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An Efficient Fixed Parameter Tractable Algorithm for
1-Sided Crossing Minimization1

Vida Dujmović2 and Sue Whitesides2

Abstract. We give anO(ϕk · n2) fixed parameter tractable algorithm for the 1-SIDED CROSSING MINIMIZA-
TION problem. The constant ϕ in the running time is the golden ratio ϕ = (1+√5)/2 ≈ 1.618. The constant
k is the parameter of the problem: the number of allowed edge crossings.
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1. Introduction. A common method for drawing directed acyclic graphs is to produce
layered drawings or hierarchical drawings as introduced by Tomii et al. [22], Carpano
[1], and Sugiyama et al. [21]. In these drawings the vertices are arranged on two or
more “layers”, i.e. on parallel horizontal lines, and edges are drawn straight between
vertices on adjacent layers. Edges between vertices on the same layer are not permitted,
and no point between layers may lie on more than two edges. Layouts of this kind have
applications, for example, in visualization [5], in DNA mapping [25], and in row-based
VLSI layout [17].

The readability of layered drawings is believed to depend crucially on the number of
edge crossings. Once vertices have been assigned to layers, this number is determined by
the orderings of the vertices within the layers. Unfortunately, the problem of choosing
vertex orderings that minimize the number of edge crossings in layered drawings is in
fact an NP-complete problem [14] even if there are only two layers [12]. The problem
of choosing vertex orderings that minimize the number of edges whose removal leaves
the graph planar is also NP-complete, even for two layers [11].

Most techniques for producing layered drawings first assign vertices to layers (some-
times this is determined by the context), and then do a layer-by-layer sweep. A per-
mutation π1 for the vertices in the top layer L1 is chosen and fixed. Then for each
succeeding layer Li , a permutation πi is sought that keeps to a minimum the number of
edge crossings among the edges between Li−1 and Li .

A key step in this method is to minimize crossings between two adjacent layers
when the ordering on one layer is fixed. This problem is called 1-SIDED CROSSING

MINIMIZATION. Unfortunately, the 1-SIDED CROSSING MINIMIZATION problem is also
NP-complete [12]. The problem is NP-complete even for graphs with only degree-1
vertices in the fixed layer and vertices of degree at most 4 in the other layer [18], i.e. for
a forest of 4-stars.
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The 1-SIDED CROSSING MINIMIZATION problem is the focus of this paper. Many
heuristics have been proposed (e.g. [2], [7], [10], [12], [21], [23], and [24]). Jünger
and Mutzel [16] gave an exact integer linear programming algorithm for the 1-SIDED

CROSSING MINIMIZATION problem. They also surveyed heuristics and made performance
comparisons with optimal solutions generated by their methods. They reported that the
iterated barycenter method of Sugiyama et al. [21] performs best in practice. However,
from a theoretical point of view the median heuristic of Eades and Wormald [12] is a linear
3-approximation algorithm, whereas the barycenter heuristic is a�(

√
n)-approximation

algorithm. The most recent heuristic based on the computation of feedback arc sets and
experimental results has been reported in [4].

When only a small number, k, of edge crossings is acceptable, then an algorithm for 1-
SIDED CROSSING MINIMIZATION whose running time is exponential in k but polynomial
in the size of the graph may be useful. The theory of parameterized complexity [6]
addresses complexity issues of this nature, in which a problem is specified in terms of
one or more parameters. Such a problem with input size n and parameter size k is fixed
parameter tractable, or in the class FPT, if there is an algorithm to solve the problem in
f (k)·nα time, whereα is a constant independent of k and n, and f is an arbitrary function
dependent only on parameter k. A problem in FPT is thus solvable in polynomial time
for any fixed value of k.

Instances of the 1-SIDED CROSSING MINIMIZATION problem for dense graphs are of
little interest either from a practical or a theoretical point of view. From the practical
point of view, an instance with a high number of crossings in its optimal drawing, is
hardly worthwhile optimizing since the resulting drawing will be unreadable anyway.
From the theoretical point of view, not only is the problem still NP-complete for very
sparse graphs [18], but in addition Eades and Wormald [12] proved that the ratio of
crossings in an arbitrary ordering to crossings in an optimal ordering approaches 1 if
graphs become dense.

The more general h-LAYER CROSSING MINIMIZATION problem as well as the related h-
LAYER PLANARIZATION problem have been studied from the fixed parameter tractability
point of view in [9]. Here h represents the number of layers and planarization means
to remove some number k of edges so that the remaining graph can be drawn without
crossings (see [11]). According to [9], bounded pathwidth techniques prove both these
general problems (which include 1-SIDED CROSSING MINIMIZATION) are in the class
FPT. Unfortunately, the pathwidth-based approach is only of theoretical interest, since
the running time of the algorithms is O(232(h+2k)3 n). In [8], other FPT techniques are
used to derive an O(k ·6k+|G|)-time algorithm for 2-LAYER PLANARIZATION of a graph
G, and an O(3k · |G|)-time algorithm for 1-LAYER PLANARIZATION.

The general crossing minimization problem, where vertices are not restricted to lying
on parallel lines nor are edges restricted to being straight, has been studied extensively by
mathematicians and computer scientists. Although the general problem is not particularly
relevant to its layered counterpart, it is worth noting that Grohe [15] has shown recently
that the general crossing minimization problem is in FPT. Since, the approach relies on
deep structure theorems from the Robertson–Seymour graph minors project, the FPT
result of Grohe does not yield a practical algorithm.

