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Abstract. For n ∈ , we consider the problem of partitioning the interval [0, n) into k subintervals
of positive integer lengths `1, . . . , `k such that the lengths satisfy a set of simple constraints of the form
`i �ij `j where �ij is one of <, >, or =. In the full information case, �ij is given for all 1 ≤ i, j ≤ k. In
the sequential information information case, �ij is given for all 1 < i < k and j = i ± 1. That is, only
the relations between the lengths of consecutive intervals are specified. The cyclic information case is
an extension of the sequential information case in which the relationship �1k between `1 and `k is also
given. We show that all three versions of the problem can be solved in time polynomial in k and log n.
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1 Introduction

We consider problems of realizing a sequence having restrictions on its sum and the relative sizes of
its terms. In particular, we consider the following problem: Given positive integers n and k, partition
[0, n) into k subintervals of positive integer lengths `1, . . . , `k such that the lengths satisfy a set of simple
constraints of the form `i �ij `j where �ij is one of <, >, or =. In the full information case, �ij is given
for all 1 ≤ i, j ≤ k. In the sequential information information case, �ij is given for all 1 ≤ i ≤ k and
j = i ± 1. The cyclic information case is an extension of the sequential information case in which the
relationship �1k between `1 and `k is also given.

For an example of the full information case observe that, for n = 12, the comparison matrix
in Fig. 1 is satisfied by the sequences 〈`1, . . . , `4〉 ∈ {〈1, 1, 8, 2〉, 〈1, 1, 7, 3〉, 〈1, 1, 6, 4〉, 〈2, 2, 5, 3〉}. On the
other hand, for n = 6 no solution is possible since the smallest sequence satisfying the comparison matrix
is 〈1, 1, 3, 2〉 and 1 + 1 + 3 + 2 = 7.

i\j 1 2 3 4
1 = = < <
2 = = < <
3 > > = >
4 > > < =

Figure 1: A comparison matrix for the full information case.
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The motivation for studying these types of problems comes from the study of the perception of
musical rhythm. Mathematically, a rhythm is a partition of [0, n) into k open intervals called off-sets

and k integer points called on-sets (see References [6, 7, 8, 1, 9]). Musically, we interpret the on-sets
as points in time (modulo n) when a percussion instrument is to be struck. Experimental evidence
shows that humans often do not distinguish between rhythms with the same rhythmic contour, i.e. the
sequence that specifies whether one off-set is longer than, shorter than or equal to the previous off-set
(see References [2, 3, 5, 4]). It then becomes a natural question to ask whether and how a given rhythmic
contour can be realized.

In this paper, we give polynomial (in k and log n) time algorithms for all three versions of the
problem under study. In particular, for the full information case we give an algorithm that runs in
O(k2 +logc n) time, for the sequential information case we give an algorithm that runs in O(k4 +logc n)
time, and for the cyclic information case we give an algorithm that runs in O(k5 + logc n) time. The
exponent c is given by the time it takes to compute the residue n mod k and is not more than 2.

All versions of this problem reduce to special cases of Subset-Sum with multiplicity, where there
are special constraints on the allowable multiplicities. The efficiency and correctness of our algorithms
for solving these problems rely primarily on properties of modular arithmetic. Throughout this paper,
we use some standard number-theoretical notations: k = {0, . . . , k − 1}, k = k \ {0}, = ∞,

= ∞, and +
k is the group whose elements are k and whose operator is addition modulo k.

The remainder of the paper is organized as follows. In Section 2 we given an algorithm for
the full information case. In Section 3 we given an algorithm for the sequential information case. In
Section 4 we give an algorithm for the cyclic information case. Finally, Section 5 summarizes our results
and concludes with directions for future research.

2 Full Information

In this section we consider the full information case in which n and k are given and, for each 1 ≤ i, j ≤ k
we are told either that `i < `j , `i > `j or `i = `j . We assume that this information is given (implicitly or
explicitly) in the form of a comparison matrix � so that we can determine in constant time which of the
three cases applies to `i and `j . The algorithm we describe will either find a sequence `1, . . . , `k ∈ such

that
∑k

i=1 `i = n and `i �ij `j for all 1 ≤ i, j ≤ k or the algorithm will conclude that no such sequence
exists.

We first observe that, because we are given the entire comparison matrix �, we can run any
reasonable sorting algorithm to partition 1, . . . , k into m ≤ k equivalence classes C1, . . . , Cm where
(1) `i = `j if i and j belong to the same class and (2) `i < `j if i ∈ Ci′ , j ∈ Cj′ and i′ < j′.

