
Lincx
A Linear Logical Framework
with First-Class Contexts

OTIS, Shawn

Master of Science

Computer Science

McGill University

Montreal,Quebec

2017-04-15

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Master of Science

c© Shawn Otis, 2016

ACKNOWLEDGEMENTS

First and foremost, I thank my supervisor Brigitte Pientka for her patience, support

and understanding throughout my M.Sc. I also thank her for her supervision, guidance and

financial support. Without her help, I would not be half the scholar I am today.

I also thank my coauthors, Agata Murawska, Aina-Linn Georges and Brigitte Pientka, with

whom I have worked on the project which led to our submission of this work to ESOP 2016

and which is the basis for this current thesis. I would also like to thank Aina-Linn for being

there to bounce off ideas back and forth.

Next, I would like to thank the other members of my lab : Andrew Cave, Francisco Ferreira,

David Thibodeau, Rohan Jacob-Rao and Stefan Knudsen, who have been there for me

throughout and answered my numerous questions when the occasion arose. A particular

mention must be made for Francisco, whom I have particularly bombarded with questions,

and who also supported me morally through the writing of this thesis.

A special mention is to be made to Steven Thephsourinthone, the unofficial member of our

lab, who has been there for me throughout and supported me morally.

I would also like to thank my parents and other relatives who have supported me. In

particular, I would like to thank my mother, who was always available for me and who

helped me through rough patches.

I would also like to thank three people for helping me proof-read parts of my thesis: Adam

Angel, Francisco Ferreira and David Sherratt.

My masters degree has been funded by the Fonds Quebecois de Recherche sur la Nature et

les Technologies (FQRNT) and by McGill University.

ii

ABSTRACT

Linear logic provides an elegant framework for modelling stateful, imperative and con-

current systems by viewing a context of assumptions as a set of resources. However, mech-

anizing the meta-theory of such systems remains a challenge, as we need to manage and

reason about mixed contexts of linear and intuitionistic assumptions.

We present Lincx, a contextual linear logical framework with first-class mixed contexts.

Lincx allows us to model (linear) abstract syntax trees as syntactic structures that may

depend on intuitionistic and linear assumptions. It can also serve as a foundation for reason-

ing about such structures. Lincx extends the linear logical framework LLF with first-class

(linear) contexts and an equational theory of context joins that can otherwise be very tedious

and intricate to develop. This work may be also viewed as a generalization of contextual LF

that supports both intuitionistic and linear variables, functions, and assumptions.

We describe a decidable type-theoretic foundation for Lincx that only characterizes canon-

ical forms and show that our equational theory of context joins is associative and commu-

tative. Finally, we outline how Lincx may serve as a practical foundation for mechanizing

the meta-theory of stateful systems.

iii

ABRÉGÉ

La logique linéaire represente une structure élégante pour modeler des systèmes im-

pératifs, concurrents et avec des systèmes a états, en représentant un contexte d’hypothèses

comme une collection de ressources.Cependant, la mécanisation de la métathéorie de ces

systèmes demeure un défi, puisque nous devons gérer et raisonner à propos de contextes

d’hypothèses mixtes linéaires et intuitionistiques.

Nous présentons Lincx, une structure logique linéaire et contextuelle avec des contextes

mixtes de première classe. Lincx nous permet d’établir des modèles (linéaires) d’arbres de

syntaxe abstraits en tant que structures syntactiques qui peuvent dependre d’hypothèses

intuitionistiques et linéaires. Lincx peut également servir de fondation pour raisonner à

propos de telles structures. Lincxétend la structure logique linéaire LLF avec des contextes

(linéaires) de premier ordre et une théorie d’equations d’assemblage de contextes qui peut

autrement être très fastidieux et complexe à développer. Cet oeuvre peut également être

perçu comme une généralisation du LF contextuel qui supporte les fonctions, les hypothéses

et les variables intuitionistiques et linéaires.

Nous décrivons une fondation de la théorie des types décidable pour Lincx qui ne décrit que

les formes canoniques et montrons que notre theorie d’équations d’assemblage de contextes

est associative et commutative. Finalement, nous donnons un aperçu de comment Lincx

peut servir de fondation pratique pour la mécanisation de la métathéorie de systèmes à états.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

ABRÉGÉ . iv

LIST OF FIGURES . vii

1 Introduction . 1

1.1 A Need for Formalism . 1
1.2 Linear Logic . 4
1.3 The Omnipresence of Linear Logic . 6
1.4 Contribution and Organization . 7

2 Preliminaries . 11

2.1 Lambda Calculus . 11
2.2 Contextual Modal Logic . 12
2.3 Linear Lambda Calculus . 17
2.4 Tree-Structure of Contexts . 20

3 Examples . 23

3.1 Example: Code Simplification . 23
3.2 Example: CPS-translation . 28

4 Theory . 33

4.1 Disclaimer . 33
4.2 Syntax of Contextual Linear LF . 33
4.3 Contexts and Context Joins . 36
4.4 Typing for Terms and Substitutions . 41
4.5 Hereditary Substitution . 45
4.6 Decidability of Type Checking in Contextual Linear LF 51

v

4.7 Lincx’s Meta-Language . 51

5 Mechanization . 56

5.1 Disclaimer . 57
5.2 Related Mechanization . 57
5.3 Syntax . 57
5.4 Contexts and Context Joins . 61
5.5 Typing Rules . 71
5.6 Hereditary Substitution . 74
5.7 Simultaneous Substitution . 77
5.8 Lemmas and Theorems . 79

6 Related Work . 81

6.1 LLF . 81
6.2 CELF . 82
6.3 Higher-Order Representation of Substructural Logics 82
6.4 Other Approaches . 84

7 Conclusion . 87

7.1 Future Work . 87

REFERENCES . 89

A Appendix . 93

A.1 Hereditary Single Substitution . 93
A.2 Typing for Meta-Terms . 94
A.3 Meta-Substitution . 95

vi

LIST OF FIGURES
Figure page

3–1 Translation of Linear ML-Expressions to a Linear Core Language 25

3–2 Context Joins . 27

3–3 CPS Translation . 30

4–1 Contextual Linear LF with First-Class Contexts 34

4–2 Well-Formed Contexts . 38

4–3 Joining Contexts . 40

4–4 Typing Rules for Terms . 42

4–5 Typing Rules for Substitutions . 43

4–6 Simultaneous Substitution . 48

4–7 Well-Formed Meta-Contexts . 52

4–8 Typing Rules for Meta-Substitutions . 53

5–1 Variable Encoding . 58

5–2 Syntax Encoding . 59

5–3 Binary Numbers Encoding . 59

5–4 Context Encoding . 60

5–5 Simultaneous Substitution Syntactical Encoding 61

5–6 Binary Join Encoding . 62

5–7 Binary Representation of Context Variables 62

5–8 Context Join Encoding . 63

vii

5–9 Context Merge Encoding . 64

5–10 Unrestricted Contexts . 65

5–11 Context Equality . 66

5–12 Existence of the Unrestricted Version of a Context 67

5–13 Associativity of Context Joins . 69

5–14 Special Type for Associativity of Context Join 70

5–15 Instance of Term adcjoin . 70

5–16 Typing Rules Encoding . 73

5–17 Encoding of Substitution Typing . 75

5–18 Reduce Encoding . 76

5–19 Hereditary Substitution over Canonical Terms 76

5–20 Variable Lookup . 77

5–21 Simultaneous Substitution over Canonical Terms 79

5–22 Substitution Split Lemma . 80

5–23 Simultaneous Substitution Property . 80

A–1 Hereditary Single Substitution . 96

A–2 Typing Rules for Contexts of a Given Schema 97

A–3 Typing Rules for Meta-Terms . 97

A–4 Simultaneous Meta-Substitution . 98

viii

CHAPTER 1
Introduction

1.1 A Need for Formalism

Proofs and formalisms have long been an important aspect of science and mathematics.

One of the most common instances of formalisms in mathematics consists in the notion of

axiomatization. In fact, we can trace this ideology back to Ancient Greece, where Euclid

developped an axiomatic representation of a model of geometry now referred to as Euclidean

geometry. In fact, axiomatization is at the base of most fields of mathematics. Whether

it be abstract algebra or analysis, the theory is built from axioms and we are interested in

studying their implications.

During the early twentieth century, a strong push was made towards formalizing math-

ematics. In particular, we can look at Hilbert’s program, which pushed for the field of

mathematics to be made more formal and precise. And while the Hilbert program was

shown to be unattainable by Gödel, it nevertheless reinvigorated the idea of having a more

precise and formal language to describe mathematics.

An important breakthrough in the realm of formalization has been Gentzen’s contribu-

tion towards logic and the formalization of both natural deduction and the sequent calculus.

These calculi form the basis of modern deductive logic and give us important guiding prin-

ciples. Moreover, from these stemed an array of calculi upon which modern research is

based.

1

And while the early 20th century focused towards the formalization of mathematics,

computer science also expanded significant efforts towards developing models of computation.

These models sought to create machines that could recognize languages: sets of words (which

are strings of characters from some alphabet). These models range, in order of strength,

from finite-deterministic automata, which are equivalent to regular expressions; Push-down

automata, which are equivalent to context-free grammars; and finally Turing Machines.

The latter model was developed by Alan Turing in 1936 and is now synonymous with

computation. Of course, this model shows some of the shortcomings of computation, in

particular the fact that some problems are not decidable. But while Turing Machines are

the model we’ve been using to this day, many other models have been shown to be equivalent

to it. In particular, we are concerned with the Lambda Calculus, developed by Alonzo Church

in the 1930’s.

While Turing Machines are a good model to formalize and visualize computations,

the lambda calculus is helpful to describe mathematical concepts more concisely, since it

is described purely through the notions of variables, functions and function application.

Moreover, the lambda calculus allows both the fields of computer science and mathematics

to be reunited under the same formalism. This is seen in part through the simply typed

lambda calculus, in which we associate types to terms in the language. While terms can

be related to computations, types relate to logical formulae: observed through the Curry-

Howard Correspondence. This correspondence ensures a mutually beneficial relation between

computer science and mathematics. On the one hand, it allows for safer computation by

proving logical formulae serving as guarantees for a program. On the other hand, it also

2

allows us to create mechanization tools in which we can validate a logical formula by providing

a proof term.

Due to this strong correspondence and the benefits linked to it, efforts were made

towards new calculi with an associated logic (typing) that could serve as stronger tools.

An important milestone is the introduction of intuitionistic type theory by Martin-Löf in

1972. While the Curry-Howard Correspondence was defined over impredicative logic, this

type theory extends it to the predicative case, in particular by introducing dependent types,

which allow for terms to be embedded inside of types.

All this effort eventually led to the development of logical frameworks, the goal of which

is to allow for a simpler mechanization of formal systems. This goal is accomplished by

providing a single meta-language with abstractions and primitives for common and recurring

concepts, such as variables and assumptions in proofs.

There are multiple benefits to using logical frameworks. In particular, by abstracting

over low-level operations and handling them automatically (e.g. substitution), mechanization

is easier to maintain, and efforts can be expanded towards the essential aspects of proofs,

rather than focusing on bureaucratics.

While there exists different logical frameworks, LF [19] is one of the most salient ex-

amples. A conservative extension of LF, the contextual logical framework [28, 30], is an

interesting framework to consider. The goal of this system is to support a broad range

of common features needed when mechanizing formal systems. In particular, a context of

assumptions together with properties about uniqueness of assumptions can be represented

abstractly using first-class contexts and context variables [30]; single and simultaneous sub-

stitutions together with their equational theory are supported via first-class substitutions

3

[8, 9]; finally, derivation trees that depend on a context of assumptions can be precisely

described via contextual objects [28]. This is of particular importance: by encapsulating

and representing derivation trees together with their surrounding context of assumptions,

we can analyze and manipulate these rich syntactic structures via pattern matching, and

can construct inductive proofs by writing recursive programs about them [32, 7].

This ideology leads to a modular and robust design where we cleanly separate the

representation of formal systems and derivations from the inductive reasoning about them.

Due to the interesting attributes of the contextual logical framework, we are interested

in borrowing some of its features when designing a linear logical framework. This is why

we developped Lincx, a logical framework combining both contextual type theory and linear

logic.

But what exactly is linear logic, and why are we interested in it?

1.2 Linear Logic

While the framework of classical logic might seem convenient, in the advent of computer

science, there has been a strong push towards working with constructive logics, due to

its intrinsic relationship with computations. For this reason, many systems have opted to

exclude the principle of excluded middles; in particular, intuitionistic logic is such a system.

However, intuitionistic logic isn’t always a satisfactory answer.

Unfortunately, some aspects of proofs in intuitionistic and classical logic are hidden away.

For instance, while there is only one disjunctive and one conjunctive, both can be used in

two different forms: An additive and a multiplicative. For this reason, we are interested

in a logic which allows us to examine more closely classical and intuitionistic proofs. The

distinction between both forms consists in the use of the context, and both coincide due to

4

structural rules. However, this distinction would allow us to more closely examine a system,

and we are thus interested in a logic which discriminates them.

This purpose is satisfied by linear logic, a substructural logic designed by Girard [18], in

which assumptions must be used exactly once. From this principle, both the conjunctive and

disjunctive constructors are split into two, where we can now observe the multiplicative and

additive counterparts as their own constructs. However, simply using these new operators

does not allow linear logic to englobe either classical or intuitionistic logic. For this, a new

constructor can be added to the language: exponentiation. Exponentiation allows us to use a

context of assumptions in an unrestricted manner, simulating the substructural rules. With

this new construct, classical and intuitionistic linear logic embed, respectively, classical and

intuitionistic logic. Moreover, while classical logic isn’t constructive, classical linear logic is.

From this new model (linear logic) also came a new notion of proofs: proof nets [18]. The

basic premise being that we create a special graph from our formula, and if this graph respects

some properties, then we have a proof. This serves as a more visual and less syntactic notion

of proof, and carries less redundant information around, while still remaining as correct and

rigorous.

Obviously, while the logical aspect is interesting, we are also interested in computations.

This means that we would be interested in a pair of terms and types where the latter

corresponds to linear logic. For this purpose, a linear lambda calculus has been developped.

Moreover, Pfenning and Cervesato have also developped the linear logical framework LLF

[10], which serves as a framework to reason about linear logic and as a starting point for

Lincx.

5

1.3 The Omnipresence of Linear Logic

Now that a basic picture of what linear logic is has been drawn, why exactly are we

interested in it? This is due to the fact that, despite linear logic stemming from the simple

removal of substructural rules, its consequences are vast and complex. For instance, many

new insights and observations have been made by studying linear logic.

There are a few examples demonstrating the usefulness of studying logic and compu-

tations from the perspective of linear logic. For instance, different linear representations of

intuitionistic implication correspond to different evaluation strategies[21]. Recent work by

Pistone also reveals an intrinsic relationship between polymorphism and linear logic [33].

On the other hand, linear logic doesn’t only allow for new insights, but can also be

used as a potent modelling tool. This is due to the fact that assumptions must be used

exactly once, allowing them to model resources. We can quickly take a look at a few of these

examples.

First of all, in order to reason about concurrency, there is empirical evidence to suggest

that linearity is key. For instance, an important model designed to reason about concurrent

systems that has been gaining traction in the last few years is that of Session Types [6]. In

this system, concurrent programs are allowed to share variables through a linear channel.

Moreover, these variables can be defined as linear, since they often represent resources.

