7.6942i
-4.3541 - 1.8164i
-4.3541 + 1.8164i
-2.3541 + 7.6942i

(Note that 13.4164/
√

5 = 6, the average value of parabPlus. For this reason, the Fourier
transform is usually defined as F/

√
5 and the inverse as

√
5F ∗T . But we’ll stick to our

symmetric definition.)

What is this giving us?

It’s not clear for x2, but let’s try cos(x)

MATLAB:

3

function Cn = cosine(n,f) % f is "frequency"
for j=1:n, Cn(j) = cos(2*pi*(j-1)*f/n); end;

F5*cosine(5,1)’

ans =

-0.0000
1.1180 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
1.1180 - 0.0000i

F5*cosine(5,2)’

ans =

-0.0000
0.0000 + 0.0000i
1.1180 + 0.0000i
1.1180 - 0.0000i
-0.0000 + 0.0000i

When frequency is 1, component 1 is nonzero.
When frequency is 2, component 2 is nonzero.

The Fourier transform is picking out the frequencies.

3. So if we have a function in which some frequencies are much more important than others,
we could take the Fourier transform, store or transmit only the important frequencies, then
when we want the function back, take the inverse Fourier transform of these only, to get a
(good?) approximation.

Let’s try it for cosine

MATLAB:

cosine(5,1)

ans =

1.0000 0.3090 -0.8090 -0.8090 0.3090

cosFTapprox = [0;2.236;0;0;0];
conj(F5)*cosFTapprox

ans =

1.0000
0.3090 - 0.9510i
-0.8090 - 0.5878i
-0.8090 + 0.5878i

4

0.3090 + 0.9510i

The real part is exact.

In the case that only a few frequencies are important, F gives us data compression.

4. This is used by JPEG (Joint Photographic Experts Group) to compress images along
something like the following lines.

1. Scan the picture (or 8×8 subpictures of it) diagonally,
e.g. (4×4):

9 12 14 15

2 4 7 10

0 1 3 6

5 8 11 13

2. Fourier transform (e.g., F16).

3. Set the unimportant frequencies to zero (i.e., keep only the important frequencies).

Let’s try it on the 4×4 black and white pattern

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

MATLAB:

F16 = makeDFT(16);
leftBlack = [1,1,0,0;

1,1,0,0;
1,1,0,0;
1,1,0,0];

5

diag = makeDiag(4,leftBlack)
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0

leftBlFT = F16*diag’ conj(leftBlFT).*leftBlFT
1 2.0000 4.0000
2 0.0811 + 0.4077i 0.1728
3 0.1768 + 0.4268i 0.2134
4 0.0542 + 0.0811i 0.0095
5 0.7500 + 0.7500i 1.1250
6 -0.4077 - 0.2724i 0.2405
7 -0.1768 - 0.0732i 0.0366
8 0.2724 + 0.0542i 0.0772
9 0.5000 + 0.0000i 0.2500
10 0.2724 - 0.0542i 0.0772
11 -0.1768 + 0.0732i 0.0366
12 -0.4077 + 0.2724i 0.2405
13 0.7500 - 0.7500i 1.1250
14 0.0542 - 0.0811i 0.0095
15 0.1768 - 0.4268i 0.2134
16 0.0811 - 0.4077i 0.1728

leftBlFTAx = zeros(size(leftBlFT));
leftBlFTAx(1) = leftBlFT(1); % try only frequency component 1
diagAx = conj(F16)*leftBlFTAx;
leftBlAx1 = binarize(unmakeDiag(4,diagAx’));

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

leftBlFTAx(5) = leftBlFT(5); % now add frequency component 5
diagAx = conj(F16)*leftBlFTAx;
leftBlAx5 = binarize(unmakeDiag(4,diagAx’));

1 1 0 0
0 1 0 0
1 1 0 1
1 1 0 0

To store this approximation, instead of 16 numbers, keep only 6:

1 2 0
5 0.75 0.75

(To get it perfect, we must also include components 9, 6 and 3.)