In this paper we give an algorithm for 1-SIDED CROSSING MINIMIZATION that runs
in O(ϕk |L2|2 + |L1||L2|) time, where L2 is the set of vertices on the free layer where
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the permutation π2 of vertices is to be chosen, L1 is the set of vertices on the fixed layer
where the permutation π1 of vertices is fixed, and the constant ϕ is the golden ratio. The
algorithm is based on the FTP technique called Bounded Search Tree. This technique
relies on exploring some search space, and then proving that its size depends only upon
the parameter k. The search space thus becomes constant size and the algorithm is then
polynomial time for each fixed k.

The remainder of this paper is organized as follows. After definitions and preliminary
results in Section 2, we study properties of optimal drawings in Section 3. Our algorithm
for the 1-SIDED CROSSING MINIMIZATION problem is then given in Section 4. Section 5
concludes.

2. Problem Statement, Notation, and Some Facts. A graph G = (V, E) with vertex
set V and edge set E ⊆ V × V is called bipartite if there is a partition of V into two
disjoint non-empty sets L1 and L2 such that V = L1∪L2 and E ⊆ L1×L2. The number
of vertices and edges of G are respectively denoted by n = |V | and m = |E |. Let dv
denote the degree of a vertex v. We assume dv ≥ 1.

In a 2-layer drawing of a graph G = (L1, L2; E), the vertices in L1 and L2 are
positioned on two distinct parallel lines (layers), and the edges are drawn straight. Since
edges are not allowed within a layer, G must be bipartite. Let L1 denote the top, fixed
layer, whose vertex ordering π1 is fixed. Let L2 denote the bottom, free layer, whose
vertices are free to be permuted. Figure 1 illustrates this terminology.

We study the following problem:

PROBLEM: 1-SIDED CROSSING MINIMIZATION

Instance: a bipartite graph G = (L1, L2; E), an integer k, and a fixed ordering π1 for
the vertex set L1 on the top layer.
Question: Is there a 2-layer drawing of G that respectsπ1 and that has at most k crossings?

From now on, we assume that input graphs are bipartite, with minimum degree at least
1, and that an orderingπ1 has been specified for the top layer. We do not consider multiple
edges, although these are easy to handle. For some details on that refer to Section 4.3.

Let 〈G, π1, k〉 denote an instance of the 1-SIDED CROSSING MINIMIZATION problem,
and let (G, π1, π2) denote a combinatorial representation of a 2-layer drawing of G, with
π1 and π2 giving the permutations for the vertices on layers L1 and L2, respectively. Let
the number of crossings in the drawing (G, π1, π2) be denoted by cr(G, π1, π2), and let
the minimum possible number of crossings subject to the vertices of L1 being ordered by

L1; �1 fixed

L2; �2 free

Fig. 1. A 2-layer drawing. The ordering π1 of L1 is fixed. Vertices of L2 are free.
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π1 be denoted by opt(G, π1). Note that opt(G, π1) = minπ2{cr(G, π1, π2)}, where π2

ranges over all permutations for L2. Let v < w denote an ordered pair of vertices on the
same layer, and let v,w denote an unordered pair of vertices. Sometimes it is convenient
to denote unordered pairs of vertices by (v,w), which is also used to denote an edge. The
meaning will be clear from the context. Throughout the paper, the term “pair” refers to
a pair of distinct objects. The following two simple observations reinforce the important
fact that the 1-SIDED CROSSING MINIMIZATION problem is combinatorial in nature.

FACT 1 [5]. Two edges (v, v′) and (w,w′), where v,w ∈ L2 and v′, w′ ∈ L1, cross in
a 2-layer drawing if and only if v < w and w′ < v′, or w < v and v′ < w′.

FACT 2 [5]. For vertices v and w in the free layer L2, the number of crossings of the
edges incident to v with the edges incident to w is completely determined by the relative
ordering of v and w.

Having pointed out that the nature of the problem fundamentally concerns orderings,
the next definition and fact relate the orderings of pairs to the total number of edge
crossings any drawing, the goal of our optimization. In fact, from pairs alone, we get a
lower and upper bound for opt(G, π1).

DEFINITION 1. Consider a problem instance 〈G, π1, k〉, and let v and w be vertices in
L2. The crossing number cvw is the number of crossings that edges incident with v make
with edges incident with w in drawings having v < w; the crossing number cwv is for
w < v.

FACT 3 [5]. The total number of crossings in a 2-layer drawing (G, π1, π2) is

cr(G, π1, π2) =
∑

∀v<w∈π2

cvw,(1)

where the summation is over all ordered pairs v < w of elements of π2; furthermore,
∑

v,w∈L2

min(cvw, cwv) ≤ opt(G, π1) ≤
∑

v,w∈L2

max(cvw, cwv),(2)

where the summations are over all unordered pairs v,w of vertices of L2.

Let lb(G, π1) denote the lower bound
∑

v,w∈L2
min(cvw, cwv). As pointed out in the

Introduction, Eades and Wormald [12] showed that opt(G, π1) ≤ 3 lb(G, π1). Recently,
Nagamochi [19] improved that to opt(G, π1) ≤ 1.47 lb(G, π1).

3. Properties of Optimal Drawings. In this section we establish a property of optimal
drawings (G, π1, πopt) (see Lemma 1) that will be fundamental for our algorithm in the
next section.

For each vertex v in L2, let lv denote the leftmost neighbor of v in L1, and let rv
denote the rightmost neighbor of v in L1. Note that if v ∈ L2 has degree 1, then lv = rv .
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lv

uwv

rv L1; �1 fixed

L2; �2 free

Fig. 2. Pair v,w is unsuited, while v, u and w, u are suited pairs.

Now consider two vertices v and w in L2. We say that v and w are a suited pair if
rv ≤ lw, or if rw ≤ lv; otherwise we call the pair unsuited. For example, in Figure 2 v, u
is a suited pair and so is pair w, u; pair v,w is not suited. If v and w each have degree
1 and have the same neighbor in L1 (i.e. lv = rv = lw = rw), we say that v and w are a
trivial suited pair. The following fact, which is an immediate consequence of Fact 1 and
the definition of unsuited pair, indicates the importance of the notion of suitable pairs.