Next, we also have the concurrent logical framework CLF [40], which is based on the

linear logical framework LLF [10], extended to deal with concurrent systems using a monadic

encapsulation. We are then faced with a system to reason about concurrency in which

linearity is an intrinsic property.

6

Briefly, a few more examples in which linearity plays a key role are non-size increasing

computation[20], Electronic Voting protocols[15], Narrative modelling [22].

More ambitiously, a large-scope example of linearity resides in the Rust language [1].

An important feature of this language is that of “ownership”, which allows Rust to preserve

memory safety. The notion of linearity play an important role in this feature and thus, linear

logic would be a prime candidate to formalize and mechanize Rust.

1.4 Contribution and Organization

While substructural frameworks such as LLF provide additional abstractions to elegantly

model the behaviour of imperative operations such as updating and deallocating memory

[39, 16] and concurrent computation (see for example session types [6]), it has been very

challenging to mechanize proofs about LLF specifications, meta-theory being one of the main

limitations. In particular, managing mixed contexts of unrestricted and linear assumptions

remains a challenge.

When constructing a derivation tree, we must often split the linear resources and dis-

tribute them to the premises, relying on a context join operation (written as Ψ = Ψ1 ./ Ψ2).

This operation should be commutative and associative, and unrestricted assumptions present

in Ψ should remain present in both Ψ1 and Ψ2. This mix of unrestricted and restricted as-

sumptions in turn leads to an intricate equational theory of contexts that often stands in

the way of mechanizing linear or separation logics in proof assistants that has spurred the

development of specialized tactics [24, 3].

Our main contribution is the design of Lincx, a contextual linear logical framework

with first-class contexts that may contain both intuitionistic and linear assumptions. On

the one hand our work extends the linear logical framework LF with support for first-class

7

linear contexts together with an equational theory of context joins, contextual objects and

contextual types; on the other we can view Lincx as a generalization of contextual LF to

model not only unrestricted but also linear assumptions. Lincx hence allows us to abstractly

represent syntax trees that depend on a mixed context of linear and unrestricted assumptions,

and can serve as a foundation for mechanizing the meta-theory of stateful systems where

we implement (co)inductive proofs about linear contextual objects by pattern matching

following the methodology outlined by Cave and Pientka [7] and Thibodeau et.al. [38]. Our

main technical contributions are:

1) A bi-directional decidable type system that only characterizes canonical forms of our

linear LF objects. Consequently, exotic terms that do not represent legal objects from our

object language are prevented. It is an inherent property of our design that bound variables

cannot escape their scope, and no separate reasoning about scope is required. To achieve

this we rely on hereditary substitution to guarantee normal forms are preserved. Equality of

two contextual linear LF objects reduces then to syntactic equality (modulo α-renaming).

2) Definition of first-class (linear) contexts together with an equational theory of context

joins. A context in Lincx may contain both unrestricted and linear assumptions. This not

only allows for a uniform representation of contexts but also leads to a uniform representation

of simultaneous substitutions. Context variables are indexed and their indices are freely

built from elements of an infinite, countable set through a context join operation (./) that is

associative, commutative and has a neutral element. This allows a canonical representation

of contexts and context joins. In particular, we can consider contexts equivalent modulo

associativity and commutativity. This substantially simplifies the meta-theory of Lincx

8

and also directly gives rise to a clean implementation of context joins which we exploit in

our mechanization of the meta-theoretic properties of Lincx.

3) Mechanization of Lincx together with its meta-theory in the proof assistant Beluga

[31]. Our development takes advantage of higher-order abstract syntax to model binding

structures compactly. We only model linearity constraints separately. We have mechanized

our bi-directional type-theoretic foundation together with our equational theory of contexts.

In particular, we mechanized all the key properties of our equational theory of context joins

and the substitution properties our theory satisfies.

We believe that Lincx is a significant step towards modelling (linear) derivation trees

as well-scoped syntactic structures that we can analyze and manipulate via case-analysis and

implementing (co)inductive proofs as (co)recursive programs. As it treats contexts, where

both unrestricted and linear assumptions live, abstractly and factors out the equational

theory of context joins, it eliminates the need for users to explicitly state basic mathematical

definitions and lemmas and build up the basic necessary infrastructure. This makes the task

easier and lowers the costs and effort required to mechanize properties about imperative and

concurrent computations.

In this thesis, we present Lincx, a contextual linear logical framework. The goal of

this framework is to formalize, mechanize and reason about linear systems. Lincx has been

developped in collaboration with Aina-Linn Georges, Agata Murawska and Brigitte Pientka,

and submitted to the European Symposium On Programming (ESOP) of 2017.

The work is organized as follows. In Section 2, we present some preliminaries needed

to better understand the subsequent theory. In particular, starting from the simply-typed

lambda calculus, adding some constructs from the contextual logical framework. We then

9

present the simply-typed linear lambda calculus and give some insights leading to our han-

dling of context variables.

In Section 3, we present our language through the use of two examples: code simplifica-

tion and cps-translation. Then, in Section 4, we define Lincx, first presenting the grammar,

then discussing the contexts and context joins operation. We describe the new abstract form

of context variables, presented in a binary form. Hereditary single substitution, simultane-

ous substitutions and typing rules are also defined, together with meta-theoretic properties.

In particular the substitution lemma and decidability of type checking are established. In

Section 5, we discuss the mechanization of Lincx, done in Beluga, strenghtening our

confidence in Lincx.

Finally, in Section 6, we discuss related work and we conclude in Section 7 by discussing

possible extensions of the system.

10

CHAPTER 2
Preliminaries

Before moving on to the examples and the theory, let us first present some prerequisite

theory. In particular, we want to present elements from Contextual Modal Type theory,

and the Simply Typed Linear Lambda Calculus. First, we quickly review the simply typed

lambda calculus and build some constructs from contextual modal type theory on it, meta-

variables and context variables, along with the notion of simultaneous substitution. Next,

we present the linear lambda calculus in a simply typed form, presenting two new objects,

meta-variables and context variables, along with the notion of a stuck substitution. Finally,

we describe one of the big issues raised by joining both theory, and present the insights that

allowed us to solve this issue.

2.1 Lambda Calculus

Let us start with a quick review of the simply typed lambda calculus. The syntax of

terms and types is as follows:

Terms M ::= x | λx:A.M | M1M2

Types A ::= A1 → A2 | >

Context Γ ::= · | Γ, x:A

Variables are represented by lower case letters such as x. They are bound by lambda

abstraction λx:A.M . Application is represented by M1M2, where we say M2 is applied to

M1. This means that M1 is assumed to be a function binding some variable x, while M2 is

11

an instantiation for x. This instantiation will be enacted through a substitution operation.

This brings us to the operational semantics of our language, where substitution M{M ′/x}

is read as replacing every occurence of x in M by M ′.

(λx:A.M1)M2 →M1{M2/x}

M1 →M ′
1

M1M2 → M ′
1M2

M2 →M ′
2

M1M2 → M1M
′
2

Since we are working with variables in a simply typed setting, we want to describe the

type of these variables. In order to do this, we carry a context around, which is simply a

list of different variables with their associated type. We note that, while not explicit, it is

assumed that no variable appears more than once in a context.

We can now describe our types. In order for the types to terminate, we need some

base type, which we call >. This represent our base case in the inductive definition of A.

The type A1 → A2 represents the type of a lambda expression λx:A1.M , where A1 is the

input type, or type of variable x, while A2 is the output type, or expected type of M after

instantiating x. This becomes clearer with the typing rules.

Γ, x:A1 ` x:A1

Γ, x:A1 `M : A2

Γ ` λx:A1.M : A1 → A2

Γ `M : A1 → A2 Γ `M2 : A2

Γ ` M1M2 : A2

2.2 Contextual Modal Logic

Let us now move on to the contextual modal setting. In this section, we shall extend

our calculus with two new constructs: meta-variables and context variables. However, be-

fore moving on to these constructs, we first need to present a new notion of substitution:

12

simultaneous substitution. The reason for this will become clear as we progress through this

section.

The idea behind simultaneous substitution is that all the variables we could substitute

for are present at the same time. Thus, we don’t apply each substitution one after the other,

as they appear through beta reductions, but instead cluster them together. The syntax for

a simultaneous substitution is as follows:

Substitution σ ::= · | σ,M/x

The next logical step is to describe how to apply this simultaneous substitution. Let us

thus do this. In the current setting, it is akin to applying single substitution multiple times.

We shall, nevertheless, describe it in the standard fashion.

σΨ(x) Variable lookup

(σ,M/x)(x) = M : A

(σ,M/x′)(x) = σ(x) where x′ 6= x

·(x) = ⊥

[σ]ΦM
Substitution by σ in a term

(leaving elements of Φ unchanged)

[σ]Φ(λx:A.M) = λx:A.M ′ where [σ]Φ,x:AM = M ′, choosing x 6∈ FV(σ)

[σ]Φ(M1M2) = M ′
1M

′
2 where [σ]ΦM1 = M ′

1 and [σ]ΦM2 = M ′
2

[σ]Φ(x) = M where x 6∈ Φ and Φ(x) = M : A

An interesting aspect of using simultaneous substitution is that it allows us to move

between contexts. This notion is made clearer with typing over the simultaneous substitution,

13

denoted as Γ1 ` σ : Γ2, which states that substitution σ moves us from context Γ2 to context

Γ1.

Γ ` · : ·
Γ ` σ : Γ′ Γ `M : A
Γ ` σ,M/x : Γ′, x : A

Let us now expand our calculus with meta-variables. A meta variable is denoted as u,

however, it will be associated with a “stuck” substitution, which will be made clear later,

and thus represented as u[σ]:

Terms M ::= x | λx:A.M | M1M2 | u[σ]

In order for this meta-variable to be well-described, we need to add a new context,

called meta-context, which will keep track of meta-variables, similarly to the relation between

contexts and variables. However, due to some peculiarities of meta-variables (the reason for

which they are associated with a “stuck” substitution), the typing must also be associated

with a context. This new meta-variable provides us with a new abstraction of terms.

Meta-Context ∆ ::= · | ∆, u : {Γ ` A}

We quickly note that the typing of the meta-variable is based not only on a type, but is

also associated with a specific context. Moreover, when typing a meta-variable, we also rely

on the typing of the associated stuck simultaneous substitution.

u[σ] : {Γ′ ` A} ∈ ∆ Γ ` σ : Γ′

∆; Γ ` u[σ] : A

Let us now revisit our notion of substitution. The question is now: What does it mean

to replace variable x in a meta-variable u? The answer is that the substitution cannot be

14

applied yet, since we do not know what u stands for: the substitution gets stuck, and we

add it and apply it to the simultaneous substitution σ. Thus, our simultaneous substitution

σ accumulates all the variables that need to be substituted in u once we instantiate it. Let

us thus write the definition of a single substitution:

{M/x}M ′ Single substitution over a term

{M/x}x = M

{M/x}λy:A.M ′= λy:A.{M/x}M ′ where y 6∈ FV (M) and x 6= y

{M/x}M1M2 = {M/x}M1{M/x}M2

{M/x}u[σ] = u[{M/x}σ]

{M/x}M ′ Single substitution over simultaneous substitution

{M/x}· = [·,M/x]

{M/x}(σ,M ′/y) = ({M/x}σ), ({M/x}M ′)/y where y 6= x

Similarly, we can expand the notion of simultaneous substitution to meta-variables, and

thus apply a simultaneous substitution to another simultaneous substitution.

We now move on to context variables, which shall be denoted as ψ. However, since we

want them to properly abstract contexts and be sure that our instantiation is valid, we must

add a new notion of typing for contexts: schemas. Moreover, a new substitution must be

added to our language, the identity substitution idψ.

15

Substitution σ ::= · | idψ | σ,M/x

Context Γ ::= · | ψ | Γ, x:A

Schema G ::= λ(
−−−→
xi:Ai).A | G+ λ(

−−−→
xi:Ai).A

Meta-Context ∆ ::= · | ∆, u : {Γ ` A} | ∆, ψ : G

The description of a context variable in the meta-context is associated with a schema. A

schema describes the possible types of variables in a context with their possible dependencies

(described as a vector). Thus, a schema element λ(
−−−→
xi:Ai).A represents a variable of type A

that can depend on variables xi of respective types Ai. Finally, we have the new substitution

construct idψ, which allows us to go from a domain with only ψ to a co-domain containing

ψ and other variables. When ψ gets instantiated, this becomes an identity substitution.

We note that one desired property is that all subcontexts have the same schema as

the full context. This means, for instance, that we allow the empty context to have any

valid schema. Similarly, when extending a context, we only ensure that the new assumption

corresponds to one of the possibilities in the schema.

We can now present the typing rules for the contexts, along with the typing of the new

substitution:

∆;ψ,Γ ` idψ : ψ

∆ ` · : G
ψ : G ∈ ∆

∆ ` ψ : G

∆ ` Γ : G λ(
−−−→
xi:Ai).B ∈ G ∆; Γ ` σ :

−−−−→
(xi:Ai) [σ]B = A

∆ ` (Γ, x:A) : G

Finally, we add meta-substitution to our system, where we instantiate our meta-objects:

16

Meta-substitution Θ ::= · | Θ,Ψ.M/u | Θ,Ψ/ψ

The application of a meta-substitution is fairly straight-forward and follows the same

principles as simultaneous substitution. The restrictive aspect of it follows from the typing

itself, where the context of the instantiation to align with the context of u’s type. This

follows work on the Contextual Modal Type Theory [28] and work by Cave [7]

∆ ` · : ·
∆ ` Ψ : G ∆ ` Θ : ∆′

∆ ` Θ,Ψ/ψ : ∆′, ψ : G

∆; Ψ `M : A ∆ ` Θ : ∆′

∆ ` Θ,Ψ.M/u : ∆′, u : {Ψ.A}

2.3 Linear Lambda Calculus

Let us now build the linear lambda calculus, where the syntax is slightly altered. In

order to differentiate the intuitionistic setting from the linear one, linear implication is now

denoted as A1 (A2, linear lambda abstraction as λ̂, linear application asM1ˆM2 and linear

typing of a variable as x̂:A

Terms M ::= x | λ̂x̂:A.M | M1ˆM2

Types A ::= A1 (A2 | >

Context Γ ::= · | Γ, x̂:A

Variables are still represented by x, where they are bound by the linear lambda abstrac-

tion λ̂x : A.M . The basic intuition of linearity is that, once a variable is bound linearly, it

must be used exactly once. This implies that it must be used at least once (no weakening),

17

and cannot be used multiple times (no contraction). This will be enforced through the typing

rules, using a join operation ./, described later.

Next, we have the linear application M1ˆM2, where M2 is linearly applied to M1. This

means thatM1 is assumed to be a linear function binding some variable x(which must appear

unbounded in M1 exactly once), while M2 is an instantiation of x.

Next, there are types. The type A1 (A2 represents the type of a linear lambda

expression λ̂x̂:A1.M , where A1 is the input type, or type of variable x, while A2 is the

output type, or expected type of M after instantiating x. Once again, x is expected to

appear exactly once.

x̂:A1 ` x̂:A1

Γ, x̂:A1 `M : A2

Γ ` λ̂x̂:A1.M : A1 (A2

Γ1 `M : A1 (A2 Γ2 `M2 : A2 Γ = Γ1 ./ Γ2

Γ `M1ˆM2 : A2

Γ1, x̂:2A2, x̂:1A1,Γ2 `M : A

Γ1, x̂:1A1, x̂:2A2,Γ2 `M : A

We can notice that this is similar in nature to the simply typed lambda calculus, with

the big distinction residing in the handling of contexts. There are two main differences in

our typing rules. First, as a direct consequence of linearity, application M1ˆM2 must respect

that any variable x appears in either M1 or M2 (cases where it appears in neither or in

both would not be linear). This is because linear variables must be used exactly once. For

this reason, the context is split using the join operation Γ = Γ1 ./ Γ2. Second, the axiom

case also differs: Because we are splitting the context to represent where we use variables,

the axiom must use a context containing exactly the desired variable and none other. The

18

last rule presented is the exchange rule (a substructural rule). This is made explicit since

contraction and weakening are not allowed in this calculus.