5. The fast Fourier transform

So far, we’ve been using at least n2 operations to calculate F n:

f ′
k =

n−1
∑

j=−0

F n
k jfj

But F n has special properties which may speed this up.

F n
k j = e

2πi
n

kj = ωkj = (ωk)j

6

So

f ′
k =

n−1
∑

j=−0

fj ∗ (ωk)j = f0 ∗ (ωk)0 + f1 ∗ (ωk)1 + ... + fn−1 ∗ (ωk)n−1

It’s a polynomial in ωk.

And it can be evaluated by Horner’s rule

f ′
k = f0 + ωk ∗ (f1 + ωk ∗ (f2 + ... + ωk ∗ fn−1...))

Now this is still n operations for each k = 0, .., n− 1:
n2(+, *) to be precise.

But that’s all the operations and we don’t have to work out e
2πi
n every time.

Still, we can do better.

f ′
k = P (ωk) for a polynomial P .

And any P (x) can be evaluated at x = a by finding a remainder

P (a) = P (x)mod(x− a)

This is polynomial arithmetic: polynomials obey the same axioms as integers—polynomials
form a ring (see Week 4)—and so we can do long division and get quotients and remainders
(among other things, such as addition, subtraction and multiplication).

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

Let’s explore this for F16 and

f ′
k =

n−1
∑

j=−0

(ωk)jfj

(fj) = (1; 1; 1; 0; 1; 1; 0; 0; 1; 1; 0; 0; 1; 0; 0; 0)

f ′
k = f ′(ωk) where

4f ′(x) = x0 + x1 + x2 + x4 + x5 + x8 + x9 + x12

Let’s practice polynomial long division with two examples before we try to reduce the n2

operations for Fourier to fewer.

4f ′(x) = q1(x)d1(x) + r1(x)

4f ′(x) = q2(x)d2(x) + r2(x)

with d1(x) = x8 − ω0 = x8 − 1
and d2(x) = x8 + ω0 = x8 + 1

7

1.

x4 + x + 1
x8 − 1)x12 + x9 + x8 + x5 + x4 + x2 + x + 1

x12 − x4

x9 + x8 + x5 + 2x4 + x2 + x + 1
x9 − x

x8 + x5 + 2x4 + x2 + 2x + 1
x8 − 1

x5 + 2x4 + x2 + 2x + 2

So

q1(x) = x4 + x + 1

r1(x) = x5 + 2x4 + x2 + 2x + 2

2.

x4 + x + 1
x8 + 1)x12 + x9 + x8 + x5 + x4 + x2 + x + 1

x9 + x8 + x5 + x2 + x + 1
x8 + x5 + x2 + 1

x5 + x2

q1(x) = x4 + x + 1

r1(x) = x5 + x2

So we know that we can find f ′(x1) = r1(x1) for any x1 for which d1(x1) = 0
and f ′(x2) = r2(x2) for x2 making d2(x2) = 0.

That should save some work for x1 and x2.
Can we use this? Can we do it for any ωk? All ωk?

Well, here’s a trick.

d1(x) = (x− ω0)(x− ω8)(x− ω4)(x− ω12)(x− ω2)(x− ω10)(x− ω6)(x− ω14)

= (x2 + ω8) (x2 + ω0) (x2 + ω12) (x2 + ω4)

= (x4 + ω8) (x4 + ω0)

= x8 + ω8

= x8 − ω0

= x8 − 1

and

d2(x) = (x− ω1)(x− ω9)(x− ω5)(x− ω13)(x− ω3)(x− ω11)(x− ω7)(x− ω15)

= (x2 + ω10) (x2 + ω2) (x2 + ω14) (x2 + ω6)

= (x4 + ω12) (x4 + ω4

= x8 + ω0

= x8 + 1

8

Why?

