
Dot-types and Their Implementation

Tao Xue and Zhaohui Luo⋆

taoxue@cs.rhul.ac.uk

zhaohui.luo@hotmail.co.uk

Abstract. Dot-types, as proposed by Pustejovsky and studied by many
others, are special data types useful in formal semantics to describe in-
teresting linguistic phenomena such as copredication. In this paper, we
present an implementation of dot-types in the proof assistant Plastic
base on their formalization in modern type theories.

Keywords: Dot-types, Coercive Subtyping, Type-Theoretical Semantics, Type
Theory, Proof Assistant

1 Introduction

Dot-types, or sometimes called dot objects or complex types, were introduced by
Pustejovsky in the Generative Lexicon Theory [19] and studied by many others,
including [3]. Intuitively, a dot-type is formed from two constituent types that
present distinct aspects of those objects in the dot-type. For example, a book
may be considered to have two aspects: one informational (eg, when it is read)
and the other physical (eg, when it is picked up). One may therefore consider
a dot-type Phy • Info whose objects, including books, have both physical and
informational aspects. In particular, such objects can be involved in the linguistic
phenomenon of copredication and dot-types play a promising role in its analysis
and formalisation.

Although the meaning of dot-types is intuitively clear, its proper formal ac-
count seems surprisingly difficult and tricky (see [2] for a discussion). Researchers
have made several proposals to model dot-types formally including, for exam-
ple, [3, 4] and [6, 7]. Besides discussions on whether the proposed solutions do
capture and therefore give successful formal accounts of dot-types, most of these
proposals are considered in the Montagovian setting. In [13], the second author
has proposed a formal treatment of dot-types in modern type theories1 (MTTs)
with the help of coercive subtyping and it is argued that, because in the for-
mal semantics based on MTTs common nouns are interpreted as types (rather

⋆ Partially supported by the research grant F/07-537/AJ of the Leverhulme Trust in
U.K.

1 Modern type theories may be classified into the predicative type theories such as
Martin-Löf’s type theory [16, 18] and the impredicative type theories such as the
Calculus of Constructions (CC) [9] and the Unifying Theory of dependent Types
(UTT) [11].

than predicates as in the Montague semantics), the linguistic phenomena such
as copredication can be given satisfactory treatments by means of dot-types.

In this paper, we present an implementation of dot-types in the proof assis-
tant Plastic [5], based on the formalization of dot-types in MTTs. As far as we
know, this is the first attempt to implement the dot-types.2 It allows us to use
dot-types in the development of formal semantics in proof assistants and, at the
same time, gives us a better understanding of dot-types and their relationship
with other data types in type theory.

Dot-types are not ordinary inductive types, as found in the MTT-based proof
assistants such as Agda [1], Coq and Plastic. In particular, for A • B to be a
dot-type, the constituent types A and B should not share components (see the
main text for the formal definition). In an implementation of dot-types, this
special condition of type formation must be checked and adhered to. In order
to make sure of this, we have to implement the dot-types as special data types,
different from ordinary inductive types. We shall show how this is done in our
implementation in Plastic.

Dot-types are introduced informally in section 2, where we focus on the idea
that the constituent types of a dot-type do not share common components. In
section 3, we discuss the formal formulation of dot-types in MTTs. The im-
plementation of dot-types is presented in section 4, where we will first briefly
introduce the proof assistant Plastic and then explain how to implement dot-
types in Plastic with several examples to illustrate the use.

2 Dot-types in Formal Semantics: an Introduction

In the Generative Lexicon Theory [19], Pustejovsky has introduced the idea of
employing dot-types to model various linguistic data that involve objects with
distinct aspects. Typical examples are concerned about copredication, where
different aspects of a word are selected when predication comes into force. For
example, in the following sentences [3], the words ‘lunch’ and ‘book’ both have
two distinct aspects to be selected: in (1) a ‘lunch’ was delicious as food and
took forever as an event, and in (2) a ‘book’ was picked up as a physical object
and mastered as an informational object.

(1) The lunch yesterday was delicious but took forever.

(2) John picked up and mastered the mathematical book.