Let us now look at the join operation:

· = · ./ ·
Γ = Γ1 ./ Γ2

Γ, x̂:A = Γ1, x̂:A ./ Γ2

Γ = Γ1 ./ Γ2

Γ, x̂:A = Γ1 ./ Γ2, x̂:A

In short, Γ = Γ1 ./ Γ2 forces each variable in Γ to go in either Γ1 or Γ2.

This calculus also comes with operational semantics, since we are not dealing with the

normal form. The operational semantics for this language are the same as for the standard

lambda calculus, the only difference being that substitution would replace each variable

exactly once. Note that the substructural rules of weakening and contracting are not allowed,

while the exchange rule is still used.

(λ̂x̂:A.M1)̂ M2 →M1{M2/x}

M1 →M ′
1

M1ˆM2 →M ′
1ˆM2

M2 →M ′
2

M1ˆM2 →M1ˆM
′
2

Before moving on to the next section, let us modify slightly our contexts. An alternative

to the current formulation would be to keep every variable, but mark them as unavailable

when they have been “used”. We shall mark unavailable variables in our context as x̌:T .

Thus, our context formulation becomes as follows:

Context Γ ::= · | Γ, x̂:A | Γ, x̌:A

19

This formulation follows the work of Schack-Nielsen [35]. Now, we obviously need to

modify our axiom and also notion of join. Let us first define a new operation over contexts,

unr(Φ), which is valid iff all variables in Φ are unavailable.

unr(·)
unr(Γ)

unr(Γ, x̌:T)

Now, we are ready to see the new variants of the axiom rule and the join:

unr(Γ)

Γ, x̂:A ` x : A

· = · ./ ·
Γ = Γ1 ./ Γ2

Γ, x̌:A = Γ1, x̌:A ./ Γ2, x̌:A

Γ = Γ1 ./ Γ2

Γ, x̂:A = Γ1, x̂:A ./ Γ2, x̌:A
Γ = Γ1 ./ Γ2

Γ, x̂:A = Γ1, x̌:A ./ Γ2, x̂:A

2.4 Tree-Structure of Contexts

Let us now look at context variables in the setting of linear logic. One thing we must

notice is that, through the application rule, a context variable is expected to be split. How-

ever, one important note is that, none of the explicit variables in a context can appear in

a context variable. Thus, when we have the split ψ,Γ = ψ1,Γ1 ./ ψ2,Γ2, we know that

ψ = ψ1 ./ ψ2 and Γ = Γ1 ./ Γ2. This thus allows us to handle context variables separately.

This, in turn, signifies that when we extend a context with a variable through a lambda

binding, this does not affect the context variable at all. Based on this observation, we

can look at the tree-structure of the typing tree and notice that, whenever the context is

extended, the context variable is unaffected, while when we split a context, the context

20

variables are split. This means that the context variables can form a tree where each parent

is the join of its children. Finally, the identity substitution represents the leaves of the tree.

For our purposes, let us look at a brief example:

∆, ψ11,Γ
′
11 ` idψ11 : ψ11

...
∆;ψ11,Γ11 ` u1[idψ11] : A1 (B1

∆, ψ12,Γ
′
12 ` idψ12 : ψ12

...
∆;ψ12,Γ12 ` u2[idψ12] : A1

...
∆;ψ1,Γ1 ` u1[idψ11]̂ u2[idψ12] : A(B

∆, ψ2,Γ
′
2 ` idψ2 : ψ2

...
∆;ψ2,Γ

′
2 ` u3[idψ2] : B2

∆;ψ,Γ ` (u1[idψ11]̂ u2[idψ12])̂ u3[idψ2] : B

This would result in the following tree'

&

$

%

ψ

ψ1

ψ11 ψ12

ψ2./

./

Now that we know that the context variables respect a tree structure, the question be-

comes how to exploit it. While we might expect to simply need to specify the structure itself,

one further property makes this impractical. Since we want to emulate the join operation,

we also want to maintain its properties. Two important properties are associativity and

commutativity.

In other words, if we have ψ = ψ1 ./ ψ2, we also want ψ = ψ2 ./ ψ1. This, in itself

is manageable; However, some issues arise when dealing with associativity. In particular,

we would need the following to hold: ψ = ψ1 ./ ψ2 and ψ1 = ψ11 ./ ψ12 implies that

21

ψ = ψ11 ./ ψ
′ and ψ′ = ψ12 ./ ψ2. The main problem here is that we need a fresh context

variable with a fresh name.

Our saving grace, however, is to notice that if we only look at the leaves themselves,

associativity and commutativity can easily be maintained. Thus, the basic idea will be to

describe a context variable by its set of leaves. This new notion is weaved directly in the

name of the context variable, making this a nominal system, similarly to DeBruijn indices

with its ordinary bound variables, where the name represents a location in the context.

Moreover, we can note a similarity with the notion of used and unused variables, especially

when using binary numbers to describe the system. We could use a binary number with n

bits, where n is the number of leaves, and positive bits represent the leaves it contains, or

uses, while the neutral bits represent the unused leaves.

22

CHAPTER 3
Examples

To illustrate how we envision using (linear) contextual objects and (linear) contexts, we

implement two program transformations on object languages that exploit linearity. We first

represent our object languages in Lincx (presented in Chapter 4) and then write recursive

programs that analyze the syntactic structure of these objects by pattern matching. The

goal of this is to both give a flavour of Lincx before presenting it formally, and to highlight

the role that contexts and context joins play.

3.1 Example: Code Simplification

To illustrate the challenges that contexts pose in the linear setting, we implement a

program that translates linear Mini-ML expressions that feature let-expression into a linear

core lambda calculus. We define the linear Mini-ML using the linear type ml and our linear

core lambda calculus using the linear type lin as our target language. We introduce a linear

LF type together with its constructors using the keyword Linear LF.

Linear LF ml : type =

| lam : (ml -o ml) -o ml

| app : ml -o ml -o ml

| letv : ml -o (ml -o ml) -o ml;

Linear LF lin: type =

| llam : (lin -o lin) -o lin

| lapp : lin -o lin -o lin

;

23

We use the linear implication -o to describe the linear function space and we model

variable bindings that arise in abstractions and let-expressions using higher-order abstract

syntax, as is common in logical frameworks. This encoding technique exploits the function

space provided by LF to model variables. In the linear LF it also ensures that bound variables

are used only once.

Our goal is to implement a simple translation of Mini-ML expressions to the core lin-

ear lambda calculus by eliminating all let-expressions and transforming them into function

applications. We thus need to traverse Mini-ML expressions recursively. As we go under

an abstraction or a let-expression, our sub-expression will not, however, remain close. We

therefore model a Mini-ML expression together with its surrounding context in which it is

meaningful. Our function trans takes a Mini-ML expression in a context γ, written as [γ `

ml], and returns a corresponding expression in the linear lambda calculus in a context δ, an

object of type [δ ` lin]. More precisely, there exists such a corresponding context δ.

We first define the structure of such contexts using context schema declarations. The

tag l ensures that any declaration of type ml in a context of schema ml_ctx must be linear.

Similarly, any declaration of type lin in a context of schema core_ctx must be linear.

schema ml_ctx = l (ml);

schema core_ctx = l (lin);

To characterize the result of this translation, we define a recursive type. Since the

recursive type uses the context explicitly, it resides on the computational level, rather than

at the Lincx level.

inductive Result: type = Return : (δ:core_ctx) [δ ` lin] → Result;

24

rec trans : (γ:ml_ctx)[γ ` ml] → Result =
fn e ⇒ case e of
| [x̂:ml ` x] ⇒ Return [x̂:lin ` x]

| [γ ` lam ^ (λ̂x. M)] ⇒
let Return [δ, x̂:lin ` M’] = trans [γ, x̂:ml ` M] in
Return [δ ` llam ^ (λ̂x. M’)]

| [γ(1./2) ` app ^ M ^ N] where M:[γ1 ` ml] and N:[γ2 ` ml] and γ(1./2) = γ1 ./ γ2⇒
let Return [δ1 ` M’] = trans [γ1 ` M] in
let Return [δ2 ` N’] = trans [γ2 ` N] in

Return [δ(1./2) ` lapp ^ M’ ^ N’] where δ(1./2) = δ1 ./ δ2

| [γ(1./2) ` let ^ M ^ (λ̂x. N)] where M:[γ1` ml] and N:[γ2, x̂:ml ` ml]
and γ(1./2) = γ1 ./ γ2 ⇒

let Return [δ1 ` M’] = trans [γ1 ` M] in
let Return [δ2, x̂:lin ` N’] = trans [γ2, x̂:ml ` N] in

Return [δ(1./2) ` lapp ^ (llam ^ (λ̂x. N’)) ^ M’] where δ(1./2) = δ1 ./ δ2;

Figure 3–1: Translation of Linear ML-Expressions to a Linear Core Language

By writing round parenthesis in (δ:core_ctx) we indicate that we do not pass δ explicitly

to the constructor Return, but it can always be reconstructed. It is merely an annotation

declaring the schema of δ.

We now define a recursive function trans using the keyword rec (see Fig. 3–1). Due to

linearity, the context of the result of translating a Mini-ML term has the same length as

the original context. This invariant is however not explicitly tracked. Our simplification is

implemented by pattern matching on [γ ` ml] objects and specifying constraints on contexts.

In the variable case, since we have a linear context, we require that x be the only variable

in the context1 . In the lambda case [γ ` lam ^(λ̂x.M)] we write ^ for linear application and

linear abstraction. We expect the type of M to be inferred as [γ,x̂:ml ` ml], since we interpret

1 In case we have a mixed context, we could specify that the rest of the context is unre-
stricted, using the keywords where and unr.

25

every pattern variable to depend on all its surrounding context unless otherwise specified.

We now recursively translate M in the extended context γ, x̂:ml, unpack the result and rebuild

the equivalent linear term. Note that we pattern match on the result translating M by writing

Result [δ, x̂:lin ` M’]. However, we do not necessarily know that the output core_ctx context is

of the same length as the input ml_ctx context and hence necessarily has the shape [δ, x̂:lin],

as we do not track this invariant explicitly. To write a covering program we would need to

return an error, if we would encounter Return [` M’], i.e. a closed term where δ is empty. We

omit this case here.

While the variable case seems straightforward, it is important to note that this is because

we are working directly with the context. In other systems, the variable case would require

extra steps to make the translation possible.

Next, the most interesting cases are the third and fourth, as we must split the context.

When we analyze for example [γ(1./2) ` app ^ M ^N], then M has some type [γ1 ` ml] and N has

some type [γ2 ` ml] where γ(1./2) = γ1 ./ γ2. We specify these type annotations and context con-

straints explicitly. We overload the ./ here. In this example, when it occurs as a subscript it

is part of the name, while when we write γ1 ./ γ2 it refers to the operation on contexts. Then

we can simply recursively translate M and N and rebuild the final result where we explicitly

state δ1./2 = δ1 ./ δ2. We proceed similarly to translate recursively every let-expression into a

function application.

Type checking will verify that a given object is well-typed modulo context joins. This

is non-trivial. Consider for example [δ(1./2) ` lapp ^ (llam ^(λ̂x. N’)) ^ M’] where δ(1./2) = δ1 ./ δ2.

We want our underlying type theory to reason about context constraints modulo associativity

and commutativity.

26

γ1./(21./22)

γ1 γ21./22

γ21 γ22

./

./

equivalent to

γ(1./21)./22

γ1./21

γ1 γ21

γ22./

./

Figure 3–2: Context Joins

As the astute reader will have noticed, we only allow one context variable in every

context, i.e. writing [δ1, δ2 ` lapp ^ (llam ^ (λ̂x. N’)) ^ M’] is illegal. Furthermore, we have

deliberately chosen the subscripts for our context variables to emphasize their encoding in

our underlying theory. Note that all context variables that belong to the same tree of context

splits deliberately have the same name, but differ in their subscripts. The context variables

γ1 and γ2 are the leaf-level context variables. The context variable γ(1./2) is their direct parent

and sits at the root of this tree. One can think of the tree of context joins as an abstraction of

the typing derivation. To emphasize this idea, consider the following deeply nested pattern:

[γ((11./12)./2) ` lapp ^ (lapp ^ (llam ^ (λ̂x. M)) ^ N’) ^ K] where M : [γ11, x̂: ml ` ml], N : [γ12 ` ml], K :

[γ2 ` ml]. We again encode the splitting of γ in its subscript. Our underlying theory of context

joins will treat γ(11./(12./2)) as equivalent to γ((11./12)./2) or γ((12./11)./2) as our equational theory

on context joins takes into account commutativity and associativity. However, it may require

us to generate a new intermediate node γ(1./21) and eliminate intermediate nodes (such as

γ21./22).

Our encoding of context variables is hence crucial to allow the rearrangement of context

constraints but also to define what it means to instantiate a given context variable such as γ21

with a concrete context Ψ. If Ψ contains also unrestricted assumptions then instantiating γ21

will have a global effect, as unrestricted assumptions are shared among all nodes in this tree

of context joins. This latter complication could possibly be avoided if we separate the context

of intuitionistic assumptions and the context of linear assumptions. However, this kind of

27

separation between intuitionistic and linear assumptions is not trivial in the dependently

typed setting because linear assumptions may depend on intuitionistic assumptions.

This design of context variables and capturing their dependency is essential to Lincx

and to the smooth extension of contextual types to the linear setting. As the leaf-level

context variables uniquely describe a context characterized by a tree of context joins, we

only track the leaf-level context variables as assumptions while type checking an object, but

justify the validity of context variables that occur as interior nodes through the leaf-level

variables. We want to emphasize that this kind of encoding of context variables does not

need to be exposed to programmers.

3.2 Example: CPS-translation

As a second example, we implement the translation of programs into continuation pass-

ing style following Danvy and Filinski [14]. Concretely, we follow closely the existing imple-

mentation of type-preserving CPS translation in Beluga by Belanger et.al [2], but enforce

that the continuations are used linearly, an idea from Berdine et.al [4]. Although context

splits do not arise in this example, as we only have one linear variable in our context, namely

the variable standing for the continuation, we include this example, to showcase the mix and

interplay of intuitionistic and linear function spaces in encoding program transformations.

Our source language is a simple language consisting of natural numbers, functions,

applications and let-expressions. We only model well-typed expressions by defining a type

source that is indexed by types tp.

28

Linear LF tp : type =

| nat : tp

| arr : tp → tp → tp;

Linear LF source : tp → type =

| app : source (arr S T) → source S → source T

| lam : (source S → source T) → source (arr S T)

| z : source nat

| s : source nat → source nat;

In our target language we distinguish between expressions, characterized by the type

exp and values, defined by the type value. Continuations take values as their argument and

return an exp. We ensure that each continuation itself is used exactly once by abstracting exp

over the linear function space.

