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Abstract. A chain is a sequence of rigid rods or links consecutively
connected at their endjoints, about which they may rotate freely. A pla-
nar chain is a chain whose rods lie in the plane, with rods allowed to
pass over one another as they move. A conver obtuse polygon P is a con-
vex polygon with each interior angle not less than 7/2. We consider the
following reconfiguration problem.

Given: an n-link planar chain I" confined inside a convex obtuse polygon
P whose sides are all longer that the longest link of I'; a point p € P;
and an endjoint of I'. Question: Can I' be moved within P so that the
specified endjoint of I' reaches p?

We give a necessary and sufficient condition for a “yes” answer, and in
this case we further give an algorithm for reaching p. The necessary and
sufficient condition is independent of the initial configuration of I' and
is checkable in time proportional to the number of links in the real RAM
model of computation.

1 Introduction

A linkage is a collection of rigid rods or links, with links connected together at
their endjoints. A planar linkage has its links confined to the plane; links may
cross over one another and the locations of certain joints may be required to
remain fixed to the plane. A chain is a linkage consisting of a sequence of links
consecutively connected at their endjoints.

The reachability problem for a linkage I' constrained to lie inside a region R
is to determine, given a point p € R and a joint A; of I', whether I" can be
moved within R so that A; reaches p.

This paper solves the reachability problem for n-link planar chains confined
within convex obtuse polygons. We define a convez obtuse polygon to be a convex
polygon whose internal angles each measure 7/2 or more. In particular, our paper
gives an algorithm that decides whether a given endjoint of a chain confined
within a convex obtuse polygon P can reach a given point p € P and that
produces a sequence of moves that bring the endjoint to p when p is reachable.
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Fig. 1. Notation for chains.

The decision phase of the algorithm runs in time proportional to the number of
links in the real RAM model of computation. Our results represent a significant
improvement to the known results for this type of problem, as we explain further
below.

Reachability and reconfiguration problems for linkages have been investigated
by several researchers [3, 2,5, 12, 1, 11, 6, 7, 4, 8, 9]. See Whitesides [16] for a
survey.

Reconfiguration problems are often at least NP-hard when the number of
degrees of freedom is not bounded [13, 4, 15]. To find fast reconfiguration algo-
rithms, it is essential to understand what relationships between moving objects
and their environments give rise to problems that are quickly solvable in spite
of having many degrees of freedom.

At present, algorithms for fast reconfiguration of n-link chains have been
given for very simple confining regions: circles, squares, equilateral triangles, or
no confining region at all.

In this paper, we consider chains confined by arbitrary convex obtuse poly-
gons. We require that the minimum side length of the confining polygon be
greater than the length of the longest link in the chain. The results of [6] and
[7] also require that the longest chain link be no longer than the side of the
confining square.

For references on algorithmic, geometric motion planning in general, see for
example Latombe’s book [10] and books edited by Schwartz and Yap [13], and
by Schwartz, Sharir and Hopcroft [14].

Before proceeding further, we introduce some terminology and notation, il-
lustrated in Fig. 1. In an n-link chain I" with consecutive joints Ag, ..., A,, the
initial and final joints Ay and A,, are called endjoints; the others are called inter-
mediate joints. The link between A;_; and A; (0 < ¢ < n) is denoted by L;, and
the length of L; is denoted by !;. The angle at intermediate joint A; determined
by rotating L; about A; counterclockwise to bring L; to L;41 is denoted by «;.
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Fig. 2. Examples of normal forms.

An intermediate joint A; is called a straight joint if a; = m; otherwise, A; is called
a bending joint. The subchain of I" with joints 4;, A;41, ..., 4;(i < j), is denoted
by I'(i,7). Subchain I'(¢, j) is said to be straight, denoted by [A4;, ..., A;], if its
links form a straight line segment with all interior joints straight.

We denote the distance between two points z,y by d(z,y); the line they
determine by l(z, y); the line segment they determine by zy; and the length of
this segment by |zy| = d(z,y).

