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Despite its immense success, the relational model of data has been underappreciated. Many wrong claims have
been made to the effect that it is unable to handle complex data, to do analytical processing, or to go beyond
passé, simple structured data. I have devoted most of a career in computer science to showing that relations
can indeed cope with all these, without awkwardness and with minimal syntactic and conceptual extensions.
Not only can relations cope; they do the job better. A further advantage of this work is integration: the same
formalism that was classically used for administrative data can also be used for expert systems, for geographical
information systems, for CAD-CAM, for numerical work, for data mining and for semistructured applications
such as bibliographic and bioinformatic databases. Another advantage is that this integrated relational formalism
is at a level of abstraction which is not only ideally suited for processing data on secondary storage but which
also readily absorbs important issues in computational parallelism and in distributing data over the Internet.

I review the simple ideas needed to push the relational model to its inherent full capabilities, and show the
syntactic adjustments needed to avoid the limitations of conventional and commercial implementations. The
discussion is prefaced by some motivating examples, without full explanations, and terminated by a consideration
of some special techniques for implementing the language constructs.

Keywords: secondary storage programming language

1. Introduction

The Aldat Project is almost complete, to use
famous penultimate words. We have developed
it in parallel with progress in the database re-
search and application communities since the in-
ception of the relational model by Codd [15,17].
Our purpose from the beginning was to produce
a programming language, capable of any process-
ing which relations could in principle support.
The database community was by and large inter-
ested only in query languages, but we started our
work in general programming languages for sec-
ondary storage. (It was not until half a dozen
years after the relational model first appeared
that work was started on database programming
languages [76], leading to the current biennial
workshops on “DBPL”.) We also found ourselves,
in the early days, having to devise data struc-
tures and algorithms to support our language con-
structs on secondary storage.

We followed two principles in building a
general-purpose language from the relational al-
gebra Codd originally supplied. First, add noth-
ing which is not motivated by at least two inde-

pendent applications. Second, add nothing which
does not fit the given conceptual framework with-
out distortion: existing concepts may, and should,
be generalized as far as possible, and new syn-
tax added with only the greatest reluctance. The
thrust of these principles is to keep Aldat as sim-
ple as possible, and has resulted in unexpected
functionality from only three or four types of re-
lational operator, an independent “domain alge-
bra” of three categories of operations, a fusion of
the notions of procedure and relation, and some
classical programming language ideas such as typ-
ing, scopes and recursion.

We have not been zealous in following any
particular language paradigm to the hilt, such
as declarative/functional programming, logic pro-
gramming, constraint programming or object-
oriented programming, but we have exploited
their various strengths whenever possible and
consistent. Thus, Aldat is mainly declarative
(functional programming) and provides encapsu-
lation for non-declarative code (object-oriented
programming). Aldat offers recursive views (logic
programming) and multi-way functions (con-
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straint programming).
We have been doctrinaire about one consid-

eration, namely always to work at the level of
whole relations and never with individual tuples.
This suits the bulk data transfers required by sec-
ondary storage, it avoids requiring a parallelizing
compiler having to undo the order of loops coded
by programmers, and it gives the further advan-
tages of truly high-level languages, such as LISP
and APL, that the abstractions are as deep as
possible and the programmer is saved many nitty-
gritty lies of code.

In Codd’s relational algebra we found two tac-
tical principles which we also observed. First,
the principle of closure: operations on things
(e.g., relations) must produce things of the same
kind (e.g., relations). This permits arbitrary ex-
pressions to be built up from basic operations,
and keeps the formalisms self-contained. Second,
the principle of abstraction: operations on things
(e.g., relations) should not be influenced either
by the structure of the things (e.g., the tuples of
data) or by their context. This is essential for
modularity and for the intellectual simplification
that is the goal of any programming language to
deliver. We applied these principles to relations
in the relational algebra and to attributes in the
independent domain algebra.

With the formalization of grammars and to a
large extent of semantics, and with the develop-
ment of parsing and compiling techniques based
on these formalizations, language development is
now often considered to be a negligible achieve-
ment. Developing the concepts for a radically new
language is something else. Our work has been
empirical, a multi-year investigation of new ap-
plications as they arose, mainly in databases, to
integrate them into a single framework satisfying
all the above principles.

In the 1970s, while the first relational systems
were being built and some fundamental theory
investigated, we established the basic operators
needed to abstract over looping and treat files
of data in the same way that programming lan-
guages then treated (and still treat) numbers.
This produced the domain algebra and some gen-
eralizations of relational operators into a family
of quantified unary operators and two families of

binary operators, one extending set-valued opera-
tions on sets and the other extending logic-valued
operations on sets.

In the 1980s the database community moved
on to forms of data other than the administra-
tive data that had originally motivated database
development. We established that spatial, tem-
poral, and rule-based systems could all be built
on relations and the above operations. Recursion
was needed in the relational algebra, and intro-
duced without new syntax beyond a mechanism
for relational “views”.

By the 1990s, the object-oriented approach was
challenging the relational formalism, and we un-
dertook to show that the two were not incom-
patible: if one can have an object-oriented list-
processing language, one can certainly have an
object-oriented relational language. Indeed, a re-
lational language can readily subsume O-O. Be-
cause O-O is a language facility, rather than a
data structure, this required us to begin fusing
the fundamental ideas of programming languages
with the relational ideas we had developed. Since
encapsulation of state is central to O-O, and since
all we need for this is a procedure mechanism [3],
we had to incorporate procedures. Instead of
just sticking them in, we kept to our principles
and sought a common generalization. Mathemat-
ically, relations generalize functions1, and so we
had the notion of a “computation”, a paramet-
ric procedural abstraction which can be invoked
by the relational algebra, using different sets of
input parameters under different circumstances.
(In a sense, this is a reprise of an idea which goes
all the way back to the very first relational imple-
mentation [80].)

Nested relations, which Codd anticipated from
the outset ([15]), but which violate his “first nor-
mal form” [16], had been around ([44]) as long as
DBPL, and needed attention. It is fundamental
to programming languages that there should be
no “second-class citizens” which are not allowed
in certain contexts, but first normal form insisted
that relations could not be values of attributes in
the tuples of relations. Instead of being diverted

1Functions are the many-to-one special case of binary re-
lations.
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by the problematical nonsymmetry of “nest” and
“unnest” operations [35], we looked for a for-
malism in which relation-valued attributes could
be useful, e.g., in certain forms of data mining.
Again, no new syntax was needed, just pushing
the existing concepts a little further. If relations
are allowed to be attributes, then the domain al-
gebra (which operates on attributes) must sub-
sume the relational algebra. That’s all. The lan-
guage can now express, for instance, basic associ-
ation data mining.

For classification data mining, on the other
hand, the usual implementation must loop
through each of a set of attributes. This requires
support of attribute “metadata”: the ability to
include attribute names among the data to be
processed, and to convert back and forth between
data and attributes. (Since nesting has united
attributes and relations, attribute metadata in-
cludes relational metadata.) A nice application
is building datacubes [27], fundamental to on-line
analytical processing (OLAP) which the founder
of the relational model said was not an intended
application for relations [18]. (He didn’t say it
could not be done.)

By the present decade, work on “semistruc-
tured” data has reached fruition with the appear-
ance of query languages which treat XML as a
data structure. As with object-orientation and
OLAP, it is received wisdom that relations just
can’t cope with the polymorphism and lack of
explicit schemas that characterize semistructured
data. So we looked at nested relations. They
were not yet quite complete, lacking the capa-
bility of recursive nesting (which the LISP data
structure has, for instance). Incorporating this
made the domain algebra recursive, which was
also lacking. This enables relations to deal with
implicit schemas and with many of the semistruc-
tured queries. Adding suitable polymorphism to
Aldat handles the rest. Previous semistructure
query capabilities are a strictly special case. They
can be captured by a syntactic sugar which re-
places recursion by path expressions. Since the
formalism for nested relations adds no new capa-
bilities to what flat relations can accomplish (al-
though thinking about certain problems is greatly
simplified), we have achieved semistructure capa-

bilities with flat relations.
With this recursive completion of relational po-

tential, the following definitions are now mean-
ingful. A relation is a time-varying set of tuples.
A tuple is a mapping, also time-varying, from a
set of names (attributes) to corresponding values.
Since these values may be relations, the defini-
tions are recursive. They also allow us to say
that a database is a tuple. (So for that matter,
is a data structure.) We can see that a tuple is
the same thing as a scope in programming lan-
guage terminology, and a directory in an operat-
ing system file hierarchy. This last observation
permits us to use the same syntax for path ex-
pressions in semistructured data as a navigation
tool among multiple databases stored in different
directories of a single host, or, with a suitable
protocol, among distributed parts of a database
on several hosts.

This paper supplies technical details on the
above retrospective. After some formal defini-
tions and an outline of the main example (Sec-
tion 3), we attempt to explain, in a self-contained
way, the domain algebra (Section 4), the rela-
tional algebra (Section 5), relational nesting (Sec-
tion 6) and the computation (Section 7). Before
this, Section 2 gives some motivating examples,
showing full code but without the explanations
that come later. Section 8 applies these ideas to
aspects of internet programming, and Section 9
discusses a couple of data structures for imple-
mentation on secondary storage which arose dur-
ing the language development.

2. Motivation

This section provides some motivation for the
rest of the paper by giving six Aldat exam-
ples which show the benefits of a very high-level
general-purpose programming language. Ma-
trix multiplication, inference engines, bills of
materials, rotation and shear transformations,
semistructured data and boolean circuits are not
within the capabilities of most database lan-
guages. Here I show complete code for each of
them in a language which later sections develop
from the central database idea of relations. The
section is not self-contained, but looks ahead to
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later discussions. Appendix A works through,
with data, all but the last example of this sec-
tion, and can be followed once the remainder of
the paper has been read.

The matrix multiplication example shows that,
in a sufficiently high-level language, we can avoid
writing unnecessary loops. Multiplication of n×n
matrices costs O(n3) operations, and is written
as three nested loops in low-level languages. (We
can define a low-level language to be one that
requires three nested loops to multiply two ma-
trices.) Here is the product in Aldat, for matrices
represented as relations, A(i, j, a) and B(j, k, b).

let ab be equiv + of a * b by i, k;
AB <−[i, k,ab] in (A natjoin B);

The second line is relational algebra, which takes
the natural join of A and B on the common at-
tribute, j, then projects the result on i, k and on
a calculated attribute, ab. The first line is “do-
main algebra”, which calculates ab as a sum of
a × b over j (i.e., grouped by i and k).

The reason Aldat does not need any looping
construct to multiply matrices is that all three
loops are order-independent. A low-level pro-
grammer is forced to write these loops, each fol-
lowing a certain sequence. If the code is then to
be run on parallel processors, a very clever com-
piler must be invoked to “parallelize” the code by
undoing those sequences.

Aldat does not force the programmer into un-
necessary sequencing because it is a language de-
veloped for processing data in bulk, as found
on secondary storage, and its central constructs
(such as natural join) abstract over looping.

The domain algebra is another central con-
struct in Aldat, and it also abstracts over loop-
ing. The domain algebra supports an even more
important abstraction, to which I shall return in
the bill-of-materials example, below. This is its
orthogonality to the relational algebra. Note that
the domain algebra line, above, makes no refer-
ence to any relation. This greatly reduces ex-
traneous thinking by permitting problems to be
decomposed into the aspect in which attributes
are processed and the aspect in which relations
are processed.

Our second example is a one-line inference en-

gine. This applies to the Horn clauses (if-then
rules, where the “if” is followed by a conjunction
of one or more antecedents),

Horn(Rule#,Ante,Concl),
and the initial facts, Facts(Concl), and uses any
Horn clause whose antecedents are covered by
known facts to derive new facts, which are in turn
made the basis for further inferences.

NewFacts is Facts ujoin [Concl ] in
(NewFacts[Concl : sup :Ante]Horn);

This is recursive code, which shows one possible
mechanism for writing loops explicitly, when the
order of execution does matter. The is construct
defines a view, as opposed to the assignment, <−,
above, which causes the code to be executed and
the result materialized. This particular view hap-
pens to be recursive.

The sup operator is one of a few slight exten-
sions to the classical relational algebra. It is re-
lated to division [17], and is a member of a family
of “σ-joins” which also includes natural composi-
tion. It is sup which ensures that a rule is fired
only if all its antecedents are known to be facts.

The outer or union join, ujoin, is, in Aldat,
likewise a member of a family, the “µ-joins”,
which includes the natural join and the set op-
erations of intersection, union, etc.

The brevity of this and the matrix multiplica-
tion code is not necessarily an end in itself. Some
languages have gone overboard to the point of un-
readability striving for brevity. The fact that the
code is brief is rather a confirmation that the con-
cepts of a language which was originally intended
for database-like operations are both high-level
and general. This one-line inference engine ex-
pands to 50 lines in a 200-line expert system shell
which took a person-month to write [52]. High
productivity and low error rates are also a conse-
quence of brevity, in a profession where the num-
ber of bug-free lines of code a programmer can
write in a day is essentially independent of the
level of the language they are written in.

A third example provides a moderately compli-
cated solution and illustrates the savings permit-
ted by separating domain algebra from relational
algebra. The “bill of materials” of a manufac-
tured product describes its components and their
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quantities in a hierarchy of subassemblies. Fig-
ure 2 shows it for an electric wallplug.

A processing challenge is to determine total
quantities needed, e.g., four screws and four con-
nectors. This requires recursing through the hier-
archy, as the inference engine did, or, more closely
related, as do transitive closure of a graph or the
problem of finding ancestors given parents. It
also requires multiplying quantities along paths
and summing these products over all paths with
common endpoints, as matrix multiplication did.

The first is a relational algebra problem, the
second a domain algebra calculation. Because the
two are largely independent, we should be able to
think of them independently, which Aldat allows.
The first three lines are the domain algebra that
does all the arithmetic. (The six let statements
may be written in any order.) The last line is the
recursive view that does the transitive closure and
incorporates the arithmetic. We can represent the
bill of materials by the relation PartOf (A, S, Q),
with A, S, Q standing, respectively, for assembly,
subassembly and quantity.

let A′ be A; let S′ be S; let Q′ be Q;
let Q′′ be equiv + of Q * Q′ by A, S′;
let Q′′′ be Q + Q′′; let Q be Q′′′;
Explo is [A, S, Q] in [A, S, Q′′′] in

(PartOf [A, S: ujoin :A, S′] [A, S′, Q′′] in
(Explo [S: natjoin :A′] [A′, S′, Q′] in
PartOf));

I will use this example throughout the paper.

The relational and domain algebras provide a
formalism for relations and their attributes much
as arithmetic provides a formalism for numbers.
When programming languages were developed to
do arithmetic, they offered more than just the
arithmetic operators. The foremost of these pow-
erful language constructs is procedural abstrac-
tion, which parametrizes code and enables it to
be written once and invoked repeatedly. Proce-
dural abstraction has two forms, procedures and
functions. Focussing on the latter, mathematics
describes a function as a many-to-one mapping
between domains. This is a special case of the
mathematical concept of a relation, a many-to-
many mapping between domains. So instead of
immediately adding syntax along traditional lines

to define and invoke functions, we pause to ask
how to introduce a special case of the relations
we already have. From a programming point of
view, we can specify any of the attributes of a
relation as “input”, using a selection, and any
(others) of its attributes as “output”, using pro-
jection. Functions, by contrast, can be invoked
only in one direction. We can generalize func-
tions to a programming construct, which can be
invoked in various directions with simple select
and project. This construct is many-to-many but
still a special case of relations because not every
subset of its attributes is sufficient for an invo-
cation. (Constraint programming languages use
the term “modes” for different invocations of the
same procedure using different parameters as in-
puts.)