Linear LF exp : type =

| kapp : value (arr S T) → value S → (value T → exp) -o exp

| halt : value S → exp

and value : tp → type =

| klam : (value S → (value T → exp) -o exp) → value (arr S T)

| kz : value nat

| ksuc : value nat → value nat ;

We can now define our source and value contexts as unrestricted contexts by marking the

schema element with the tag u.

schema sctx = u (source T);

schema vctx = u (value T);

To guarantee that the resulting expression is well-typed, we define a context relation to

relate the source context to the value context. Notice that we explicitly state that the type S of

a source and target expression does not depend on γ or δ. It is closed. To distinguish between

objects that depend on their surrounding context and objects that do not, we associate an

29

index and pattern variable with a substitution. As mentioned earlier, by default every index

and pattern variable depends on its surrounding context and is associated with an identity

substitution. If we want to state that a given variable is closed, we associate it with the

empty substitution [].

data Ctx_Rel: {γ:sctx}{δ:vctx} type =

Nil : Ctx_Rel [] []

Cons : Ctx_Rel [γ] [δ] → Ctx_Rel [γ, x:source S[]] [δ, v:value S[]] ;

We can now define the translation itself (see Fig. 3–3). The function cpse takes in a

context relation Ctx_Rel [γ] [δ] and a source term of type source S[] that depends on context γ.

However, S itself does not depend on γ, since it is associated with the empty substitution [].

It then returns the corresponding expression of type exp, depending on context δ extended by

a continuation from value S to exp. The fact that the continuation is used only once in exp is

enforced by declaring it linear in the context. The translation proceeds by pattern matching

on the source term. We concentrate here on the interesting cases.

rec cpse:(γ:sctx)(δ:vctx)(S:[` tp])
Ctx_Rel [γ] [δ] → [γ ` source S[]] → [δ, k̂:value S[] → exp ` exp] =

fn r, e ⇒ case e of
| [γ ` #p] ⇒

let [δ` #q] = lookup r [γ ` #p] in
[δ, k̂:value _ → exp ` k #q]

| [γ ` z] ⇒ let (r : Ctx_Rel [γ] [δ]) = r in [δ,k̂:value nat → exp ` k kz]

| [γ ` suc N] ⇒
let [δ,k̂:value nat → exp ` P] = cpse r [γ ` N] in
[δ,k̂:value nat → exp ` P[λp. k (ksuc p)]]

| [γ ` lam λx. M] ⇒
let [δ, v:value S[], k̂:value T[] → exp ` P] = cpse [Cons r] [γ, x:source _ ` M] in

[δ, k^:value (arr S[] T[]) → exp ` k (klam (λx.λ̂c. P))]

| [γ ` app M N] ⇒
let [δ, k1̂:value (arr S[] T[]) → exp ` P] = cpse r [γ ` M] in
let [δ, k2̂:value S[] → exp ` Q] = cpse r [γ ` N] in

[δ,k̂:value T[] → exp ` P[λf. Q[λx. kapp f x ^ k]]];

Figure 3–3: CPS Translation

30

Parameter variable. If we encounter a variable from the context γ, written as #p, we

look up the corresponding variable #q in the target context δ by using the context relation

and we pass it to the continuation k. We omit here the definition of the lookup function

which is straightforward. We use _ where we believe that the omitted object can reasonably

be inferred. Finally, we note that k #q is well-typed in the context δ, k̂:value _ → exp, as k is

well-typed in the context that only contains the declaration k̂:value _ → exp and #q is well-typed

in the context δ.

Constant z. We first retrieve the target context δ to build the final expression by

pattern matching on the context relation r. Then we pass kz to the continuation k in the

context δ,k̂:value nat → exp. Note that an application k kz is well-typed in δ,k̂:value nat → exp, as

kz is well-typed in δ, i.e. its unrestricted part.

Lambda Case. To convert functions, we extend the context γ and the context relation

r and convert the term M recursively in the extended context to obtain the target expression

P. We then pass to the continuation k the value klam λx.λ̂c.P.

Application Case. Finally, let us consider the the source term app M N. We translate

both M and N recursively to produce the target terms P and Q respectively. We then substitute

for the continuation variable k2 in Q a continuation consuming the local argument of an

application. A continuation is then built from this, expecting the function to which the

local argument is applied and substituted for k1 in P producing a well-typed expression, if a

continuation for the resulting type S is provided.

We take advantage of our built-in substitution here to reduce any administrative re-

dexes. The term (λx. kapp f x ^ k) that we substitute for references to k2 in Q will be β-reduced

wherever that k2 appears in a function call position, such as the function calls introduced

31

in the variable case. We hence reduce administrative redexes using the built-in (linear) LF

application.

32

CHAPTER 4
Theory

Throughout this section we gradually introduce Lincx, a contextual linear logical frame-

work with first-class contexts (i.e. context variables) that generalizes the linear logical frame-

work LLF [10] and contextual LF [7].

4.1 Disclaimer

It is important to note that the insight into the tree-structure of the context-variables

following the structure of the derivation trees was first suggested by the present author.

Later, the present author also came up with the notion of a nominal description of context

variables to describe the tree-structure, based on the notion that an intermediary node can

be uniquely described as the union of its leaves. This was initially described using binary

numbers, and was later refined by Agata Murawska into the current monoidal version. Most

of the remaining work was done as a collaboration between Agata Murawska, Aina-Linn

Georges and the present author.

Fig. 4–1 presents both contextual linear LF and its meta-language (see Sect. 4.7).

4.2 Syntax of Contextual Linear LF

Lincx allows for linear types, written A (B, and dependent types Πx:A.B where x

may be unrestricted in B. We follow recent presentations where we only describe canonical

LF objects using hereditary substitution.

As usual, our framework supports constants, (linear) functions, and (linear) applications.

We only consider objects in η-long β-normal form, as these are the only meaningful terms

33

Contextual Linear LF

Kinds K ::= type | Πx:A.K

Types A,B ::= P | Πx:A.B | A(B

Atomic Types P,Q ::= a · S
Heads H ::= x | c | p[σ]

Spines S ::= ε | M ;S | M ;̂S

Atomic Terms R ::= H · S | u[σ]

Canonical Terms M,N ::= R | λx.M | λ̂x.M
Variable Declarations D ::= x:A | x̂:A | x̌:A

Contexts Ψ,Φ ::= · | ψm | Ψ, D

Substitutions σ, τ ::= · | idψ | σ,M

Meta-Language

Meta-Variables X ::= u | p | ψi
Meta-Objects C ::= Ψ̃.R | Ψ̃.H | Ψ

Context Schema Elem. E ::= λ(
−−−→
xi:Ai).A | λ(

−−−→
xi:Ai).Â

Context Schemata G ::= E | G+ E

Context Var. Indices m ::= ε | i | m ./ n

Meta Types U ::= Ψ ` P | Ψ ` #A | G
Meta-Contexts ∆ ::= · | ∆, X : U

Meta-Substitutions Θ ::= · | Θ, C/X

Figure 4–1: Contextual Linear LF with First-Class Contexts

34

in a logical framework. While the grammar characterizes objects in β-normal form, the

bi-directional typing rules will also ensure that objects are η-long. Normal canonical terms

are either intuitionistic lambda abstractions, linear lambda abstractions, or neutral atomic

terms. We define (linear) applications as neutral atomic terms using a spine representation

[11], as it makes the termination of hereditary substitution easier to establish. For example,

instead of x M1 . . .Mn, we write x ·M1; . . . ; Mn; ε. The three possible variants of a spine

head are a variable x, a constant c or a parameter variable closure p[σ].

Our framework contains ordinary bound variables x which may refer to a variable

declaration in a context Ψ or may be bound by either the unrestricted or linear lambda-

abstraction, or by the dependent type Πx:A.B. Similarly to contextual LF, Lincx also

allows two kinds of contextual variables as terms. First, the meta-variable u of type (Ψ ` P)

stands for a general LF object of atomic type P and uses the variables declared in Ψ. Sec-

ond, the parameter variable p of type (Ψ ` #A) stands for a variable object of type A from

the context Ψ. These contextual variables are associated with a postponed substitution σ

representing a closure. The intention is to apply σ as soon as we know what u (or p resp.)

stands for.

The system has one mixed context Ψ containing both intuitionistic and linear assump-

tions: x:A is an intuitionistic assumption in the context (also called unrestricted assumption),

x̂:A represents a linear assumption and x̌:A stands for its dual, an unavailable assumption.

It is worth noting that we usê throughout the system description to indicate a linear object

– be it term, variable, name etc. Similarly, q always denotes an unavailable resource.

In the simultaneous substitution σ, we do not make the domain explicit. Rather, we

think of a substitution together with its domain Ψ; the i-th element in σ corresponds to

35

the i-th declaration in Ψ. The expression idψ denotes the identity substitution with domain

ψm for some index m; we write · for the empty substitution. We build substitutions using

normal terms M . We must however be careful: note that a variable x is only a normal term

if it is of base type. As we push a substitution σ through a λ-abstraction λx.M , we need to

extend σ with x. The resulting substitution σ, x might not be well-formed, since x might not

be of base type and, in fact, we do not know its type. This is taken care of in our definition

of substitution, following [8]. As we substitute and replace a context variable with a concrete

context, we unfold and generate an (η-expanded) identity substitution for a given context

Ψ.

4.3 Contexts and Context Joins

Since linearity introduces context splitting, context maintenance is crucial in any linear

system. When we allow for first-class contexts, as we do in Lincx, it becomes much harder:

we now need to ensure that, upon instantiation of the context variables, we do not acciden-

tally join two contexts sharing a linear variable. To enforce this in Lincx, we allow for at

most one (indexed) context variable per context and use indices to abstractly describe split-

ting. This lets us generalize the standard equational theory for contexts based on context

joins to include context variables.

As mentioned above, contexts in Lincx are mixed. Besides linear and intuitionistic

assumptions, we allow for unavailable assumptions following [36], in order to maintain sym-

metry when splitting a context: if Ψ = Ψ1 ./ Ψ2, then Ψ1 and Ψ2 both contain all the

variables declared in Ψ; however, if Ψ1 contains a linear assumption x̂:A, Ψ2 will contain its

unavailable counterpart x̌:A (and vice-versa).

36

To account for context splitting in the presence of context variables, we index the latter.

The indices are freely built from elements of an infinite, countable set I, through a join

operation (./). It is associative and commutative, with ε as its neutral element. In other

words, (I, ./, ε) is a free commutative monoid over I. For our presentation it is important

that no element of the monoid is invertible, that is if m ./ n = ε then m = n = ε. In the

process of joining contexts, it is crucial to ensure that each linear variable is used only once:

we do not allow a join of Ψ, x̂:A with Φ, x̂:A. To express the fact that indices m and n

share no elements of I and hence the join of ψm with ψn is meaningful, we use the notation

m⊥n. In fact we will overload ./, changing it into a partial operation m ./ n that fails when

m 6⊥n. This is because we want the result of joining two context variables to continue being

a correct context upon instantiation. We will come back to this point in Sect. 4.7, when

discussing meta-substitution for context variables.

To give more intuition, the implementation of the indices in our formalization of the

system is using binary numbers, where I contains powers of 2, ./ is defined as a binary OR

and ε = 0 . m⊥n holds whenm and n use different powers of 2 in their binary representation.

We can also simply think of indices m as sets of elements from I with ./ being ∪ for sets

not sharing any elements.

The only context variables tracked in the meta-context ∆ are the leaf-level context vari-

ables ψi. We require that these use elements of the carrier set i ∈ I as indices. To construct

context variables for use in contexts, we combine leaf-level context variables using ./ on in-

dices. Consider again the tree describing the context joins (see Fig. 3–2). In this example, we

have the leaf-level context variables γ1, γ21, and γ22. These are the only context variables we

track in the meta-context ∆. Using a binary encoding we would use the subscripts 100, 010

37

∆ ` Ψ ctx Ψ is a valid context under meta-context ∆

∆ ` · ctx
ψi ∈ dom(∆)

∆ ` ψε ctx
ψi ∈ dom(∆)

∆ ` ψi ctx
∆ ` ψk ctx ∆ ` ψl ctx m = k ./ l

∆ ` ψm ctx

∆ ` Ψ ctx ∆; Ψ ` A type D ∈ {x:A, x̂:A, x̌:A}
∆ ` Ψ, D ctx

Figure 4–2: Well-Formed Contexts

and 001 instead of 1, 21, and 22. Rules of constructing a well-formed context (Fig. 4–2) de-

scribe four possible initial cases of context construction. First is simply a context containing

no context variable, ·. Next, a context containing a context variable taken directly from the

meta-context, ψi ∈ ∆. A composition rule allows joining two well-formed context variables

using ./ operation on indices; the restriction we make on ./ ensures that they do not share

any leaf-level variables. ψε forms a well-formed context as long as there is some context

variable ψi declared in ∆. Here, ψε is an abstraction to describe the intuitionistic variant

ψi. Since each ψi must have the same unrestricted variables, then ψε is unique. Moreover,

since in general we do not want to use a variable that was undeclared, we enforce that ψε is

the unrestricted form of some declared context variable. Finally, the last case covers context

extension. Here we only need to ensure that the type is well-formed.

In general we write Γ for contexts that do not start with a context variable and Ψ,Γ for

the extension of context Ψ by the variable declarations of Γ.

38

When defining our inference rules, we will often need to access the intuitionistic part of

a context. Following [10] we introduce the function Ψ which is defined as follows:

Ψ Intuitionistic part of Ψ

· = ·

ψm = ψε

Ψ, x:A = Ψ, x:A

Ψ, x̂:A = Ψ, x̌:A

Ψ, x̌:A = Ψ, x̌:A

Note that this function does not remove any linear variable declarations from Ψ, it simply

makes them unavailable. Further, when applying this function to a context variable, it

drops all the indices, indicating access to only the shared part of the context variable. After

we instantiate ψm with a concrete context, we will apply the operation. Extracting the

intuitionistic part of a context is hence simply postponed.

Further, we define notation unr(Ψ) to denote an unrestricted context, i.e. a context that

only contains unrestricted assumptions; while Ψ drops all linear assumptions, unr(Ψ) simply

verifies that Ψ is a purely intuitionistic context. In other words, unr(Ψ) holds if and only if

Ψ = Ψ. We omit here its (straightforward) judgmental definition.

The rules for joining contexts (see Fig. 4–3) follow [35], but are generalized to take into

account context variables. Because of the monoid structure of context variable indices, the

description can be quite concise while still preserving the desired properties of this operation.

For instance the expected property Ψ = Ψ ./ Ψ follows, on the context variable level, from

ε being the neutral element of ./. Indeed, for any ψm, we have that ψm = ψm ./ ψε.

39

Ψ = Ψ1 ./ Ψ2 Context Ψ is a join of Ψ1 and Ψ2

· = · ./ ·
m = k ./ l

ψm = ψk ./ ψl

Ψ = Ψ1 ./ Ψ2

Ψ, x:A = Ψ1, x:A ./ Ψ2, x:A
Ψ = Ψ1 ./ Ψ2

Ψ, x̌:A = Ψ1, x̌:A ./ Ψ2, x̌:A

Ψ = Ψ1 ./ Ψ2

Ψ, x̂:A = Ψ1, x̂:A ./ Ψ2, x̌:A
Ψ = Ψ1 ./ Ψ2

Ψ, x̂:A = Ψ1, x̌:A ./ Ψ2, x̂:A

Figure 4–3: Joining Contexts

It is also important to note that, thanks to the determinism of ./, context joins are

unique. In other words, if Ψ = Ψ1 ./ Ψ2 and Φ = Ψ1 ./ Ψ2, Ψ = Φ. On the other

hand, context splitting is non-deterministic: given a context Ψ we have numerous options of

splitting it into Ψ1 and Ψ2, since each linear variable can go to either of the components.