There have been studies of dot-types in various formal systems or semi-formal
systems including, for example, [3, 4, 19, 21]. Most of these proposals are given in
the Montagovian setting where, in particular, common nouns are interpreted as

2 In [14] the second author has presented some examples in Coq [8] and, since Coq
does not support dot-types, he had to use Σ-types to mimic dot-types, although
fully aware of the fact that this is in general impossible and leads to incoherence,
since there is no guarantee that the constituent types of a dot-type do not share
components.

2

predicates. It has been argued in [13] that the way that CNs are interpreted in
the Montagovian setting is incompatible with the subtyping postulates that the
type of entities has subtypes Event (of events), Phy (of physical objects), Info
(of informational objects), etc. This leads to unnecessary difficulties and formal
complications when formalizing dot-types. On the other hand, if we interpret
CNs as types, as in the formal semantics based on MTTs, the treatment becomes
straightforward and satisfactory [13]. (See section 3.1 for further details.)

Usually the two aspects involved in a dot-type are incompatible: in the above
examples, Food and Event are incompatible and so are the physical and infor-
mational objects. This incompatibility of the two aspects that form a dot-type
was expressed by Pustejovsky as follows:

Dot objects have a property that I will refer to as inherent polysemy. This
is the ability to appear in selectional contexts that are contradictory in type
specification. [20]

In other words, an important feature is that, to form a dot-type A • B, its
constituent types A and B should not share common parts. For instance,

– Phy • Phy should not be a dot-type because its constituent types are the
same type Phy.

– Phy • (Phy • Info) should not be a dot-type because its constituent types
Phy and Phy • Info share the component Phy.

Put in another way, a dot-type A •B can only be formed if the types A and B

do not share any components: it is a dot-type only when the constituent types
A and B represent different and incompatible aspects of the objects.

This incompatibility is one of the two key features based on which dot-types
are introduced in MTTs [13]: it is stipulated that the constituent types of a
dot-type do not share components. The other feature is that the relationships
between the dot-type and its constituent types are captured by means of coercive
subtyping so that the dot-type is the subtype of both of its constituent types.
We now turn to the type-theoretic formulation of dot-types.

3 Dot-types in Modern Type Theories

In this section, we show how dot-types can be introduced in modern type theories
with the help of coercive subtyping [13]. We will first explain informally, in the
formal semantics based on MTTs, called type-theoretical semantics henceforth,
how to use dot-types to interpret copredication in natural language. Then we
will lay down the formal rules of the dot-types in modern type theories.

3.1 Dot-types and Coercive Subtyping

Type-Theoretical Semantics. In [22] Ranta has studied various semantic
issues of natural languages in Martin-Löf’s type theory, introducing the basic

3

ideas of type-theoretical semantics based on MTTs. Unlike Montague grammar
in which common nouns like Man and Human are interpreted as functional
subsets (or predicates) of entities, in the type-theoretical semantics based on
modern type theories, common nouns are interpreted as types. For instance, in
Montague grammar, Man and Human are interpreted as objects of type e → t,
where e is the type of entities and t the type of propositions. In type-theoretical
semantics, the interpretations of Man, Human and Book are types:

[[man]], [[human]], [[book]] : Type

This is natural in a modern type theory, which is many-sorted in the sense that
there are many types like [[man]] and [[book]] consisting of objects standing for
different sorts of entities, while the simple type theory may be thought of as single
sorted in the sense that there is the type e of all entities. In a type-theoretical
semantics, verbs and adjectives are interpreted as predicates. For example, we
can have

[[nice]] : [[book]] → Prop

[[read]] : [[human]] → [[book]] → Prop

where Prop is the type of propositions.
Let’s we consider a kind of dependent type called Σ-types. It basically means

that if A is a type and B is an A-indexed family of types, then Σ(A,B), or
sometimes written as Σx:A.B(x), is a type, consisting of pairs (a, b) such that
a is of type A and b is of type B(a).