We regard a polygon P as a 2-dimensional closed set; we denote the boundary
of P by OP and the length of the shortest side of P by spyi,. For a planar closed
region @, we use vmax(p) to denote a point of @ farthest from p, and dmax(p)
to denote d(p, vmax(p)). Obviously, if @ is a polygon, vmax(p) is a vertex of Q
farthest from p.

Let I'" be an n-link chain confined in an arbitary planar closed region ), not
necessarily polygonal or even convex, and let p € Q. It is easy to verify that if p
is reachable by the endjoint A, , then the following condition (*) must hold:
Condition () Forallie {1,...,n}, ; — E?:H_l [ < dmax(p) . (*)

Note that () is independent of the initial configuration of I'. Also (%) can
be tested in time proportional to the number of links in the real RAM model of
computation whenever dmax(p) is given.

In [7], Kantabutra proved that if I' is confined to a square whose side is
longer than the longest link, () is also sufficient for Ay, to reach p. Our paper
generalizes this result from squares to arbitrary convex obtuse polygons.

Assumptions: From now on, we assume that I" denotes an n-link chain confined
inside a convex obtuse polygon P whose shortest side sy, is at least as long as
the longest link of I'. Joints of I" may lie on §P.

The rest of this paper is organized as follows. Section 2 shows that any chain
can be brought to certain normal form configurations to be defined. Section 3
shows how to determine the points reachable by the endjoints of a chain and
presents an algorithm to bring an endjoint to any given reachable point. The
algorithm moves the chain in turn through the various normal forms given in
Sect. 2. Section 4 concludes.



2 Normal Forms

We define three special configurations for I" as follows (refer to Fig. 2).

Normal Forms: [" is in Rim Normal Form, denoted RNF| if all its joints lie
on §P. I' is in k-Bending Rim Normal Form, denoted k-BRNF| if there exist
k joints A;,, ..., A;, such that A;,,..., A;, lie on §P, while any intermediate
joints not among these k are straight. Finally, I" is in Tail Normal Form with
indez i,, denoted TNF-i,, if there exists ig, ¢g # n, such that A,,..., A;, lie on
OP, A;, lies at a vertex of P, and subchain I'(ig, n) is straight.

Note that by the above definitions, I" is in k-BRNF for some k if and only
if all intermediate joints of I" are either straight or on P; I' is in n-BRNF if
and only if I" is in RNF; and I" is in 0-BRNF if and only if I" is a straight chain
with no joints on §P.

Bringing a chain to these normal forms plays a crucial role in our reachability
algorithm, described in Sect. 3. The rest of this section elaborates on moving a
chain to normal forms. Section 2.1 shows that any chain can be brought to RNF,
and Sect. 2.2 shows how to bring a chain already in RNF to TNF-¢; for some ig.

Before we proceed to the subsections, we state two essential lemmas. The
first gives a key property of convex obtuse polygons and the lemma that follows
it demonstrates the utility of RNF.

Lemmal. Let z,y be points on nonadjacent sides of convex obtuse polygon P.
Then | Y |> Smin -

One consequence of the above lemma is the property for chains in RNF given
by the next lemma.

Lemma 2. For an n-link chain I' in RNF, any joint of I' can be moved along
any path on OP while keeping I' in RNF.

Here, notice that the assumptions that P is convex obtuse and that I has
no long links are crucial, as illustrated in Fig. 3.

2.1 Bringing a Chain to RNF

The key idea of the algorithm for bringing a chain to RNF is to use k-BRNF as
a bridge. More specifically, we will show that if I" takes the form [Aq, ..., A,]
with Ag and A, on OP (a special 2-BRNF), then I' can be brought to 3-BRNF
while keeping one of its endjoints fixed and while keeping the other on 0P. By
applying this manoeuvre to various subchains of I, it is possible to bring I" to
4-BRNF, to 5-BRNF, ..., and finally, to n-BRNF, which is just RNF.

The algorithm consists of three main phases, which we describe in the next
three lemmas. Recall that the Assumptions of Sect. 1 hold throughout.

Figure Conventions: In some multi-part figures, the parts are intended to show
possibilities for configurations, but the chain depicted may not be the same in
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Fig. 3. The Assumptions are essential.