We finish this section by describing the equational theory of context joins. We expect

joining contexts to be a commutative and associative operation, and the unrestricted parts

of contexts in the join should be equal. Further, it is always possible to extend a valid join

with a ground unrestricted context, and Ψ can always be joined with Ψ without changing

the result.

Lemma 1 (Theory of context joins).

1. (Commutativity) If Ψ = Ψ1 ./ Ψ2 then Ψ = Ψ2 ./ Ψ1.

2. (Associativity 1) If Ψ = Ψ1 ./ Ψ2 and Ψ1 = Ψ11 ./ Ψ12 then there exists a context Ψ0

s.t. Ψ = Ψ11 ./ Ψ0 and Ψ0 = Ψ12 ./ Ψ2.

3. (Associativity 2) If Ψ = Ψ1 ./ Ψ2 and Ψ2 = Ψ21 ./ Ψ22 then there exists a context Ψ0

s.t. Ψ0 = Ψ1 ./ Ψ21 and Ψ = Ψ0 ./ Ψ22.

4. If Ψ = Ψ1 ./ Ψ2 then Ψ = Ψ1 = Ψ2.

40

5. If unr(Γ) and Ψ = Ψ1 ./ Ψ2 then Ψ,Γ = Ψ1,Γ ./ Ψ2,Γ.

6. For any Ψ, Ψ = Ψ ./ Ψ.

We will need these properties to prove lemmas about typing and substitution, specifically

for the cases that call for specific context joins.

While the proofs of this lemma are omitted here, they have been encoded in the mech-

anization (see Chapter 5)

4.4 Typing for Terms and Substitutions

We now describe the bi-directional typing rules of Lincx terms (see Fig. 4–4). All typing

judgments have access to the meta-context ∆, context Ψ, and to a fixed well-typed signature

Σ where we store constants c together with their types and kinds. Lincx objects may depend

on variables declared in the context Ψ and a fixed meta-context ∆ which contains contextual

variables such as meta-variables u, parameter variables p, and context variables. Although

the rules are bi-directional, they do not give a direct algorithm, as we need to split a context

Ψ into contexts Ψ1 and Ψ2 such that Ψ = Ψ1 ./ Ψ2 (see for example the rule for checking

H · S against a base type P). While this operation is in itself non-deterministic, there is

only one split that makes the components (for example H and S in H · S) typecheck.

Typing rules presented in Fig. 4–4 are, perhaps unsurprisingly, a fusion between con-

textual LF and linear LF. As in contextual LF, the typing for meta-variable closures and

parameter variable closures is straightforward. A meta-variable u : (Ψ ` P) represents an

open LF object (a “hole” in a term). As mentioned earlier it has, associated with it, a post-

poned substitution σ, applied as soon as u is made concrete. Similarly, a parameter variable

p : (Ψ ` #A) represents an LF variable – either an unrestricted or linear one.

41

∆; Ψ `M ⇐ A Term M checks against type A

∆; Ψ, x:A `M ⇐ B

∆; Ψ ` λx.M ⇐ Πx:A.B

∆; Ψ, x̂:A `M ⇐ B

∆; Ψ ` λ̂x.M ⇐ A(B

u : (Φ ` P) ∈ ∆ ∆; Ψ ` σ ⇐ Φ ∆; Ψ ` [σ]ΦP = Q

∆; Ψ ` u[σ] ⇐ Q

∆; Ψ1 ` H ⇒ A ∆; Ψ2 ` S > A ⇒ P ∆; Ψ ` P = Q Ψ = Ψ1 ./ Ψ2

∆; Ψ ` H · S ⇐ Q

∆; Ψ ` H ⇒ A Head H synthesizes a type A

c:A ∈ Σ unr(Ψ)

∆; Ψ ` c ⇒ A

p : (Φ ` #A) ∈ ∆ ∆; Ψ ` σ ⇐ Φ

∆; Ψ ` p[σ] ⇒ [σ]ΦA

unr(Ψ) x:A ∈ Ψ

∆; Ψ ` x ⇒ A

unr(Ψ1) unr(Ψ2)

∆; Ψ1, x̂:A,Ψ2 ` x ⇒ A

∆; Ψ ` S > A ⇒ P Spine S synthesizes type P

unr(Ψ)

∆; Ψ ` ε > P ⇒ P

∆; Ψ `M ⇐ A ∆; Ψ ` S > [M/x]AB ⇒ P

∆; Ψ `M ;S > Πx:A.B ⇒ P

∆; Ψ1 `M ⇐ A ∆; Ψ2 ` S > B ⇒ P Ψ = Ψ1 ./ Ψ2

∆; Ψ `M ;̂S > A(B ⇒ P

Figure 4–4: Typing Rules for Terms

42

As in linear LF, we have two lambda abstraction rules (one introducing intuitionistic,

the other linear assumptions) and two corresponding variable cases. Moreover, we ensure

that types only depend on the unrestricted part of a context when checking that two types

are equal. As we rely on hereditary substitutions, this equality check ends up being syntactic

equality. Similarly, when we consider a spine M ;S and check it against the dependent type

Πx:A.B, we make sure that M has type A in the unrestricted context before continuing

to check the spine S against [M/x]AB. When we encounter a spine M ;̂S and check it

against the linear type A (B in the context Ψ, we must show that there exists a split

s.t. Ψ = Ψ1 ./ Ψ2 and then check that the term M has type A in the context Ψ1 and the

remaining spine S is checked against B to synthesize a type P .

∆; Ψ ` σ ⇐ Φ Substitution σ maps variables in Φ to variables in Ψ

unr(Ψ)

∆; Ψ ` · ⇐ ·
unr(Γ)

∆;ψm,Γ ` idψ ⇐ ψm

∆; Ψ ` σ ⇐ Φ ∆; Ψ `M ⇐ [σ]ΦA

∆; Ψ ` σ,M ⇐ Φ, x:A

∆; Ψ1 ` σ ⇐ Φ ∆; Ψ2 `M ⇐ [σ]ΦA Ψ = Ψ1 ./ Ψ2

∆; Ψ ` σ,M ⇐ Φ, x̂:A

∆; Ψ ` σ ⇐ Φ Ψ = Ψ′ ∆; Ψ′ `M ⇐ [σ]ΦA

∆; Ψ ` σ,M ⇐ Φ, x̌:A

Figure 4–5: Typing Rules for Substitutions

Finally, we consider the typing rules for substitutions, presented in Fig. 4–5. We exercise

care in making sure the range of the substitution in the base cases, i.e. where the substitution

43

is empty or the identity, is unrestricted. This guarantees weakening and contraction for

unrestricted contexts.

The substitution σ,M is well-typed with domain Φ, x:A and range Ψ, if σ is a substitu-

tion from Φ to the context Ψ and in addition M has type [σ]ΦA in the unrestricted context

Ψ. The substitution σ,M is well-typed with domain Φ, x̂:A and range Ψ, if there exists a

context split Ψ = Ψ1 ./ Ψ2 s.t. σ is a substitution with domain Φ and range Ψ1 and M

is a well-typed term in the context Ψ2. The substitution σ,M is well-typed with domain

Φ, x̌:A and range Ψ, if σ is a substitution from Φ to Ψ and for some context Ψ′, Ψ = Ψ′,

M is a well-typed term in the context Ψ′. This last rule, extending substitution domain by

an unavailable variable, is perhaps a little surprising. Intuitively we may want to skip the

unavailable variable of a substitution. This would however mean that we have to perform

not only context splitting, but also substitution splitting when defining the operation of

simultaneous substitution. An alternative is to use an arbitrary term M to be substituted

for this unavailable variable, as the typing rules ensure it will never actually occur in the

term in which we substitute. We quickly note, however, that this enforces A to be inhabited.

When establishing termination of type-checking, it is then important that M type checks in

a context that can be generated from the one we already have. We ensure this with a side

condition Ψ = Ψ′. By enforcing that the unrestricted parts of Ψ and Ψ′ are equal we limit

the choices that we have for Ψ′ deciding which linear variables to take (linear) and which

to drop (unavailable), and deciding on the index of context variable. When considering an

identity substitution idψ, we allow for some ambiguity: we can use any ψm for both the

domain and range of idψ. Upon meta-substitution, all instantiations of ψm will have the

same names and types of variables; the only thing differentiating them will be their status

44

(intuitionistic, linear or unavailable). Since substitutions do not store information about the

status of variables they substitute for (this information is available only in the domain and

range), the constructed identity substitution will be the same regardless of the initial choice

of ψm – it will however have a different type.

The observation above has a more general consequence, allowing us to avoid substitution

splits when defining the operation of hereditary substitution: if a substitution in Lincx

transforms context Φ to context Ψ, it does so also for their unrestricted fragments.

Lemma 2. If ∆; Ψ ` σ ⇐ Φ then ∆; Ψ ` σ ⇐ Φ.

4.5 Hereditary Substitution

Next we will characterise the operation of hereditary substitution, which allows us to

consider only normal forms in our grammar and typing rules, making the decidability of

type-checking easy to establish.

As usual, we annotate hereditary substitutions with an approximation of the type of

the term we substitute for to guarantee termination.

Type approximations α, β ::= a | α→ β | α (β

We then define the dependency erasure operator (−)− as follows:

A− = α α is a type approximation of A

(a · S)− = a

(Πx:A.B)− =A− → B−

(A(B)− =A− (B−

45

We will sometimes tacitly apply the dependency erasure operator (−)− in the following

definitions. Hereditary single substitution for Lincx is standard and closely follows [8], since

linearity does not induce any complications. When executing the current substitution would

create redexes, we proceed by hereditarily performing another substitution. This reduction

operation is defined as:

reduce(M : α, S) = N N is the result of reducing M applied to the spine S

reduce(λx.M : α→ β, (N ;S)) = reduce([N/x]αM : β, S)

reduce(λ̂x.M : α (β, (N ;̂S)) = reduce([N/x]αM : β, S)

reduce(R : a, ε) = R

reduce(M : α, S) = ⊥

For the sake of completeness, the full rules for hereditary single substitution can be found

in the appendix A.1 with rules presented on Fig. A–1.

Termination can be readily established:

Theorem 1 (Termination of hereditary single substitution). The hereditary substitutions

[M/x]α(N) and reduce(M : α, S) terminate, either by failing or successfully producing a

result.

The following theorem provides typing for the hereditary substitution. We use J to

stand for any of the forms of judgments defined above.

Theorem 2 (Hereditary single substitution property).

1. If ∆; Ψ `M ⇐ A and ∆; Ψ, x:A ` J then ∆; Ψ ` [M/x]AJ .

2. If ∆; Ψ1 `M ⇐ A, ∆; Ψ2, x̂:A ` J and Ψ = Ψ1 ./ Ψ2 then ∆; Ψ ` [M/x]AJ

46

3. If ∆; Ψ1 `M ⇐ A, ∆; Ψ2 ` S > A ⇒ B, Ψ = Ψ1 ./ Ψ2 and reduce(M : A−, S) = M ′

then ∆; Ψ `M ′ ⇐ B

We can easily generalize hereditary substitution to simultaneous substitution. We focus

here on the simultaneous substitution in a canonical term (Fig. 4–6). Hereditary simulta-

neous substitution requires a lookup function. Notice that (σ,M)Ψ,x̌:A(x) = ⊥, since we

assume x to be unavailable in the domain of σ.

σΨ(x) Variable lookup

(σ,M)Ψ,x:A(x) = M : A−

(σ,M)Ψ,x̂:A(x) = M : A−

(σ,M)Ψ,y:A(x) = σΨ(x) where y 6= x

(σ,M)Ψ,y̌:A(x) = σΨ(x) where y 6= x

Unlike many previous formulations of contextual LF, we do not allow substitutions to be

directly extended with variables. Instead, following [8], we require that substitutions must

be extended with η-long terms, thus guaranteeing unique normal forms for substitutions. For

this reason, we maintain a list of variable names and statuses which are not to be changed,

Φ̃ in [σ]Φ̃Ψ. This list gets extended every time we pass through a lambda expression. We

use it when substituting in y · S – if y ∈ Φ̃ or ŷ ∈ Φ̃ we simply leave the head unchanged.

It is important to preserve not only the name of the variable, but also its status (linear,

intuitionistic or unavailable), since we sometimes have to perform a split on Φ̃. Such split

works precisely like the one on complete contexts, since types play no role in context splitting.

As simultaneous substitution is a transformation of contexts, it is perhaps not surprising

that it becomes more complex in the presence of context splitting. Consider for instance

47

σΨ(x) Variable lookup

(σ,M)Ψ,x:A(x) = M : A−

(σ,M)Ψ,x̂:A(x) = M : A−

(σ,M)Ψ,y:A(x) = σΨ(x) where y 6= x

(σ,M)Ψ,y̌:A(x) = σΨ(x) where y 6= x

[σ]Φ̃ΨM
Substitution of the variables of Ψ in a canonical term

(leaving elements of Φ̃ unchanged)
[σ]Φ̃Ψ(λy.N) = λy.N ′ where [σ]Φ̃,yΨ N = N ′, choosing y 6∈ Ψ, y 6∈ FV(σ)

[σ]Φ̃Ψ(λ̂y.N) = λ̂y.N ′ where [σ]Φ̃,ỹΨ N = N ′, choosing y 6∈ Ψ, y 6∈ FV(σ)

[σ]Φ̃Ψ(u[τ]) = u[τ ′] where [σ]Φ̃Ψτ = τ ′

[σ]Φ̃Ψ(c · S) = c · S ′ where [σ]Φ̃ΨS = S ′

[σ]Φ̃Ψ(x · S) = reduce(M : α, S ′) where Ψ = Ψ1 ./ Ψ2 and x 6∈ Φ̃

and σΨ1(x) = M : α and [σ]Φ̃Ψ2
S = S ′

[σ]Φ̃Ψ(y · S) = y · S ′ where y ∈ Φ̃ and [σ]Φ̃ΨS = S ′

[σ]Φ̃Ψ(y · S) = y · S ′ where ỹ ∈ Φ̃, and [σ]
Φ̃\ỹ
Ψ S = S ′

[σ]Φ̃Ψ(p[τ] · S) = p[τ ′] · S ′ where Ψ = Ψ1 ./ Ψ2, and Φ̃ = Φ̃1 ./ Φ̃2

and [σ]Φ̃1
Ψ1
τ = τ ′ and [σ]Φ̃2

Ψ2
S = S ′

[σ]Φ̃ΨS Substitution of the variables of Ψ in a spine S

[σ]Φ̃Ψ(ε) = ε where unr(Ψ) and unr(Φ̃)

[σ]Φ̃Ψ(N ;S) = N ′ ;S ′ where [σ]Φ̃
Ψ
N = N ′ and [σ]Φ̃ΨS = S ′

[σ]Φ̃Ψ(N ;̂S) = N ′ ;̂S ′ where Ψ = Ψ1 ./ Ψ2 and Φ̃ = Φ̃1 ./ Φ̃2

and [σ]Φ̃1
Ψ1
N = N ′ and [σ]Φ̃2

Ψ2
S = S ′

[σ]Φ̃Ψτ Substitution of the variables of Ψ in a substitution τ

[σ]Φ̃Ψ(·) = ·
[σ]Φ̃Ψ(idψ) = idψ
[σ]Φ̃Ψ(τ,M) = (τ ′,M ′) where Ψ = Ψ1 ./ Ψ2 and Φ̃ = Φ̃1 ./ Φ̃2,

and [σ]Φ̃1
Ψ1
τ = τ ′ and [σ]Φ̃2

Ψ2
M = M ′

Figure 4–6: Simultaneous Substitution

48

the case where we push the substitution σ through an expression p[τ] · S. While σ has

domain Ψ (and is ignoring variables from Φ̃) and p[τ] · S is well-typed in (Ψ,Φ), the closure

p[τ] is well-typed in a context (Ψ1,Φ1) and the spine S is well-typed in a context (Ψ2,Φ2)

where Ψ = Ψ1 ./ Ψ2 and Φ = Φ1 ./ Φ2. As a consequence, [σ]Φ̃Ψτ and [σ]Φ̃ΨS would be

ill-typed, however [σ]Φ̃1
Ψ1
τ and [σ]Φ̃2

Ψ2
S will work well. Notice that it is only the domain of the

substitution that we need to split, not the substitution itself.