We call this generalization a computation,
which is invoked as a relation and has declara-
tion syntax allowing alternative definitions, to
respond to alternative sets of selected and pro-
jected attributes. Having this capability allows
functions and their inverses to occupy a single
package, and it encourages programmers to think
about alternatives such as inverses.

Our fourth example is the declaration of a com-
putation which looks at two-dimensional rotation
in all possible ways. The alt keyword separates
“alt-blocks” of code, one of which is selected by
the implementation for execution according to
whether the invocation supplies all the inputs it
needs.

comp rotate(x, y, x′, y′, θ) is
{ x′ <−x * cos θ − y * sin θ;

y′ <−x * sin θ + y * cos θ;
} alt
{ x <−x′ * cos θ + y′ * sin θ;

y <−− x′ * sin θ + y′ * cos θ;
} alt
{ x <−x′ * sec θ + y * tan θ;

y′ <−x′ * tan θ + y * sec θ;
} alt
{ x′ <−x * sec θ − y′ * tan θ;

y <−− x * tan θ + y′ * sec θ;
} alt
{ y′ <−x * csc θ − x′ * cot θ;

y <−x * cot θ − x′ * csc θ;
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Figure 2: the wallplug bill of materials



Aldat Retrospective 7

} alt
{ x <−y′ * csc θ − y * cot θ;

x′ <−y′ * cot θ − y * csc θ;
} alt
θ <− arccos((x * x′ + y * y′)/(x**2 + y**2));
We have 4 choose 2 = 6 possible alternatives

(θ and any two of x, y, x′ and y′ may be given
and the other two calculated), plus a seventh if
the angle, θ, is the unknown.

The second pair of transformations given in ro-
tate are a shear transformation and its inverse. If
sin θ = v/c they are also the Lorentz transforma-
tion of space-time and its inverse. Being encour-
aged to think of all possible equivalents leads to
intriguing perspectives.

Aldat does not oblige the programmer to think
out all possible alternatives, however: the com-
putation could have been written with any non-
empty subset of the above seven alt-blocks.

This computation can equally be thought of
as a compressed relation: an infinite number of
tuples represented by seven equivalent alterna-
tive sets of rules. From this point of view, invo-
cation through selection-projection operations of
the relational algebra is restricted to any of seven
modes (for this example) of setting parameters as
either input or output.

A fifth example follows immediately from ap-
proaching relations from the point of view of pro-
gramming languages. Good programming lan-
guages avoid “second-class citizens”. These are
language elements, such as arrays, which have
fewer privileges than other elements, such as in-
tegers. Arrays are second-class citizens in a lan-
guage whose procedures can return integers but
not arrays.

In a relational language, relations should not
be second class: if a relational attribute can be
a scalar, such as integer, real, boolean or string,
it should also be allowed to be a relation. This
leads to nested relations such as the family tree
shown in Table 2.

To process such nested relations, we need to
subsume the relational algebra under the domain
algebra. Since attributes can be relations, the
algebra that handles attributes must also be able
to handle relations.

This requirement in turn forces us to use
explicit, in-fixed operators for the relational
algebra, particularly joins, and will make us
modify the usual query-language syntax to a
programming-language syntax.

This insight enables us to deal with nested re-
lations using no new syntax.

PERSON in Table 2 not only has nested re-
lations as attributes, but they are recursively
nested. To find all the Names anywhere in PER-
SON requires recursive domain algebra.

let Nom be Name ujoin
[red ujoin of

[red ujoin of Nom] in
CHILDREN ] in

FAMILY ;
[red ujoin of Nom] in PERSON

Since the nested relation PERSON could be de-
rived from a markup of the text

Ted married Alice in 1932. Their chil-
dren, Mary (1934) married Alex in
1954 (Joe was born to Mary and Alex
in 1956) and James (1935) married
Jane in 1960 (James and Jane had
Tom in 1961 and Sue in 1962).

the ability to query it fully is a significant com-
ponent of a semistructured query language. No
new language has had to be defined and, in
fact, nested relations and the expanded domain
algebra can be implemented directly on “flat”
relations of the kind that Codd classically de-
fined. Thus, given flat relations and the relational
and domain algebras, we get a major aspect of
semistructured data for free.

Our objective in dealing with semistructured
data is not to implement special cases of XML
and semistructured query languages with nested
relations and syntactic sugar, but to replace both
by more general capabilities based finally on flat
relations and recursive algebras.

The sixth example illustrates the incomplete-
ness of the work, as pointed out in the title of this
paper. We would like to be able to use metadata
to construct boolean circuits (and many similar
problems). Metadata is data which is itself the
names of relations and attributes. Here is ordi-
nary data defining the behaviour of basic logic
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PERSON
(Name FAMILY )

(Conj Wed CHILDREN )
(DoB Name FAMILY )

(Conj Wed CHILDREN )
(DoB Name )

Ted Alice 1932 1934 Mary Alex 1954 1956 Joe

1935 James Jane 1960 1961 Tom

1962 Sue

Table 2: recursively nested family tree.

gates.

and(x y z) or(x y z) not(x y)
0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0

1 0 0 1 0 1

1 1 1 1 1 1

Now we use metadata to combine some gates into
a circuit.

CIRCUIT
(ASSY SUBA PIN LABEL)
nor or x a

nor or y b

nor or z c

nor not x c

nor not y d

The objective is to use CIRCUIT to calcu-
late the new relation, nor(x, y, z), that explicitly
gives the behaviour of the nor-gate constructed by
wiring the output, c, of the or-gate to the input,
c, of the not-gate.

The only code we have been able to write so
far for this uses “reflection”, i.e., constructs Aldat
statements which Aldat then executes. This is an
inelegant facility (and dangerous if it allows mis-
chievous code to be slipped past the static check-
ing mechanisms) and we have not implemented
it. I do not show this code here because I am
dissatisfied with it. We may need more metadata
facilities than we so far have. Or the problem may
be a red herring, and better solved with nested re-
lations. It is worth raising here as a motivation to
others to go further, and as a simple illustration
of what metadata means. Later in the paper I

use metadata successfully in a number of differ-
ent ways.

3. Definitions and Working Example

Examples are best for new ideas unfamiliar to
readers, but I will suppose familiarity with classi-
cal relations and give a few definitions to highlight
some important aspects.

A relation is a subset of the Cartesian product
of its domains,
where a domain is a set of values. A domain is
associated with one or more attributes, which are
named components of one or more relations. The
element of the Cartesian product is called a tuple,
and so a relation is a set of tuples. Although
Aldat, as a language, has no concept of “tuple”,
a definition is useful.

A tuple is a mapping from a set of names to
corresponding values.
The names are the attributes and the values may
change in time, but at any one time, a tuple
produces only one value for a given attribute.
(This is not to say that such values cannot be
structured—tuples, sets, or even relations, for in-
stance.) This definition is significant because it
parallels definitions from programming languages
and operating systems. The central interest of
our work has been integrating programming lan-
guage and secondary storage using relations, so
any parallels among the three we can find are
valuable. Here are definitions of scopes (from pro-
gramming languages) and directories (from oper-
ating system management of secondary storage).

A scope is a mapping from a set of names to
corresponding values. The names are the lan-
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guage variables.
A directory is a mapping from a set of names

to corresponding values. The names are the files
contained in the directory. Since an obvious way
of representing relations is as files, it makes sense
to represent a database as a directory. Thus a
database has the same definition as a tuple.

Both of these parallel definitions tell us some-
thing which we shall exploit when we come to
nested relations. The domain algebra (Section 4)
will supply the mechanisms for this.

I will not emphasize formal definitions in this
paper, but will use examples. A central example
is the following.

PartOf ( A S Q)
wallplug cover 1

wallplug fixture 1

cover screw 2

cover plate 1

fixture screw 2

fixture plug 2

plug connector 2

plug mould 1

This relation represents the bill of materials
discussed in Section 2 and shown in Figure 2. The
attributes are A, S and Q. A stands for assem-
bly, S for subassembly and Q for quantity. A and
S could be drawn from the domain of strings, or
from some more restricted domain of one-word
strings describing parts and assemblies. Note
that A and S must be from the same domain.
Q could have the domain of positive integers.

Another relation could give the costs, C (do-
main: reals ≥ 0.01), of buying the raw materials
or of putting together a (sub)assembly.

Cost( Part C )
wallplug 0.04

cover 0.10

fixture 0.03

plate 0.06

screw 0.05

plug 0.01

connector 0.02

mould 0.08

Part has the same domain, of course, as A and
S, above.

Note a few things about this. The attribute,
Part, is a key of Cost, because each value for Part
uniquely identifies a tuple2. But then so is C, by
the same reasoning. It is apparent to a database
designer that C is only accidentally a key, not
intentionally, but this is not easily apparent to
any program. The language I discuss has no con-
cept of keys, of the related “functional depen-
dences”, or of any other semantic (as opposed to
syntactic) distinction. This is for reasons of sim-
plicity, because semantic notions are completely
open-ended, so, once started on trying to capture
semantics in syntactic notation, it is impossible
to stop. We prefer to consider Aldat as an un-
interpreted formalism, much as differential equa-
tions are not written differently when describing
heat conduction or describing a wave function.
We leave semantic notions to the database design
process (which often can itself be expressed using
Aldat).

The second thing to note is that we could
specify a manufacturing database consisting of
these two relations: Manufacturing is the tuple
(database) (PartOf, Cost). Some theorists have
considered it helpful to combine all the relations
of any multi-relation database into a single, “uni-
versal relation”. That cannot be done, without
much awkwardness, in the case of Manufactur-
ing.

The bill-of-materials example will carry us
through Section 6 of the paper. Section 7 will
use some new examples, and Section 8 will return
to the family tree example of Section 2.

4. Operating on attributes independently
of relations: the domain algebra

The “domain algebra” operates on the at-
tributes of relations and satisfies the principle of
closure by producing new attributes. (It should
perhaps have been called the “attribute algebra”,
but it wasn’t.) It also satisfies the principle of ab-
straction in that its operations are independent of
their context, i.e., of any particular relation. This
latter enables the programmer to divide problems

2On being told, say, connector, Cost() can respond only
with the single tuple (connector, 0.02).
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into separate concerns or aspects and solve these
more or less independently of each other.

A domain algebra statement behaves like the
declaration of a parameterless function. It cre-
ates a prescription for future execution. Its re-
sult is always a single attribute, which is called
a virtual attribute because it is not an attribute
of any relation. (Normal attributes can be called
actual attributes. We must wait until Section 5.3
before finding out how virtual attributes can be
actualized by using the relational algebra.)

The domain algebra consists of either scalar
operators or aggregation operators. Domain ex-
pressions are open-ended and flexible, but very
straightforward, apart from the subtlety that the
resulting attributes are virtual. The scalar oper-
ators include everything one might expect to be
able to do with arithmetic, logic, or string op-
erations. We will even find, when we investigate
nested relations (Section 6), that scalar operators
also include the relational algebra.

A few examples should convey the idea.
let QQ ′ be Q * Q′;

(See the bill of materials in Section 2. Note that ′

is legal in Aldat identifiers, so QQ ′ is an identi-
fier.)

let QC be Q * C;
(See the bill of materials in Section 3. That Q
and C are attributes of different relations does
not concern the domain algebra.)

let distance be
sqrt((x2−x1)**2 + (y2−y1)**2);

(Built-in functions.)
let AS be A cat " component is " cat S;

(Concatenation of strings.)
let expensive be C ≥ 0.05;

(Creation of boolean.)
let cheap be not expensive;

(Operation on boolean.)
let costCategory be

if expensive then "high" else "low";
(Conditional expression.)

let Q′ be Q;
(Special case: renaming.)

let One be 1;
(Special case: constant (same value for all tuples

of any relation it is actualized in).)

Aggregation domain operators come in two
families, reduction and functional mapping.
These each have variants, equivalence reduc-
tion and partial functional mapping, respectively.
Where the scalar operations were confined to
work within each tuple independently of all other
tuples, the aggregation operators combine tuples.
Reduction combines all tuples and so permits
summing, counting, anding, finding the maxi-
mum, etc. (It is stolen from APL.)

let total be red + of C;
(The red “metaoperator” applies + to the C
value of every tuple.)

let count be red + of 1;
let maximum be red max of C;
let allCheap be red and of cheap;
let someCheap be red or of cheap;

Aggregations may be combined with scalar oper-
ations:

let average be total/count;
or, more directly:

let average be
(red + of C)/(red + of 1);

More elaborately:
let standardDeviation be

sqrt((red + of C**2)/count −
(average)**2);

The binary operators, +, max, etc., are them-
selves operands of red. Any associative and com-
mutative binary operator may be used by red.
This includes multiplication (for finding global
products or geometric means). It also includes
operations of the relational algebra, such as natu-
ral join and outer join, as we will see when we look
at nested relations. This extension will require us
to provide an infix syntax for such operators.

An operator which is non-associative, such as
absolute difference, or non-commutative, such as
concatenation, will fail to produce a consistent
answer in the relational context, in which, be-
cause relations are mathematical sets, the order
of tuples does not matter. Thus, subtraction, di-
vision and other such operations are undefined for
reduction.

The important question, “what does reduction
do with the result”, has already been answered
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by closure. Since the result is an attribute, it will
evidently be a constant attribute, with the same
value for any tuple in any relation it is actualized
in. When writing code in the domain algebra, we
do not need to think about this, but eventually
the virtual attribute will be actualized in some re-
lation(s), and so it is useful to be able to visualize
all those tuples, each with an extra attribute and
all having the same value, namely the aggregate.
Bear in mind that this is a visualization and not a
commitment ever to materialize such redundant
values.

Equivalence reduction adds a by clause to re-
duction, and so allows aggregations, such as sums,
over groups of tuples. One or more attributes may
appear after the by, and their values serve to de-
compose the relation into equivalence classes of
tuples, hence the name. One example, from the
bill of materials in Sections 2 and 3, suffices to
show the extension.

let Q′′ be equiv + of Q * Q′ by A, S′;
This sums, over all pairs of edges with the same
first and last vertices but different midpoints, the
product of the quantities from the two edges in
the pair. (Network theory has variants of this,
in which, for instance, + becomes max and * is
replaced by +.)

Functional mapping permits similar aggrega-
tions, but for any binary operator, because it uses
the values of one or more attributes to induce
an ordering on the tuples. Here is the cumula-
tive value of costs, in ascending order of the costs
themselves (bill of materials in Section 3)

let cumCup be fun + of C order C;
and here is the accumulation in descending order
of C.

let cumCdown be fun + of C order −C;
Because the semantics is less obvious than the

semantics of scalar and reduction operations, I
will define it. This definition is best done by al-
gorithm, so we stray ahead of ourselves into ac-
tualization for this case.

Here again is the Cost relation from Section 3,
augmented by values for the two virtual at-
tributes I have just declared. Because they are
virtual, and could be actualized for any relation
containing the real C, these attributes are writ-

ten outside the parentheses. This reminds us that
we are visualizing, not materializing. I have or-
dered the tuples according to C, to make the pro-
cess easier to see.