Fig. 4. An initial configuration (a) and two possible final configurations (b) and

(c) for Lemma 2.3
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Fig. 5. An initial configuration (a) and two possible final configurations (b) and
(¢) for Lemma 2.4. In (b) and (c), some joints are folded and some links overlap.
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Fig. 6. The initial (a) and final (b) configurations for Lemma 2.5

all parts of the figure. Also, an unfilled circle o at a joint in a figure indicates
that the joint is to be kept fixed during some motion of I".

Lemma 3. Suppose joints Ag, ..., Ap_1 of I' lie on OP. Then with Ag, ..., Ap_1
kept fized, I' can be moved to a configuration in which either Ay lies on OP or
some Ap, lies on OP, where m > k and I'(k, m) is straight. See Fig. 4.

Lemmad4. Suppose that Ay, ..., A; and A, lic on OP and that [Ay, ..., Ag] and
[Ag, ..., Ay are straight, for some | < k < n. Then while keeping A,, fized and
I'(0,1) in RNF, and while keeping [Ai, ..., Ax] and [Ag, ..., An] straight, I can
be brought to a configuration in which Ay either lies on OP or has ap = 7. See
Fig. 5.

Lemma 5. Suppose that Ag, ..., A; and Ay, lie on OP and that I'(1, n) is straight,
and suppose that k satisfies | < k < n. Then there exists an I" < | such that T’
can be brought to a configuration in which Ag,..., A} and Ay lie on OP and
I'(l',k) is straight. Furthermore, during this reconfiguration, A, can be kept
fized, [Ag, ..., An] can be kept straight, and I'(0,!') can be kept in RNF. See
Fig. 6.

Corollary 6. Suppose, as in Lemma 5, that Ag,..., A; and A, lie on OP and
that I'(I,n) is straight. Then I' can be brought to RNF while A, is kept fized.

We are now ready to show that any chain can be brought to RNF.

Theorem 7. Any n-link chain I' confined inside a convex obtuse polygon whose
shortest side is at least as long as the longest chain link can be brought to RNF.

Proof. We give an algorithmic proof. The algorithm consists of an initial step, in
which Ag is brought to § P, followed by a main step, in which the lowest indexed



joint not on JP is brought to dP. This main step is repeated until all joints have
been moved to JP.

initial step: To bring Ag to 0P, proceed as follows. For k = 1,2,.. ., fix A} and
rotate [Ag, ..., Ax] about Aj. Repeat this process until either Ag hits 9P or the
whole chain " becomes straight. If I" straightens before Ag hits 0P, complete
this initial step by sliding the straightened " along the line it determines towards
OP until Ag hits 0P.

main step: For an Ay not on 0P, with £ > 0 and I'(0, k— 1) in RNF, bring Ay, to
OP as follows. In accordance with Lemma 3, keep Ag, ..., Ar_1 fixed and move
I'" to a configuration in which either Ay lies on 0P or A,, for some m > k lies
on 0P, where [Ag, ..., A.] is straight.

In the latter case, where some A, moves to 0P and I'(k,m) is straight,
continue the step by fixing A, ..., 4, and moving I'(0, m) in accordance with
Lemma 4 so that either Ay hits 0P or ay straightens to «. If «y, straightens to
m, again continue the step by fixing A,, ..., 4, and moving I'(0, m) to RNF in
accordance with Corollary 6. This puts Ay on §P.

iteration steps: Once Ay, ..., Ap_1, Ay lie on 0P, repeat the main step to bring
the Agy1,..., Ap in turn to OP. ad

2.2 Bringing a Chain to TNF-¢,

Theorem 8. Let I' be an n-link chain confined within a conver obtuse polygon
P. Suppose there exists a point p € P, a vertex v of P, and an indezx ig < n
such that d(p,v) > the sum of the lengths of the links in I'(ig,n). Then I' can
be brought to TNF-ig with A;, at v.

Sketch of the Proof: In accordance with Theorem 7, bring I" to RNF. Then,
keeping I" in RNF, move A;, around 0P to v in accordance with Lemma 2.