The correctness of substitution typing is described in (Theorem 3)

Theorem 3 (Simultaneous substitution property). If ∆; Ψ ` J and ∆; Φ ` σ ⇐ Ψ then

∆; Φ ` [σ]·ΨJ .

However, in order to prove it, we first need to generalize it (Theorem 4), and also prove

some helper lemmas (Lemma 4 and 5). We quickly note that, as dependent types are always

unrestricted, types cannot depend on linear variables. Moreover, linear assumptions must

be used exactly once, no matter where it is. For these reason, given, for example, judgement

J = M ⇐ A, we unfold substitution as follows: [σ]Γ̃ΦJ = [σ]Γ̃ΦM ⇐ [σ]Γ̃
Φ
A. Note, however,

that the judgement is more generic than simply type checking.

Lemma 3. If Φ,Γ = Ψ1 ./ Ψ2, then ∃Φ1,Φ2,Γ1,Γ2 s.t. Ψ1 = Φ1,Γ1, Ψ2 = Φ2,Γ2, Φ =

Φ1 ./ Φ2 and Γ = Γ1 ./ Γ2.

Lemma 4. Suppose Ψ = Ψ1 ./ Ψ2 and ∆; Φ ` σ ⇐ Ψ, then ∆; Φ1 ` σ ⇐ Ψ1 and

∆; Φ2 ` σ ⇐ Ψ2 for Φ = Φ1 ./ Φ2.

Lemma 5. [σ]Γ̃1,Γ̃2

Ψ J = [σ]Γ̃1,qx,Γ̃2

Ψ J

Proof. By induction on the simultaneous substitution

Theorem 4 (Simultaneous substitution property). If ∆; Ψ,Γ ` J and ∆; Ψ′ ` σ ⇐ Ψ then

∆; Ψ′, [σ]·
Ψ

Γ ` [σ]Γ̃Ψ(J).

49

Proof. Proof by induction on the typing derivation D :: ∆; Ψ,Γ ` J . We show some repre-

sentative cases.

Case. D = ∆; Ψ,Γ, x̂:A `M ⇐ B

∆; Ψ,Γ ` λ̂x.M ⇐ A(B

∆; Ψ, [σ]·
Ψ

(Γ, x̂:A) ` [σ]Γ̃,x̂Ψ M ⇐ [σ]Γ̃,qx
Ψ
B by IH

∆; Ψ, [σ]·
Ψ

Γ, x̂:[σ]Γ
Ψ
A) ` [σ]Γ̃,x̂Ψ M ⇐ [σ]Γ̃,qx

Ψ
B by definition of substitution

∆; Ψ, [σ]·
Ψ

Γ[σ]·
Ψ
A) ` λ̂x.[σ]Γ̃ΨM ⇐ [σ]·

Ψ
A([σ]Γ̃,qx

Ψ
B by typing rule

∆; Ψ, [σ]·
Ψ

Γ[σ]·
Ψ
A) ` λ̂x.[σ]Γ̃ΨM ⇐ [σ]·

Ψ
A([σ]Γ̃

Ψ
B By Lemma 5

∆; Ψ, [σ]·
Ψ

Γ ` [σ]Γ̃Ψ λ̂ x.M ⇐ [σ]Γ̃
Ψ

(A(B) by definition of substitution

Case. D = ∆; Ψ1 `M ⇐ A ∆; Ψ2 ` S > B ⇒ P Φ,Γ = Ψ1 ./ Ψ2

∆; Φ,Γ `M ;̂S > A(B ⇒ P
Ψ1 = Φ1,Γ1

Ψ2 = Φ2,Γ2

Φ = Φ1 ./ Φ2

Γ = Γ1 ./ Γ2 by Lemma 3

∆; Ψ′1 ` σ ⇐ Ψ1

∆; Ψ′2 ` σ ⇐ Ψ2

Ψ′ = Ψ′1 ./ Ψ′2 by Lemma 4

∆; Φ1, [σ]·
Φ1

Γ1 ` [σ]Γ̃1
Φ1
M ⇐ [σ]Γ̃1

Φ1
A

∆; Φ2, [σ]·
Φ2

Γ2 ` [σ]Γ̃2
Φ2
S > [σ]Γ̃2

Φ2
B ⇒ [σ]Γ̃2

Φ2
P by IH

Φ, [σ]ΦΓ = Φ1, [σ]Φ1
Γ1 ./ Φ2, [σ]Φ2

Γ2

∆; Φ, [σ]ΦΓ ` [σ]Γ̃1
Φ1
M ;̂ [σ]Γ̃2

Φ2
S > [σ]Γ̃1

Φ1
A([σ]Γ̃2

Φ2
B ⇒ [σ]Γ̃2

Φ2
P By typing rule

∆; Φ, [σ]ΦΓ ` [σ]Γ̃1
Φ1
M ;̂ [σ]Γ̃2

Φ2
S > [σ]Γ̃

Φ
A([σ]Γ̃

Φ
B ⇒ [σ]Γ̃

Φ
P By Lemma 1

50

∆; Φ, [σ]ΦΓ ` [σ]Γ̃1
Φ1
M ;̂S > [σ]Γ̃

Φ
A([σ]Γ̃

Φ
B ⇒ [σ]Γ̃

Φ
P By substitution

4.6 Decidability of Type Checking in Contextual Linear LF

In order to establish a decidability result for type checking, we observe that the typing

judgments are syntax directed. Further, when a context split is necessary (e.g. when checking

∆,Ψ ` σ,M ⇐ Φ, x̂:A), it is possible to enumerate all the possible correct splits (all Ψ1,

Ψ2 such that Ψ = Ψ1 ./ Ψ2). For exactly one of them it will hold that ∆; Ψ1 ` σ ⇐ Φ

and ∆; Ψ2 ` M ⇐ [σ]ΦA. Finally, in the ∆,Ψ ` σ,M ⇐ Φ, x̌:A case, thanks to explicit

mention of all the variables (including unavailable ones), we can list all possible contexts Ψ′

well-formed under ∆ and such that Ψ = Ψ′.

Theorem 5 (Decidability of type checking). Type checking is decidable.

4.7 Lincx’s Meta-Language

To use contextual linear LF as an index language in Beluga, we have to be able to lift

Lincx objects to meta-types and meta-objects and the definition of the meta-substitution

operation. We are basing our presentation on one for contextual LF [7].

Fig. 4–1 presents the meta-language of Lincx. Meta-objects are either contextual

objects or contexts. The former may be instantiations to parameter variables p : (Ψ ` #A)

or meta-variables u : (Ψ ` P). These objects are written Ψ̃.R where Ψ̃ denotes a list of

variables obtained by dropping all the type information from the declaration, but retaining

the information about variable status (intuitionistic, linear or unavailable).

51

` ∆ mctx ∆ is a valid meta-context

` · mctx

` ∆ mctx ∆; Ψ ` P type

` ∆, u : (Ψ ` P) mctx

` ∆ mctx ∆; Ψ ` A type

` ∆, p : (Ψ ` #A) mctx
` ∆ mctx i ∈ I
` ∆, ψi : G mctx

?

Figure 4–7: Well-Formed Meta-Contexts

Ψ̃ Name and status of variables from Ψ

·̃ = ·

ψ̃m = ψm

Ψ̃, x:A = Ψ̃, x

Ψ̃, x̂:A = Ψ̃, x̂

Ψ̃, x̌:A = Ψ̃, qx

Contexts as meta-objects are used to instantiate context variables ψi : G. When con-

structing those we must exercise caution, as we need to ensure that no linear variable is used

in two contexts that are, at any point, joined. At the same time, instantiations for context

variables differing only in the index (ψi and ψj) have to use precisely the same variable names

and their unrestricted fragments have to be equal. It is also important to ensure that the

constructed context is of a correct schema G. Schemas describe possible shapes of contexts,

and each schema element can be either linear (λ(
−−−→
xi:Ai).Â) or intuitionistic (λ(

−−−→
xi:Ai).A). This

can be extended to also allow combinations of linear and intuitionistic schema elements.

52

Ψ ⊥ψ Θ Context Ψ is linearly disjoint from the range of Θ for ψ

Ψ ⊥ψ (·)
Ψ ⊥ψ Θ Ψ′ = Ψ ./ Ψj

Ψ ⊥ψ (Θ,Ψj/ψj)

Ψ ⊥ψ Θ X 6= ψj
Ψ ⊥ψ (Θ, C/X)

∆ ` Θ⇐ ∆′ Θ has domain ∆′ and range ∆

∆ ` · ⇐ ·
∆ ` Θ⇐ ∆′ ∆ ` Ψi ⇐ G Ψi ⊥ψ Θ

∆ ` Θ,Ψi/ψi ⇐ ∆′, ψi : G

∆ ` Θ ⇐ ∆′ ∆ ` C ⇐ JΘK∆′U

∆ ` Θ, C/X ⇐ ∆′, X : U

Figure 4–8: Typing Rules for Meta-Substitutions

We now give rules for a well-formed meta-context ∆ (see Fig. 4–7). It is defined on the

structure of ∆ and is mostly straightforward. The noteworthy case arises when we extend ∆

with a context variable ψi. Because all context variables ψj will describe parts of the same

context, we require their schemas to be the same. This side condition (?) can be formally

stated as: ∀j.ψj ∈ dom(∆) → ψj : G ∈ ∆. Moreover, to avoid manually ensuring that

indices of context variables do not cross, we require that leaf context variables use elements

of the carrier set i ∈ I (i.e. they are formed without using the ./ operation).

Typing of meta-terms is straightforward and follows precisely the schema presented in

previous work. Thus, we move the presentation of these rules to the appendix (see Fig. A–2

and Fig. A–3).

Because of the interdependencies when substituting for context variables, we diverge

slightly from standard presentations of typing of meta-substitutions.

53

First, we do not at all consider single meta-substitutions, as they would be limited

only to parameter and meta-variables. In the general case it is impossible to meaningfully

substitute only one context variable, as this would break the invariant that all instantiations

of context variables share variable names and the intuitionistic part of the context.

Second, the typing rules for the simultaneous meta-substitution (see Fig. 4–8) are spe-

cialized in the case of substituting for a context variable. When extending Θ with an in-

stantiation Ψi for a context variable ψi : G, we first verify that context Ψi has the required

schema G. We also have to check that Ψi can be joined with any other instantiation Ψj for

context variable ψj already present in Θ (that is, Ψi ⊥ψ Θ). This is enough to ensure the

desired properties of meta-substitution for context variables.

We can now define the simultaneous meta-substitution. The operation itself is straight-

forward, as linearity does not complicate things on the meta-level (see Fig. A–4 in the

appendix). What is slightly more involved is the variable lookup function.

Θ∆(X) Contextual variable lookup

(Θ,Ψ/ψi)∆,ψi:G(ψε) = Ψ

(Θ,Ψ/ψi)∆,ψi:G(ψi) = Ψ

(Θ,Ψ/ψi)∆,ψi:G(ψm) = Φ where Φ = Ψ ./ Ψ′ and m = i ./ n

and Θ∆(ψn) = Ψ′

(Θ,Ψ/ψi)∆,ψi:G(ψm) = Θ∆(ψm) where i ⊥ψ m

(Θ, C/X)∆,X:U(X) = C : U

(Θ, C/Y)∆,Y :_(X) = Θ∆(X) where Y 6= X

54

On parameter and meta-variables it simply returns the correct meta-object, to which the

simultaneous substitution from the corresponding closure is then applied. The lookup is a bit

more complicated for context variables, since Θ only contains substitutions for leaf context

variables ψi. For arbitrary ψm we must therefore deconstruct the index m = i1 ./ · · · ./ ik

and return Θ∆(ψi1) ./ · · · ./ Θ∆(ψik). Finally, for ψε we simply have to find any Ψ/ψi in

Θ and return Ψ – the typing rules for Θ ensure that the choice of ψi is irrelevant, as the

unrestricted part of the substituted context is shared.

Theorem 6 (Simultaneous meta-substitution property). If ∆ ` Θ ⇐ ∆′ and ∆′; Ψ ` J ,

then ∆; JΘK∆′Ψ ` JΘK∆′J .

55

CHAPTER 5
Mechanization

While describing a system and proving properties about it manually is a good starting

point, the confidence we can place in the system remains limited. In order to increase our

confidence in a system, a key step is to formalize and mechanize it inside of a programming

and reasoning framework. In this case, we have mechanized part of our system, Lincx, in

Beluga, a programming and reasoning framework based on a two-level approach: a compu-

tational level is built on top of the contextual modal logical framework[31].

In particular, due to the novelty of Lincx, we have worked on the formalization of

the contexts and context joins, and proved some properties about them. Since this is at

the heart of Lincx, our mechanization allows us to have good confidence in the viability of

Lincx. Similarly, we have formalized various parts of the language. In particular, we have

fomalized contexts and their equational theory 5.4, typing rules (Section 5.5), substitution

(Sections 5.6, 5.7). Moreover, some important lemmas were proven (Sections 5.4, 5.8). We

quickly note that, due to a lack of time, meta-variables, parameter variables, meta-contexts

and meta-substitutions were not implemented. Thus, the subset we have formalized consists

of linear LF with hereditary and simultaneous substitution and context variables.

In this section, we will be presenting the work this implementation. Note that in many

figures, we present both the paper definition (as seen in Chapter 4) and the beluga encoding.

Both formalisms are put in the same place for ease to the reader.

56

5.1 Disclaimer

The work presented in this section has been done in collaboration with Aina-Linn

Georges. The current author built the initial set-up for representing syntax, typing rules

and substitutions. The main aspects of proving and formalizing properties were done in

collaboration with A.L. Georges.

5.2 Related Mechanization

In this work, we have chosen to handle contexts explicitly, although other approaches

to mechanizing linear logic in LF exist. In particular, there is Crary’s mechanization of

substructural logics in Twelf [13], which hinges on putting the principles of linear logic

on their head: instead of considering contexts and splitting them, he adopts the use of an

extra derivation which ensures each variable is used exactly once. While this is an interesting

approach which conserves the many benefits of HOAS, such as having the substitution lemma

for free, this was impractical for our purposes, in particular since we want to consider context

variables. Instead, our approach more closely ressembles the work of Martens where she

implements LF in LF [23]. While contexts are not used explicitly in the latter, there are

significant parallels to draw between both. In particular, the explicit handling of hereditary

substitution is used in a similar manner.