(x− ω0)(x− ω8) = x2 − (ω0 + ω8)x + ω8

(x− ω4)(x− ω12) = x2 − (ω4 + ω12)x + ω16

(x2 − ω8)(x2 − ω0) = x4 − (ω8 + ω0)x2 + ω8

and so on:

10 6
789

5

4

3

14
15 0 1

2

13

12

11

ω8 = −ω0 ω0 + ω8 = 0

ω12 = −ω4 ω4 + ω12 = 0

How did we pick 0, 8, 4, 12, 2, 10, 6, 14 for d1? Pairs of opposites!
Similarly d2: 1, 9, 5, 13, 3, 11, 7, 15

In fact, there’s a(nother) trick:

1101

0101

0110
0111

0100

0010
000100001111

1110

0011

10001001
1010

1011

1100

0 8 4 12 2 10 6 14
0000 1000 0100 1100 0010 1010 0110 1110
0000 0001 0010 0011 0100 0101 0110 0111

0 1 2 3 4 5 6 7
1 9 5 13 3 11 7 15

0001 1001 0101 1101 0011 1011 0111 1111
1000 1001 1010 1011 1100 1101 1110 1111

8 9 10 11 12 13 14 15
Bitflip the sequence 0..15 and get pairs of opposites.

So we can find f ′(x1) for x1 = ω0, ω8, ω4, ω12, ω2, ω10, ω6, ω14 by finding r1(x1)
and we can find f ′(x2) for x2 = ω1, ω9, ω5, ω13, ω3, ω11, ω7, ω15 by finding r2(x2)

Is this less work than directly finding f ′(x1) and f ′(x2)?

Each long division costs at most 8 subtractions of a 2-term polynomial: 8*2(+,*)
Total 2*8*2(+,*)

Then solving the remainder, each at most 8 terms, is another 8(+,*)

6. Divide and Conquer
But we can do the same thing with the remainders:

d11(x) = (x− ω0)(x− ω8)(x− ω4)(x− ω12) = x4 + ω8 = x4 − ω0 = x4 − 1

d12(x) = (x− ω2)(x− ω10)(x− ω6)(x− ω14) = x4 + ω0 = x4 + 1

d21(x) = (x− ω1)(x− ω9)(x− ω5)(x− ω13) = x4 + ω12 = x4 − ω4 = x4 − i

d22(x) = (x− ω3)(x− ω11)(x− ω7)(x− ω15) = x4 + ω4 = x4 + i

9

x + 2
r1(x)÷ d11(x) = x4 + 1)x5 + 2x4 + x2 + 2x + 2

2x4 + x2 + 3x + 2
x2 + 3x + 4 = r11(x)

x + 2
r1(x)÷ d12(x) = x4 − 1)x5 + 2x4 + x2 + 2x + 2

2x4 + x2 + x + 2
x2 + x = r12(x)

x
r2(x)÷ d21(x) = x4 − i)x5 + x2

x2 + ix = r21(x)
x

r2(x)÷ d22(x) = x4 + i)x5 + x2

x2 − ix = r22(x)

This has cost at most 4*4*2(+,*).

Doing it once more will give 8 linear remainders of the form ax + b,
and a final time will give 16 constant remainders, the final values of the 4f ′(ωk)s

That is, 4 iterations gives 4f ′(ωk) for all ωk, k = 0, .., 15
Now there are no remainders left to evaluate. We need only the divisions.

Cost:
2*8*2(+,*) + 4*4*2(+,*) + 8*2*2(+,*) + 16*1*2(+,*) = 4*16*2(+,*)

versus cost for the Horner’s rule evaluation 16 times:
16*16(+,*)

The divide-and-conquer takes half the cost.

If n = 32: 5*32*2 versus 32*32: one third the cost.

In general, 2n lg n versus n2.

Divide and conquer is frequently used to reduce n2 algorithms to n log n: for example, sorting,
Voronoi diagrams.

7. The Uncertainty Principle
What function is the Fourier transform of itself?

Try Gauss’ bell curve, the gaussian, e−x2/2δ2

√
2πδ2

,

centred at 0 with “width” or standard deviation δ.

