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Abstract

An [-ruler is a sequence of n rigid rods lying
in the plane and joined consecutively at their
endpoints. The endpoints are joints about which
the rods may freely turn, possibly crossing over
one another. Each rod has length [. An [-ruler
is said to be confined inside a polygon P if each
link of the ruler must remain inside the closed,
bounded region bounded by P at all times. An
[-ruler confined inside P is said to be always-
foldable if, for each possible initial configuration
of the ruler, the ruler can be folded onto a single
segment of length .

A study of [-rulers confined to equilateral
triangles was carried out by van Kreveld,
Snoeyink and Whitesides, who showed that
always-foldability is a property that alternates
four times between holding and failing as [ grows
from 0 to its maximum possible value. They
asked whether this phenomenon occurs for [-
rulers confined inside other polygons.

The present paper extends their study to reg-
ular polygons. In particular, it answers their
question in the affirmative: in regular 2k-gons,
the always-foldability of [-rulers alternates be-
tween holding and failing three times as [ grows
from 0 to its maximum possible value.

1 Introduction

A chain T' is a sequence of n rigid rods (also
called links) joined consecutively at their end-
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Figure 1: An [l-ruler confined in a regular
hexagon

points (also called joints), about which they may
freely rotate. An [-ruler L is a chain whose links
all have the same length .

A chain T is said to be confined inside a poly-
gon P if its links must always lie inside the
closed, bounded polygonal region determined by
P. Two configurations of a chain I' confined in-
side a closed polygonal region P are said to be
equivalent if one can continuously move to the
other while the links remain within P and while
the lengths of the links maintain their initial val-
ues at all times.

Suppose an l-ruler L has just one equivalence
class of configurations under the above notion of
equivalence. Then in particular, every arbitrary
configuration of L is equivalent to one in which
all the links coincide. In this case, we say that L
is always-foldable. Otherwise, when L has more
than one equivalence class of configurations, we
say that L is not-always-foldable.

This paper studies always-foldability for [-
rulers confined inside a regular polygon P.



Whether or not such an [-ruler is always-foldable
depends in part on the relationship between [
and w, the width of P. Here, recall that the
width of any polygon, regular or not, is the mini-
mum possible distance between two parallel lines
of support for the polygon.

1.1 Summary of Main Results

Our main results are as follows. Let L be an
[-ruler confined inside a regular 2k-gon P. Then
L is always-foldable for [ < w; L is not-always-
foldable for w < I < m, where m is the distance
between a vertex of P and the midpoint of either
of the two sides of P farthest from the vertex;
finally, L is again always-foldable for m < I < d,
where d is the diameter of P. The paper [5]
proved that equilateral triangles exhibit more
than one alternation of the always-foldability
property and asked whether any other polygons
exhibit this phenomenon. Hence, we answer this
question in the aflirmative, as we show regular
2k-gons exhibit multiple alternation. Note that
one would in general expect at least one transi-
tion, from always-foldable, for sufficiently small
values of [, to not-always-foldable for larger val-
ues of [.

For regular (2k 4 1)-gons, we show that L is
always-foldable for I < b®, where bC is the supre-
mum of the radii of circles that, no matter where
their centers are placed on P, cut P in exactly
two places. For w <1 < d, L is always-foldable.
However, for b¢ < [ < w, we do not know for
which, if any, values L is always-foldable. We
leave this as an open problem.

1.2 Background

Reconfiguration properties of chains have been
considered for example in [1], [2], [3], [4], [8],
and [9]. In [7], the number of equivalence classes
of unconfined closed chains (i.e., 4, = Ag) in
arbitrary dimension is determined. Chains con-
fined inside a circle and having an extremal joint
anchored were studied in [1] and in [2]. An-
chored and unanchored chains confined inside a
square were studied in [3] and [4]. Unanchored
chains whose links all have the same length (i.e.,

l-rulers) and that are confined inside an equi-
lateral triangle were studied in [5]; anchored
l-rulers were studied in [10]. Chains are them-
selves special cases of planar linkages, surveyed
in [11].

1.3 Terminology

We say that a chain I' is bounded by b, denoted
by I' < b, if no link has length greater than b.

A convex obtuse polygon is a convex polygon
with all internal angles measuring /2 or more.
We denote by S a square with unit side length.
We denote the distance between two points p, ¢
by [pgl.

We regard a polygon P as a closed, polygonal
curve bounding a two-dimensional, region of fi-
nite area. When we are referring to the closed
curve and not to the region it bounds, we use
the notation 9P for emphasis.