Refer to Fig. 2. Now our problem is to find v1, . . . , vm ∈ such that vi < vi+1, for all 1 ≤ i < m
and

∑m
i=1 vi|Ci| = n. Then by assigning li = vi′ for all i ∈ Ci′ we obtain a solution to the original

problem. The restriction vi < vi+1 is slightly inconvenient and we can remove it with a rewording of the
problem. Let t1 = k, and let ti = ti−1 − |Ci−1| for 1 ≤ i ≤ m. Then it suffices to find w1, . . . , wm ∈
such that

m
∑

i=1

witi = n . (1)

From w1, . . . , wm we can compute the value of vi as vi =
∑i

j=1 wj . That is, each value wi represents
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Figure 2: The relationship between v1, . . . , vk and w1, . . . , wk. The area under the curve is n.

the increase from vi−1 to vi.

At this point it is tempting to apply dynamic programming immediately to solve (1) directly.
However, this would lead to an algorithm with running time O(kanb), for some constants a and b. In
general, this is superpolynomial in the input size since the input is a k × k comparison matrix and an
integer n, all of which can be encoded in O(k2+log n) bits. In the following, we describe a representation
that allows us to reduce the dependence on n.

Let

Si =







i
∑

j=1

wjtj : w1, . . . , wi ∈







.

Our algorithm uses dynamic programming to compute Si for i = 1, . . . , m. However, since the set Si

has infinite size, we require a compact representation for it. To obtain a nice representation, we observe
that, because t1 = k, if Si contains x then Si also contains x + k, x + 2k, x + 3k, and so on. Thus, we
can represent Si by storing, for each y ∈ k, the value

Di(y) = min({∞} ∪ {x : x ≡ y (mod k) and x ∈ Si}) .

Lemma 1. Given Di−1, Di can be computed in O(k) time.

Proof. We show that a careful reordering of the elements of k allows us to compute Di by a sequence
of k/r lower envelope computations each taking time O(r); here, r = k/ gcd(k, `i) is the length of the
orbit of `i in the group +

k . The example of the lower envelope in Fig. 3 may be useful in what follows.

Define qc,j = (c + jti) mod k. We will show how to compute Di(y) for all y in

q0 = {q0,1, q0,2, q0,3, . . . , q0,r}

in O(r) time. The same algorithm can be used for the sets q1, q2, . . . , qk/r to give a total running time
of O(r)× k/r = O(k). The main observation we use is that

f(j) = Di(q0,j) = min{Di−1(q0,(j−x) mod k) + x`i : x ∈ k} . (2)

That is, the univariate function f(j) is the lower envelope of k half-lines, where the xth half-line
is given by the equation y = (Di−1(q0,x) + (j − x)`i) mod k, j ≥ 1. Since the slope, `i, of all k half-
lines is identical and positive and their left endpoints are sorted (by j) the lower envelope can easily be
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0 6 12 18 4 10 16 2 8 14

j

0 + j6 mod 20

Figure 3: A possible lower envelope used for the set q0, with k = 20 and `i = 6. The empty circles show
values in Di−1 and the filled disks show values in Di.

computed in O(r) time by scanning from left to right and keeping track of the current minimum line.
This completes the proof.

Note that the algorithm implied by Lemma 1 is actually very simple, and is given by the following
pseudocode

1: r ← gcd(k, `i)
2: for c = 0, . . . , k/r − 1 do

3: m←∞
4: for j = 1, . . . , r do

5: m← min{m, Di−1((c− j`i) mod k) + j`i}
6: end for

7: for j = 0, . . . , r − 1 do

8: Di((c + j`i) mod k)← m
9: m← min{m, Di−1((c + j`i) mod k)}+ `i

10: end for

11: end for

Once we have computed Dm, we can test if n is in the set Sm by checking if Dm(n mod k) ≤ n.
This completes the proof of our first result:

Theorem 1. The realization problem with full information can be solved in O(k2 + logc n) time.

3 Sequential Information

Next we consider the realization problem given only sequential information. That is, for each i ∈
{1, . . . , k − 1} we are told only that `i > `i+1, `i < `i+1 or `i = `i+1. Our approach is similar to that
of the full information case. By scanning for �i,i+1 for i = 1, . . . , k − 1 we determine a set of m ≤ k
equivalences classes C1, . . . , Cm over 1, . . . , k such that (1) li = lj if i and j belong to the same class and
(2) if i ∈ Ci′ and j ∈ Ci′+1 then either li < lj or li > lj , as indicated by �.
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Let t1 = k, and let ti = ti−1 − |Ci−1| for i > 1. Let s1 = +1 and, for i > 1, let si = +1 if the
elements in Ci should be greater than the elements in Ci−1 and let si = −1 if the elements in Ci should
be less than the elements in Ci−1. Then, our problem is to find w1, . . . , wm ∈ such that

m
∑

j=1

wjsjtj = n (3)

and
i

∑

j=1

wjsj ≥ 1 for all i ∈ {1, . . . , m}. (4)

We say that w1, . . . , wm are admissible if they satisfy (4).