5.3 Syntax

While most of the syntax is self-explanatory, being written following standard LF con-

ventions, it is worth taking a close look at some of the definitions. First of all, since we are

working in a linear setting within intuitionistic LF, variables are handled explicitly. For this

purpose, as described by the var type (Fig.5–1), we explicitly define a variable type which

57

LF var : type =
;

Figure 5–1: Variable Encoding

we leave uninhabited (We briefly note that we handle explicitly the constants, which come

with constant types and an inductive signature, in a similar manner).

Since we have defined terms (head, spine, atomic terms and canonical terms) mutually,

we must also use mutually defined LF-types (respectively head, spine, atom and canon in Fig.5–

2), which is done in Beluga using the keyword “and”. Moreover, we note that Beluga uses

higher-order abstract syntax trees (HOAS), which allows us to abstractly handle our variable

bindings. The structure of HOAS allows for many benefits related to variables handling, and

allows for substitution and substitution properties to be automatically handled for the user.

Thus, while we explicitly handle variables, we can still make use of the HOAS provided

(In our case, weak HOAS). For this reason, we define, lambda terms using the standard

LF-notation, where the body depends on a variable through HOAS. This way, while we

explicitly carry our explicit context, we can still capture and use assumptions in the context

provided at the computational level.

Let us now turn our attention to explicit contexts. As mentioned previously, we have

a nominal form for context variables, describing their place in the derivation tree. This is

described by a commutative monoid with a joining operation. In the case of our implemen-

tation, we use the special case of binary numbers (bin in Fig.5–3). Thus, to describe this

nominal form, we define context variables as having an argument, namely a binary number

(cvar in Fig.5–4).

58

LF head : type =
| hd_cst : cst → head
| hd_var : var → head

and spine : type =
| sp_empty : spine
| sp_unr : canon → spine → spine
| sp_lin : canon → spine → spine

and atom : type =
| atom_base : head → spine → atom

and canon : type =
| c_atom : atom → canon
| lam : (var → canon) → canon
| llam : (var → canon) → canon

;

Term Syntax

Heads H ::= x | c
Spines S ::= ε | M ;S | M ;̂S

Atomic Terms R ::= H · S
Canonical Terms M,N ::= R | λx.M | λ̂x.M

Figure 5–2: Syntax Encoding

LF bit : type =
| zero : bit
| one : bit

;

LF bin : type =
| nil : bin
| cons : bit → bin → bin

;

Figure 5–3: Binary Numbers Encoding

59

LF flag : type =
| lin : flag
| unr : flag
| unav : flag

;
LF vdecl : type =

| decl : var → tp → flag → vdecl
;
LF ctx_var : type =

| cvar : bin → ctx_var
;
LF ctx : type =

| c_empty : ctx
| varctx : ctx_var → ctx
| snoc : ctx → vdecl → ctx

;

Context syntax

Variable Declarations D ::= x:A | x̂:A | x̌:A

Contexts Ψ,Φ ::= · | ψm | Ψ, D

Figure 5–4: Context Encoding

Let us now move on to general contexts (defined as type ctx in Fig.5–4). As expected,

contexts are defined inductively. The two base cases are either an empty context or a context

variables, and we inductively add variable declarations, defined as a tuple of a variable, a

flag (linear, unrestricted or unavailable) and a type.

Finally, while single substitution can be handled using the HOAS, linearity of variables

forces us to use explicit substitutions. The simultaneous substitution is defined inductively

(defined as sim_subst in Fig.5–5): the base cases are the empty and identity substitution, and

we inductively add canonical terms.

60

LF sim_subst : type =
| s_empty : sim_subst
| s_id : sim_subst
| s_snoc : sim_subst → canon → sim_subst

;

Substitution Syntax

Substitutions σ, τ ::= · | idψ | σ,M

Figure 5–5: Simultaneous Substitution Syntactical Encoding

5.4 Contexts and Context Joins

First, let us describe the binary representation of context variables. As defined in the

previous section, we defined the commutative monoid as the set of binary numbers(Fig.5–

3). To be more precise, this is defined as a list of bits. We note that, for simplicity, we

are working with the assumption that all context variables are using binary numbers of the

same length (except for the empty one), which can be enforced since the number of leaves

is constant and is only affected by meta-substitution. Moreover, the number of leaves is

constant on either side of a meta-substitution. Under this notation, leaf context variables

are denoted with binary numbers where a single bit is 1, and such that no two leaves share

the same positive bit. Meanwhile, our “empty set” is represented as the empty list “nil”.

Finally, an intermediate node will have the bits of their leaves be 1, while all other bits are

0.

The joining operation(bin_join in Fig.5–6), in turn, is simply defined as a binary OR,

where we ensure that no bit is simultaneously 1 on both sides. This way, the leaves of

the “join-node” corresponds to the leaves of both joined nodes, and we ensure that no node

61

LF bin_join : bin → bin → bin → type =
| bin_join_nil_l : bin_join nil M M
| bin_join_nil_r : bin_join M nil M
| bin_join_l : bin_join M N K → bin_join (cons one M) (cons zero N) (cons one K)
| bin_join_r : bin_join M N K → bin_join (cons zero M) (cons one N) (cons one K)
| bin_join_zero : bin_join M N K → bin_join (cons zero M) (cons zero N) (cons zero K)

;

Figure 5–6: Binary Join Encoding'

&

$

%

ψ111

ψ011

ψ001 ψ010

ψ100./

./

'

&

$

%

ψ111

ψ001 ψ110

ψ010 ψ100

./

./

Figure 5–7: Binary Representation of Context Variables

appears more than once, ensuring we respect linearity, or more specifically, the commuta-

tive monoid and the properties of its join operation. This operation is simplified by the

assumption that the binary numbers have the same length.

In the LF-definitions themselves, nothing too interesting happens: the binary join is

defined as expected considering this special binary OR, while the context join operation

(joining in Fig.5–8) is derived directly from the rules.

Before going further into the implementation of contexts, let us look at an example of

how context variables relate to each other using this binary definition. Suppose we have

three context variables, ψ001, ψ010 and ψ100. In this case, we would have that ψ011 = ψ010 ./

ψ001 = ψ001 ./ ψ010. Similarly, we can obtain our associativity directly. This will be shown

in the two trees presented in Fig.5–7, where a parent node is the join of its two children.

62

LF join : type =
| cjoin : ctx → ctx → ctx → join

;

LF joining : join → type =
| joining_base : bin_join M N K

→ joining (cjoin (varctx (cvar K)) (varctx (cvar M)) (varctx (cvar N)))
| joining_empty : joining (cjoin c_empty c_empty c_empty)
| joining_lin_l : joining (cjoin Ψ Ψ1 Ψ2)

→ joining (cjoin (snoc Ψ (decl x A lin)) (snoc Ψ1 (decl x A lin)) (snoc Ψ2 (decl x A unav)))
| joining_lin_r : joining (cjoin Ψ Ψ1 Ψ2)

→ joining (cjoin (snoc Ψ (decl x A lin)) (snoc Ψ1 (decl x A unav)) (snoc Ψ2 (decl x A lin)))
| joining_unr : joining (cjoin Ψ Ψ1 Ψ2)

→ joining (cjoin (snoc Ψ (decl x A unr)) (snoc Ψ1 (decl x A unr)) (snoc Ψ2 (decl x A unr)))
| joining_unav : joining (cjoin Ψ Ψ1 Ψ2)

→ joining (cjoin (snoc Ψ (decl x A unav)) (snoc Ψ1 (decl x A unav)) (snoc Ψ2 (decl x A unav)))
;

Ψ = Ψ1 ./ Ψ2 Context Ψ is a join of Ψ1 and Ψ2

· = · ./ ·
m = k ./ l

ψm = ψk ./ ψl

Ψ = Ψ1 ./ Ψ2

Ψ, x:A = Ψ1, x:A ./ Ψ2, x:A
Ψ = Ψ1 ./ Ψ2

Ψ, x̌:A = Ψ1, x̌:A ./ Ψ2, x̌:A

Ψ = Ψ1 ./ Ψ2

Ψ, x̂:A = Ψ1, x̂:A ./ Ψ2, x̌:A
Ψ = Ψ1 ./ Ψ2

Ψ, x̂:A = Ψ1, x̌:A ./ Ψ2, x̂:A

Figure 5–8: Context Join Encoding

63

LF ctx_mer : ctx → ctx → ctx → type =
| m_empty : ctx_mer Ψ c_empty Ψ
| m_cons : ctx_mer Φ Γ Ψ → ctx_mer Φ (snoc Γ V) (snoc Ψ V)

;

Figure 5–9: Context Merge Encoding

A more noteworthy aspect of our LF-definitions is the fact that some functions must

be made explicit in the mechanization, since we are working with explicit contexts. First,

in order to talk about greater contexts Φ,Γ, we need to create a special “merge” operator

(ctx_mer in Fig.5–9) which takes as arguments Φ and Γ and the merged context Φ,Γ, which we

denote as Ψ. It is important to note that, while this represents a function, it is formulated as

a relation, where the return argument corresponds to the last element, rather than an actual

function. This means that, if we want to state that this “function” has a unique output, it

needs to be proven explicitly.

Similarly, we need to explicitly define what the unrestricted version of a context is and

whether a context is unrestricted (respectively unrest_ctx and is_unr in Fig.5–10), which once

again is represented as a relation rather than a function. We once again remark that the

“empty set” is represented by the nil list, which means that the unrestricted version of a

context variable is the context variable with the nil binary.

While unrest_ctx is used to compute the unrestricted form of a context, is_ctx represents

a unary relation which tests whether a given context is unrestricted.

An important aspect to consider in order to define our properties, especially in the case

of contexts and context joins, is the notion of equality. More precisely, when are two contexts

equal? This is done using the usual syntactic equality approach (eq in Fig.5–11). Thus, our

64

LF unrest_ctx : ctx → ctx → type =
| unrest_base_var : unrest_ctx (varctx Psi) (varctx (cvar nil))
| unrest_base_e : unrest_ctx (c_empty) (c_empty)
| unrest_l : unrest_ctx Ψ1 Ψ

→ unrest_ctx (snoc Ψ1 (decl x A lin)) (snoc Ψ (decl x A unav))
| unrest_unr : unrest_ctx Ψ1 Ψ

→ unrest_ctx (snoc Ψ (decl x A unr)) (snoc Ψ (decl x A unr))
| unrest_unav : unrest_ctx Ψ Ψ

→ unrest_ctx (snoc Ψ (decl x A unav)) (snoc Ψ (decl x A unav))
;

LF is_unr : ctx → type =
| is_unr_b : is_unr (varctx (cvar nil))
| is_unr_e : is_unr c_empty
| is_unr_cons : is_unr Ψ → is_unr (snoc Ψ (decl x A unr))
| is_unr_unav_cons : is_unr Ψ → is_unr (snoc Ψ (decl x A unav))

;

Ψ Intuitionistic part of Ψ

· = ·
ψm = ψε
Ψ, x:A = Ψ, x:A

Ψ, x̂:A = Ψ, x̌:A

Ψ, x̌:A = Ψ, x̌:A

Figure 5–10: Unrestricted Contexts

65

LF eq : bin → bin → type =
| bin_refl : eq K K

;

Figure 5–11: Context Equality

context equality will have a type with two arguments, and be inhabited by a single term

where we force both arguments to be identical: reflexivity.

Due to our low-level approach to handling contexts, describing them explicitly, multiple

properties must also be handled explicitly. In particular, we must prove that: given two

contexts being equal, they can be used “interchangeably”; the unrestricted form of a context

exists; etc., which in paper proofs we might use directly. Similarly, we need to prove that

relations on contexts behave as expected. For instance, the unrestricted form of a context

is unrestricted; the unrestricted form of an unrestricted context is unchanged; the merge of

two unrestricted contexts is also unrestricted; etc., which should hold in any linear system,

and thus shouldn’t need to be handled explicitly when a proper linear tool, such as Lincx

could prove to be.

Let us quickly look at the existence of the unrestricted version of a context (unrest_exist

in Fig.5–12). It is worth noting that, since we are proving existence, we need to define a

new LF-type (int_unrest_ex in Fig.5–12) to formalize this property. This new type, int_unrest_ex,

takes an argument, being the context for which we want existence, and has a unique term.

This unique term, int_unr, has in its argument the unrestricted version, which shows that an

instance actually exists.

Let us look at Fig.5–12 in more depth and the proof unrest_exist. First, we take a look

at the type, which refers to the statement we are trying to prove: (Γ:sch) {Ψ : [Γ ` ctx]} [Γ `

int_unrest_ex Ψ]. First of all, we (implicitly) declare a (LF) context through the declaration

66

LF int_unrest_ex : ctx → type =
| int_unr : unrest_ctx Psi Psi_unr → int_unrest_ex Psi

;
rec ue_helper1 : {ψ : [` ctx_var]} [` unrest_ctx (varctx ψ) (varctx (cvar nil))] =

mlam ψ ⇒
[` unrest_base_var]

;
rec ue_helper2 : {ψ : [` ctx_var]} [` unrest_ctx (varctx (cvar nil)) (varctx (cvar nil))] =

mlam ψ ⇒
[` unrest_base_var]

;

schema sch = var;

rec unrest_exist : (g:sch) {Ψ : [Γ ` ctx]} [Γ ` int_unrest_ex Ψ] =
mlam Ψ ⇒
case [_ ` Ψ] of
| [Γ ` c_empty] ⇒ [Γ ` int_unr unrest_base_e]
| [Γ ` varctx ψ[]] ⇒

let [` D] = ue_helper1 [` ψ] in
[Γ ` int_unr D[]]

| [Γ ` varctx (cvar nil)] ⇒
[Γ ` int_unr unrest_base_var]

| [Γ ` snoc C VD] ⇒
let [Γ ` decl X A F] = [Γ ` VD] in
let [Γ ` int_unr D] = unrest_exist [Γ ` C] in
(case [Γ ` F] of
| [Γ ` lin] ⇒ [Γ ` int_unr (unrest_l D)]
| [Γ ` unr] ⇒ [Γ ` int_unr (unrest_unr D)]
| [Γ ` unav] ⇒ [Γ ` int_unr (unrest_unav D)]

)
;

Figure 5–12: Existence of the Unrestricted Version of a Context

67

Γ:sch, which states that context variable Γ refers to a context of schema sch. This schema

itself is defined as schema sch = var;, which states that the context can only contain terms of

type variable. Next, we have a universal quantifier {Ψ : [Γ ` ctx]} which specifies the type of

meta-variable Ψ, stating it is an explicit context under (LF) context Γ. Finally, we have the

conclusion [Γ ` int_unrest_ex Ψ], which, as described earlier, states that Ψ has an unrestricted

form.

Here, context variables are paired with a context schema (sch) representing a family of

contexts, while meta-variables represent an abstraction over syntactic derivation trees. They

refer to an abstract term under some (possibly abstract) context. This way, we can work

with proofs at a more abstract level, and similarly, we can pattern match and use meta-

variables to describe the new terms. We note that our meta-variable which we described

under a universal quantifier must now be abstracted over with a meta-lambda mlam Ψ

Next, we are interested in the matching of pattern. In this case, we are matching over

[_ ` Ψ]. To explain this, we note that, while Ψ has been explicitly abstracted over, the

context under which it is defined (Γ) has not. For this reason, we use the underscore to state

that there should be a context present, but we do not know what it is. Afterwards, in our

actual patterns, we get our abstraction for this context.