10

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

stdev=0.5

stdev=1.5

stdev=2.5

MATLAB:

stdev = ..; plotcolour = ’..’;
g16 = gaussian(16,stdev);
plot(0:15,g16,plotcolour)
hold on
plot(0:15,F16*g16’,plotcolour) % will ignore imaginary parts

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

stdev=1.5

stdev=0.5

stdev=0.5

stdev=2.5

Gaussian

Fourier transform

11

The Fourier transform of the gaussian is close to itself at stdev=1.5

More important, the fatter the gaussian, the thinner the Fourier transform, and vice-versa.

The Fourier transform gives “frequencies”.
If we interpret the gaussian as the (uncertain) position of a quantum particle,
then the Fourier transform gives its (uncertain) frequency.
But frequency together with velocity gives momentum

The width of the bell shape is uncertainty:
a very narrow gaussian gives a very precise measure of position;
a very narrow Fourier transform gives a very precise measure of momentum.

But we can’t have both: the QM “uncertainty principle”.

8. Compression and Content
We’ve seen how we can compress data by throwing away the unimportant frequencies of the
Fourier transform before transforming back again.

(Throwing away −→ “lossy” compression.)

There is a sense in which compression is equivalent to knowing the content.
A theory can be seen as a compressed representation.

For instance, γ
(

1 −v
−v 1

)

, the Lorentz transform, captures an extensive understanding of

time and space, and that speed does not change the laws of physics.
Or e1.e2 = −e2.e1, the axiom of Clifford algebra, captures an understanding of surfaces in
spaces.

These are all much more compact than all the particular facts that can be deduced from
them.

So when we compress data by focussing on the most important part, in this case of the
Fourier transform (but there are many other possibilities), we are making a theory about
the content of the data.

The Fourier transform is used for content analysis of multimedia including pictures and time
series (even stock prices).

One of the most common questions about content involve similarities: “how similar are these
two pictures?”, or “find stock price series that are behaving like this one here”. If two things
have the same frequency spectra, revealed by Fourier analysis, this one way in which they
are similar.

9. Summary

(These notes show the trees. Try to see the forest!)

• Orthonormal basis “vectors” for abstract spaces of any number of dimensions.

• Functions are vectors.

• Fourier transforms extract “frequencies” from functions.

• Throwing away unimportant frequencies gives (lossy) data compression.

12

• Divide-and-conquer reduces, e.g., O(n2) algorithms to O(n log n):
fast Fourier transform uses polynomial remainders and opposing sides of the regular
2n-gon to accomplish this.

• Fourier transform of Gauss’ bell curve gives back a bell curve, but fat ←→ thin:
if the two bells are errors of measuring postions and momenta of particles, these mea-
surements are “complementary” in that both cannot be made exactly.

• Data compression ≡ theory about data ≡ content analysis

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Check that the 5-dimensional basis vectors, Fk, are orthonormal:
F ∗

l .Fk = if l = k then 1 else 0, for l, k = 0 : 4
Draw all the closed figures (pentagon, star, etc.) that show orthogonality.

2. Draw the closed figures that show that similar vectors, Fk, are orthogonal in 6 dimen-
sions.

3. If we take only the “real” parts of the two-dimensional numbers used in Fk (that is, the
projections on the one-dimensional number line, meaning use cos(x) instead of exp(ix))
do we get the same orthonormal relationships? What if we take the “imaginary” parts
(sin(x))?

4. Use MATLAB to Fourier-transform some functions other than x2 and cos(x) from 0
to 4.

5. Explain the fourth component of the Fourier transform of cosine when the frequency
is 1, and the third component when the frequency is 2.

6. The MATLAB code shown in the notes to invert the Fourier transform uses only
conj(F16) and not the transpose, conj(F16’). Why is it still correct?

7. Diagonalize the approximation

1100
0100
1101
1100

to the half-black image and show that it has the period expected from the frequency
components used in the approximation.

8. Take the Fourier transform of the checkerboard image

1100
1100
0011
0011

13

approximate it by setting unimportant frequencies to zero, and transform back again
to the approximate image. How many Fourier terms did you keep to get a reasonable
approximation? An exact reproduction?