Cost
(Part C ) cumCup cumCdown
plug 0.01 0.01 0.39

connector 0.02 0.03 0.38

fixture 0.03 0.06 0.36

wallplug 0.04 0.10 0.33

screw 0.05 0.15 0.29

plate 0.06 0.21 0.24

mould 0.08 0.29 0.18

cover 0.10 0.39 0.10

The following algorithm presupposes that the
tuples are processed in the order induced by the
attribute after order (e.g., C or −C), that the
value in the current tuple of the attribute after
of (e.g., C) is value, that the operator after fun
is op, and that there is an accumulator, accum.
Finally, the resulting value for each tuple is just
the current value of the accumulator.

(Initialize) For the first tuple, accum <− value.
(Iterate) For each subsequent tuple,

accum <− value op accum.
We can see that, if op is + or max, for instance,
this will just give the expected cumulative sum or
maximum. If op is − or / (division), the result
will be a cumulative alternating sum or product.

This algorithm does not give the full story.
Functional mapping is defined so that, in

let g be fun op of f order x;
the functional dependence x → f is expected in
the data, and the functional dependence x → g is
generated in the result. (A functional in mathe-
matics maps functions to functions.) Thus, if C,
above, had any repeated values, the result would
also repeat.
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Cost
(Part C ) cumCup cumCdown
plug 0.01 0.01 0.33

connector 0.02 0.03 0.32

fixture 0.03 0.06 0.30

wallplug 0.04 0.10 0.27

screw 0.05 0.15 0.23

plate 0.05 0.15 0.23

mould 0.08 0.23 0.18

cover 0.10 0.33 0.10

The language has no provision for reporting if
the expected dependence, x → f , is violated. If
x is the same in more than one tuple, the value
of f from one of these tuples is chosen, nondeter-
ministically, to calculate g for all of them.

We can use this property to define an idiom
which calculates the number of different values
of an attribute in a relation. For instance, A
in PartOf in Section 3 has four different values,
which can be counted by

let diffAs be red max of
fun + of 1 order A;

The functional mapping will accumulate 1 only
for different values of A, so accum will be 1
for cover, 2 for fixture, 3 for plug and 4 for
wallplug. Then the red max will find and re-
turn the maximum of these, 4.

Partial functional mapping extends functional
mapping to allow grouped accumulations in the
same way that equivalence reduction extends re-
duction. The fun keyword becomes par and we
add a by clause, which can name any number
of attributes and can be written before or after
the order clause. If functional mapping can be
thought of (when + is used) as a crude form of in-
tegration, partial functional mapping is the corre-
sponding partial integration. Mathematicians say
that integration is an example of a “functional”, a
function which maps a function to another func-
tion, hence the name of this category of aggrega-
tion.

The domain algebra had already been around
for a decade when it was first published in
1988 [51]. The red and equiv reductions con-
tain the aggregations and group-by aggregations
of SQL. The most important failure of SQL is not
separating such operations on attributes from the

operations on relations.

5. A slight elaboration of the relational al-
gebra

5.1. Binary operators
The binary operators of the classical relational

algebra are the natural join, the natural composi-
tion and division [15,17], as well as the usual set
operators of union, intersection, difference, etc.
A little insight reveals that these all group into
two families which extend them slightly. If we
start with binary operations on sets, we have two
categories: those that produce sets as a result
(union, intersection, etc.) and those that pro-
duce booleans (subset, superset, empty intersec-
tion, etc.). The first category can be extended to
relations in such a way that set intersection ex-
tends to the natural join. Then set union gives
what later came to be called the outer join, and
some new operators appear, based for example on
difference and symmetric difference of sets.

The category of boolean-producing set oper-
ators can be extended to relations to give nat-
ural composition (from not-empty intersection)
and division (from the superset test), and some
new operators based on subset, empty intersec-
tion, etc.

On this basis, I define the µ-join and the σ-
join families of relational binary operators. To
keep the definitions readable, I suppose that we
are joining two binary relations, R(X, Y ) and
S(Y, Z), with common (join) attribute, Y . These
definitions are easily extended to cases where each
of X, Y and Z are whole sets of attributes, and to
cases where the join attribute does not have the
same name in both relations and the correspon-
dence must be put explicitly into the syntax for
the join. I define distinct names for each opera-
tor, which can be written in infix mode between
the two operands, an adjustment of conventional
syntax in keeping with the requirement I antic-
ipated in the discussion of the domain algebra
(Section 4).
Mu-joins. The µ-joins correspond to the set-
valued binary operators on sets.I make three pre-
liminary definitions, of Gauche, Centre and Droit.
G =4 {(x, y,DC) | (x, y) ∈ R and (y) ∈/ [Y ] in S}
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C =4 {(x, y, z) | (x, y) ∈ R and (y, z) ∈ S}
D =4 {(DC, y, z) | (y) ∈/ [Y ] in R and (y, z) ∈ S}

where
[Y ] in S =4 the usual projection of a single

attribute, Y , from the relation S;
and similarly for [Y ] in R.

Here, DC is the “don’t care” null value. I will
not dwell on null values in this paper, but briefly
mention that this null value participates in all op-
erations as if it were not there (in particular, it is
the left and right identity of any type-preserving
binary operator, e.g., DC + x = x = x + DC).

Now, assuming further only set union, ∪, I can
define the µ-joins.

Join Meaning Definition
R ijoin S natural join, C

R natjoin S intersection join
R ujoin S outer join, G ∪ C ∪ D

union join
R sjoin S symmetric G ∪ D

difference join
R djoin S difference join G
R drjoin S right D

difference join
R ljoin S left join G ∪ C
R rjoin S right join C ∪ D

Of these operators, ijoin, ujoin and sjoin are
associative and commutative, and djoin, drjoin
and ljoin, rjoin redundantly form commutative
complements. The natural join is by far the most
important in theory and practice, and has two
synonymous names.

The special cases of ordinary set-valued set
operations arise when X and Z are absent (or,
equivalently, contain only DC values), so that
both R and S are sets of Y values (unary rela-
tions). In this special case, the ljoin and rjoin
become superfluous, returning merely the left
operand or the right operand, respectively.

The reader familiar with the classical natural
join should have no difficulty grasping its ex-
tended family of µ-joins without need for exam-
ples.
Sigma joins. Table 5.1a defines the σ-joins,
where

R[x] =4 select X = x in R and then project

the result on the attribute(s) other than X ;
and similarly for S[z].

(Aldat also allows synonyms such as div (divi-
sion) for sup (superset), and a single ! prefixed to
any operator name gives the complementary op-
erator. Sep (separate), and the set comparison
symbol, ∩◦, mean empty intersection. The com-
plement, natural composition, has the synonym
icomp, bacause of its connection with natural
join, ijoin.)

The set relationships can be reduced to funda-
mentals using another three auxiliary definitions,
of suBset, sEparate and suPerset,

B =4 ∃y(y ∈ R[x] and y ∈/ S[z])
E =4 ∃y(y ∈ R[x] and y ∈ S[z])
P =4 ∃y(y ∈/ R[x] and y ∈ S[z])

Here, I am comparing two sets on Y , R[x] and
S[z]. B is true if R[x] is not a subset of S[z], P if
R[x] is not a superset of S[z], and E if R[x] and
S[z] do not have an empty intersection.

The twelve set comparisons reduce to combina-
tions of these three (Table 5.1b).

The σ-joins are a longer stretch away from clas-
sical relational algebra than are the µ-joins, so I
provide some examples. The first is classic di-
vision, using only the assembly and subassembly
columns of PartOf from Section 3, and the rela-
tion CovFix, shown. Find subassemblies, S, which
are used by both cover and fixture

Suba <− PartOfAS sup CovFix ;

PartOfAS ( A S )
plug connector

wallplug cover

wallplug fixture

plug mould

cover plate

fixture plug

cover screw

fixture screw

CovFix ( A )
cover

fixture

Suba( S )
screw
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Join Definition Join Definition
R propsub S R[x] ⊂ S[z] R !propsub S R[x] ⊂/ S[z]

R sub S R[x] ⊆ S[z] R !sub S R[x] ⊆/ S[z]
R = S R[x] = S[z] R != S R[x] 6= S[z]

R sup S R[x] ⊇ S[z] R !sup S R[x] ⊇/ S[z]
R propsup S R[x] ⊃ S[z] R !propsup S R[x] ⊃/ S[z]

R sep S R[x] ∩◦ S[z] R natcomp S R[x] ∩◦/ S[z]

Table 5.1a: defining the σ-joins.

Set Comparison Definition Set Comparison Definition
R[x] ⊂ S[z] ¬B ∧ P R[x] ⊂/ S[z] B ∨ ¬P
R[x] ⊆ S[z] ¬B R[x] ⊆/ S[z] B
R[x] = S[z] ¬B ∧ ¬P R[x] 6= S[z] B ∨ P
R[x] ⊇ S[z] ¬P R[x] ⊇/ S[z] P
R[x] ⊃ S[z] B ∧ ¬P R[x] ⊃/ S[z] ¬B ∨ P
R[x] ∩◦ S[z] ¬E R[x] ∩◦/ S[z] E

Table 5.1b: implementing the σ-joins.

Two more subtle queries find
a) assemblies except those containing plates or
screws,

NoPorS <− PartOfAS sep PS ;
and, b) assemblies except those containing plates
and screws,

NoPandS <− PartOfAS !sup PS ;

PartOfAS ( A S )
cover plate

cover screw

fixture plug

fixture screw

plug connector

plug mould

wallplug cover

wallplug fixture

PS ( S )
plate

screw

NoPorS ( A )
plug

wallplug

NoPandS ( A )
fixture

plug

wallplug

(PartOfAS is the same relation as in the previous
example, but the tuples have been regrouped to
make it easier to see how the joins result.)

The final example is natural composition, us-
ing the relations PartOf and Cost from Section 3.
Find assemblies and their associated costs.

AC <− PartOf icomp Cost ;

AC ( A C )
wallplug 0.10

wallplug 0.03

cover 0.06

cover 0.05

fixture 0.01

fixture 0.05

plug 0.02

plug 0.08

Note first that natural composition and sep, its
complement, are the only σ-joins in which one
need not worry about additional attributes. In
the other ten σ-joins, we may need to project
out extra attributes which could interfere in the
grouping of the values, possibly causing some re-
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sults to be left out.
Note second that the above example for natu-

ral composition captures the costs for every sub-
assembly of the assemblies shown in the result
(including the 5 cents for screws both in cover

and in fixture). If, however, the costs were the
same for two subassemblies of one assembly (e.g.,
plates cost 5 cents), then one of the above tu-
ples would disappear (e.g., the 6-cent tuple for
cover). This shows both the kinship between
natural composition and natural join and an ex-
ample of when it would be better to use natural
join to keep the subassembly in the result so as
not to lose tuples.

In these examples, the second operand has no
non-join attribute. σ-joins are not limited to this
special case. An example finds all pairs, Part and
Part ′, from relations PC (Part, Colour) and a re-
named copy PC ′(Part ′, Colour), such that Part
comes in at least all the colours that Part ′ does:

PP ′ <− PC sup PC ′;

PC ( Part Colour)
plate white

plate brown

plate brass

mould white

mould brown

PP ′( Part Part ′)
plate plate

plate mould

mould mould

In an extreme special case, both operands have
no non-join attributes. Since the σ-joins all elim-
inate the join attribute from the result, this case
results in a relation with no attributes at all, a
nullary relation. Such a result always comes from
comparing two simple sets, and the result must be
boolean. We can convince ourselves that a nullary
relation is always a boolean by the following argu-
ment. Imagine that a nullary relation has tuples,
somehow. Since there is no attribute and hence
no attribute values to distinguish tuples from each
other, we cannot count these tuples: they are ei-
ther there or they are not. So nullary relations
have two possible values, which we can take to
be the two possible boolean values. These can

be arranged so that the nullary-relation value is
true if the set comparison being made is true,
and false otherwise.

σ-joins may be implemented using natural join
to determine set intersections, and reduction or
equivalence reduction of the domain algebra to
count whether or not this intersection encom-
passes the whole set. Thus, σ-joins are not in-
dependent of the rest of Aldat. I leave it as an
exercise to show this equivalence.

Before we leave binary operators, we must dis-
cuss joins on non-common attributes. A nota-
tion is needed to say which attribute is joined to
which, and, since the domain algebra demands
it, this notation must be infixed. Thus we return
to Codd’s original join notation which lists the
join attributes explicitly, if they are not the com-
mon attribute. To join R(W, X) with S(Y, Z) on
X and Y , we write R[X : <join> :Y ]S. If there
are multiple join attributes, U [C, D, E: <join>
:F, G, H ]V will, for instance, join relations U
and V , pairing attributes C and F , D and G,
and E and H . (If the join is on common mul-
tiple attributes, no special notation is needed.)
Some obvious rules apply, for instance that the
paired attributes must be compatible (“union-
compatible”) and that no join must result in at-
tributes of the same name coming ambiguously
from both operands.

5.2. Unary operators
In Aldat, the classical operations of projec-

tion and selection are fused into a single “T-
selector” syntax. This is then generalized to in-
clude quantifiers, giving “QT-selectors”. “T” in
“T-selector” stands for “tuple”, and the selection
condition in a T-selector must be such that each
tuple can, independently of any others, produce
a true or false value for the condition, which de-
termines whether or not that tuple appears in the
result. QT-selectors, like the aggregation opera-
tors of the domain algebra and like the σ-joins,
operate on sets of tuples to produce their answers.

Related to T-selectors is grep, an operator
which uses regular expressions to find matches
to patterns in any attribute of its argument, and
uses metadata to say which attribute this was and
its type, as well as to give the position and the
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value of the match.
The third category of unary operators we dis-

cuss is the editors, an open collection of interac-
tive end-user interfaces allowing a relation to be
interpreted in specialized ways.

T-selectors The T-selector that finds assem-
blies that use screws, and the numbers of screws
used, in PartOf (Section 3) is

[A, Q] where S="screw" in PartOf
The special case, projection, to give PartOfAS
used to illustrate σ-joins in Section 5.1, is

PartOfAS <− [A, S] in PartOf ;
(Note that I have sometimes written whole state-
ments, terminated by a semicolon, with an as-
signment, < −, from the relational expression.
Sometimes I have just written the relational ex-
pression.) The other special case of T-selectors
is selection (without subsequent projection): the
projection list, [<attribute list>], is omitted be-
fore the where, and the result is on all attributes
of the operand. 3

3Although the paper will not discuss concurrent program-
ming in Aldat, I can mention the synchronization primi-
tive. This is based on Linda [8], which is tuple-oriented.
The where in the T-selector is replaced by when and the
semantics of the result is identical unless the original T-
selector would have returned an empty relation. In that
case, the when causes the T-selector to block until some
external change to the operand renders the potential result
non-empty. Unlike Linda’s, this construct is determinis-
tic: all relevant tuples are returned. (Aldat implements
nondeterminism independently with the unary relational
operator, pick; this returns a singleton relation consisting
of one of the tuples nondeterministically chosen from its
operand.) To demonstrate the completeness of this con-
struct, in the context of Aldat, I use it to implement a
semaphore.

relation SEMAPHORE(Sem name, Sem count);
comp I(sema) is { SEMAPHORE <+ sema; };
comp P (sema) is

{ update SEMAPHORE change Sem count <−
Sem count − 1 using ([Sem name]

when Sem count > 0 in

(SEMAPHORE ijoin [Sem name] in sema));
};
comp V (sema) is

{ update SEMAPHORE change Sem count <−
Sem count + 1 using ([Sem name] in sema);

};
We require only that individual Aldat statements be
atomic in their effects. We have used an incremen-
tal assignment, SEMAPHORE < + sema; instead of
the longer equivalent, SEMAPHORE <− SEMAPHORE

If the projection list is present but empty, [ ]
where .., or [ ] in .., the result is a nullary rela-
tion, i.e., a boolean, and the syntax is read “some-
thing where ..” or “something in ..”: it is true if
(the selection on) the relational expression (“..”)
is not empty and false if it is empty.