FACT 4. A pair of vertices v,w ∈ L2 is unsuited if and only if cvw ≥ 1 and cwv ≥ 1.

On the other hand, the edges of a suited pair v,w do not cross if v and w appear in
their natural ordering in π2, i.e. if v < w when rv ≤ lw, and w < v when rw ≤ lv . If
v,w is a trivial suited pair, then cvw = 0 and cwv = 0, and we say that both v < w and
w < v are natural orderings for the pair v,w.

The notion of natural ordering leads to a useful fact for our algorithm.

FACT 5. Suppose v,w is a suited pair for π1 with natural ordering v < w. Then for
any π2, the drawing (G, π1, π2) satisfies: (i) cvw =0; (ii) if rv �= lw, then cwv= dv · dw;
(iii) if rv = lw, then cwv= (dv · dw) − 1; and, finally, (iv) unless v and w are a trivial
suited pair, cwv > 0.

Note that natural ordering is only defined for pairs of suited vertices. For general
pairs, we say that v < w is the preferred ordering for a pair v,w if cvw < cwv . Thus
the natural ordering is the preferred ordering for non-trivial suited pairs. The following
lemma is the basis for our algorithm.

LEMMA 1. For fixed π1, let �opt = (G, π1, πopt) be a drawing with the minimum pos-
sible number of crossings. Then all suited pairs appear in πopt in their natural ordering.

To prove Lemma 1 the following lemma will be useful.

LEMMA 2. For 1 ≤ i ≤ |L2|, let vi denote the vertex in the i th position in π2 of some
drawing (G, π1, π2) with π1 fixed. Moving any vertex vi ∈ L2 from its starting position i
across the t consecutive vertices vi+1, vi+2, . . . , vi+t to the right creates a new drawing
(G, π1, π2

′) with

cr(G, π1, π2
′) = cr(G, π1, π2)+

t∑

j=1

(cvi+ jvi − cvivi+ j ).(3)
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vi�1 vi+1 vi+3vi
vi+2

L1; �1 fixed

L2; �2 free

vi

Fig. 3. Illustration for the proof of Lemma 2.

Similarly, if vi is moved to the left over t consecutive vertices, then the above summation
is from j = −1 to j = −t and the sign in front of the summation is “−”.

PROOF. Assume, without loss of generality, that vertex vi moves to the right across t
consecutive vertices in (G, π1, π2). This creates a new drawing (G, π1, π2

′). For instance,
in Figure 3, vi moves from its starting position over t = 2 (shaded) vertices to its final
position. Dotted lines depict vi and its incident edges as they travel across two shaded
vertices to the new position of vi , between vi+2 and vi+3. The only pairs of vertices
in (G, π1, π2) whose relative ordering changes in (G, π1, π2

′) are the pairs vi , vj for
i + 1 ≤ j ≤ i + t . Hence, by Fact 2, these are the only pairs whose crossing number
might change. In particular, the crossing number for a pair vi , vj for j in the range
[i + 1, i + t] changes from cvivj to cvjvi . Substituting these changes into (1) of Fact 3
gives (3) above.

Now we give the proof of Lemma 1.

PROOF OF LEMMA 1. The proof is by contradiction. Assume that in �opt = (G, π1, πopt)

there is a suited pair v,w whose ordering in πopt is not its natural ordering. Note that v
and w are not degree-1 vertices with a common neighbor, as both orderings would be
natural in that case. Assume that v < w is the (unique) natural ordering of v,w.

By Fact 5 the crossing number cvw = 0 and the crossing number cwv > 0.
For a contradiction, we now prove that either v or w can be moved in �opt such that

the resulting drawing �new = (G, π1, πnew) satisfies cr(�new) < cr(�opt).
Let i and j denote the positions of w and v, respectively, in πopt. Here i < j since v

and w appear in the order w < v in πopt.
If | j − i | = 1, we can interchange v andw without affecting any other pair of vertices

in �opt. Equation (3) in Lemma 2 gives the number of crossings in the resulting drawing
�new:

cr(�new) = cr(�opt)− cwv + cvw = cr(�opt)− cwv + 0.

Since cwv > 0, we have cr(�new) < cr(�opt), which contradicts the optimality of �opt.
If | j − i | > 1, let ui+1, ui+2, . . . , uj−1 denote the vertices between w and v in πopt,

listed in order of appearance in πopt. Regard these vertices as a frozen block U inside
which no changes are made. Figure 4 illustrates this terminology.

According to Lemma 2, moving v orw from one side of block U to the other may only
affect the crossing number contributions of pairs of the form u, w and u, v for u ∈ U .
Let cU p denote the number of crossings that the edges incident to vertices in U have with
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w v

lv rv

U

ui+1 uj�1ui+2

position i position j

L1; �1 fixed

L2; �opt

Fig. 4. �opt for case | j − i | > 1 of Lemma 1.

the edges incident to a vertex p to the right of U : cU p =
∑

u∈U cup. Similarly, let cpU

denote this number of crossings when p lies to the left of U .
Since �opt is optimal, we claim we have the strict inequality

cUv < cvU .(4)

Otherwise, we could move v to the left side of U and then interchange v withw to obtain
a drawing with the following total number of crossings: cr(�new) = �opt− cUv + cvU −
cwv + 0. Since cwv > 0, if cUv ≥ cvU , then cr(�new) < cr(�opt), a contradiction.