For a chain I' confined inside a polygon P,
we say that I' is in Rim Normal Form (denoted
RNF), if all joints of I' lie on OP.

In addition to the width w and diameter d of
a polygon, we also make use of the lengths b%
(defined for arbitrary polygons) and m (defined
for regular 2k-gons); recall the definitions for m
and bY from section 1.1.

2 [-Rulers in a Square

In this section, we consider the case of a square
S of unit side. For 2k-gons with k& > 2, covered
in a later section, the proofs will be essentially
the same.

2.1 Short Links

Here we prove that any [-ruler L with [ < 1
is always-foldable. The key idea is to begin by
moving L to Rim Normal Form (RNF). The fol-
lowing Fact is from [4].

Fact 2.1 If1 < 1, then L inside S can be moved
to RNF

Always-foldability for [ < 1 is an immediate
consequence, as described below.
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Figure 2: Always-foldable short-link rulers

Theorem 2.1 If | < 1, then L inside S is
always-foldable.

Proof: Move L to RNF in accordance with
Fact 2.1. Then fold L inductively as follows.
Fixing Ay, Ay, ..., A,, rotate [Ag, A1] about
Aj until Ag and A coincide, as Figure 2 shows.
This is possible since b = w = 1 and I < 1.
Continue this process until I' folds. a

2.2 Midrange Links

This subsection shows that [-rulers inside S with
1 <1< \/5/2 are not-always-foldable. Note
that v/5/2 is the distance between a vertex of S
and the midpoint of either of the two sides of S
that are non-incident with the vertex (note the
dashed line in Figure 3).

Theorem 2.2 If 1 < 1 < /5/2, then L inside
S is not-always-foldable.

Proof: Let si1,s9,53,54 be the sides of S,
let wy,v9,v3,v4 be the vertices of 5, and let
U1, U, U3, Ug be the midpoints of sq, s9, s3, 54, TE-
spectively. Suppose that a, 3 are angles between
[Ag, A1], [A1, A2] and sy, respectively, as shown
in Figure 3.

Initially we put L in the following configura-
tion: Ag lies at vy, Ay lies on sz, As lies at a
point on s; but different from v;. See Figure 3.
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Figure 3: Not-always-foldable rulers

We show that L cannot be folded from this con-
figuration.

Since 1 < 1 < \/5/2, initially Ay lies between
v4 and uz. Therefore § > 7/2 initially. Clearly
a < 7/2 initially. If L is foldable, let 7 be the
angle between s; the line through some segment
onto which L can be folded. Without loss of gen-
erality, assume r < 7 /2. Since initially § > 7/2,
there exists some intermediate configuration in
which g = 7/2, i.e., [A1, Ay] is perpendicular to
s1. This contradicts { > 1. |

2.3 Long Links

This subsection shows that any [-ruler inside 5
with [ > v/5/2 is always-foldable. We obtain
this by proving that such rulers initially have
to lie in “nearly-folded” configurations. In the
extreme case of [ = /2, the diameter of S, L
has to exhibit an already folded configuration.

Before proceeding to the foldability result, we
give some preliminaries. Again, let sy, 53, 33, 34
be the sides of §, let vy, v, v3,v4 be the vertices
of 5, and let wuy,usz,us,uy be the midpoints of
$1, 82, S3, S4, Tespectively. Define (' as the area
delimited by vius, usvs, vsug, usvy, as shown in
Figure 4. C3,(C3 and C4 are similarly defined.
Then we have the following.

Lemma 2.1 Ifl > /5/2, then L inside S falls
completely inside exactly one of C1,Cq,Cs,Cy.



Figure 4: L lies inside one of C,C5,Cs, Cy.

Proof: Since C1UC,UCsUCy = 5, L lies in-
side C1JCoJC3JCy. Next we show that L
lies inside exactly one of Cy,Cy, C3, Cy.

Note that for any 7,7 with 1 <4,57 <4,i# j,
Vp € C;,¥Yq € Cj, d(p, q) achieves its maximum
at some vertex and the midpoint of some side.
Therefore,

max _ d(p,q) < V’5/2.

p€Ci,qel;
Thus,

d(p,q) < V5/2. *
L (p,q) < V5/ (*)

If there is a configuration in which L does not
lie in any single one of C4,Cy, C3,Cy, then by
convexity there exists ¢, j with 1 <4,7 < 4,7 # j
and a link of L, say Ly, such that A lies at
some p € C; and Ay lies at some ¢ € C; — C;.
See Figure 4. By (%), d(p,q) < v/5/2. This
contradicts I > v/5/2. O

Now we are ready to give the following fold-
ability result.