T-selectors require a single pass of the operand,
with sorting to detect duplicates. Many appli-
cations need a special case which can be run in
sublinear time. We permit a special syntax for
T-selectors in which the selection is a conjunction
of clauses of the form <attribute>=<constant>,
and the projection yields all the other attributes,
not mentioned in the selection condition. Thus
we write R[u, v, w, , , ] to mean

[X, Y, Z] where
U = u and V = v and W = w in R

for the relation R(U, V, W, X, Y, Z). Note the
position dependence, indicated explicitly by the
commas: R[, , , x, y, z] means

[U, V, W ] where
X = x and y = y and Z = z in R

(Trailing commas may be omitted: R[u, v, w] is
the same as R[u, v, w, , , ].)

This shorthand can be taken to be syntactic
sugar, since it is defined by the special case of
the general T-selector. But it is sugar which de-
serves its own implementation, using sublinear
techniques such as hashing. (This does not iden-
tify query optimization with syntactic sugar, or
rule out independent optimizations in the imple-
mentation, unseen by the programmer.)

QT-selectors, , on the other hand, push the
general T-selector to an extreme, given the limits
of an implementation costing at most a sort fol-
lowed by one pass of the operand. QT-selectors
count numbers of different values of attributes
within groups defined by other attributes, and
evaluate predicates based on these counts: these
are quantifier predicates and they can be used to
define quantifiers that go well beyond the classical
for-all and for-some.

Since the capabilities of QT-selectors will be
new to most readers, I start with examples be-
fore giving a definition. Here is the QT-selector

ujoin sema; Updates will be discussed in Section 5.5 and
computations (procedures) in Section 7.
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answering the query Find subassemblies used in
exactly two assemblies.

[S] quant (#=2)A in PartOf
The quantifier symbol, #, counts the number of
different values of A, the attribute following the
parentheses containing the quantifier predicate
#=2. Clearly, this formulation permits an indef-
inite number of possible quantifier predicates—
any predicate we like involving the number #:
1<# and #<4 finds 2 or 3 different assemblies
(as does #=2 or #=3); #mod 2=0 finds even
numbers of different assemblies, and so on. (The
answer to all these queries is screw.)

Let’s Find subassemblies used in exactly two as-
semblies in quantities of less than 3.

[S] quant (#=2)A where Q <3 in PartOf
QT-selectors, like T-selectors, are evaluated

from right to left. In the above example, the
classical selection, Q <3, is done first, followed
by the count, #, of the number of different values
of A and the evaluation of the quantifier (#=2)A,
followed finally by the projection on S.

Here is the algorithm that defines QT-
selectors [81,88].

1. (Sort) Group the tuples of the relation
on attribute within attribute .. within
attribute, working through the attributes
from right to left as they appear in the QT-
selector and projection list.

2. (One pass) Process the sorted tuples, main-
taining counters for each quantified at-
tribute: working the quantified attributes
from right to left in the QT-selector, count
the number of different values of the at-
tribute for which the predicate to the right
is true, and when the attribute to its left
changes value, evaluate the predicate and
reset the counter. The rightmost predicate,
corresponding to no quantified attribute,
is the where selection condition or, if no
where, then true. The values of the at-
tributes in the projection list give the result
whenever the leftmost predicate is true.

The right-to-left evaluation in this algorithm
tells us how to interpret more advanced QT-
selectors, with quantifiers on more than one at-

tribute. For an interesting result, I extend the
Part-Colour example (Section 5.1) with an at-
tribute Material, Mat, so that the brown and
white plates come either in enamelled metal or
plastic, the brass plate is metal only, and the
moulds are plastic only (or else they would have
unfortunate electrical properties). Then

[Part ] quant (#=2)Col, (#=2)Mat in PCM
has the answer plate. Here is the processing laid
out, after sorting so as to group PCM on Mat
within Col within Part.

PCM
(Part Col Mat ) #Mat #Col
mould brown plastic 1

mould white plastic 1 0

plate brass metal 1

plate brown metal

plate brown plastic 2

plate white metal

plate white plastic 2 2

Although this can be executed in one pass, I will
describe it in two. First, the number of different
materials is counted within each Part-Col group.
That number is assigned to # and the Mat quan-
tifier predicate, #=2, evaluated: it is true only
for (plate, brown) and (plate, white). Next, the
number of different colours is counted within each
Part group, but the contribution to the count is
zero for any false value of the Mat quantifier pred-
icate. The Col quantifier predicate, #=2 (again,
coincidentally), and is true only for plate. Thus,
plate is the answer.

If we reverse the order of the quantifiers, we
get a different answer: no Part satisfies the
query. This is not necessarily wrong. Reversed
quantifiers classically give different answers:
∀x∃y(y > x) is not the same as ∃y∀x(y > x). We
work through the evaluation to confirm.

[Part] quant (#=2)Mat, (#=2)Col in PCM
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PCM
(Part Mat Col ) #Col #Mat
mould plastic brown

mould plastic white 2 1

plate metal brass

plate metal brown

plate metal white 3

plate plastic brown

plate plastic white 2 1

This time, we evaluate the number of colours first,
then, for the counts that equal 2, we evaluate
the number of different materials. That quantifier
predicate is not satisfied anywhere, so the answer
is empty.

This difference is bad news for natural-
language querying, without feedback from the
query system. A native English speaker has diffi-
culty distinguishing Find parts that come in two
different colours and are made from two differ-
ent materials from Find parts that are made from
two different materials and come in two differ-
ent colours. It is extreme to expect a computer
program to make the distinction.

For simple queries, the natural language maps
almost directly into the QT-selector. But we see
that QT-selectors rapidly become too sophisti-
cated for straightforward interpretation.

It is possible to write an implementation of all
QT-selectors, except those with a predicate #=0,
using T-selectors and equivalence reduction from
the domain algebra. An Aldat implementation
may not execute this in one pass, but it will not
need to do more than one sort. This is an exercise
for the reader.

There is a second quantifier symbol, •, which
is read “proportion of”: • =4 #/<some count>.
The count on the denominator of this definition
could be made in several ways, but Aldat counts
the number of different values of the attribute
being quantified in whatever relational expression
follows the in of the QT-selector. In this way, we
can express “for all” and “most”, among other
quantifiers.

Expressions of the domain algebra may ap-
pear in a quantifier predicate, increasing flexibil-
ity even more.

QT-selectors appeared in 1978 [48].

Grep. Queries should not always oblige the pro-
grammer to specify a particular attribute in ad-
vance. Aldat provides a pattern-matching facility
which can apply a regular expression to the entire
relation that is its operand and return the posi-
tion and value of the match, and the attribute
and its type that contains the match. This is
called grep, after the Unix command, which here
stands for “get regular expression pattern” (al-
though this is only one of the possible historical
translations [29]).

The basic grep can be illustrated by finding
the substring “plug” in the PartOf example from
Section 3.

Plugs <− grep(attr, type, pos, value) "plug"
in PartOf ;

The result is shown in Table 5.2a.
We see that grep returns the whole tuple if a

match is found anywhere in that tuple. Grep
generates the additional attributes named in its
parameter list. There may be up to four of these
(if none, the whole parameter list may be omit-
ted) and grep recognizes them by type, not by
name or position in the list. The above example
expects the prior declarations

domain attr attrib;
domain type type;
domain pos intg;
domain value strg;

and the type of each attribute, whether the ordi-
nary types, intg or strg, or the metadata types,
attrib or type, tells grep how to use it.

In the example, the type attribute, type, is un-
revealing, but in general grep will recognize pat-
terns in types of data other than strings, such as
integers, reals or even booleans, and so a type
attribute is useful. Similarly, the strg attribute,
value, is uninformative, because the example uses
only substring match. When a regular expression
is used, an attribute such as value tells us what
(sub)string satisfied it. In the example, the po-
sition, pos, is counted from 0 at the first byte of
the attribute.

If a pattern is matched more than once in a
tuple of the operand, extra tuples may be gener-
ated in the result, one for each match. Depending
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Plugs( A S Q attr type pos value)
wallplug cover 1 A strg 4 plug

wallplug fixture 1 A strg 4 plug

fixture plug 2 S strg 0 plug

plug connector 2 A strg 0 plug

plug mould 1 A strg 0 plug

Table 5.2a: basic grep.

on what attributes are specified in the parameter
list, some of these tuples may be duplicates in the
result, and so will not appear.

A refinement of grep adds a second list of strg
parameters, separated from the above list by a
semicolon. The names in this list must also ap-
pear in the pattern to be matched, and are treated
as wildcards with the same role as ".*" in the
pattern. They are used to return parts of the val-
ues that matched the pattern.

MorePlugs <− grep(attr, pos; x, y)
"\xplug\y" in PartOf ;

The result is shown in Table 5.2b. These wild-
cards are always strings. Here, y is the nullstring
in every tuple because nothing follows “..plug” in
the matching attribute. Similarly for x in three
tuples. Note that pos is 0 in every case, because
the pattern now is "\xplug\y" and this starts at
the beginning and ends at the end of every match.

Editors. In addition to T-selectors, QT-selectors
and grep, Aldat can support an open-ended col-
lection of relational “editors”. These are unary
operators with two faces. One faces the end-user,
and provides a language of interactive commands,
such as changing, adding or deleting a tuple,
moving to the next tuple, and saving the result.
The other faces the programmer (“programmer-
user”), and looks just like an algorithmic unary
operator, such as a T-selector; except, instead of
an algorithm, the end-user does the work.

A simple example is an editor based on any
well-established text editor, such as vi. The
programmer-user would have expression syntax
such as

[A] vedit R
which would open the data in R to be processed
by the end-user and then incorporate the re-
sult into a containing expression and eventually

a statement, e.g.,
T <−[A, C] in S ijoin [A] vedit R;

The end-user sees none of this, but is presented
with an ASCII file containing relation R (say with
one line per tuple) sorted on attribute A and with
the usual editing commands for vi. When the
manual work by the end-user is finished and :wq

entered (the vi write-and-quit command), the re-
sult is saved, not to R but to the intermediate
value of the expression, and control is returned to
the statement in the programmer-user’s program.
This is an example of a general editor, which can
accommodate any relation.

We have implemented a general relational ed-
itor, with a tuple-oriented interactive language
such as the above. We have also implemented
specialized editors which interpret their relation
operands as, for example, a fact-base for logic pro-
gramming [30] (the interactive language is Pro-
log commands), a map representation for a geo-
graphic information system [11] (the editing lan-
guage is based on commercial G.I.S. interactive
interfaces), and so on. The only limit is the imag-
ination.

Here, I discuss a two-dimensional display edi-
tor, which is a first step towards a general graph-
ics interface, in which any relation has a graphical
aspect and any graphical construct has a rela-
tional aspect. The key to such a construction is
a vocabulary which assigns, to the attributes of
the relation, graphical meanings, such as Carte-
sian abscissa or ordinate, polar radius or angle,
linestyle, or colours for point, line or fill. This
keeps the relations and their graphical interpre-
tations independent of each other: the relations
are ordinary relations, subject to all the opera-
tions we have been discussing, and we need not
specialize any relation for graphical display. The
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MorePlugs( A S Q attr pos x y)
wallplug cover 1 A 0 wall

wallplug fixture 1 A 0 wall

fixture plug 2 S 0

plug connector 2 A 0

plug mould 1 A 0

Table 5.2b: advanced grep.

vocabulary can be contained in a two-attribute
relation. Table 5.2c gives an example, which tells
the display to treat any attribute named x1, x2
or x3 as the abscissa of a Cartesian coordinate
system, y1, y2 or y3 as the ordinate, and so on.

The display syntax that uses this on an ordi-
nary relation, Show, is

display2D (Vocab) Show
This syntax, just like the syntax for a T-selector
or a QT-selector or grep, gives a relational ex-
pression, which can be joined or selected or
grepped or assigned to a result in a statement.
The value of this relational expression is, so far,
simply the value of Show.

For example, Show(x1, y1 ) might be the rela-
tion, and the vocabulary in Vocab would cause
display2D to draw a scatterplot of black points.
If x1, y1 are numeric, they give the coordinates.
If x1, y1 are not numeric, the locations are given
by cardinals in ascending order of the attribute
values. Table 5.2c also shows, conceptually, a
numeric example. Zhu’s thesis [91] gives fuller
treatment.

Since display2D is an editor, the end-user may
make changes, using an interactive language sup-
plied. These changes become reflected in the
value of the display2D expression, so that it will
no longer have the value of Show. Note that Show
itself does not change as a result of the updates.
Updates will not be allowed, however, which at-
tempt to add attributes to the display2D ex-
pression. Thus, changing the colour of an edge
from the default may require a linecolour-linked
attribute to be added, and this will fail. Attempt-
ing to change the colour of one of the edges of a
triangle will fail, unless the triangle was repre-
sented in the first place as a polygon. The end-
user must communicate with the programmer so

Vocab
(attr role ) comment
x1 cart1 Cartesian abscissa
x2 cart1

x3 cart1

y1 cart2 Cartesian ordinate
y2 cart2

y3 cart2

rad polar1 polar radius
ang polar2 polar angle
a cart1show show value of a at

position given by a

b cart2show

sq sequence sequence (for polylines)
ls line style e.g., 0=solid, 1=dashed
lt line thick in units of 1/80 inch
lc line colour e.g., 0=black
tc text colour

fc fill colour

fp fill pattern

:

3 5

Show  x1  y1(          )

7 7

5 3

Table 5.2c: Vocabulary for display2D
and display2D (Vocab) Show
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the latter provides a relation which will accom-
modate all the intended changes. (A fully poly-
morphic treatment of relations would overcome
these limitations, but we are not there yet.)

Display2D achieves still more flexibility by
supporting nested relations as its operand. I must
omit this discussion.

5.3. Virtual attributes and the relational
algebra

I have so far discussed the relational algebra
in terms of actual attributes. The attributes that
appear in any operator so far are attributes of the
relations that also appear. What about virtual
attributes?

This is where domain algebra and relational
algebra meet. A virtual attribute may appear
anywhere in the above operations that an actual
attribute does, and that is exactly how virtual at-
tributes get actualized and subsequently appear
in some relation(s). The most likely way to ac-
tualize an attribute is in a projection list. For
example, given the join of PartOf with Cost (Sec-
tion 3), here is the actualization of QC, defined
in Section 4 to be the product of Q and C.

PartCost <− [A, S, QC ] in
(PartOf [S: ijoin :Part ]Cost);

Recall that the domain algebra defining QC was
let QC be Q * C;

By convention, we may write a virtual attribute
outside the parentheses containing the actual at-
tributes of a relevant relation, and its possible
values below it for each tuple. Table 5.3 shows
the natural join of PartOf and Cost as specified
above, with QC alongside. (Attributes S and
Part are made aliases by the join.) (I have also
shown a second virtual attribute, defined

let tot be red + of QC;
which I shall come to shortly.)

The projection that actualizes QC gives

PartCost
(A S QC )
wallplug cover 0.10

wallplug fixture 0.03

cover screw 0.10

cover plate 0.06

fixture screw 0.10

fixture plug 0.02

plug connector 0.04

plug mould 0.08

Now let’s look at tot. The way it appears as
a virtual attribute of PartOf [S: ijoin :Part ]Cost
seems to be redundant and wasteful. But it is not,
because tot is a virtual attribute at that point,
and no values are stored anywhere. This is just a
way of thinking about, or visualizing the virtual
attribute. It is essential to think of it as having a
value for each tuple of any relation we may want
to associate it with, because, by the principle of
closure, it is an attribute, and attributes have val-
ues for each tuple. Just because tot is the result
of a reduction and so has only one value does not
change this.