Observation: To conclude the case | j − i | > 1, it suffices to show that cUv < cvU

implies cwU ≥ cUw, for this means we can move w to the right side of U without
increasing the total number of crossings in the resulting drawing and then interchange
w and v to produce a drawing with fewer crossings than �opt. This gives a contradiction,
and so proves that the assumption that πopt contains a suited pair not ordered by its
natural ordering cannot hold.

To establish the desired inequality cwU ≥ cUw, we first derive some intermediate
inequalities for cUv, cvU , cwU , and cUw in terms of sizes of the following sets: ER = the
set of edges in �opt with one endpoint in U and the other endpoint strictly greater than rv
in the ordering π1; EL = the set of edges with one endpoint in U and the other endpoint
strictly less than rv in the ordering π1; Nv = the neighbors of v; and Nw = the neighbors
of w.

By the definition of ER , all the vertices in Nv occur in π1 strictly before the L1

endpoint of each edge in ER . By the definition of EL and by the fact that v,w is a suited
pair with the natural ordering v < w, the vertices in Nw occur in π1 strictly after the L1

endpoints of the edges in EL .
Fact 2 implies the following inequalities for crossing numbers:

cUv ≥ dv · |ER|: The edges incident to v and the edges in ER all pairwise intersect,
creating dv · |ER| crossings. Since ER is a subset of the edges incident to U ,
cUv ≥ dv · |ER|.

cvU ≤ dv · |EL |: This holds because no edge incident to v crosses any edge incident
to U that is not in EL .

cwU ≥ dw · |EL |: The edges incident to w and the edges in EL all pairwise intersect,
so cwU ≥ dw · |EL |.

cUw ≤ dw ·|ER|: This holds because no edge incident tow intersects any edge incident
to U that is not in ER .
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Recall inequality (4), that cUv < cvU . Since cUv ≥ dv · |ER| and cvU ≤ dv · |EL |,
we have dv · |ER| ≤ cUv < cvU ≤ dv · |EL |, which implies that |ER| < |EL |. This,
and the fact that cwU ≥ dw · |EL |, and the fact that cUw ≤ dw · |ER| together imply that
cwU > cUw. By the Observation above, this completes the proof.

4. An Efficient FPT Algorithm

4.1. The Bounded Search Tree Approach for the Algorithm. One of the basic methods
for developing FPT algorithms is the method of bounded search trees (see Chapter 3.1
in [6]). In this method one builds a search tree, which is exhaustively traversed for a
solution. The critical observation for many parameterized problems is that, while the
computation done at each node of the tree may depend on the problem size, the size of
the tree itself depends only on the parameters.

In this section we present an FPT algorithm for the 1-SIDED CROSSING MINIMIZATION

problem based on the bounded search tree approach. The key observations for building
a search tree for this problem lie in Lemma 1 and Fact 4. Here is an overview of our
algorithm.

Lemma 1 allows us, at the start, to fix the relative ordering of each non-trivial suited
pair of vertices in L2 according to its unique natural ordering. The remaining unordered
pairs of vertices in L2 are either trivial suited pairs, or unsuited pairs which will each, by
Fact 4, create a crossing no matter which relative ordering is chosen. We build a search
tree based on the unsuited pairs. (It turns out that the trivial pairs neighbors can be dealt
with later in the algorithm.) The input to every node of the search tree is a budget B
giving the remaining number of allowed edge crossings, and a relation D containing all
pairs of L2 ordered thus far. We will formally define relation D shortly. At each node
of the search tree some unordered pair (v,w) is chosen (i.e. a pair not in D) such that
cvw �= cwv . Then the node branches to two recursive subproblems. In one branch, the
ordering of (v,w) is fixed to v < w and the budget B is reduced by cvw. In the other
branch the ordering of (v,w) is fixed to w < v and B is reduced by cwv . Since we only
work with unsuited pairs in building the tree, we know that cvw ≥ 1 and cwv ≥ 1.
Therefore, since the initial budget B = k, the height of the search tree is at most k.

As a matter of fact the situation is better than that, for two reasons. Firstly, since
cvw �= cwv , then either cvw or cwv is at least 2, so one of the two branches of the search
tree node reduces B by at least 2. Secondly, since < is a transitive relation, fixing an
ordering of the pair (v,w) at a node of the search may in fact impose an ordering of
another as yet unordered pair (p, q) in the relation D at that node. Hence B can be
reduced not only by cvw but also by either cpq or cqp, depending on which relative
ordering is imposed on (p, q).

4.2. The Algorithm. The following definitions will be useful for the description of the
algorithm.

Let D be a directed acyclic graph (DAG) that represents a binary relation “<” on the
set of vertices L2. In particular, the vertices of L2 are represented by nodes of a DAG
D and an ordered pair of vertices v < w is represented by a directed edge from v to w
(denoted henceforth by vw) in D. The DAG D is stored as an |L2|× |L2|matrix. We use
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D to denote both the set of pairs in the current binary relation “<” and the associated
DAG that represents these pairs as directed edges. The algorithm labels nodes in the
search with DAGs. The DAG associated with the root will be transitively closed, acyclic,
and directed. As the algorithm progresses, it computes a DAG label for each child node
it generates in the search by choosing a directed edge to add to the DAG of the parent
and then taking the transitive closure of this.
The following algorithm solves the 1-SIDED CROSSING MINIMIZATION problem.

ALGORITHM. 1-Sided Crossing Minimization

Input: 〈G, π1, k〉
Output: πopt if 〈G, π1, k〉 is a YES instance, else NO

Step 0. Computing crossing numbers. Compute the crossing numbers cvw
and cwv for all pairs of vertices in L2, stopping the computation of a particular
crossing number as soon as it is known to exceed k. (The algorithm for
computing the crossing numbers, cvw and cwv , efficiently can be found in
the Appendix.)