Theorem 2.3 If I > +/5/2, then L inside S is
always-foldable.

Proof: By Lemma 2.1, L lies inside exactly one
of C1,Cy,C35,Cy. Without loss of generality, as-
sume that L lies inside C;. We fold L induc-
tively as follows. Fixing Ay, A,,..., A,, rotate

[Ag, A1] about Ay until Ag and Aj coincide, as
Figure 5 shows. We claim that Ag will not hit
the boundary dCy of €y during this reconfigu-
ration.
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Figure 5: Folding long-link rulers
This can be seen as follows. Suppose

that {p,q} = C(v3,v/5/2)(N0C; and note that
{us,ug} = C(vl,\/g/Q)ﬂ()Cl. We define cone
Dy as the area delimited by vsus, u@g, ugv3 and
cone Dj as the area delimited by v1p, pg, qvs, as
shown in Figure 5. Since [ > v/5/2, each joint
of L has to lie inside Dy or Ds.

If Ag lies in D1, then Ay lies in Dy and Aj lies
in Dy. If Ag lies in Dy, then Ay lies in Dy and
Aj lies in Dy. In both cases, Ag will not hit dC;
before Ag and Ay coincide. Hence the claim.

Continue this process until T' folds. a

3 [-Rulers in a Regular 2k-gon

This section generalizes the foldability result of
an [-ruler within squares to arbitrary regular 2k-
gons.
3.1 Foldability within Regular 2k-
gons

The foldability result of an [-ruler within a
square can be readily extended to any regular
2k-gon, based on the following results from [9].



Fact 3.1 Let I' be an n-link chain confined
within a convex obluse polygon P. If T < b°,
then I' can be moved to RNF.

Fact 3.2 Let P be a reqular 2k-gon. Then b€ =
w.

We thus have the following, which immedi-
ately implies the foldability of rulers with short
links inside a regular 2k-gon.

Fact 3.3 Let P be a regular 2k-gon. If | < w,
then L can be moved to RNF.

Theorem 3.1 Let P be a reqular 2k-gon. Ifl <
w, then L is foldable.

The foldability of rulers with midrange and
long links within a regular 2k-gon is completely
similar to that within a square. In the following,
let P be a regular 2k-gon, let v be a vertex of
P, let u be the midpoint of an opposite side of
v, and let m = |uv|.

Theorem 3.2 Let P be a reqular 2k-gon. If
w < I < m, then L is not-always-foldable. Refer
to (a) of Figure 6.

Theorem 3.3 Let P be a reqular 2k-gon. If1 >

m, then L is always-foldable. Refer to (b) of
Figure 6.

4 Regular (2k + 1)-gons

The reason that the above approach does not
apply to regular (2k 4+ 1)-gons is due to gap be-
tween 6% and w > b in regular (2k + 1)-gons.
For b° < I < w, we do not know the foldability
of L.

We observe that an [-ruler remains not-
always-foldable when [ > w, for reasons similar
to the non-foldability of rulers with midrange
links within a square. We use Figure 7 to sug-
gest the ideas. This phenomenon shows that
2k-gons and (2k + 1)-gons as confining regions
exhibit different foldability properties.

Below we give the known foldability results of
rulers within regular (2k 4 1)-gons and pose the
foldability of an l-ruler with ¢ < I < w inside
regular (2k + 1)-gons as an open problem.

@
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Figure 6: Foldability within regular 2k-gons

Theorem 4.1 Let P be a regular (2k + 1)-gon.
If 1 < b°, then L is always-foldable.

Theorem 4.2 Let P be a regular (2k + 1)-gon.
If I > w, then L is not-always-foldable. Refer to
Figure 7.

5 Conclusion

As the segment length [ of an [-ruler confined
in a polygon P increases from 0 to its maxi-
mum value, one expects that for all sufficiently
small [, the ruler is always-foldable and that for
some critical value of [, the ruler become not-
always-foldable. This paper has shown that in
a regular 2k-gon P, the always-foldability prop-
erty alternates three times, from holding, to not



Figure 7: Foldability within regular (2k + 1)-
gons

holding, and finally back to holding. This an-
swers in the affirmative the question of [5] as to
whether interesting alternation phenomena oc-
cur for polygons other than equilateral triangles,
where alternation occurs four times.

For regular 2k-gons, we exhibited the criti-
cal values of [ for which the transitions between
always-foldability and not-always-foldability, or
the reverse, occur.

For regular (2k + 1)-gons, k£ > 1, we showed
that all such transitions occur between »¢ and
w. We leave as an open problem the number of
transitions that occur in this range, and their
corresponding critical values.
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