The smart programmer will actualize tot in a
non-redundant way.

TotalQC <− [tot] in
(PartOf[S: ijoin :Part ]Cost);

This gives a relation which is singleton (only one
tuple) and unary (only one attribute).

TotalQC (tot)
0.53

TotalQC almost looks like a scalar, the num-
ber 0.53, but it is not. It is a relation. How-
ever, we already found out that some scalars,
namely booleans, are relations—nullary relations.
So there is some commerce between relations and
scalars, and we might as well make this complete
so that the result of a reduction such as the one
that made tot can be a scalar, too.

A simple insight permits this without new
syntax. I created TotalQC as a projection on
the attribute tot, which was defined as a reduc-
tion. The result of any reduction is a constant
attribute—it has the same value for all tuples—
and so judicious projection will give a singleton,
unary relation, like TotalQC. What makes To-
talQC a relation is that tot has a name, and this
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PartOf [S: ijoin :Part ]Cost
(A S,Part Q C ) QC tot
wallplug cover 1 0.10 0.10 0.53

wallplug fixture 1 0.03 0.03 0.53

cover screw 2 0.05 0.10 0.53

cover plate 1 0.06 0.06 0.53

fixture screw 2 0.05 0.10 0.53

fixture plug 2 0.01 0.02 0.53

plug connector 2 0.02 0.04 0.53

plug mould 1 0.08 0.08 0.53

Table 5.3: join with virtual attribute.

name is the name of the attribute of TotalQC. If
the attribute of TotalQC had no name, TotalQC
could not very well be a relation. So the secret is
to make the attribute anonymous. Together with
having the result unary and singleton, anonymity
can be taken to lead to a scalar. Here is the code
(no new syntax).

QCtot <−
[red + of QC] in (PartOf [S: ijoin :Part ]Cost);

This defines a scalar real (since QC is real and
hence so is red + of QC), QCtot, with value
0.53.

This operation is called “level-raising”, because
it can be thought of as bringing an attribute up
out of a relation and giving it an independent life
of its own.

Because of level-raising, scalars must be treated
alongside relations in a database. We will see,
when we come to nested relations, that the op-
posite direction is also taken: relations must be
treated alongside scalars in any tuple. Our identi-
cal definitions of database and tuple in Section 3
begin to bear fruit.

5.4. Views and recursion
While statements of the domain algebra are

merely definitions, like specifying a parameterless
function, all the statements we have seen so far
in the relational algebra produce data when ex-
ecuted. These have been assignment statements,
using <−, and we have seen one incremental as-
signment, using <+.

The analogue, in the relational algebra, of spec-
ifying a parameterless function is the view. We
need syntax to replace the assignment operator,

<−, if we want to define views, and we use the
keyword is. Anywhere we have so far used <−
we can now alternatively use is. The effect will
be to produce no data but to hold off evaluation
until some subsequent assignment, using the view
defined by the is, is executed.

This is all straightforward and useful in the
conventional way. It becomes really interesting
if the view is recursive. An example is the clas-
sical definition of ancestor in terms of parent. In
the relational algebra, given a relation parent(sr,
jr), we can define ancestor as a recursive view in
a way which closely parallels

An ancestor is a parent or
the parent of an ancestor :

ancestor is parent ujoin
(parent [jr : icomp :sr ] ancestor);

Such a recursive view was used in the bill-of-
materials processing shown in Section 2. The
view I gave is

Explo is [A, S, Q] in [A, S, Q′′′] in
(PartOf [A, S ujoin A, S′] [A, S′, Q′′] in
(Explo [S natjoin A′] [A′, S′, Q′] in
PartOf));

This parallels the ancestor view but uses four pro-
jections to actualize domain algebra. Some of
this actualization is renaming, and the most obvi-
ous difference between this view and the ancestor
view is that it uses a natural join instead of a
natural composition. This is because the projec-
tion implicit in natural composition, which gets
rid of the join attribute, may in this case cause
us to lose tuples which we will need in doing the
sum. (I gave an example in Section 5.1 of this
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risk of using natural composition.) Some of the
renaming is needed because the natural join does
not do this projection and would produce a result
with different attributes having the same name,
an unacceptable ambiguity. All the single-primed
attributes are renamings, as we saw in Section 2.

The calculation which sums products of quan-
tities, so that all paths of two edges connecting
the same endpoints contribute to the total quan-
tity, is that of matrix multiplication.

let Q′′ be equiv + of Q * Q′ by A, S′;
The benefit of the independence of the domain al-
gebra from the relational algebra is that we need
here think only of two-edge paths. The relational
recursion will automatically consider this result-
ing path to be a single edge in the next step.

One further consideration must be made, which
is to bring together the quantities from paths of
different lengths.

let Q′′′ be Q + Q′′;
This is actualized after taking the union.

Finally a subtlety.
let Q be Q′′′;

This renaming seems to be recursion in the do-
main algebra, since Q′′′ is defined in terms of Q.
It is not. Such recursion would be illegal (and
Aldat will warn the programmer about the cyclic
definition) because the actualizer cannot gener-
ally know whether the original Q or the newly-
defined virtual Q is intended. However, the above
definition of Explo is unambiguous, because the
new Q is projected from a relation which does not
contain Q, so the Q projected must be the virtual
one. The purpose, of course, is to rename Q′′′ so
that Explo is defined on the correct attributes for
the next recursive step.

I must say a word about the implementation
of recursive views in the relational algebra. The
view is replaced by a loop containing the expres-
sion after the is keyword. The target relation
is initialized to empty, and the loop continues
until there is no more change in the target re-
lation. This can give a highly inefficient imple-
mentation of the transitive closure for ancestor,
for instance, but it is the most flexible interpre-
tation of the recursive view in general. Signifi-
cantly, this ultra-naive implementation of recur-
sion can be used by a sophisticated programmer

to compute, say, transitive closures with maxi-
mum efficiency [13,14]. (It is also possible for a
programmer to define recursions that do not stop.
Aldat is not intended to be an over-protective lan-
guage.)

Finally, I can remark on a possible fusion of do-
main algebra and relational algebra syntax. The
is keyword defines a parameterless function on re-
lations in just the same way that let...be defines
a parameterless function on attributes. In Sec-
tion 6 I am going to dissolve the distinction be-
tween relations and attributes. So it makes sense
to fuse the two syntactic notations and replace,
say, let...be by is everywhere. I will, however,
not do that in this paper, because it still seems
useful, and reduces confusion, to be able to spot
domain algebra through its distinctive syntax.

5.5. Updates
Expressions of the relational and domain al-

gebras are purely declarative (sometimes called
“functional”), in the technical sense of program-
ming language theory, that results depend only
on the explicitly-given inputs and there are no
side effects. Assignments and definitions of views
and virtual attributes introduce state, i.e., side
effects. Inevitably, in a language intended to pro-
cess large amounts of data, we must have a more
localized way of effecting changes, or else be faced
with having to copy whole relations. Thus, as in
any database language, we need updates.

Even though we introduce an update mecha-
nism to make local changes, we must avoid the
trap of thinking in terms of tuples. Aldat is in-
tended to abstract away from tuples. For this
reason all our operators so far abstract over loop-
ing. So updates will work with sub-relations, but
will not force the programmer to think about tu-
ples.

The central way to achieve this is to use rela-
tions to control update. An alternative is to use
predicates, but, as we have seen, QT-selectors and
joins support a tremendous variety of predicates,
so this alternative is largely subsumed under con-
trol by relations. For this reason, we consider up-
dates in the context of the relational algebra.

As an example, lets consider various ways to
change the cost of plate from 6 cents to 5 cents
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in Cost(Part, C ) (Sections 3, 4 and 5.1). We start
with the full syntax for update..change, using
the relation

NewCost(Part C′)
plate 5

update Cost change C <−C′ using
ijoin on NewCost ;

This computes the natural join of Cost and New-
Cost, flagging the tuples of Cost that participate
in the join, and then replacing the value of C by
the values of C′ in those tuples.

Joins other than natural join may be used, but
they might not make sense here. For instance,
every tuple of Cost participates in the outer join
with NewCost, so using ujoin in the above state-
ment would flag every tuple for changing. Fortu-
nately, the value of C′ is DC for all of these tuples
except those whose Part is plate, and this null
value is supposed to have no effect. So the as-
signment, C <−C′, is designed not to change C
should C′ be the DC null. Thus using ujoin
gives the same result here as using ijoin. I leave
the reader to come up with examples in which
ujoin and sjoin produce results which are differ-
ent from ijoin, and each other, but useful. [Hint:
a frequent update operation is “upsert”: update
an item if the item is in the natural join of Cost
and NewCost else insert the item from NewCost.
Ed.]

Since ijoin is the join most likely to be used, it
is the default.

update Cost change C <−C′

using NewCost ;
is identical to the explicit ijoin update above.

The statement between change and using
may be replaced by any number of statements,
separated by semicolons and enclosed in curly
brackets. Thus any number of attributes may
be changed in the flagged tuples. Note that the
right-hand sides of these assignments may be any
domain algebra expression. This is the first time
we have seen the assignment operator, <−, in
connection with the domain algebra.

There are many other ways to write the update
intended by the above within the syntax given.
These all involve writing different relational ex-
pressions instead of NewCost : projections, joins,

QT-selectors, editors, etc. Since the update in
the example is so simple, we could also use trun-
cated syntax with the predicate expressed in the
domain algebra instead of the relational algebra.

update Cost change C <−
if Part = plate then 5 else C;

This flags and updates every tuple of Cost, but
in all the non-plate tuples C is replaced by itself
so no change is apparent. Clearly it is likely more
efficient to use the ijoin.

Accompanying change are add and delete
syntax. These just give effects which we can al-
ready achieve with assignment and the relational
algebra.

update Cost add NewParts ;
is the same as

Cost <− Cost ujoin NewParts ;
or, for adding in place, which the update of
course does,

Cost <+ NewParts ;
We can assume NewParts is defined on the same
attributes as Cost and has some tuples that are
not in Cost.

update Cost delete OldParts ;
is defined to be the same as

Cost <− Cost djoin OldParts ;
except that the former deletes in place while the
latter must copy the relation.

• • •

A comparison with SQL of the relational alge-
bra described in this long section highlights two
failures of SQL. The first is SQL’s tendency to
slip into thinking of individual tuples rather than
whole relations, which happens particularly with
updating. The second is SQL’s failure to pro-
vide an explicit, infixed notation for operators,
which we will see in the next section makes im-
possible the subsumption of the relational algebra
into the domain algebra needed to deal effectively
with nested relations. Finally, the QT-selectors,
the variety of joins provided in Aldat’s two fam-
ilies of binary operators, at least, and recursive
views all transcend SQL capabilities.
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6. Subsuming relational algebra into do-
main algebra: nesting

We have so far limited ourselves to first-normal-
form relations, although the narrative has in
places shown impatience with this restriction. It
is a goal of programming language design that
there shall be no second-class citizens among the
data types of the language. Aldat has only re-
lations and scalars. Relations, if they are con-
strained to first normal form, are second class:
no relation may have relations as values of its
attributes. So we break away from “simple”
attribute values (scalars such as reals, integers,
booleans and strings) and allow relations to nest
within each other.

The literature on nested relations has intro-
duced new language constructs and operators,
particularly the nest and unnest operators. We
would like to keep with our principles and at-
tempt not to add new syntax. (Besides, nest and
unnest have the peculiarly dissatisfying property
that they are not inverses of each other, so we
certainly do not want them as primitives.)

The idea is very simple. Since nesting admits
relations among the attributes of relations, the
domain algebra must admit the relational algebra
among its operations. With this idea and almost
no new syntax we can do everything we might
wish, including nesting and unnesting.

We can show this by querying a nested version
of PartOf (Section 2). (The attribute numScrews
is virtual and will be defined shortly.)

nestedPartOf
(A SQ ) numScrews

(S Q) (Q)
wallplug cover 1

fixture 1

cover screw 2 2

plate 1

fixture screw 2 2

plug 2

plug connector 2

mould 1

NestedPartOf is a binary relation of four tuples.
I have separated the tuples by horizontal lines
to make this clear. The second attribute, SQ, is

also a binary relation which happens to have two
tuples in each occurrence in nestedPartOf.

Let’s find the quantity, Q, of screws, one level
down.

let numScrews be [Q] where S=screw in SQ ;
I have written the virtual attribute, numScrews,
outside the parentheses demarcating nested-
PartOf above. Note that it is a nested relation.
Two of its occurrences are empty and the other
two are singletons. The definition of numScrews
uses a (relational algebra) T-selector in the (do-
main algebra) let..be syntax. We now permit any
declarative relational expression in the domain al-
gebra.

If we actualize this virtual attribute, we still
get a nested relation.

qtyScrews <− [numScrews] in nestedPartOf ;

qtyScrews
( numScrews)

(Q)

2

Note that we have only two tuples (separated
by the line) because the two tuples of nested-
PartOf with empty numScrews now become du-
plicates, since the projection has kept no other at-
tribute to distinguish these tuples. Similarly, the
two tuples of nestedPartOf with the same single-
ton value of numScrews also now are duplicates
and one is elimintated in the projection.

The new virtual relations, numScrews, can be
distinguished from each other if they include an
attribute such as the value of A to do so.

let A′ be A;
let AnumScrews be [A′, Q]

where S=screw in SQ ;
Here, A, which is a constant for any occurrence
of SQ, has been included as an attribute of the
virtual relation in exactly the same way as

let One be 1;
brought a constant, 1, into a flat relation in Sec-
tion 4. This is a scoping mechanism. It supposes
that attributes at the same level as or a higher
level than some relational attribute are visible
from that relation.

A′ will be created as an alias of A when Anum-
Screws is actualized:
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AqtyScrews <−
[AnumScrews] in nestedPartOf ;

AqtyScrews
( AnumScrews)
(A′ Q)

cover 2

fixture 2

This result distinguishes the two nested rela-
tions that described quantities of screws, while
still eliminating duplicate tuples with empty re-
lations. It is still a nested relation.

To get a flat relation from this, we need to
raise the level of the nested relation. We already
learned how to raise levels from flat relations to
scalars in Section 5.3. We need a singleton rela-
tion on one anonymous attribute. As before, this
can be achieved with an anonymous reduction.
But this time the reduction is on the relational
attribute, not on a scalar.

AllScrews <− [red ujoin of AnumScrews ] in
nestedPartOf ;

The result of this is the union of all the occur-
rences of AnumScrews. As a virtual attribute,
this has the same value in each tuple, so when it
is projected, duplicates are eliminated and only
one union remains. Since the value is thus a sin-
gleton and the projected attribute is anonymous,
the level is raised and we get a flat relation.

AllScrews
( A′ Q)

cover 2

fixture 2

This is how unnest is achieved with no new
syntax.

The selection condition may be extended to
lower levels of a nested relation by using the
boolean-valued nullary projection. Thus, to find
assemblies that have screws one level down, we
write

[A] where [ ] where S=screw in SQ
in nestedPartOf ;

I have now shown relational algebra opera-
tors in both scalar and aggregation domain al-
gebra. The richness of the relational algebra al-

lows immense flexibility for processing nested re-
lations. Recall only that operators used with red
and equiv must be associative and commutative:
ujoin, ijoin and sjoin are, and Aldat has explicit
operator names for them which can now be used
after red and equiv.