Step 1. Checking for extreme values. Compare k with the upper and lower
bound as per Fact 3.

if k <
∑

(v,w) min(cvw, cwv), then output NO and HALT;
if k ≥∑

(v,w) max(cvw, cwv), then output an arbitrary π2 and HALT.

Step 2. Initialization. Precompute the following information required by
the search tree:

C = {(v,w)|cvw = cwv};
D0 = a DAG (V, E), where V = L2, and the directed edges vw ∈ E

correspond to the naturally ordered pairs (v,w) that satisfy cvw = 0 and
cwv �= 0 (it is easy to check that D0 is transitively closed);

B0 = initial budget = k − ∑
vw∈D0

cvw −
∑

(v,w)∈C cvw. Note that∑
vw∈D0

cvw = 0. Also note that we reduce the budget k by the eventual
cost of the pairs in C even though these pairs do not appear in D0.

Step 3. Building and exploring the search tree. This step effectively builds
and explores the search tree simultaneously. A node of the search tree has
at most two children. Each node has a label (D, B). The label D of a node
represents a “possible” partial solution, i.e. a partial ordering of vertices of
L2. The label B represents the remaining budget for crossings. For instance
the label of the root is: D= D0 and B = B0.

We now build the search tree as follows. Label the root of the tree with
(D, B) where D = D0 and B = B0. In general, for a non-leaf node labeled
(D, B), choose a pair (v,w) such that D contains no edge joining v and w
and such that cvw �= cwv . A pair (v,w) is thus an unordered pair not in C . In
any ordering π2, the pair (v,w) is ordered as either vw or wv, so we create
at most two children (D1, B1) and (D2, B2) of the non-leaf node (D, B)
corresponding to these two possibilities. No child is created if its budget
would be negative. Thus a node labeled (D, B) is a leaf if and only if either
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(v; w) : vw;wv 62 E(D) and cvw 6= cwv

D1 = trans. clos. of D [ vw ;

B1 = B � cvw � : : :

D2 = trans. clos. of D [ wv ;

B2 = B � cwv � : : :

w < vv < w

D;B

Fig. 5. Illustration for Step 3 of the algorithm.

it does not have an unordered pair (v,w) �∈ C , or there remains any pair
(v,w) for which both B1 and B2 are negative.

For a non-leaf node (D, B), we label one of its two children by (D1, B1)

where:

D1 = transitive closure of D ∪ vw, and B1 = B − cvw −
∑

pq cpq .

Here D ∪ vw represents the addition of directed edge vw to D. The sum-
mation in B1 is over the directed edges that are added to D ∪ vw by the
transitive closure and that have cpq �= cqp. That is, the sum is over pq s.t.
pq ∈ D1 and pq �∈ D ∪ vw and cpq �= cqp.

Similarly, we label the other child of node (D, B) with (D2, B2), where

D2 = transitive closure of D ∪ wv, and B2 = B − cwv −
∑

pq cpq .

These concepts are illustrated in Figure 5.
If a leaf is created whose label D has the property that

∀(v,w) if vw �∈ D and wv �∈ D, then (v,w) ∈ C ,

then output π2 = topological sort of D. Also, update the minimum number
of crossings found so far to k − B, where B is the budget of the leaf, and
update the best ordering so far to π2. We call such a node a solution leaf.

If, after exploring the entire tree, no solution leaf is found, output NO and
HALT; otherwise, output the best ordering found, which is πopt, and HALT.

REMARKS. In Step 0 we stop computing cvw as soon as it becomes k + 1, even though
cvw may be bigger than that. This is because a child with v < w would have a negative
budget. Hence it suffices to know that cvw ≥ k + 1.

Step 3 of the algorithm effectively creates and explores the search tree simultaneously.
This can be done by depth-first search or by breath-first search. The depth-first way
requires less space and is thus the preferred choice.

Also notice that when creating a child by choosing, say, to order v and w as vw, we
reduce the budget for the child by an amount computed not only for the ordered pair
vw, but also for the pairs that are newly ordered by the transitive closure of D ∪ vw.
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However, we only do this for newly ordered pairs whose two crossing numbers are not
the same. Those whose crossing numbers are the same have already been accounted for
in B0.

THEOREM 6. Given a bipartite graph G = (L1,L2; E), a fixed permutation π1 of L1,
and an integer k, algorithm 1-Sided Crossing Minimization(G, π1, k) determines in
O(ϕk · |L2|2 + |L1||L2|) time if opt(G, π1) ≤ k and if yes produces a 2-layer drawing
(G, π1, π2) with the optimal number of crossings. The constant ϕ in the running time is
the golden ratio ϕ = (1+√5)/2 ≈ 1.618.

PROOF. Step 3 of the algorithm creates and explores the search tree simultaneously.
For every node (D, B) of the search tree we maintain the following two invariants: (i) D
is a transitively closed DAG; (ii) the budget B at node (D, B) is B = k −∑

vw∈C cvw −∑
vw∈D&vw �∈C cvw. This is true for the root node (D0, B0). Suppose this is true for a

node labeled (D, B). At this node, the algorithm chooses an unordered pair (v,w) with
cvw �= cwv . This pair is used to create up to two child nodes. We claim that both D ∪ vw
and D ∪ wv are acyclic. Suppose, on the contrary, that D ∪ vw contains a directed
cycle. Then D must contain a directed path from w to v. Since D is transitively closed,
it contains edge wv, contradicting the fact that (v,w) is unordered in D. Similarly for
D ∪wv. Since the transitive closure of a DAG is again acyclic, the graph labels D1, D2

for any child nodes created at a node labeled D are again transitive and acyclic. Thus all
the graph labels in the search tree are directed, acyclic, and transitively closed. The fact
that labels B1 and B2 agree with formula (ii) follows directly from the formulas used to
compute these two labels from the parent label B in Step 3 of the algorithm.