Modified common noun phrases could be interpreted by means of Σ-types:
for instance,

[[nice book]] = Σ([[book]], [[nice]])

Coercive subtyping. Coercive subtyping was introduced in [12]. The basic idea
of coercive subtyping is to consider subtyping as an abbreviation mechanism: A
is a subtype of B (A <c B), if there is a unique implicit coercion c from type A

to type B. If so, an object a of type A can be used in any context that expects
an object of type B, and it is equal to c(a). The formal coercive definition rule
is defined as:

Γ ⊢ f : B → C Γ ⊢ a : A Γ ⊢ A <c B : Type

Γ ⊢ f(a) = f(c(a)) : C

For instance, one may consider the type of men to be a subtype of the type
of human beings by declaring a coercion between them: [[man]] <m [[human]].
If we assume that walk be interpreted as [[walk]] : [[human]] → Prop and Jack

as [[Jack]] : [[man]], we could interpret the sentence (3) as (4).

(3) Jack walks.

(4) [[walk]]([[Jack]])

4

The reason that (4) is well-typed is that [[man]] is now a subtype of [[human]],
an appropriate coercion can be inserted to fill up the gap in the term in (4).

Notation We shall adopt the following notational abbreviations, writing

– A < B for A <c B : Type for some c,
– A ≤ B for A = B : Type or A < B.

Dot-type and coercive subtyping. Intuitively, a dot-type should be a sub-
type of its constituent types. For instance, it is natural to think that the type
consisting of the objects with both aspects of food and event be a subtype of
Food as well as a subtype of Event. Similarly, the type consisting of objects with
both physical and informational aspects should be a subtype of the type Phy of
physical objects and a subtype of the type of informational aspect:

Phy • Info < Phy

Phy • Info < Info

Consider sentence (2) again. In a type-theoretical semantics, we may assume
that

[[book]] < Phy • Info

[[pick up]] : [[human]] → Phy → Prop

[[master]] : [[human]] → Info → Prop

Because of the above subtyping relationship (and contravariance of subtyping
for the function types), we have

[[pick up]] : [[human]] → Phy → Prop

< [[human]] → Phy • Info → Prop

< [[human]] → [[book]] → Prop

[[master]] : [[human]] → Info → Prop

< [[human]] → Phy • Info → Prop

< [[human]] → [[book]] → Prop

Therefore, [[pick up]] and [[master]] can both be used in a context where terms
of type [[human]] → [[book]] → Prop are required and the interpretation of the
sentence (2) can proceed as intended.

However, as we mentioned above, there are some difficulties if we do the same
thing in the Montagovian settings, we can show it with a simple case. Take the
example of “heavy book”, in Montague semantics, we should have

[[heavy]] : (Phy → t) → (Phy → t)

[[book]] : Phy • Info → t

5

In order to interpret “heavy book” as [[heavy]]([[book]]), we need

Phy • Info → t < Phy → t

By contravariance, we need

Phy < Phy • Info

But this is not the case, the subtype relation is actually in another way around.

3.2 Dot-types in Type Theory: a Formal Formulation

In the following, we present a type-theoretic treatment of dot-types with the help
of coercive subtyping. There are two important ingredients in this type-theoretic
definition:

i. The constituent types of a dot-type should not share common components.
ii. A dot-type, if well-formed, should be a subtype of both of its constituent

types.

Because of (i), the first and the most important thing is to define the notion of
component and, when doing this, because of (ii), the set of components of a type
should contain those of all of its constituents and super-types. This is formally
given by means of the following definition.

Definition 1 (component) Let T :Type be a type in the empty context. Then,
C (T), the set of components of T, is defined according to the normal form 3 of
T as :

C (T) =def

{

SUP (T) if the normal form of T is not of the form X • Y

C (T1) ∪ C (T2) if the normal form of T is T1 • T2

where SUP (T) = {T ′|T ≤ T ′}.

Now, we give the formal rules for the dot-types in Figure 1 4. Note that, in
the formation rule, we require that the constituent types do not share common
components:

C (A) ∩ C (B) = ∅

According to the rules in Figure 1, A •B is a subtype of A and a subtype of
B. In other words, an object of the dot-type A •B can be regarded as an object

3 Intuitively, in a modern type theory with strong normalization and Church-Rosser
properties, every process of computation starting from a well-typed term terminates
and it computes to a (unique) normal form.