9. Show that the following vectors are orthonormal and so also provide a basis for func-
tions in 5 dimensions. Why could they be called the “bar chart basis”? They give the
the idea for what the computing community calls “wavelets” and the physics commu-
nity calls “Green’s functions” [FLS64, p. 25-4]: look these up!

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

10. Why is p(a) = p(x) mod (x− a) for polynomial p? (Write p in terms of x− a and its
quotient and remainder after division.)

11. Do the two last steps of the divide-and-conquer not done in the notes, and check your
result against leftBlFT from the notes.

12. The notes give the worst-case costs for a 16-dimensional fast Fourier transform. How
much did the half-black image example actually cost?

13. Use tic and toc in MATLAB to compare the O(n2) Fourier transform, coded at the
beginning of the notes, with MATLAB’s fft() function.

14. Outline the algorithms for “bubble sort” and for “merge sort”, which are different
ways of sorting sets of records (or numbers, or words). What are the costs of these
algorithms, approximately, as functions of n, the number of records to be sorted?
Comment on the divide-and-conquer aspects. Is there another sorting algorithm which
illustrates divide-and-conquer in a different way? (What is the logarithm of the total
number of permutations n things can form, and why is this related to the cost of
sorting?)

15. Rewrite the Fourier transform code so that it symmetrically gives positive and “nega-
tive” frequencies. (E.g., frequencies 0,1,2 → 0,1,-1 → -1,0,1) Use this to give Fourier
transforms, of the gaussian bell curve, which are themselves symmetrical bell curves.

16. Why are the Fourier transforms symmetric in the way shown by the examples in
the notes, if negative frequencies are not used? What do the last component of
F5*cosine(5,1)’ and the next-to-last component of F5*cosine(5,2)’ mean? The
components near frequency 15 of the 16-point gaussians? If we remove these terms
and Fourier transform back again, what is the result?
In a physical system, frequencies, which are energies, cannot be negative. Feynman
mentions [FW87] a theorem which says that a function which can be Fourier decom-
posed into only positive frequencies must itself be nonzero essentially everywhere, in-
cluding outside the lightcone if it is a function of timespace, such as the amplitude
function for the location of a particle.
Thus any quantum particle has an amplitude, perhaps very small, for moving faster

14

than light. We’ll call such states “tachyons”. We saw in Weeks 3 and 7 that such
a state can be seen by some relativistic observers as moving backwards in time, and
so we get antimatter. We also get the exclusion principle for fermions, leading to the
structure of matter, and the opposite behaviour of bosons, leading to important quan-
tum applications such as lasers and superconductivity.
(“Tachy” is the root of tachometer, as in a high performance sports car. It is a
Greek word. The Greek word for post office is tachydromio. I’m not sure about the
“dromio”—I get an image of some kind of camel—but the “tachy” means fast, very
fast. In physics a tachyon is a hypothetical particle that always travels faster than
light.)

17. Look up Jean Baptiste Joseph Fourier (1768–1830). What problem was he working on
when he came up with the idea of representing functions by series?

18. Look up James W. Cooley and John W. Tukey’s 1965 paper, “An Algorithm for the
Machine Calculation of Complex Fourier Series”. Did anybody come up with this
method before them?

19. Look up chapter 32 in Kee Dewney’s The New Turing Omnibus [Dew93] (chapter 29
of the 1989 original book). Where does his description of FFT go wrong?

20. Find other applications of the Fourier transform and use MATLAB to perform the
calculations for simple examples.

21. Any part of the lecture that needs working through.

References

[Dew93] A. K. Dewdney. The New Turing Omnibus: 66 Excursions in Computer Science.
Computer Science Press, Rockville, MD, 1993.

[FLS64] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on Physics,
Volume I. Addison-Wesley, 1964.

[FW87] Richard P. Feynman and Steven Weinberg. Elementary Particles and the Laws of
Physics: The 1986 Dirac Memorial Lectures. Cambridge University Press, Cam-
bridge, 1987.

15