As the tree is built, either a solution leaf is found, or the tree is completely explored
without finding such a leaf. A solution leaf (D, B) has, by definition, a non-negative
budget B. By the invariant (ii), the cost of all the crossings arising from the ordered pairs
in D has been taken into account. By the definition of a solution leaf, all pairs (v,w)
not ordered by directed edges in D are in C and satisfy cvw = cwv; hence the total cost
directly attributable to them has already been deducted from the initial budget k. Hence
any topological sort of D produces a total ordering consistent with D and having total
cost k − B, where 0 ≤ B ≤ k. By the invariant (i), the label D of every node of the
search tree is an acyclic graph and it necessarily has a topological sort. Based on this
argument, a solution leaf (D, B) encodes an ordering π2 such that cr(G, π1, π2) ≤ k.

It is not difficult to verify that the solution leaves of the search tree implicitly store
all the orderings π2 for which cr(G, π1,π2) ≤ k and in which all the suited pairs are
ordered by their natural ordering. Lemma 1 implies that in order to decide if 〈G, π1, k〉
is a YES or NO instance it is enough to consider only such orderings π2. Therefore, if
there is an ordering π2 such that cr(G, π1,π2) ≤ k the algorithm finds one. In fact, since
the algorithm updates the best solution found so far, when it terminates it outputs an
optimal ordering πopt.

We now discuss the running time of the algorithm.
Only for an unordered unsuited pair v,w that has cvw �= cwv are child nodes created,

of which there are at most two. Therefore, in one child node the budget is reduced by at
least 1 and in the other by at least 2. A node with B = 0 must be a leaf node, because any
child of such a node would have a negative budget. Therefore, no further branching is
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allowed. At a node for which budget B = 1, at most one child can have a budget B1 that
is non-negative, and in this case, B1 = 0 and the child must be a leaf. Thus a recurrence
relation that generates an upper bound for the number of nodes in this search tree is

sB = sB−1 + sB−2 + 1 for B ≥ 2; s0 = 1, s1 = 2.

It can be verified by induction that for B ≥ 0, sB = FB+2+ FB+1−1 where FB is the
Bth Fibonacci number. From the bound on Fibonacci numbers and given that B0 ≤ k, it
follows that sB0 < ϕk+2/

√
5+ (ϕk + 1)/

√
5− 1 < 1.2 · ϕk+1. Thus the search tree has

O(ϕk) nodes.
The time taken at each node of the search tree is dominated by updating a transitive

closure of its label D after insertion of one ordered pair v < w (or w < v). Updating
the transitive closure after one insertion can be done inO(|L2|2) time (see problem 25-1
on page 641 in [3]). These updates are needed to generate the labels for the children,
of which there are at most two. Thus the time taken in the third step of the 1-Sided
Crossing Minimization algorithm is O(ϕk · |L2|2).

It can be shown that the time taken in Steps 0–2 of the algorithm is O(k · |L2|2 +
|L1||L2|). (For details see the Appendix.) Thus the total running time of the algorithm
is O(ϕk · |L2|2 + |L1||L2|).

COROLLARY 1. Given a bipartite graph G = (L1,L2; E), and a fixed permutation π1

of L1, algorithm 1-Sided Crossing Minimization(G, π1, �1.47 lb(G, π1)�) produces a
2-layer drawing (G, π1, π2)with the optimal number of crossings in O(ϕopt(G,π1) ·|L2|2+
|L1||L2|) time.

PROOF. By the results of [19] and Fact 3, lb(G, π1) ≤ opt(G, π1) ≤ 1.47 lb(G, π1).
Therefore, by Theorem 6, algorithm 1-Sided Crossing Minimization(G, π1,

�1.47 lb(G, π1)�) finds the optimal solution.
Since parameter k is not given as a part of the input, and is instead set to the value

k = �1.47 lb(G, π1)� we need to consider the time it takes to compute lb(G, π1). To
determine this lower bound, we need to compute the smaller of the two crossing numbers,
cvw and cwv , for each pair of vertices v,w. This can be easily achieved by slightly
modifying the algorithm in the Appendix. In particular, the while loop needs to compute
both crossing numbers simultaneously until one of them, say cvw, is completed. If at that
moment cvw ≤ cwv , then the while loop terminates, otherwise it continues computing
cwv until either cwv becomes greater than cvw or until the computation of cwv terminates.
For the same reasons as those presented in the proof of Lemma 3, the running time of this
modified algorithm is O(lb(G, π1)|L2|2 + |L1||L2|) ∈ O(opt(G, π1)|L2|2 + |L1||L2|).
This together with Theorem 6 implies the running time claimed in this corollary.

4.3. A Special Case and Two Generalizations. In this section we first describe a method
for improving the running time of our algorithm in practice; then we show how to extend
the algorithm to allow drawing edges within single layers.

1-Layer Cut Vertex. The fact that the 1-SIDED CROSSING MINIMIZATION problem is NP-
complete even for a forest of 4-stars [18] means that a divide-and-conquer approach based
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G[V 0] G[V 00]

q

L2

L1; �1 fixed

Fig. 6. A 1-layer cut vertex q and the two corresponding components G[V ′] and G[V ′′].

on cut-vertices is not useful. However, we now show that there is a way to decompose
the input graph into parts, to which our algorithm can be applied separately.

A vertex q in L1 is called a 1-layer cut vertex if we can partition the vertices of L2 into
two non-empty sets L ′2 and L ′′2 such that ∀v ∈ L ′2, rv ≤ q, and ∀v ∈ L ′′2, lv ≥ q. The
set of all the neighbors of vertices in L ′2 is denoted by N (L ′2). The set N (L ′′2) is defined
similarly. The graphs induced by vertex sets V ′ = L ′2 ∪ N (L ′2) and V ′′ = L ′′2 ∪ N (L ′′2)
are denoted by G[V ′] and G[V ′′], respectively. We say G[V ′] and G[V ′′] are 1-layer
components of 〈G, π1, k〉. Note that q may or may not belong to each component. These
concepts are illustrated in Figure 6.