Let piy,Pi 41, --.,Pn be the points that A; , Aij41,..., An nOW occupy, re-
spectively, as shown in Fig. 7. Note that by the triangle inequality, the prop-
erty of ig specified in the statement of the lemma implies that for any k& with
iop < k < n, d(p,pr) > ly4+1 + -+ + l,. This inequality ensures the validity of
certain operations described below.

To begin, bring [A,_1, A,] onto the line segment p,_1p. To do this, fix
Ag,...,A,_1 and rotate L, about p,_1 until L, and p become collinear. See
Fig. 7.

Next, straighten I'(n—2, n) and move it onto p,_ap as follows. Fix Ag, ..., Ap—2
and, while keeping L, and p collinear, rotate L,_; about its endjoint A, _» at
Pr—o until [A,_o, A,_1, A,] and p become collinear. See Fig. 8.

Repeat this process until I'(ip, n) is straight and lies on vp with 4; at v. O

3 Reachable Points

Now we give our main result.



Fig. 8. Straightening I'(n — 2, n) onto pr_2p.

Theorem 9. Let I' be an n-link chain confined within a convexr obtuse polygon
P whose shortest side is at least as long as the longest link of the chain. Then (x)
15 a necessary and sufficient condition for p to be reachable by A, . Furthermore,
if p is reachable by A,, then it is possible to compute a sequence of motions
bringing A, to p.

Sketch of the Proof: The necessity of condition (k) is clear. Now we show the
sufficiency by giving an algorithm to produce a sequence of motions to bring A,
to p when (x) is satisfied. This will complete the proof of the theorem.

Let 725 be the least index such that

E l] S dmax(p) .

j=to+1

Note that taking ¢ = n in (*) gives l,, < dmax(p), so0 ¢g < n. In accordance with
Theorem 8, bring I' to TNF-ig with A;, at vmax(p) = v.

If ig = 0, then I' is now straight. Slide I" along I(v,p) towards p until A,
reaches p. If ig > 0, we consider two cases, ;; < dmax(p) and Ly > dmax(p).
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Fig. 9. Case l;; < dmax(p)-

case iy < dmax(p): Keeping Ao, ..., A;,—1 fixed and keeping [A4;,, . . ., A,] straight
and collinear with p, rotate L;, about A; 1 until A, reaches p or «;, straightens
to m. See Fig. 9(a).

If A, reaches p first, then we are done. If o, straightens to 7 as shown in
Fig. 9(b), then clearly l;; + -- -+ 1, < d(p;,—1,p). While keeping I'(0,4p — 1) in
RNF and while keeping [A;,—1, A4, - . -, Ayn] straight and collinear with p, move
A;, -1 along 0P towards v. We claim that A, will reach p before A;,_1 reaches
v during this process.

Suppose otherwise, i.e., that A;,_1 reaches v first. By definition of iy, we
have that l;; + -+ l, > dmax(p) = d(v,p). Since we know from the previous
paragraph that the left side of this inequality is less than d(p;,—1, p), there exists
some intermediate configuration having A;,—1 at some ¢;,_; € 0P and having
[Aig—1, Aig, - - -, Apn] straight and collinear with p, such that {;, + - -+ [, =
d(ti,—1,p). This implies that A, lies at p in this intermediate configuration, a
contradiction.

case l;; > dmax(p): Fixing Ao, ..., Ai,—1 and keeping [A;,, ..., A,] straight and
collinear with p, rotate L;, about A;,_; until A, reaches p or a;, = 0 or A;,
hits P. The remaining details are similar to those of the previous case. a

4 Conclusions

We have studied the reachability problem of planar chains confined within convez
obtuse polygons, a notion of our invention. For a planar chain I" within a convex
obtuse polygon P whose shortest side is longer than the longest link of I', we
have characterized the reachable points of the endjoints of I" and have presented
an algorithm for reconfiguring I" within P so that a specified endjoint reaches
a given reachable point. This significantly extends the best known results for



this type of problem and contributes to the goal of understanding the geometry
of chains and their constraining environments; in particular, it contributes to
finding relationships that ensure that typically hard reconfiguration problems
become easy.
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