To nest a flat relation, we need syntax to group
attributes. We introduce the relation() operator
into the domain algebra. This creates a single-
ton nested relation from the attributes that are
its operands. The rest of nest just uses relational
operators in the domain algebra. Here is the cre-
ation of nestedPartOf from PartOf (Section 2).

let SQsingleton be relation(S, Q);
let SQ be equiv ujoin of SQsingleton by A;
nestedPartOf <− [A, SQ ] in PartOf ;

Nesting makes possible another useful opera-
tor of the domain algebra, transpose. This can
convert any relation into attribute-value pairs, or
attribute-type-value triplets, or just list, as meta-
data, the attributes of a relation. Here is the full
transpose, applied to the Cost relation.

let xpose be transpose(attr, type, val);

Cost
(Part C) xpose

(attr type val )
wallplug 0.04 Part strg wallplug

C real 0.04

cover 0.10 Part strg cover

C real 0.10

fixture 0.03 Part strg fixture

C real 0.03

plate 0.06 Part strg plate

C real 0.06

screw 0.05 Part strg screw

C real 0.05

plug 0.01 Part strg plug

C real 0.01

connector 0.02 Part strg connector

C real 0.02

mould 0.08 Part strg mould

C real 0.08

The operands of transpose are metadata at-
tributes (attr, type) or an attribute, val, of uni-
versal type. Data in such an attribute must store
its type along with its value. (This is also true of
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data stored in union types, which I do not discuss
here.) Like grep (Section 5.2), transpose iden-
tifies its operands not by position or name but
by type. Thus for example attr is of type attrib,
type is of type type and val is of type universal.

Metadata, and a slightly different form of
transpose(), was introduced into Aldat in
2001 [55]. I will mention here only that metadata,
attrib metadata in particular, demands two spe-
cial operators. The quote operator is needed to
allow an attribute name to be used without being
dereferenced, say in a domain algebra compari-
son. The eval operator is needed to force deref-
erencing when the syntax would otherwise use the
attribute name directly. Here is an example of the
latter which serves to invert the transpose oper-
ator.

let eval((attrib)attr) be (type)val ;
This translates into two statements for each tuple
of Cost, above. For the first tuple, these are

let(Part) be (strg)wallplug;
let(C ) be (real)0.04;

From this, Cost can be regained from xpose, the
details depending on just how far the transpose
operation was originally taken.

We have used transpose for datacube analy-
sis and classification data mining [55,62], and
for schema discovery in semistructured data [57].
Recent work [84] has independently formalized
rather more metadata operators than transpose,
eval and quote, and I leave reducing those oper-
ators to the Aldat ones as an exercise. (Their
“transpose” is actually the inverse of Aldat’s;
both approaches have probably misused the word,
since neither “transpose” is its own inverse.)

Programming language experience nudges us
one step further. Nested relations offer a data
structure in which relations are first class. Why
should a relation not be able to be nested in it-
self, creating a recursive data structure? LISP
was built on such data structures. The bill of
materials provides a good example (Table 6).

Note that the data determines the depth of re-
cursion, and the DC null value terminates the
paths.

To find all components from this, the domain
algebra must allow recursive definitions of virtual
attributes across levels of nesting.

let cmpnt be component ujoin
[red ujoin of cmpnt ]in subassembly;

This is true domain algebra recursion, unlike the
self-referring domain algebra definition of Q in
Section 5.4. It can be recognized by the recur-
sion descending one nesting level by means of the
anonymous projection. As with relational recur-
sion, cmpnt is initially empty. At the lowest level,
it then takes on the value of component. The re-
sult of

AllComponents <− [cmpnt] in assembly;
is

AllComponents
(cmpnt)
wallplug

cover

fixture

plate

screw

plug

mould

connector

Instead of imposing recursion on the program-
mer, we could follow Cruz, Mendelzon and Wood
[19] and provide path expressions. The path ex-
pression equivalent to the above includes a Kleene
star.

let cmpnt be (subassembly/)*component;
and we could avoid even the domain algebra by
writing

AllComponents <−
assembly/(subassembly/)*component;

—which produces AllComponents(component)
instead of AllComponents(cmpnt).

The recursive domain algebra is strictly more
powerful than the path expressions, and the lat-
ter may be considered syntactic sugar defined by
the former. (Caveat: I have drastically simpli-
fied the history of path expressions by the one
citation. Path expressions evolved from the nota-
tion in G+ [19], which is in fact more expressive
than its successors. The notation used here is
the recent notation used for semistructured data,
about which more presently.) An example of a
problem which is beyond the syntactic sugar but
expressible in recursive domain algebra is a pro-
gram to create a relation describing all the paths
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assembly
(component subassembly )

(qty component subassembly )
(qty component subassembly )

(qty component subassembly )
wallplug 1 cover 1 plate DC

2 screw DC
1 fixture 2 plug 1 mould DC

2 connector DC
2 screw DC

Table 6: recursively nested bill of materials.

in a nested relation [57,60]. This uses transpose
recursively.

Other useful notation is a “wildcard” symbol,
which can stand for any attribute name in a path,
and which allows recursive domain algebra to be
applied to even nonrecursively nested relations.
Path expression symbols for alternatives and op-
tions are also important [57,60].

A comparison of processing the flat bill of ma-
terials, PartOf, with processing the nested as-
sembly reveals that the flat version is very good
for breadth-first traversal of the bill-of-materials
hierarchy. The recursively nested version, on
the other hand, favours depth-first traversal.
Programmers and language implementors should
bear this complementarity in mind.

The premier application of recursive nesting
and recursive domain algebra is semistructured
data [59,57]. The family tree example in Sec-
tion 2 is a beginning and can now be under-
stood in light of the above discussion. Of course,
semistructured data needs more than recursive
data structures and the means to process them.
Flexible typing, as captured by union types, poly-
morphism, and pattern-matching operators such
as grep (Section 5.2), are all also needed. To con-
vert from marked-up text to a (recursively) nested
relation requires a special operator which, like
transpose is not recursive itself but restricted to
a single level of nesting, but which, through the
recursive domain algebra, can be applied to all
levels. Transpose may be used recursively for
schema discovery, producing a nested metadata
relation containing the schema of some other re-

lation as discovered by traversing the contents of
that relation. I say more about semistructured
data in Section 8.

A reason for the early restriction of relations to
first normal form is the difficulty of seeing how to
implement non-first-normal-form relations, espe-
cially on secondary storage. Aldat does this by
representing them as flat relations. Indeed, nest-
ing, and even recursive nesting, adds nothing to
the functionality of Aldat, except by providing a
different point of view, which we have found lib-
erating in a number of ways.

I will not show in this paper the flat-relation
implementation of nesting, but it is important to
say that it permits not only the tree-structured
hierarchies I have discussed so far in this section
but also hierarchies which are DAGs (directed
acyclic graphs) and even non-hierarchies with cy-
cles. Aldat allows nested relations to exploit this
with simple mechanisms, involving union types,
to indicate (hierarchical) common subexpressions
and (non-hierarchical) crossreferences [57].

7. Integrating procedural abstraction and
relations: computation

We have now taken purely relational formalism
just about as far as I think that it can go. I have
not yet touched on programming language con-
structs. What we have so far is the arithmetic
of relations. A programming language for num-
bers goes much further than just offering arith-
metic. That is the difference between a pro-
gramming language and a calculator. Similarly,
a programming language for relations should pro-
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vide more than relational and attribute operators,
even though we have seen that these can be quite
sophisticated.

The feature among all others that most dis-
tinguishes a programming language is procedu-
ral abstraction. The simplest form of procedural
abstraction is the function call of classical pro-
gramming languages. Although such functions
are not always mathematical functions (many-to-
one mappings between sets), the name is sugges-
tive. A mathematical function is a special case of
a mathematical (binary) relation, and database
relations generalize this. Why could a program-
ming language function not be a special case of
a programming language relation? The extension
that would be needed would be to a form of pro-
cedural abstraction whose parameters could be
treated at different times as inputs or as out-
puts, and not be frozen exclusively into input
or output. Thus, the relationship implied by
sum(a, b, c) could variously be used to find c as
the sum of a and b, b as the difference of a from
c, or a as the difference of b from c.

As well as implementing a relationship among
the parameters instead of just a prescription with
fixed input and output, this approach can lead to
an abstraction which is just a relation. Thus it
can be invoked by existing syntax of the relational
algebra: T-selectors and joins, for instance.

To define such a relationship, we need a mech-
anism to provide alternative blocks of code to be
executed depending on which parameters are in-
puts and which are outputs in any given invoca-
tion. (We do not attempt to generate the right
code automatically from the relationship: that
is still open territory in the field of constraint
programming languages.) So a little new syn-
tax is required. While I am adding syntax, I will
give the name “computation” to our generaliza-
tion of functions, and use the abbreviation comp.
(This can also be understood to abbreviate “com-
pressed relation”, since, as we shall see, the comp
often describes a relation with an infinite number
of tuples.)

Here is the definition for the sum.
comp sum(a, b, c) is
{ c <−a + b } alt
{ b <−c − a } alt

{ a <−c − b };
Clearly, the programmer is responsible for cor-

rectly expressing all relevant aspects of the rela-
tionship being considered. The language imple-
mentation will not object if b <−c/a were speci-
fied instead of the difference, but the results may
be confusing. Note that a, b and c are attributes
and must be declared beforehand (in this case as
integer or real numbers): they are not parameters
in the sense that is conventional for procedures
and functions.

Invoking computations requires no new syntax.
For example, we can use a T-selector to add 2
and 3.

Sum23 <−[c] where a = 2 and b = 3 in sum;
Alternatively, in the context of a relation, R(a, b),
sum may be invoked by a natural join and per-
form multiple additions.

relation R(a, b) <−
{(2, 3), (1, 4), (−2, 7)};

SumR <− sum ijoin R;
giving (I show R as well)

R(a b) SumR(a b c)
2 3 2 3 5

1 4 1 4 5

−2 7 −2 7 5

(I have, in Section 5.2, already shown syntactic
sugar for the very special kind of T-selector we
have just used. Computation invocation is not
excluded. We can write the above as sum[2,3],
and the differences, respectively, as sum[2,,5] and
sum[,3,5]. This makes computation invocation
look like the familiar function call.)

The computation can also be used at top level,
for instance in this case on the top-level scalars, A
and B. Since the invocation is not in the context
of relational algebra, we need syntax to specify
the inputs and the output,

sum(in A, in B, out C);
will produce a top-level scalar, C, for the sum of
the values in A and B.

A top-level invocation is probably more inter-
esting when the computation is defined on rela-
tions.

comp decompose(R, S, T, A, B, C) is
{ R <−[A, B] in T ;

S <−[B, C] in T } alt
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{ T <−R ijoin S };
Here is the invocation that does the projections.
decompose(out R,out S,in T , in A,in B,in C);

Here is the invocation that does the natural join.
decompose(in R,in S,out T , in A,in B,in C);

Note that the attributes, which are needed in the
first case, are inputs to the computation. They
are inputs to the second invocation, even though
they are unused: an implementation could get
confused by failing to find an alt block which cre-
ates them if they had been called outputs.

Computations may be recursive
comp gcd(k, m, g) is
{ g <− if k < 0 then gcd[−k, m] else

if m < k then gcd[m, k] else
if k = 0 then m else

gcd [m mod k, k]
};

but it is a challenge to devise an application re-
quiring recursion on more than one alt block.
(The square brackets in gcd[m, k] are the special
syntax for T-selectors discussed above and in Sec-
tion 5.2. Function invocation in computations is
identical to array lookup in relations.)

Two particular adaptations of procedural ab-
straction in general, and hence computations in
particular, are event programming and object ori-
entation.

Event programming. Specially named com-
putations form event handlers. Since an event, in
the context of event programming, can be defined
as an invocation of a parameterless procedure by
the system (as opposed to by the programmer),
an event handler is exactly a procedure. Since,
for completeness, event handlers should be able
to initiate new updates, and even updates that
recursively invoke the event handler itself, I can
illustrate the idea briefly with a quite unusual
event handler.

domain n intg;
relation start(n) <− {(4)};
comp post:add:iota() is
{ let nmin1 be (red min of n) − 1;

let n be nmin1;
update iota add

[n] in [nmin1] where nmin1>= 0 in iota;
};

This event handler is invoked after the system
updates iota by adding data. So it invokes itself.
Here is the invocation that starts the whole pro-
cess.

update iota add start;
What this example does is generate iota(n) con-
taining five tuples with n having values 0 to 4:
once start has added the tuple (4) to iota, is to
invoke the event handler to add (3), which invokes
it again to add (2), then a third time to add (1), a
fourth time to add (0), and a final time to discover
that nmin1 is negative and perform no update.

It is understood that a void update, which adds
nothing, stops the process.

The event handler is a conventional computa-
tion but with a constructed name which gives the
relation, whose update invokes the handler, the
nature of the update (add, delete or change),
and whether the handler is invoked after (post)
or before (pre) the update is done. There is
a mechanism, not discussed here, to remember
the prior state or anticipate the updated state,
respectively. (This mechanism also can detect
which parts of the relation are updated, an “up-
date count” which avoids thinking of tuples.)

Object orientation is an important program-
ming language facility which has been abused
by misunderstanding (largely due to the unfor-
tunate name [37]) and, to some extent, by over-
attention. We find that the significant contri-
bution made by object orientation is its mech-
anism for instantiation—creating “objects” from
classes. Instantiation can be done by older pro-
gramming languages, but at the expense of mak-
ing and maintaining some data structure, such
as an array, to manage all the instances; object-
oriented languages automate this work. What is
instantiated, of course, is the state, and so state
is fundamental to object orientation. This state
is encapsulated in an entity which contains both
code and the state, but the code is “re-entrant”,
i.e., can be shared by many invocations, and so
does not need to exist in more than one instance.
The entity with instantiated state is called an
“object”, but it is essentially an abstract data
type (ADT) with internal variables.

Confining state to its ADT is a way of limit-
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ing the damage it may cause, simply because the
values of the variables representing the state are
not up-front and visible (“referentially transpar-
ent”) in a program, and the programmer must
remember what the meanings of the state are at
different points in the program. A whole dis-
cipline, “declarative” or “functional” program-
ming, has developed ways of avoiding state almost
completely, but at the burden of carrying around
explicitly the information otherwise contained in
the state. Object orientation is the compromise
that accepts state but limits it.

Conventional object orientation requires syn-
tax for describing classes, and for indicating
which variables and procedures in the class are
hidden from users of the class, and which are
publically accessible. It also requires syntax to
instantiate the class as objects, usually one ob-
ject at a time using a command, new. Follow-
ing [3] we can avoid all new syntax for declara-
tions, apart from syntax to declare a state. Using
relational ideas we can avoid introducing a new
command and also avoid limiting instantiation to
only one object at a time.

Before we look at this adaptation of computa-
tions and relations, I briefly discuss other aspects
of object orientation which are commonly consid-
ered significant. The first is polymorphism. This
is another important programming language fa-
cility, but all I need say is that polymorphism
is independent of object orientation: there can
be polymorphic languages which are not object-
oriented, and there can be languages with mech-
anisms for instantiation which are not polymor-
phic.