Given w1, . . . , wm satisfying (3) and (4), we can compute the value of li ∈ Ci′ as li =
∑i′

j=1 wjsj .
That is, the value wj represents the difference in the values in Cj−1 and Cj , this difference being an
increase if sj = +1 and a decrease if sj = −1.

As before, because t1 = k and s1 = +1, we can implicitly represent the set

Si =







i
∑

j=1

wjsjtj : w1, . . . , wi ∈ and w1, . . . , wi are admissible







by maintaining, for each y ∈ k the value

Di(y) = min {x : x ∈ Si and x ≡ y (mod k)} .

However, unlike the case for full information, the function Di−1 is not sufficient for computing the
function Di. In particular, which values of wi are admissible depends on

∑i−1
j=1 wjsj , which can be

different for each value of y. Instead, we maintain a two-dimensional table

Di(y, h) = min






{∞} ∪











there exists admissible w1, . . . , wi such that

x ≡ y (mod k) :
∑i

j=1 wjsjtj = x and
∑i

j=1 wjsj = h
















.

Next we consider exactly how much information must be stored in order to maintain the table
Di. Since y ∈ k we know that the first dimension (y) of the table is of size k. The following lemma
shows that the second dimension (h) is also not too big.

Lemma 2. Let H = k2 + 1. If h ≥ H then Di(y, h)− kti ≥ Di(y, h− k).

Proof. Let w1, . . . , wi be any admissible sequence that defines Di(y, h). That is,
∑i

j=1 wjsj = h and
∑i

j=1 wjsjtj = Di(y, h). Let i′ ≤ i be the largest index such that wi′ ≥ k + 1 and si′ = +1. The
existence of i′ is guaranteed by the pigeonhole principle and the assumption that h > H. Consider the
sequence w′

1, . . . , w
′

i where

w′

j =

{

wj − k if j = i′

wj otherwise

Then
i

∑

j=1

w′

jsj =
i

∑

j=1

wjsj − k = h− k
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and
i

∑

j=1

w′

jsjtj =
i

∑

j=1

wjsjtj − kti′ ≤
i

∑

j=1

wjsjtj − kti .

Thus, Di(y, h − k) < Di(y, h) − kti provided that w′

1, . . . , w
′

i is admissible. To see that w′

1, . . . , w
′

i is
admissible we observe that, if this were not the case, then there must exist some index r > i′ such that
∑r

j=1 wjsj ≤ k. But then, by the pigeonhole principle there must exist some index i′′ > r > i′ such
that wi′′ > k and si′′ = +1. But this is not possible since i′ was chosen to be the largest index with this
property.

Lemma 2 shows that in computing Dm we need only consider values of h ≤ H. This is because
for any value x that appears as x = Dm(y, h) for h > H, there is a value z < x that appears as
z = Dm(y, h′) with h′ ≤ H. Since Dm(y, h′) implicitly represents the set {z, z + k, z +2k, . . .}, the value
x is represented by Dm(y, h′).

Thus, to obtain our final answer, we need only compute a table Dm containing Hk entries.
However, a small technicality occurs because computing Dm from Dm−1 requires (as we shall see)
looking up table entries of the form Dm−1(y, h) where H < h < H +k. The easiest way to deal with this
is to use a table of size (H +k)k to store Dm−1. But then to compute Dm−1 from Dm−2 we require table
entries of the form Dm−2(y, h) where H < h < H + 2k, and so on. In general, the table Di will have
(H +k(m− i))k entries so that we can lookup any value Di(y, h) with y ∈ Zk and 1 ≤ h ≤ H +(m− i)k.
Note that this only increases the sizes of the tables by a constant factor, and the following lemma shows
that we can compute these tables in time proportional to their size.

Lemma 3. Given Di−1, Di can be constructed in O(Hk) time.

Proof. We first describe the algorithm for the case si = +1. The algorithm for the case si = −1 is
similar except for a small modification described at the end of the proof.