4 In the formation rule of Figure 1, Γ ⊢ valid means that Γ is a valid context and
<> stands for an empty context.

6

Formation Rule

Γ ⊢ valid <> ⊢ A : Type <> ⊢ B : Type C (A) ∩ C (B) = ∅

Γ ⊢ A •B : Type

Introduction Rule
Γ ⊢ a : A Γ ⊢ b : B Γ ⊢ A • B : Type

Γ ⊢ 〈a, b〉 : A •B

Elimination Rules
Γ ⊢ c : A • B

Γ ⊢ p1(c) : A

Γ ⊢ c : A • B

Γ ⊢ p2(c) : B

Computation Rules

Γ ⊢ a : A Γ ⊢ b : B Γ ⊢ A • B : Type

Γ ⊢ p1(〈a, b〉) = a : A

Γ ⊢ a : A Γ ⊢ b : B Γ ⊢ A •B : Type

Γ ⊢ p2(〈a, b〉) = b : B

Projections as Coercions

Γ ⊢ A •B : Type

Γ ⊢ A •B <p1 A : Type

Γ ⊢ A • B : Type

Γ ⊢ A •B <p2 B : Type

Coercion Propagation

Γ ⊢ A •B : Type Γ ⊢ A′ •B′ : Type Γ ⊢ A <c1 A′ : Type Γ ⊢ B = B′ : Type

Γ ⊢ A •B <d1[c1] A
′ • B′ : Type

where d1[c1](〈a, b〉) = 〈c1(a), b〉.

Γ ⊢ A •B : Type Γ ⊢ A′ •B′ : Type Γ ⊢ A = A′ : Type Γ ⊢ B <c2 B′ : Type

Γ ⊢ A •B <d2[c2] A
′ • B′ : Type

where d2[c2](〈a, b〉) = 〈a, c2(b)〉.

Γ ⊢ A • B : Type Γ ⊢ A′ • B′ : Type Γ ⊢ A <c1 A′ : Type Γ ⊢ B <c2 B′ : Type

Γ ⊢ A • B <d[c1,c2] A
′ • B′ : Type

where d[c1, c2](〈a, b〉) = 〈c1(a), c2(b)〉.

Fig. 1. The rules of Dot-type

7

of type A, in a context requiring an object of A, and can also be regarded as an
object of type B in a context requiring an object of B.

Finally, the subtyping relations are propagated through the dot-types, by
means of the coercions d1, d2 and d as specified in the last three rules in Figure
1.

Remark 1. It is worth pointing out that, under the definition of component and
rules of dot-types, there is no “universal supertype” of all types.

Propagations. To explain the propagation rules, we can think of interpreting
the phrase

pick up and read the book

Instead of simply considering book having physical and informational aspect,
we might think book contains readable information, compared to radio program
which does not have a readable informational aspect. So we could interpret

[[readable]] : Info → Prop

[[readable info]] = Σ(Info, [[readable]])

[[book]] < Phy • [[readable info]]

With the coercion relation we have for Σ-types [15],

Σ(Info, [[readable]]) < Info

we have [[readable info]] < Info and trivially we have Phy = Phy. So we could
get the following through propagation rule

[[book]] < Phy • [[readable info]] < Phy • Info

This conforms with the example we’ve explained above.

Coherence. When we consider coercive subtyping, coherence [12] is the most
important property that is required to hold. Informally, coherence means that
the coercion between any two types is unique. Put in another way, if there are
two coercions c and c′ from type A to type B, c and c′ are required to be equal.
One may intuitively understand the importance of this property like this: it
guarantees that there’s no ambiguity when we use a coercion.

Remark 2. If there are only finitely many coercions and we identify equal coer-
cions, the coercions form a forest.

Since the constituent types of a well-formed dot-type do not share compo-
nents, it is straightforward to prove the following coherence property.

8

Proposition 2 (coherence) The coercions p1, p2, d1, d2 and d are coherent
together.

Note that coherence is important as it guarantees the correctness of employ-
ing the projections p1 and p2 and the propagation operator d as coercions, and
hence the subtyping relationships A •B <p1

A and A •B <p2
B.