The second is inheritance. This arises from
the collective nature of the instantiated objects.
Since they form sets, or classes, it is legitimate
to think of subclasses: these not only consist
of a subset of the instances of the parent class,
but they usually also have additional, specialized
behaviour, reflected in the code encapsulated in
the subclass. Importantly, subclasses share be-
haviour with parent classes: this behaviour is said
to be inherited, and inheritance mechanisms save
rewriting the code for the shared behaviour. The
ability to re-use code is touted as a significant
benefit of object-orientation, but it really is an

admission of defeat in a major goal of program-
ming language design, which is to provide facil-
ities so simple and powerful that it is easier to
write a program from scratch than to figure out
what somebody else did. Relations, which are
sets, can also contain or extend each other. I will
not here embark on a description of these possi-
bilities [67].

The third aspect of object orientation is “com-
plex objects”. This especially arises in connec-
tion with object-oriented databases, and is the
basis for repeated assertions that object-oriented
databases must replace relational databases be-
cause relations cannot represent complex objects.
Our discussion of nested relations in Section 6 re-
moves the force of these claims. Even prior to
nested relations, the Aldat mechanisms for op-
erating on aggregates of tuples (the aggregation
operations of the domain algebra, the σ-joins, and
the QT-selectors) provide much of the functional-
ity, not found in commercial relational database
systems, that these criticisms say is missing.

I return to specifying “classes” and instantiat-
ing “objects” with minimal new syntax. The cen-
tral concept is state, which in this context means
simply the presence of variables which are pri-
vate to the entity (class or procedure) and which
retain their values between invocations. Mech-
anisms for this predate object orientation. For
example, Algol 60’s own variables were intro-
duced to do it. In recent languages, such vari-
ables are called static, an approximation to the
clearer term, state. Accordingly, I introduce a
state declaration into computations.

The simplest example of an “object” is a
counter, so I implement one with a computation.

comp counter(ct) is
state count intg;
{ count <− ct
} alt
{ count <− count + 1;

ct <− count
};

Counter has two alt-blocks so that we can use
one invocation to initialize it,

counter(in 0);
and the other invocation to count,

counter(out ct);
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(ct now is 1)
counter(out ct);

(ct now is 2), and so on.
The counter example shows state, but not in-

stantiation. We move on to a bank account ex-
ample in which one computation contains, and
outputs, other computations: computations are
“first class” data types, like relations. The outer
computation serves as the class and has the state
(the bank balance). The contained computations
serve as the methods (to deposit/withdraw, and
to determine the balance).

domain DEP, BAL intg;
domain DEPOSIT comp(DEP);
domain BALANCE comp(BAL);
comp ba(BALANCE, DEPOSIT ) is

state bal intg;
state oldbal intg;
{ comp DEPOSIT(DEP) is
{ oldbal <− bal;

bal <− bal + DEP}
alt
{ DEP <− bal − oldbal};
comp BALANCE(BAL) is
{ BAL <− bal};
bal <− 0;

};
The ba “class” does three things when invoked.

It defines and makes available through its at-
tribute list the two “methods”, BALANCE and
DEPOSIT. Third, it initializes one of its state
variables, bal, using the statement bal <− 0;. I
will explain and illustrate the methods shortly,
but first we must instantiate as many bank ac-
counts and balances as we need. Here is a rela-
tion with two accounts.

relation accts(ACCNO, CLIENT) <−
{ (1729,"Pat"),(4104,"Jan") };

Instantiation is done by invoking ba over the
relation accts: in the usual way, by ijoin.

accounts <− accts ijoin ba;
The result is a relation on all four attributes, two
from accts and two from ba. Since none of these
is shared, the result is a Cartesian product of two
tuples (Table 7).

DEPOSIT and BALANCE are constant at-
tributes, making the (re-entrant) code of the com-
putations available to each tuple. I have also

shown one of the state variables, bal, in the at-
tribute list, but in braces to emphasize that it is
not an attribute with a name which is known out-
side of the ba class: it is a hidden state. It has
the value 0 in each tuple because the invocation of
ba by the join executed the statement initializing
bal.

BALANCE can be invoked by the domain al-
gebra, because it changes nothing in any tuple.

let balance be BALANCE [ ];
balance where ACCNO = 4104 in accounts;

So can the lookup mode of DEPOSIT, which uses
the second state variable, oldbal, to find the last
deposit made:

let last deposit be DEPOSIT [ ];
last deposit where ACCNO = 4104 in

accounts ;
On the other hand, the first mode of DEPOSIT
changes bal and oldbal, and so must be used in an
update.

update accounts change DEPOSIT(in 100)
using where ACCNO = 4104 in accounts ;

What this accomplishes is hiding, the central
goal of abstract data typing, and encapsulation,
the central goal of object-orientation. The stored
tuples of a relation themselves can always provide
an alternative to the state in object-orientation,
but do not permit data such as somebody’s bank
balance to be concealed. The above code provides
true data abstraction by requiring access to the
hidden state only through the “methods” associ-
ated with the class.

Object-oriented databases have an immense lit-
erature, and form only a subset of object orienta-
tion in general. They were introduced to bring
to databases the benefits of encapsulation and
data hiding that object-oriented programming
languages (Smalltalk at first) provide, and were
seen as irreconcilable with the openness of rela-
tional data. There was also a performance benefit
for the special cases in which the relevant part of a
relational join can be implemented (much faster)
by pointer dereferencing. The above discussion of
object orientation in Aldat reconciles the appar-
ently irreconcilable and captures all the linguistic
benefits of object orientation. (I have not dis-
cussed pointer-dereferencing implementation, but
this can be either an automatic option of the im-
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accounts
(ACCNO CLIENT DEPOSIT BALANCE [bal])
1729 Pat <DEPOSIT code> <BALANCE code> 0
4104 Jan <DEPOSIT code> <BALANCE code> 0

Table 7: relation for instantiating bank accounts.

plementation, based on selectivity predictions, or
built in to syntax, which I have not given here, for
inheritance.) Aldat is not an “object-relational”
compromise, but fully integrates relations and ob-
ject orientation, without “impedance mismatch”,
by exploiting the origins and essentials of object
orientation.

8. Relations and the Internet

Two aspects of internet databases serve to il-
lustrate some of the constructs we have devel-
oped above. The first is data on the World Wide
Web, which becomes an exercise in semistruc-
tured data, and also illustrates the philosophy
adopted by relational query languages and by Al-
dat that releases the user or programmer from
needing to distinguish between data in primary
memory or on secondary storage. The second in-
troduces an internet protocol which can serve as a
low-level basis for distributed database program-
ming.

Names discussed hitherto in this paper have
all been database-local, although no distinction
has been made between primary memory and sec-
ondary storage. In this section, I break that re-
striction by extending to remote names. Eventu-
ally, no distinction should be made between local
and global names.

8.1. Data on the Web
Data on the World Wide Web is formatted in

the GML family of markup syntax, mostly HTML
or XML. The family tree data from Section 2 be-
comes an example which uses many important
aspects in HTML: tags, attributes, interior refer-
ences, local references and embedded images.

<HTML> <!file famtree.html>

<Head><Title>Family Tree</Title>

</Head><Body>

<A href=bioTed.html>Ted</A>

<A href=#TedAliceWedding>married</A>

Alice in 1932. Their children,

Mary (1934) married Alex in 1954

(Joe was born to Mary and Alex in

1956) and James (1935) married

Jane in 1960 (James and Jane had

Tom in 1961 and Sue in 1962).

<A Name=TedAliceWedding> <br>

<img src=Ted_Alice.jpg width=400><br>

Ted and Alice Just Married, 1932 </A>

</Body>

</HTML>

<HTML> <!file bioTed.html> <Head>

<Title>Ted’s Biography</Title>

</Head> <Body>

Ted was born at McGill University

and worked there until retiring.

</Body>

</HTML>

The relational representation of this data uses
recursive nesting to include in the web page every
other web page picked up by a URL within an
anchor tag, <A..>. This frees the programmer
from concern about page fetches and treats the
whole Web as if it were internal to the client
host: database languages typically avoid explicit
accesses to secondary storage, and Aldat extends
this automation to the Internet.

domain
A(content, href, Head, Body, Name, img);

domain img(src, width);
domain BodyRel(content, A, img);
domain Body strg|BodyRel ;
domain Head(Title);
relation HTML(Head, Body);

(Instead of making all these declarations man-
ually, we could depend on a special operator to
generate the recursively nested relation directly
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from the marked-up text.
mu2nest(content):

This operator creates an attribute, content, for
text in the HTML that is not delimited by tag
and endtag symbols. It is not intrinsically re-
cursive and so must be applied by recursive use
of the domain algebra. I do not elaborate here.
See [57].)

Since the resulting nested relation is too wide
for this page, I explain the above declarations
in words. The Web is captured in the relation
HTML, which has Head and Body as attributes.
Head consists (for this example) only of the string,
Title. Body may be just a string, or alternatively
it may include, as well as the string (content), im-
ages (img) and anchors (A): thus it is defined as
a union of string or BodyRel. An image has at-
tributes src, giving its filename, and width: note
that these “attributes” in the HTML sense be-
come attributes in the relational sense, on a par
with the attributes that represent components in
the form of scalars or nested relations. Finally,
anchors, A, recursively contain further pages, and
so each has a Body. It will also have a Head (e.g.,
with Title Ted’s Biography in the case of the
anchor with URL bioTed.html). Alternatively,
A may have a Name, if it is the label for an inte-
rior reference. In the example, the A with Name
TedAliceWedding also has img as an attribute.
The URL used by the anchor is the value of the
href attribute (in both senses) of A. Finally, A
itself has content, such as Ted for the first A of
the example or married for the second.

An example query on this structure would be
to find all hrefs from this document:

HTML(/.)*href ;
The answer is {bioTed.html, #TedAliceWedding}.
(But be careful! The answer could be very large).

The domain algebra and grep help with one
problem, raised for instance in [46]: can we, for
the sake of retrieval speed, express the distinc-
tions among interior, local and global URLs? An
interior URL refers to another part of the same
document, and syntactically begins with a #. A
local URL is in the same directory as, or a descen-
dant directory of, the one containing the referring
document, and syntactically does not begin with
a /. (These syntactic specifications are simplis-

tic, to avoid longer discussion: comparisons of the
cited href with the citing href can also be made.)
A global URL is anything else.

let interior be grep "^#" in A;
let local be grep "^[^/]" in A;
let global be where

((not [ ] in interior) and not [ ] in local)
in A;

If we wanted to pursue only interior URLs, we
could use the path expression

HTML/Body/interior/href
Note that virtual attributes are just as acceptable
to path expressions as are actual attributes.

The facilities described in this section and in
Section 6 are elaborated in [59] and in [57],
where they are compared with the classical work
on semistructured data. (A single citation [1]
captures most of this literature). To my knowl-
edge, the capabilities of XML and XQuery [9] are
also contained in Aldat, with negligible extension.
This is not just a relational approximation to, or
partial implementation of, these languages.

8.2. Distributed database computing: the
Aldat protocol for names

The hierarchy of relations found in nesting re-
sembles the hierarchy of files and directories in
a file system. We could possibly use the path
expression syntax to navigate among databases
contained in each other the way directories are,
or among databases merely situated in different
parts of a directory hierarchy. Taking this fur-
ther, we could even bridge different hosts by path
expressions navigating such a hierarchy [7]. Fol-
lowing the hypertext transfer protocol, HTTP,
we devised a protocol to connect various Aldat
databases, prefixing the path expressions with its
name, aldatp.

Figure 8.2 shows a collection of databases
(underlined names, such as public aldatp, pubA,
privB) containing entities, E1 .. E8, which may
be relations, scalars or computations. (F3, F4,
F7 and F8 are to be created by code which I will
discuss shortly.)

All we need to do to write code that refers to
entities in other directories, even on other hosts,
is to extend the name of the entity to a full path
expression prefixed with the protocol. Thus, sup-
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mimi willy

public_aldatp

E1

~jan

public_aldatp privB

E2 pubA E4 F4

public_aldatp

E5

~pat

public_aldatp privD

E6 pubC

E7 F7

E8 F8

E3 F3

Figure 8.2: a distributed database.

pose we are running in Jan’s private database,
privB, and want to create a copy of E3 in Jan’s
public database pubA in public aldatp.

F4 <− aldatp://mimi/∼jan/pubA/E3;
There is no reason why extended names cannot
be used on the left-hand side of an assignment.
If we are running directly in Jan’s public aldatp,
and assuming we have permission, we will copy
E2 to F3 in the contained database, pubA.

aldatp://mimi/∼jan/pubA/F3 <− E2;
These are both multidatabase examples: they

are confined to the one host, mimi. We could
equally well reach out from mimi to create an
entity on willy.

aldatp://willy/∼pat/privD/F8 <− E2;
(Presumably, Pat has set permissions for us to do
this, or has given us a password.)

Not only entities but also statements and ex-
pressions can be qualified by an aldatp path ex-
pression. Here, someone running anywhere cre-
ates a copy of Pat’s E7 in the same database,
using a remote statement.

aldatp://willy/∼pat/pubC/{F7 <− E7};
And here, Pat, running in pubC, does a semijoin
of relation E7 (B, C) with E3 (A, B), using a re-
mote expression.

(aldatp://mimi/∼jan/pubA/(E3 natjoin
aldatp://willy/∼pat/pubC/([B] in E7)))
natjoin E7

Other posibilities resemble these examples.

Any name anywhere may be qualified at any point
in Aldat code. Note that we must use full al-
datp path expressions to avoid syntactic confu-
sion with path expressions for nested relations.
The concepts are so similar that we decided to
share syntax, and perhaps they will someday be
unified to the same concept.

9. Advanced implementation techniques

Implementation of the research system, relix,
which has tested the language constructs de-
scribed in this paper, has been simplistic, us-
ing sequential files, sorting and merging. This
has kept the implementation of new ideas within
the scope of student theses and projects [36,87],
[10,88,32,81,12], [41,21], [13,42], [91,11,34,30,23,
22], [86,33], [4,43,79], [78,38], [90,67], [31,75], [29],
[85,2], [83].

In this section, we look at two data struc-
tures developed in the course of the Aldat project
which are more advanced than sequential files
and which might form bases for more profes-
sional implementations. Multidimensional pag-
ing, or multipaging [49,63,73] and tries [64,70–
72], [66,77,89,25,61] both support the multidi-
mensional, dynamic data needed by relations,
which are time-varying and must be accessible on
any attribute.

Multipaging is a direct-access structure which
preserves order in multiple dimensions simultane-
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ously, and so is suitable for range searches and for
partial match queries along any of its axes. The
static version [49] is a precursor to the grid file [69]
and has the advantage of requiring only negligi-
bly more space than the original file. At the cost
of sorting the data along each dimension, it uses
a Viterbi-like heuristic [82] to discover if the data
distribution is amenable to allocating essentially
equal numbers of records to each of a rectilinear
arrangement of pages. The dynamic version [63]
solves the problem of how to make this rectilinear
arrangement dynamic: essentially how to repre-
sent dynamic multidimensional arrays [39].

Tries support sublinear substring and pattern
matching in text, and their advent [20,24] pre-
dates the earliest linear pattern matching algo-
rithms [40,6]. Their special use for text [68] in-
dexes all substrings and is tantamount to index-
ing N choose 2 characters for an N -character
text. Since tries store common prefixes only once,
they can compress such indexes enormously [89].
Orenstein [72] discovered pointerless representa-
tions requiring not more than 2 bits per node,
and Shang [65] used them to reduce such index
sizes to less than 3N . Independent work on suf-
fix arrays [26,45] has not yet exploited this prop-
erty of tries—see, e.g., [28]. Representing rela-
tions requires multidimensional tries, or kd-tries,
easily adapted from kd-trees [5]. These induce a
one-dimensional ordering of d-dimensional space,
which, for d = 2, is the first known fractal [74].