COROLLARY 2. Let q be a 1-layer cut vertex for 〈G, π1, k〉 that splits G into two 1-layer
components G[V ′] and G[V ′′]. In an optimal drawing (G, π1, πopt), no edge of G[V ′]
crosses any edge of G[V ′′].

PROOF. This follows directly from Lemma 1. Namely, for all v,w such that v ∈ V ′

and w ∈ V ′′, it is true that v,w is a suited pair with the natural ordering v < w.
So all the vertices of V ′ lie before the first vertex of V ′′ in any πopt. Thus the vertices
of V ′ and V ′′ are pairwise suited, so none of their edges cross in an optimal drawing
(G, π1, πopt).

This corollary shows that a problem instance 〈G, π1, k〉 can sometimes be divided
into two independent instances 〈G[V ′], π1[V ′], k〉 and 〈G[V ′′], π1[V ′′], k ′′〉. We can then
solve the first instance, and if it is a NO instance, then the original instance is also a
NO instance. If it is a YES instance, we move on to solving the second instance with
the input parameter k ′′ = k − cr(G[V ′], π1[V ′], πopt[V ′]). In some cases this may cut
the exponent in the running time by half. As a matter of fact, if the number of 1-layer
cut vertices in 〈G, π1, k〉 is c, then the exponential part of the running time may drop
to ϕk/(c+1). This behavior should be expected in YES instances where the number of
crossings is evenly distributed over all the 1-layer components.

Multiple edges. We now briefly discuss how to deal with instances of the 1-SIDED

CROSSING MINIMIZATION problem that have multiple edges. For every pair of vertices
connected by s edges, replace the edges by one edge with weight s. Thus, we obtain a
variant of the 1-SIDED CROSSING MINIMIZATION problem where each edge has a positive
weight. If two edges weighted s1 and s2 cross in a drawing, their contribution to the total
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p1 pj pj p1

Fig. 7. Edges of p are depicted in bold. (a), (b) The two ways to draw p. The first creates one crossing, the
second creates three crossings. (c) After p is contracted, k is reduced by cp = min{1, 3} = 1.

number of crossings is s1 · s2. Having this in mind Definition 1 of crossing numbers cvw
and cwv for a pair of vertices v,w remains the same. All the other definitions, facts and
lemmas, except for Fact 5 and Lemma 1, follow through without any changes. We now
modify the definition of dv to mean the sum of the weights of all the edges incident to
a vertex v. Then case (iii) of Fact 5 becomes cwv = dv · dw − svrv · swlw where svrv and
swlw denote the weights of the two edges vrv and wlw. In the proof of Lemma 1, we also
modify the definition of |EL | and |ER| to mean the sum of the weights of all the edges
in the sets EL and ER , respectively. The correctness of the lemma, and hence the whole
algorithm, follows through without any other changes.

Improper 2-layer drawings. Our 1-Sided Crossing Minimization algorithm can easily
be extended to manage the version of 2-layer drawings called improper 2-layer drawings.
Here edges are allowed between vertices lying next to each other in the same layer (see
[13]).

Let G[L1] and G[L2] be the graphs induced by the vertex sets L1 and L2, respectively,
and suppose that G[L1] and G[L2] are forests of paths. Let p be a path in G[L2]
with vertices p1, p2, . . . , pj . Furthermore, let cp be the minimum number of crossings
amongst the edges incident to a path p in one of the two possible ways to draw that path
p in π2 (one way is to have p1 p2 · · · pj consecutively in π2, and the other is to have
pj pj−1 · · · p1 consecutively in π2).

The algorithm is now modified by adding the following preprocessing step. For each
path p in G[L2], all the edges (pi , pi+1) of p in G[L2] are contracted into one vertex.
Consequently, the parameter k is reduced by cp for each path p. See Figure 7. Contracting
all the paths in G[L2] gives an instance of the 1-SIDED CROSSING MINIMIZATION problem
that may have multiple edges, which our algorithm can deal with as described earlier in
this previous section. This completes the description of the modifications to the original
algorithm.

5. Conclusion. We have studied the 1-SIDED CROSSING MINIMIZATION problem and
have presented a very easy-to-implement FPT algorithm for its solution. Moreover, the
algorithm finds a drawing with the smallest possible number of crossings in the case
that this number does not exceed k. In case an optimal solution is desired no matter how
many crossings it has, as Corollary 1 points out, our algorithm finds it by setting k to
1.47 lb(G, π1), in time O(ϕlb(G,π1) · n2) ∈ O(ϕopt(G,π1) · n2).

The exponential part of the running time of the algorithm is 1.618k . In many instances
the base of this exponent will be even smaller. The reason is that a pair of vertices v,w
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will often have both crossing numbers cvw and cwv bigger than 1, or at least one of them
bigger than 2; thus each time a node of the search tree branches on such a pair of vertices,
the resulting search tree will be even smaller.

An interesting investigation for future research would be to compare experimentally
the performance of the other known method for optimal 1-SIDED CROSSING MINIMIZA-
TION, namely, integer linear programming [16], with our FPT algorithm with k set to
1.47 lb(G, π1). In the case of the related 2-layer planarization problem, recent exper-
imental comparisons [20] suggest that the FPT method is competitive with the ILP
method. Hence an experimental study of 1-SIDED CROSSING MINIMIZATION would be
worthwhile.