If the constituent types of a dot-type shared a common component, coherence
would fail, like in product type. For instance, A and A •B share the component
A. If A • (A •B) were a dot-type, with the transitivity rule 5 there would be the
following two coercions p1 and p2 ◦ p1:

A • (A •B) <p1
A

A • (A •B) <p2◦p1
A

which are between the same types but not equal, coherence would then fail.
One may find that, when a dot-type A • B is well-formed, its behavior is

similar to that of a product type A × B: intuitively, its objects are pairs and
the projections p1 and p2 correspond to the projection operations π1 and π2

in the product type, respectively. However, there are two important differences
between dot-types and product types:

1. The constituent types of a dot-type do not share components, while in a
product type the constituent parts can possibly share component. For in-
stance, A×A is a well-formed product type, but A •A is not a well-formed
dot-type.

2. It is fine for both of the projections p1 and p2 for dot-types to be coercions
(Proposition 2), but for product types, only one of them can be coercion,
otherwise, coherence would fail [10].

4 Implementation

We have shown how to formalize the dot-types in type theory in the last section.
As we have proof assistants which have implemented various data types, we
would also like to put dot-types into a proof assistant. However unlike inductive
types such as the product types or Σ-types which could be defined with inductive
schemata, dot-type cannot be simply be defined as such in a library of the proof
assistant. The main reason is that we need to check whether the constituents of
the dot-type share components. Especially in our definition of component, we
need to check all the coercion relations of the term and its constituents in the
context. This is not covered by existing approaches to define inductive types in
the libraries of proof assistants. So we have to proceed in a hard way: defining
dot-types directly in a proof assistant.

In this section, we present how we define dot-types in the proof assistant
Plastic, and show how to use it.

5 Transitivity for the coercion means that, if we have two coercions A <c1 B and B <c2

C, then there’s coercion from A to C(A <c2◦c1 C) where c2 ◦ c1 ≡ [x:A](c2(c1(x)))
is the composition of c1 and c2 .

9

4.1 Proof Assistants and Plastic

A proof assistant is a piece of software to assist with the formal proofs in a man-
machine interactive way, based on constructive mathematical proofs. One can
define mathematical problems in the provided formal language, choose the right
strategy or algorithms in the library to achieve the proof. Modern type theories
have been implemented in the proof assistants such as Agda [1], Coq [8], Matita
[17] and Plastic [5] used in applications to formalization of mathematics and
verification of programs.

Plastic [5] is an implementation of the type theory UTT as presented in
chapter 9 of [11] with inductive families and universes. In the library of the
proof assistant, we have various predefined inductive types and an second order
logic. We also have implemented coercive subtyping in Plastic.

With the help of proof assistants like Plastic, we can also implement the
formal semantics, which would help us to study the type-theoretical semantics
for linguistic issue.

Here, we do not explain the technical details of using Plastic. Instead, we
present a very simple example to show how we use Plastic to develop formal
semantics.

Example 3 Consider the example (3) ”Jack walks” in section 2. Its semantics
(4) can be presented by the last line of the following code in Plastic:

> [Man, Human :Type];

> [c : Man -> Human];

> Coercion = c;

> [Jack : Man];

> [walk : Human -> Prop];

> [Jack_walks = walk(Jack)];

In the code, “Coercion = c” makes the function c as a coercion from Man to
Human. With the help of coercion, the term Jack walks is well typed: Jack walks =
walk(Jack) = walk(c(Jack)) : Prop.

4.2 Dot-types in Plastic

As explained above, the dot-types have to be directly implemented in Plastic
and, at the same time, the associated subtyping relations have to be specified.

– In the syntax of Plastic, we use A ∗ B to present the dot-type A • B and
dot < a, b > to present dot term < a, b >.

– When we declare a new dot-type A•B, or a dot term < a, b > where a:A and
b:B, we will first check whether it is a proper dot-type. If C (A) ∩ C (B) =
∅, A • B will be a legal dot-type or < a, b > will be a legal dot term;
otherwise, they will be rejected and an error message ‘dot-type should not
share component ’ will be shown.