10. Conclusion

The goal of Aldat is to exploit fully the rela-
tional model of data and the algebras of oper-
ators on relations and on attributes. Relations
and the relational and domain algebras were con-
ceived for secondary storage because their level
of abstraction is suited to the bulk processing of
data dictated by the high latency and other delays
intrinsic to secondary storage. Latency is also a
property of computer networks and the Internet
in particular, so the abstractions in Aldat make it
suitable for internet programming as well as sec-
ondary storage programming. High abstraction is
good in general, and programming in Aldat is at
a higher level than the vast majority of program-

ming languages, so we are motivated to make Al-
dat a general-purpose programming language. In
particular, the abstraction over looping embraced
by the relational and domain algebras means that
programmers need not write loops when the order
of execution is irrelevant: a result is that parallel
programming is intrinsic to Aldat.

The domain algebra is an innovation in Aldat.
By its independence from relations it provides im-
portant intellectual simplification through sepa-
ration of concerns. Operators in the domain alge-
bra include scalar operations on simple attributes,
but by subsuming the relational algebra they also
provide the functionality needed for nested rela-
tions. Taking nesting all the way makes relations
a recursive data structure, and operations on this
are supported by recursion in the domain alge-
bra. An application is semistructured data, and
specializing the recursive operations leads to the
syntactic sugar of path expressions.

Aldat takes a systematic approach to the clas-
sical relational algebra, dividing the binary op-
erators into two families which it extends fully,
and fusing the unary operators into a single
one which it extends to quantification. Special,
whole-relation operators are provided for regular
expression matching. A family of editors is intro-
duced to interface between the Aldat program-
mer and the end-user. Views support the rela-
tional recursion needed for transitive closure op-
erations (and, incidentally, for inference engines).
Updates are treated systematically, avoid tuple-
at-a-time processing (which violates the relational
level of abstraction), and, in combination with
the foregoing algebraic operators, are very power-
ful. A synchronization mechanism for concurrent
programming is an adaptation of the basic unary
operator of the relational algebra.

Procedural abstraction takes Aldat beyond
data structures and operators. Even this mecha-
nism, so essential to programming languages, has
relational aspects, and Aldat generalizes proce-
dures to a mechanism with multiple alternative
choices of inputs and outputs among its param-
eters. This computation allows Aldat to support
a variety of advanced constructs including event
handlers and abstract data types with state (i.e.,
object classes).
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Another central programming language mech-
anism is scoping. Aldat considers a scope to be
equivalent to a database and to a tuple, and we
show the connection in practice by treating multi-
databases and databases distributed over the In-
ternet within the Aldat framework. The ideas,
and therefore the syntax, also tie in with nested
relations and the path expressions of recursive
nesting and semistructured data.

As the title makes clear, Aldat is not yet com-
plete. Two outstanding tasks are to conceive and
build a fully integrated transaction mechanism,
and to design and build a trie-based implemen-
tation for the whole system. A number of other
items for finishing up are mentioned or implied in
the text.

This paper is intended to be a fairly self-
contained overview of the Aldat language and its
actual and potential implementation. Space lim-
its us from discussing many details. These may
be found in the papers, theses and projects cited,
and on the Web [54].
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A. The motivating examples

This appendix is for readers who wish to fol-
low the details of the five examples shown in Sec-
tion 2.
1. The matrix multiplication code,

let ab be equiv + of a * b by i, k;
AB <−[i, k,ab] in (A natjoin B);

can be illustrated with integer 2 × 2 matrices.
Inputs Output Input relations
A B AB A(i j a) B(j k b)

3 4 5 0 43 24 1 1 3 1 1 5

0 5 7 6 35 30 1 2 4 2 1 7

2 2 5 2 2 6

The natural join is done first. We visualize the
virtual attribute, ab, and also the unnamed ex-
pression, a * b, that ab is derived from.

A natjoin B
(i j k a b) a * b ab
1 1 1 3 5 15 43

1 2 1 4 7 28 43

1 2 2 4 6 24 24

2 2 1 5 7 35 35

2 2 2 5 6 30 30

Finally the projection is done on ab and the
index attributes, i and k, and I leave this to the
reader to write out.
2. The inference engine code,

NewFacts is Facts ujoin [Concl ] in
(NewFacts[Concl : sup :Ante]Horn);

is equivalent to the loop
until NewFacts no longer changes
{ NewFacts <− Facts ujoin [Concl ] in

(NewFacts[Concl : sup :Ante]Horn);
}

with NewFacts initially set to empty.
As initial data, let’s take



38 T. H. Merrett

Facts( Concl )
has stamp

has envelope

has enclosure

enclosure is paper

and

Horn
(Rule# Ante Concl )

1 has enclosure is postable

1 has envelope is postable

1 has stamp is postable

2 is postable is letter

2 enclosure is paper is letter

3 is postable is greeting

3 enclosure is card is greeting

After the first iteration, NewFacts is the same
as Facts, since the initially empty NewFacts pro-
duces an empty join with Horn.

In the second iteration, the superset σ-join
produces the Conclusion, is postable, by firing
Rule# 1, since all its Antecedents are now found
in NewFacts, and the ujoin adds this conclusion
to the tuples of NewFacts.

In the third iteration, NewFacts now has all
the Antecedents for Rule# 2, so sup fires that,
producing Conclusion, is letter, to be added
to NewFacts.

No new rule is fired in the fourth iteration, be-
cause sup cannot find in NewFacts all the an-
tecedents of the only remaining rule, 3, so New-
Facts does not change and the iteration stops.

Inspecting this execution, the reader will see
what I meant by “ultra-naive” implementation in
Section 5.4, and should refer to that discussion
for the sophisticate’s angle.
3. The “explosion” of the bill of materials is dis-
cussed in Section 5.4, but the thinking is subtle
and a worked example will help.

let A′ be A; let S′ be S; let Q′ be Q;
let Q′′ be equiv + of Q * Q′ by A, S′;
let Q′′′ be Q + Q′′; let Q be Q′′′;
Explo is [A, S, Q] in [A, S, Q′′′] in

(PartOf [A, S: ujoin :A, S′] [A, S′, Q′′] in
(Explo [S: natjoin :A′] [A′, S′, Q′] in
PartOf));

The recursive view is, as with Horn, imple-
mented by replacing is with <− and looping un-
til Explo no longer changes, with Explo initially
empty.

I will add a tuple to the PartOf given in the
text, to illustrate the combination of paths of dif-
ferent lengths achieved by the sum Q + Q′′. To
compensate and keep the example short, I drop
the two tuples for plug.

PartOf ( A S Q)
wallplug cover 1

wallplug fixture 1

cover screw 2

cover plate 1

fixture screw 2

fixture plug 2

wallplug screw 3

After the first iteration, Explo has the same
tuples as PartOf, above, because of the empty
natjoin.

The result of the natjoin with the renamed
attributes of PartOf in the second iteration is

Explo[S:natjoin:A][A′, S′, Q′]...
(A S | A′ S′ Q Q′) Q′′

wallplug cover screw 1 2 4

wallplug fixture screw 1 2 4

wallplug cover plate 1 1 1

wallplug fixture plug 1 2 2

(Note that I have shown both aliases for the join
attribute as S | A′, and the virtual Q′′ is shown
outside the parentheses.)

Still in the second iteration, the ujoin and the
virtual Q′′′ give

PartOf [A, S: ujoin :A, S′] [A, S′, Q′′]...
(A S Q Q′′) Q′′′

wallplug cover 1 1

wallplug fixture 1 1

cover screw 2 2

cover plate 1 1

fixture screw 2 2

fixture plug 2 2

wallplug screw 3 4 7

wallplug plate 1 1

wallplug plug 2 2

(A S Q)
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where the very last line gives the (renamed) at-
tributes that finally contribute to Explo.

The third iteration finds no change and the pro-
cess stops.

Notes:

• A′, S′, Q′ just rename A, S, Q (Section 4):
this renaming is needed because, to avoid
losing information, we use natjoin instead
of icomp (Sections 5.1, 5.4).

• The apparently circular definition of Q′′′ is
resolved by the projections used to actualize
it (Section 5.4).

4. To explain the computation, rotate, I will just
show all the possible invocations, using selections
from the values x = 1.0, y = 0.0, x′ =

√
3/2, y′ =

1/2 and θ = π/6. In specifying the values in this
way, I mean to show the exact results that would
be given by a computer with infinite precision
rather than to imply that real numbers besides
such as shown for x and y can be used in Aldat.

r1 <−[x′, y′] where x = 1.0 and y = 0.0
and θ = π/6 in rotate;

giving

r1 (x′ y′)√
3/2 1/2

r2 <−[x, y] where x′ =
√

3/2 and y′ = 1/2
and θ = π/6 in rotate;

giving

r2 (x y)
1.0 0.0

r3 <−[x, y′] where x′ =
√

3/2 and y = 0.0
and θ = π/6 in rotate;

giving

r3 (x y′)
1.0 1/2

r4 <−[x′, y] where x = 1.0 and y′ = 1/2
and θ = π/6 in rotate;

giving

r4 (x′ y)√
3/2 0.0

r5 <−[y′, y] where x = 1.0 and x′ =
√

3/2
and θ = π/6 in rotate;

giving

r5 (y′ y)
1/2 0.0

r6 <−[x, x′] where y′ = 1/2 and y = 0.0
and θ = π/6 in rotate;

giving

r6 (x x′)
1.0

√
3/2

r7 <−[θ] where x = 1.0 and y = 0.0
and x′ =

√
3/2 and y′ = 1/2 in rotate;

giving

r7 (θ)
π/6

5. In the recursive domain algebra,
let Nom be Name ujoin

[red ujoin of
[red ujoin of Nom] in
CHILDREN ] in

FAMILY ;
Name will automatically be converted to a rela-
tion, since it is a scalar attribute:

let Nom be relation (Name) ujoin
[red ujoin of

[red ujoin of Nom] in
CHILDREN ] in

FAMILY ;

To show how this works, Table A abbreviates
the data of Table 2 and adds another family. The
notes explain each of virtual attributes as they
appear from left to right.

B. Challenges to Query Languages

The significant advantage of Aldat over other
database languages is that Aldat intends to in-
tegrate in one language all possible applications
requiring secondary storage (as well as further
applications, not necessarily on SS, which might
benefit from a high level of language abstraction).
The motivating examples of Section 2 and Ap-
pendix A indicate this, and I here list ten specific
challenges to other secondary storage formalisms.
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PERSON red..
(Name FAMILY ..) red.. relation Nom (Name)5

(Conj CHILDREN ..) red.. (Name)2 (Name)3 (Name)4

(.. Name ..) Nom (Name)2

(Name)1

Ted Alice Mary Mary Mary Mary Ted Ted Ted

James James Mary Mary

James James Mary Pete James James

James Pete Pete

Sal Pete Pete Pete Mary Ann

James Stu

Pete Mac

Ann Tim Stu Stu Stu Stu Ann Ann

Mac Mac Stu

Mac Mac Stu Mac

Mac

Table A: recursive domain algebra.

Notes

1. At the leaf level, Nom is relation (Name) only: the second operand of the ujoin is empty.

2. Two anonymous reductions raise the level, using red ujoin to take unions.

3. relation (Name) two levels up.

4. Nom now is union of the results from notes 2 and 3.

5. Finally, a top-level
[red ujoin of Nom] in PERSON

gives the union of the results for Ted and Ann.
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I do not believe that any one language apart from
Aldat can do all of them, and most of them sepa-
rately are beyond the capability of standard lan-
guages such as SQL and XML unless they have
been augmented with special operators.

1. For a numeric attribute, N , of a relation
(i.e., a column of a table), compute the
standard deviation of its values (Section 4).

2. Represent two matrices as relations
and compute their matrix product (Ap-
pendix A).

3. Represent as (a) relation(s) a square ma-
trix (probably large and sparse) augmented
by a column so it describes a system of lin-
ear equations, and solve those equations by
Gaussian elimination [56].

4. Represent relationally a set of rules in the
form

if antecedent1 and .. and antecedentn

then conclusion
and a set of known facts (antecedents), and
write an inference engine to derive all pos-
sible conclusions from the known facts (Ap-
pendix A).

5. Represent a map relationally and, given two
regions, determine if they are adjacent [58,
62].

6. Compute all possible roll-ups for a datacube
represented as a relation [55].

7. Represent relationally a set of shopping bas-
kets (sets of items purchased at a supermar-
ket) and compute association rules that say
which items tend to be purchased together,
with given significance and likelihood [55].

8. Represent the composition of a manu-
factured product (assembly, subassembly,
quantity) as a relation and compute the
“transitive closure”, i.e., the total quan-
tities of each subassembly needed for the
product and for any intermediate assembly
(Appendix A).

9. Compute a relation, or the XML equivalent,
which describes all the paths in a nested
relation, or the XML equivalent [57].

10. In a recursively nested relation, or the XML
equivalent,

PERSON (Name, FAMILY (Spouse,
CHILDREN (Name, FAMILY (..))))

find the Name of the PERSON who has a
youngest descendant named Mary but no
intermediate descendants named Mary. Al-
ternatively, find the Name of the PERSON
who has an unbroken chain of descendants
named Mary [59].

C. Chronological Glossary

This appendix summarizes Aldat facilities, giv-
ing cross-references within the paper, citations
and chronology. (Not every keyword originally
had the name used in this paper.)
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Keywords Year Citation Section
= ∼1976 [47] 5.1
[ ] ∼1976 [47] 5.2
djoin ∼1976 [47] 5.1
icomp ∼1976 [47] 5.1
ijoin ∼1976 [47] 5.1
in ∼1976 [47] 5.2
ljoin ∼1976 [47] 5.1
natcomp ∼1976 [47] 5.1
natjoin ∼1976 [47] 5.1
propsub ∼1976 [47] 5.1
propsup ∼1976 [47] 5.1
rjoin ∼1976 [47] 5.1
sep ∼1976 [47] 5.1
sjoin ∼1976 [47] 5.1
sub ∼1976 [47] 5.1
sup ∼1976 [47] 5.1
ujoin ∼1976 [47] 5.1
where ∼1976 [47] 5.2
equiv ∼1977 [51] 4, 6
fun ∼1977 [51] 4
let .. be ∼1977 [51] 4
par ∼1977 [51] 4
red ∼1977 [51] 4, 6
# 1978 [48] 5.2
• 1978 [48] 5.2
quant 1978 [48] 5.2
add ∼1983 [50] 5.5, 7
change ∼1983 [50] 5.5, 7
delete ∼1983 [50] 5.5, 7
on ∼1983 [50] 5.5, 7
update ∼1983 [50] 5.5, 7
using ∼1983 [50] 5.5
is ∼1984 [14] 5.4
when 1991 [21] 5.2
pick 1991 [21] 5.2
comp 1993 [53] 7
in 1993 [53] 7
out 1993 [53] 7
events 1996 [38] 7
pre 1996 [38] 7
post 1996 [38] 7
nesting 1998 [87] 6
relation() 1998 [87] 6
aldatp ∼2000 [] 8.2
eval 2001 [55] 6
quote 2001 [55] 6
transpose 2001 [55] 6
state 2002 [90] 7
recursive nesting 2004 [86] 6
path expression 2005 [57] 6
display2D 2005 [91] 5.2
grep 2005 [57] 5.2
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