Numerous graph drawing problems involve optimizations that are hard. It is therefore
interesting to investigate whether fixed parameter tractability provides a useful approach
for dealing with these problems.

Appendix. Computing Crossing Numbers cvw and cwv . For completeness, to justify
the correctness of the running time claimed in Theorem 6, we give here an O(k|L2|2 +
|L1||L2|)-time algorithm for Step 0 of the 1-Sided Crossing Minimization algorithm.
The algorithm computes the crossing numbers cvw and cwv for all pairs of vertices.
Although the algorithm is simple, some care needs to be taken not to exceed the claimed
running time. For instance, we must stop the computation of a particular crossing number
as soon as it is known to exceed k. In place of crossing numbers that do exceed k we
record some number strictly bigger than k.

Let the graph G in the input instance 〈G, π1, k〉 be given as an |L2| × |L1| adjacency
matrix A = [ai, j ]. The columns are labeled by the vertices of L1 in the order of their
appearance in π1. The rows are labeled by the vertices of L2. An element ai, j = 1 if
vertex i of L2 is adjacent to vertex j of L1; otherwise ai, j = 0. We augment every
element ai, j of the adjacency matrix A with the following information:

pi, j : the index of the first neighbor of vertex i that is to the right of j . More precisely,
if ∃ j ′ > j s.t. ai, j ′ = 1 and ai, j ′′ = 0,∀ j < j ′′ < j ′, then pi, j = j ′; otherwise
pi, j = |L1| + 1.

ri, j : the number of neighbors of i that are to the right of j . More precisely,

ri, j =
|L1|∑

j ′= j+1

ai, j ′ .

In addition, for every row i , we store the following information:

li : the leftmost neighbor of vertex i . More precisely li = j where ai, j = 1 and
ai, j ′ = 0,∀ j ′ < j .

ri : the rightmost neighbor of vertex i . More precisely, ri = j where ai, j = 1 and
ai, j ′ = 0,∀ j ′ > j .

The following algorithm computes an |L2|×|L2|matrix C = [cv,w]. At the end of the
algorithm, the matrix entry cv,w equals the crossing number cvw provided this is equal
to or less than k; otherwise, the entry cv,w equals some number greater than k.
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ALGORITHM. Pair Crossing Numbers

Input: |L2| × |L1| adjacency matrix A of G
Output: |L2| × |L2| matrix C

1. Augment adjacency matrix A as described above.
2. for v = 1 to |L2|
3. for w = 1 to |L2|
4. if v �= w
5. cv,w = 0 /* initialize cv,w */
6. w′ = lw /* start examining the neighbors w′ of w

starting with the leftmost neighbor, lw */
7. while w′ ≤ rw and w′ < rv and cv,w ≤ k do
8. cv,w = cv,w + rv,w′ /* increment cv,w by the number of

crossing points on edge (w,w′)
created by edges incident to v */

9. w′ = pw,w′ /* advance to the next neighbor of w */

LEMMA 3. The Pair Crossing Numbers algorithm computes the exact values of all the
crossing numbers that do not exceed k in time O(k|L2|2 + |L1||L2|).

PROOF. Lines 5–9 of the algorithm compute the crossing number cvw for a pair of
vertices v,w ordered v < w. The correctness of the computation follows from the next
observation.

By Fact 1, for an ordered pair v < w, the number of edges incident to v that cross an
edge (w,w′) incident to w is precisely the number of neighbors of v strictly to the right
of w′. By definition that number is rv,w′ . Thus cvw =

∑
rv,w′ where the sum is over all

w′ adjacent tow. This formula is still correct if the sum is taken only over {w′ |w′ < rv},
since otherwise rv,w′ = 0 by Fact 1.

Now consider the complexity of this algorithm. It is simple to verify that the original
matrix A can be augmented by traversing each of its rows once from right to left. Per one
iteration of the inner for-loop, the while-loop is executed at most k+ 1 times, since each
execution of the while loop increases cvw by at least 1. Given that the inner for-loop is
executed |L2|2 times, the total running time of the algorithm isO(k|L2|2 + |L1||L2|).
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[18] X. Muñoz, U. Unger, and I. Vrťo. One sided crossing minimization is NP-hard for sparse graphs.

In P. Mutzel, editor, Proc. Graph Drawing: 9th International Symposium (GD ’01), volume 2265 of
Lecture Notes in Computer Science, pages 115–123. Springer-Verlag, Berlin, 2001.

[19] H. Nagamochi. An improved approximation to the one-sided bilayer drawing. In G. Liotta, editor, Proc.
Graph Drawing: 11th International Symposium (GD ’03), volume 2912 of Lecture Notes in Computer
Science, pages 406–418. Springer-Verlag, Berlin, 2003.

[20] M. Suderman and S. Whitesides. Experiments with the fixed-parameter approach for two-layer pla-
narization. In G. Liotta, editor, Proc. Graph Drawing: 11th International Symposium (GD ’03), volume
2912 of Lecture Notes in Computer Science, pages 345–356. Springer-Verlag, Berlin, 2003.

[21] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical system
structures. IEEE Trans. Systems Man Cybernet., 11(2):109–125, 1981.

[22] N. Tomii, Y. Kambayashi, and S. Yajima. On planarization algorithms of 2-level graphs. IECEJ,
EC77-38:1–12, 1977.

[23] V. Valls, R. Marti, and P. Lino. A branch and bound algorithm for minimizing the number of crossing
arcs in bipartite graphs. J. Oper. Res., 90:303–319, 1996.

[24] J. N. Warfield. Crossing theory and hierarchy mapping. IEEE Trans. Systems Man Cybernet., 7(7):505–
523, 1977.

[25] M. S. Waterman and J. R. Griggs. Interval graphs and maps of DNA. Bull. Math. Biol., 48(2):189–195,
1986.