10

– Once a dot-type A •B or dot term < a, b > is considered to be well-formed
(legal), we will consider the coercions generated from the dot-type A • B.
We will add [x:A •B]p1(x) and [x:A •B]p2(x) as coercions from A •B to A

and B 6.
– Furthermore, we will check the existing coercions of other dot-types to see

whether there are cases for coercion propagation, if so, Plastic will add the
new coercion generated by the coercion propagation into context.

In the implementation, we define some reductions for the computation rules
for the projections p1 and p2, and the propagation operators d, d1, and d2.
Assume A,B,C,D:Type, a:A, b:B, A <c1 C, B <c2 D, we have:

p1(< a, b >) � a

p2(< a, b >) � b

d[c1, c2](< a, b >) � < c1(a), c2(b) >

d1[c1](< a, b >) � < c1(a), b >

d2[c2](< a, b >) � < a, c2(b) >

In the following, we present three main algorithms in our implementation.
First we need to give an algorithm to calculate the components of a type.

Algorithm 4 (checking components) Given a type A, we will calculate the com-
ponent of A, C (A), in the following way.

1. Check the form of A to see whether it is a dot-type or not.
2. If A is not a dot-type, check all the coercion relations in the context to find

out every type T which satisfies A <c T with some coercion c. C (A) is the
set of all these super type T .

3. If A is a dot-type of the form T1•T2, C (A) = C (T1)∪C (T2). (The algorithm
is called recursively.)

The second algorithm deals with the introduction of dot-types.

Algorithm 5 When defining a type to be a dot-type A •B:

1. Check the context to see whether A and B are already defined types. If so, go
to next step; otherwise alert the type is not defined and end the algorithm.

2. Calculate C (A) and C (B) to see whether the intersection of these two is
empty. If so go to the next step; if not, alert that dot-type do not share
component and end the algorithm.

3. Check the existing coercions, to see whether A•B has already been considered.
If so, simply finish the algorithm; otherwise go to the next step.

4. Add coercion from A •B to A and from A •B to B into the context, add the
coercions generated by transitivity as well.

6 The system will automatically assign new metavariable names cx1, cx2, ... to the
new introduced coercions by the dot-type rules

11

5. Check the existing coercion of dot-type in the context to add coercions intro-
duced by propagation rules. For every existing dot-type C •D,

– if there’s a coercion c1 from A to C, and a coercion c2 from B to D, add
a new coercion [x:A •B]d[c1, c2](x) from A •B to C •D.

– if there’s a coercion c1 from A to C, and B equals to D, add a new
coercion [x:A •B]d1[c1](x) from A •B to C •D.

– if there’s a coercion c2 from B to D, and A equals to C, add a new
coercion [x:A •B]d2[c2](x)

– otherwise, do nothing.

6. Check the transitivity possibilities of the new generated coercion.

The third algorithm deals with the introduction of dot-terms (similar to that
for dot-type introduction).

Algorithm 6 When defining a term to be a dot term < a, b >:

1. Check the context to see whether a and b are defined terms. If so take the
types of a and b, let say A and B, and go to the next step; otherwise alert
the term is not defined and end the algorithm.

2. Calculate C (A) and C (B) to see whether the intersection of these two is
empty. If so go to the next step; if not, alert that dot-type do not share
component and end the algorithm.

3. Check the existing coercions, to see whether A•B has already been considered.
If so, simply finish the algorithm; otherwise go to the next step.

4. Add coercion from A •B to A and from A •B to B into the context, add the
coercions generated by transitivity as well.

5. Check the existing coercion of dot-type in the context. For every existing
dot-type C •D,

– if there’s a coercion c1 from A to C, and a coercion c2 from B to D, add
a new coercion [x:A •B]d[c1, c2](x) from A •B to C •D.

– if there’s a coercion c1 from A to C, and B equals to D, add a new
coercion [x:A •B]d1[c1](x) from A •B to C •D.

– if there’s a coercion c2 from B to D, and A equals to C, add a new
coercion [x:A •B]d2[c2](x)

– otherwise, do nothing.