As in the proof of Lemma 1 we reduce the problem to a sequence of lower-envelope computations.
As before, we begin by splitting the elements of k into the sets q0, . . . , qk/r where r = gcd(k, ti) and
qc,j = (c + jti) mod k. Using exactly the same scanning algorithm used in Lemma 1 we can compute
Di(q0,j , j) for all 1 ≤ j ≤ H + (m− i)k in O(H) time. Again, this is because the univariate function

f(j) = Di(q0,j , j) = min{Di−1(q0,j−x, j − x) + xti : 1 ≤ x ≤ j}

is the lower envelope of H +(m− i)k parallel half-lines. By repeated applications of the above procedure
we can compute Di(q0,j , j + c) for all 1 ≤ j ≤ H and all 0 ≤ c < r in O(Hr) time. Finally, by repeating
that procedure k/r times we compute entire table Di(y, h), for all y ∈ Zk and all 1 ≤ h ≤ H in O(Hk)
time, as required.

The case si = −1 is handled in a symmetric manner except that now the function f is defined
as

f(j) = Di(q0,j , j) = min{Di−1(q0,j+x, j + x)− xti : 1 ≤ x ≤ ∞} .

The difficulty with this formulation is that f(j) is the lower envelope of an infinite number of lines.
However, it follows immediately from Lemma 2 that

f(j) = Di(q0,j , j) = min{Di−1(q0,j+x, j + x)− xti : 1 ≤ x ≤ H − j + (m− i + 1)k} .

Thus, we can compute Di by taking the lower envelope of H + (m − i + 1)k parallel half-lines. This
completes the proof.

6



We have just shown that we can incrementally construct the sets S1, . . . , Sm in O(Hk) = O(k3)
time per set. This yields our second theorem:

Theorem 2. The realization problem with sequential information can be solved in O(k4 + logc n) time.

4 The Cyclic Information Case

In this section we consider the cyclic version of the realization problem. The cyclic version is identical
to the sequential version except that one additional constraint, namely the relationship between `1 and
`k, is given. We show that the cyclic version of the problem can be solved using O(k) applications of
the algorithm for the sequential version of the problem.

Let t1, . . . , tm and s1, . . . , sm be defined as in the previous section and suppose that there exists
w1, . . . , wm ∈ such that

m
∑

j=1

wjsjtj = n ,

i
∑

j=1

wjsj ≥ 1 for all i ∈ {1, . . . , m} ,

w1s1 ≤
i

∑

j=1

wjsj for all i ∈ {3, . . . m− 1} ,

and

w1s1 <
i

∑

j=1

wjsj for all i ∈ {2, m} .

Then, rearranging the above equations we get the equivalent statements

m
∑

j=2

wjsjtj = n− w1t1 = n− w1k (5)

and
i

∑

j=2

wjsj ≥ 0 for all i ∈ {3, . . . , m− 1} . (6)

i
∑

j=2

wjsj ≥ 1 for all i ∈ {2, m} . (7)

Note that Equations (5)–(7) are almost identical to Equations (3) and (4) and that the existence
of w2, . . . , wm satisfying these equations can be tested in O(k4 + logc n) time using the algorithm from
the previous section. This means that, if there exists a solution to our cyclic information problem in
which the elements of class C1 are assigned a value not exceeding any value assigned to any other class
Ci, i 6= 1, then we can find this solution in O(k4 + logc n) time. However, if there exists any solution
then at least one of the classes Ci must be assigned a minimum value in this solution. Thus, by running
the algorithm from the previous section m times we can determine if there exists any solution.

Theorem 3. The realization problem with cyclic information can be solved in O(k5 + logc n) time.
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5 Conclusions

We have considered the problem of partitioning the interval [0, n) into k positive integer length subinter-
vals satisfying some simple order requirements. The types of requirements we have considered include
full information, in which the relative length of each pair of subintervals is given, sequential information,
in which only the relative lengths of consecutive subintervals is given, and cyclic information in which
the relationships between consecutive subintervals and the first and last subinterval are given. Our
algorithms run in O(k2 + logc n), O(k4 + logc n) and O(k5 + logc n) time, respectively.

The most general version of this class of problems is as follows: Given any subset of the order
matrix �, find a sequence l1, . . . , lk ∈ that respects all relations in this matrix and whose sum is n.
This remains an open problem.

Another problem, whose solution would be useful in performing perceptual tests on rhythms,
is that of selecting uniformly at random from all partitions of [0, n) that satisfy some sequential, cyclic
or total information constraints. Such an algorithm would be useful for testing hypotheses of the form:
“All rhythms of length n and having k onsets that satisfy some set of constraints sound alike to most
listeners.”

The sequential and cyclic information problems we study are motivated by the 3-level (+ − 0)
contour representation studied by Dowling [2]. This representation has been generalized to multi-level
contours [5, 4] where we are given, for each li, a range relative to li−1. For example, we may be told
that li ∈ [li−1 + 50, li−1 + 100]. The problem is then to find l1, . . . , lk that satisfy all these constraints
and whose sum is n.
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