6. Check the transitivity possibilities of the new generated coercion.

Another part we should take care of, is that, since we need to consider the
propagation rules of dot-types, when we introduce a new coercion, it links two
existing dot-types and generates a new coercion through the propagation rules.
So when we introduce a new coercion, we should also check all the dot-types in
the context to see whether there’re types satisfy the conditions of propagation
rule, and add corresponding coercions for the propagation rules.

12

4.3 Examples of Dot-types in Plastic

In this subsection, we will first give some abstract examples to show how to
declare a dot-type in Plastic, what we will get from the declaration, and some
examples of illegal declaration of dot-types. Then we will give a concrete case to
interpret sentences in natural language into code in Plastic.

Example 7 We can define a dot-type or a dot-term simply in the following way:

1. If we have two types A, B which do not share components, we could simply
define a type M of type A ∗B like this:

> [M = A*B];

The system will generate two coercions cx1 from A ∗ B to A and cx2 from
A ∗B to B.

2. We can also define a dot term . If we have two terms a, b, a:A and b:B, we
can define a dot term m =< a, b > like this:

> [m = dot<a,b>];

Now m is defined to be a dot term dot < a, b > and it is of type A ∗B. The
system will generate two coercions cx1 from A ∗B to A and cx2 from A ∗B
to B.

Example 8 In the following examples, the types share components in different
ways and, therefore, none of them could be defined as a dot-type or dot term,
they fail and warnings will be shown in all the following cases.

1. The two constituents are the same

> [M = A*A];

2. A ∗ C and A ∗B have the same component A

> [M = (A*C)*(A*B)];

3. A is a subtype of B, by definition of component C (A) ∩ C (B) = {A}

> [c:A->B];

> Coercion = c;

> [M = A*B];

4. a and b are both of type A, but A ∗A is not a legal dot-type, so dot < a, b >

is not a legal dot term.

> [a,b:A];

> [ab = dot<a,b>];

13

5. a is of type A and b is of type B, while A is a subtype of B. As shown above,
A ∗B is not a legal dot-type, hence dot < a, b > is not a legal dot term.

> [a:A];

> [b:B];

> [c:A->B];

> Coercion = c;

> [ab = dot<a,b>];

Example 9 When we have dot-type A ∗B, A <c1 C and B <c2 D, if we claim
C ∗ D to be another dot-type, coercions from the propagation rule will also be
added.

> [c1:A->C];

> [c2:B->D];

> Coercion = c1;

> Coercion = c2;

> [M1 = A*B];

> [M2 = C*D];

In this example several coercions will be added according to the dot-type rule
and transitivity. cx1 from A∗B to A, cx2 from A∗B to B, < c1, cx1 >= [x:(A∗
B)]cx3(cx1 x) by transitivity from A∗B to C, < c2, cx1 >= [x:(A∗B)]cx4(cx1 x)
by transitivity from A ∗B to D, cx3 from C ∗D to C and cx4 from C ∗D to D.
However, we will get one more coercion from the propagation rule, there will be a
coercion cx5 from A∗B to C∗D and cx5 = [x:A∗B]d[c1, c2](x), where for any dot
term dot < a, b > of dot-type A ∗B, d[c1, c2]dot < a, b >= dot < c1(a), c2(b) >.

Now, let’s use a concrete example to show how we could interpret natural
language in Plastic:

Example 10 Let’s consider the sentence

John picked up and mastered a book

We should contain the following data:

> [PhyInfo = Phy*Info];

> [cb : Book -> PhyInfo];

> Coercion = cb;

> [John:Human];

> [b:Book];

Note that ‘b’ is an arbitrary object of type Book. The verbs ‘picked up’ and
‘mastered’ are of the following types, where “==>” is the Plastic notation for
the functional arrow:

> [pickup : Human ==> (Phy ==> Prop)];

> [master : Human ==> (Info ==> Prop)];

14

With the above, we could interpret the sentences “John picked up a book”
and “John mastered a book” separately and then use the predefined connective
and : Prop → Prop → Prop to connect them. However, this would not be
correctly the original sentence since the book picked up and that mastered must
be the same book.

We want ‘and’ to connect ‘picked up’ with ‘mastered’, so we consider ‘and’
as a generic semantic kind: for any type A, [[AND]](A) is of kind A → A → A.
For A being Human ==> (Book ==> Prop) 7,

And = [[AND]](Human ==> (Book ==> Prop)).

In particular, the term “And pickup master” is well-typed, thanks to the co-
ercive subtyping relations and the contravariance in subtyping function types as
explained in section 2. Now, interpreting the indefinite article by means of the
existential quantifier, the above sentence is interpreted as (in a readable notation)

∃b : Book. And(pickup,master) John b.

The full code in Plastic is given in Appendix A.

References

1. The Agda proof assistant. http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php
(2008)

2. Asher, N.: A type driven theory of predication with complex types. Fundamenta
Infor. 84(2) (2008)

3. Asher, N.: Lexical Meaning in Context: A Web of Words. Cambridge University
Press (2011)

4. Asher, N., Pustejovsky, J.: Word meaning and commonsense metaphysics (2005)
5. Callaghan, P., Luo, Z.: An implementation of LF with coercive subtyping and

universes. Journal of Automated Reasoning 27(1), 3–27 (2001)
6. Cooper, R.: Copredication, quantification and frames. Logical Aspects of Compu-

tational Linguistics (LACL’2011). LNAI 6736 (2011)
7. Cooper, R.: Copredication, dynamic generalized quantification and lexical innova-

tion by coercion. Proceedings of GL2007, the Fourth International Workshop on
Generative Approaches to the Lexicon (2007)

8. The Coq Development Team: The Coq Proof Assistant Reference Manual (Version
8.1), INRIA (2007)

9. Coquand, T., Huet, G.: The calculus of constructions. Infor. and Computation
76(2/3) (1988)

10. Luo, Y.: Coherence and Transitivity in Coercive Subtyping. Ph.D. thesis, Univer-
sity of Durham (2005)

11. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Ox-
ford Univ Press (1994)

12. Luo, Z.: Coercive subtyping. J of Logic and Computation 9(1), 105–130 (1999)
13. Luo, Z.: Type-theoretical semantics with coercive subtyping. Semantics and Lin-

guistic Theory 20 (SALT20), Vancouver (2010)

7 An alternative possibility is letting A be Human ==> (PhyInfo ==> Prop)

15

14. Luo, Z.: Contextual analysis of word meanings in type-theoretical semantics. Log-
ical Aspects of Computational Linguistics (LACL’2011). LNAI 6736 (2011)

15. Luo, Z., Luo, Y.: Transitivity in coercive subtyping. Infor. and Computation 197(1-
2) (2005)

16. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)
17. The Matita proof assistant. http://matita.cs.unibo.it/ (2008)
18. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type The-

ory: An Introduction. Oxford University Press (1990)
19. Pustejovsky, J.: The Generative Lexicon. MIT (1995)
20. Pustejovsky, J.: A survey of dot objects. Manuscript (2005)
21. Pustejovsky, J.: Mechanisms of coercion in a general theory of selection (2011)
22. Ranta, A.: Type-Theoretical Grammar. Oxford University Press (1994)

A Plastic Code for Example 10

> import Sol_All;

> import FnCoercion;

> import SigmaCoercion;

> [Human, Phy, Info, Book :Type];

> [PhyInfo = Phy*Info];

> [cb:Book -> PhyInfo];

> Coercion = cb;

> [pickup:Human ==> (Phy ==> Prop)];

> [master:Human ==> (Info ==> Prop)];

> [John:Human];

> [b:Book];

("John picked up b and John mastered b")

> [pickup_b = ap_ Book Prop (ap_ Human (Book==>Prop) pickup John) b];

> [master_b = ap_ Book Prop (ap_ Human (Book==>Prop) master John) b];

> [sentence1 = and pickup_b master_b];

("John picked up and mastered b")

> [AND: (A:Type) (A->A->A)]

> [And = AND (Human ==> (Book ==> Prop))];

> [sentence2 = ap_ Book Prop (ap_ Human (Book==>Prop)

(And pickup master) John) b];

("John picked up and mastered a book")

> [sentence3 = Ex Book [b:Book](ap_ Book Prop (ap_ Human (Book==>Prop)

(And pickup master) John) b)];

16