We can now look at a few of the cases. First, we have the trivial case, where our context

is empty, given by | [Γ ` c_empty] ⇒ [Γ ` int_unr unrest_base_e]. As stated earlier, we now give

an abstraction for the (LF) context. Moreover, since we are in a constructive setting, we

must give an instantiation for an existence of an unrestricted form of the context (int_unr),

which is given by the empty context being unrestricted (unrest_base_e).

68

rec ctxjoinasso1 : (Γ : sch){J1 : [Γ ` joining (cjoin Ψ Ψ1 Ψ2)]}
{J2 : [Γ ` joining (cjoin Ψ1 Ψ11 Ψ12)]}
[Γ ` assoc_double_joining J1 J2]

Figure 5–13: Associativity of Context Joins

The context variable case is an more interesting pattern: [Γ ` varctx ψ[]]. First of all,

we use a meta-variable to describe the (explicit) context-variable (ψ). However, we need to

associate a substitution to it to represent which variables in Γ it depends on. Since a context

variable only depends on binary numbers and not on term, we thus proceed with the empty

substitution []. We then have a call to a helper funtion ue_helper1 where we capture the result

in a meta-variable D which is closed. Finally, we return this meta-variable as a proof of an

appropriate unrestricted context proof. However, since it is closed, we must associate it with

the empty substitution: [Γ` int_unr D[]].

As a final part of the proof unr_exist, we quickly look at the inductive case [Γ ` snoc

C VD]. There are two more things to note. First of all, here, since we do not explicitly

associate a substitution to meta-variables C and VD, this means that they come with the

identity substitution, and can thus depend on all the variables in Γ. Then, we also notice a

recursive call, encapsulated by let [Γ ` int_unr D] = unrest_exist [Γ ` C] in.

Finally, we prove lemma 1, which represents properties of the context joins. While these

are mostly obvious for the case of a concrete context, one must handle the context variables

separately. This means that, in order to prove properties about context joins, we also need

to prove a corresponding property about binary joins.

Let us for instance take lemma (1.2), which describes associativity of the join operation

(ctxjoinasso1 in Fig.5–13).

69

LF assoc_double_joining : joining J1 → joining J2 → type =
| adcjoin : joining (cjoin Ψ0 Ψ12 Ψ2) → joining (cjoin Ψ Ψ11 Ψ0)

→ assoc_double_joining (J1 : joining (cjoin Ψ Ψ1 Ψ2)) (J2 : joining (cjoin Ψ1 Ψ11 Ψ12))
;

Figure 5–14: Special Type for Associativity of Context Join

let [Γ ` adcjoin J1 J2] = ctxjoinasso1 [Γ ` D1] [Γ ` D2] in

Figure 5–15: Instance of Term adcjoin

Note that, while the arguments are taken directly from the paper definition of the lemma

(two joins where that we can apply association to), the output is defined as assoc_double_joining

J1 J2 (Fig.5–14). While this might be odd at first glance, it is because our conclusion is a

tuple describing two different context joins. Thus, in order to describe this, we employ a

fresh LF-Type defined based on the whole theorem. Let us further examine this type:

Here, we can notice that assoc_double_joining takes in two objects, both joins. It only has

one term, so that it respects exactly the property we desire for our theorem. The term adcjoin

takes two arguments, both of our lemma’s conclusion, and goes to type assoc_double_joining

with both of the hypotheses. This way, when pattern matching on an object of type

assoc_double_joining, we can retrieve both conclusions directly. This can be observed in our

other associativity lemma, which uses this lemma (Fig.5–15).

Given that D1 and D2 are joins of the form Ψ = Ψ1 ./ Ψ2 and Ψ1 = Ψ11 ./ Ψ12, then we

can extract our conclusion J1 and J2, joins of the form Ψ = Ψ11 ./ Ψ0 and Ψ0 = Ψ12 ./ Ψ2.

Another thing to note is that, in some cases, in order to refine the type of our arguments,

we need to use a helper function of the required type. This is due to the nature of some

terms which could have various types.

70

5.5 Typing Rules

While the typing judgements are mostly standard, there are still a few noteworthy

comments to be made. First, we can notice the use of the HOAS in the typing of a lambda

expression, thus making use of our LF-context, rather than only using the explicit context.

Moreover, since both M and B depend on x, we annotate both with an application by x to signify

their dependence, which is, abstractly, represented by the simulateneous substitution binding

both meta-variables. Similarly, in the case of a linear lambda, the type B is independent of

variable x, hence the lack of such an application.

Due to the fact that the definitions of the different typing judgements are mutually

defined, we need mutually recursive definitions for their LF-type, which is done using the

and keyword between the different definitions.

Next, for some of the typings, we are required to use some specification about the con-

text. This is only done at the level of the explicit context, since Beluga, being an intuitionistic

tool, does not allow us to split an LF-context. For instance, the empty spine type synthesis

necessites an unrestricted context, which must be verified. Moreover, some rules require the

notion of a context split to be used.

Let us now look at some of the typing rules and their implementations(Fig.5–16). The

typing rules can be found in Fig.4–4.

Take a quick look at the spine-typing (spine_synth_tp). Given a split Ψ = Ψ1 ./ Ψ2, from

which we can synthesize the head with Ψ1 and the spine with Ψ2, then we can check the

whole typing with Ψ. Despite the fact a unique context split for the typing should exist, it

will not be directly provided: it will need to be manually built within our proofs instead of

simply using a linear implication, causing extra overhead with the handling of contexts.

71

Note that hereditary substitution has to be used explicitly within the rules, as dictated

by the unrestricted spine type synthesis. This is done using ({x : var} subst_tp M Alpha (λx.B x)

B_sub) in term sp_syn_lam, which substitutes variable x for term M in type B. This shall be further

explored in the subsequent section about hereditary substitution.

Let us look at the encoding of type-checking of canonical terms, check_tp. Referring back

to Fig.4–4, we first have the lambda case. On paper, the hypothesis states that, if we extend

our context with unrestricted variable x, then we have appropriate typing on M . Similarly,

our code’s hypothesis says: extending our LF context with variable x ({x:var}) and our explicit

context with unrestricted variable x (snoc Ψ (decl x A unr)), then our meta-variable M which can

depend on x (M x) has type B, which can also depend on x : ({x:var} check_tp (snoc Ψ (decl x A unr

)) (M x) (B x)).

Meanwhile, the conclusions are pretty self-explanatory. As for the linear-lambda case,

it is identical, except for the fact the explicit context is extended with a linear variable. As

for the head and spine case, it simply relies on the other typing rules, those for typing of

head and typing of spine. However, we can see that each hypothesis has its correspondent:

∆; Ψ1 ` H ⇒ A corresponds to synth_tp Ψ1 H A; ∆; Ψ2 ` S > A ⇒ P corresponds to

spine_synth_tp Ψ2 S A P and Ψ = Ψ1 ./ Ψ2 corresponds to joining (cjoin Ψ1 Ψ2 Ψ) (We note that,

instead of explicitly defining equality, since we are expecting syntactic equality, we simply

reuse the same variable). Similarly, the conclusions also correspond to one-another: ∆; Ψ `

H · S ⇐ Q and check_tp Ψ (c_atom (atom_base H S)) (atp_canon P).

Finally, before moving on to hereditary substitution, let us discuss the typing of simul-

taneous substitutions (Fig.4–5 on paper, subst_typing in Fig.5–17 for implementation). The

only new particular cases to take into consideration can be observed in the unavailable case

72

LF check_tp : ctx → canon → tp → type =
| chk_lam : ({x:var} check_tp (snoc Ψ (decl x A unr)) (M x) (B x))

→ check_tp Ψ (lam (λx.M x)) (pi A (λx.B x))
| chk_llam : ({x:var} check_tp (snoc Ψ (decl x A lin)) (M x) B)

→ check_tp Ψ (llam (λx.M x)) (limp A B)
| chk_sp : joining (cjoin Ψ1 Ψ2 Ψ) → synth_tp Ψ1 H A

→ spine_synth_tp Ψ2 S A P → check_tp Ψ (c_atom (atom_base H S)) (atp_canon P)

and synth_tp : ctx → head → tp → type =
| syn_cst : cst_in C A S → is_unr Ψ → synth_tp Ψ (hd_cst C) A
| syn_var_unr : ({x : var} is_unr Ψ) → synth_tp (snoc Ψ (decl x A unr)) (hd_var x) A
| syn_var_lin : ({x : var} is_unr Ψ) → synth_tp (snoc Ψ (decl x A lin)) (hd_var x) A

and spine_synth_tp : ctx → spine → tp → atp → type =
| sp_syn_empty : is_unr Ψ → spine_synth_tp Ψ sp_empty (atp_canon P) P
| sp_syn_lam : unrest_ctx Ψ Ψ → check_tp Ψ M A → ({x : var} subst_tp M Alpha (λx.B x) B_sub)

→ spine_synth_tp Ψ S B_sub P → spine_synth_tp Ψ (sp_unr M S) (pi A (λx.B x)) P
| sp_syn_llam : joining (cjoin Ψ Ψ1 Ψ2) → check_tp Ψ1 M A → spine_synth_tp Ψ2 S B P

→ spine_synth_tp Ψ (sp_lin M S) (limp A B) P
;

∆; Ψ `M ⇐ A Term M checks against type A

∆; Ψ, x:A `M ⇐ B

∆; Ψ ` λx.M ⇐ Πx:A.B

∆; Ψ, x̂:A `M ⇐ B

∆; Ψ ` λ̂x.M ⇐ A(B

∆; Ψ1 ` H ⇒ A ∆; Ψ2 ` S > A ⇒ P ∆; Ψ ` P = Q Ψ = Ψ1 ./ Ψ2

∆; Ψ ` H · S ⇐ Q

∆; Ψ ` H ⇒ A Head H synthesizes a type A

c:A ∈ Σ unr(Ψ)

∆; Ψ ` c ⇒ A

unr(Ψ) x:A ∈ Ψ

∆; Ψ ` x ⇒ A

unr(Ψ1) unr(Ψ2)

∆; Ψ1, x̂:A,Ψ2 ` x ⇒ A

∆; Ψ ` S > A ⇒ P Spine S synthesizes type P

unr(Ψ)

∆; Ψ ` ε > P ⇒ P

∆; Ψ `M ⇐ A ∆; Ψ ` S > [M/x]AB ⇒ P

∆; Ψ `M ;S > Πx:A.B ⇒ P

∆; Ψ1 `M ⇐ A ∆; Ψ2 ` S > B ⇒ P Ψ = Ψ1 ./ Ψ2

∆; Ψ `M ;̂S > A(B ⇒ P

Figure 5–16: Typing Rules Encoding

73

(stp_unav). First, we need to use an operation (mentioned in the previous section) to retrieve

the unrestricted part of a context: unrest_ctx Phi Phi_unr. Once again, we note that while this is

deterministic, it is defined as a relation instead of a function, and uniqueness thus needs to be

defined separately. Moreover, due to the definition of an unavailable substitution extension,

we need to test equality of two different contexts, which is done with ctx_eq Psi_unr Psi’_unr

(also described in the previous section).

5.6 Hereditary Substitution

First, we take a look at the reduce operation (reduce in Fig.5–18), which gets rid of

any possible beta-reduction and ensures terms retain a normal form. These follow the rules

we have defined (Fig.A–1) pretty straight-forwardly. We define each case recursively with

the empty case serving as our base case. Note, however, that reduce must be defined in a

mutually recursive way with the rest of the hereditary substitution definitions, due to their

interdependency.

Let us now look at the more interesting and involved case of the hereditary substitution

over canonical terms (subst_canon in Fig.5–19). The first thing to note is that we are making

use of the higher-order functions to define the substitution. Indeed, since we can assume

that the canonical term depends on the variable to be substituted, we define this term as a

var → canon expression, which means that the choice of the variable, instead of being explicitly

defined, is encapsulated by an LF-lambda expression. We make special note of the variable

spine case with the variable to be substituted, where we must reduce the term with M, but

also convert the spine application into a function from x: λx.c_atom (atom_base (hd_var x) (S x)).

74

LF subst_typing : sim_subst → ctx → ctx → type =
| stp_empty : is_unr Ψ → subst_typing s_empty c_empty Ψ
| stp_base : is_unr Ψ0 → ctx_mer (varctx ψ) Ψ0 Ψ1

→ subst_typing (s_id) (varctx ψ) Ψ1

| stp_lin : unrest_ctx Φ Φ → joining (cjoin Ψ Ψ1 Ψ2)
→ subst_typing sigma Φ Ψ1 → sim_subst_tp sigma Φ cer_empty A B
→ check_tp Ψ2 M B → subst_typing (s_snoc sigma M) (snoc Φ (decl x A lin)) Ψ

| stp_unr : unrest_ctx Φ Φ → subst_typing sigma Φ Ψ

→ unrest_ctx Ψ Ψ → sim_subst_tp sigma Φ cer_empty A B
→ check_tp Ψ M B → subst_typing (s_snoc sigma M) (snoc Φ (decl x A unr)) Ψ

| stp_unav : unrest_ctx Φ Phi → subst_typing sigma Φ Ψ

→ unrest_ctx Ψ Ψ → unrest_ctx Ψ′ Ψ′

→ ctx_eq Ψ Ψ′ → sim_subst_tp sigma Φ cer_empty A B
→ check_tp Ψ′ M B → subst_typing (s_snoc sigma M) (snoc Φ (decl x A unav)) Ψ
;

∆; Ψ ` σ ⇐ Φ Substitution σ maps variables in Φ to variables in Ψ

unr(Ψ)

∆; Ψ ` · ⇐ ·
unr(Γ)

∆;ψm,Γ ` idψ ⇐ ψm

∆; Ψ ` σ ⇐ Φ ∆; Ψ `M ⇐ [σ]ΦA

∆; Ψ ` σ,M ⇐ Φ, x:A

∆; Ψ1 ` σ ⇐ Φ ∆; Ψ2 `M ⇐ [σ]ΦA Ψ = Ψ1 ./ Ψ2

∆; Ψ ` σ,M ⇐ Φ, x̂:A

∆; Ψ ` σ ⇐ Φ Ψ = Ψ′ ∆; Ψ′ `M ⇐ [σ]ΦA

∆; Ψ ` σ,M ⇐ Φ, x̌:A

Figure 5–17: Encoding of Substitution Typing

75

LF reduce : canon → tp_appro → spine → canon → type =
| r_unr : subst_canon N alpha M M’ → reduce M’ beta S R

→ reduce (lam M) (tpa_unr alpha beta) (sp_unr N S) R
| r_lin : subst_canon N alpha M M’ → reduce M’ beta S R

→ reduce (llam M) (tpa_lin alpha beta) (sp_lin N S) R
| r_empty : reduce R (tpa_a a) empty R

reduce(M : α, S) = N N is the result of reducing M applied to the spine S

reduce(λx.M : α→ β, (N ;S)) = reduce([N/x]αM : β, S)

reduce(λ̂x.M : α (β, (N ;̂S)) = reduce([N/x]αM : β, S)

reduce(R : a, ε) = R

Figure 5–18: Reduce Encoding

and subst_canon : canon → tp_appro → (var → canon) → canon → type =
| sc_lam : ({y : var} subst_canon M alpha (λx.N y x) (N’ y))

→ subst_canon M alpha (λx.lam λy.N y x) (lam λy.N’ y)
| sc_llam : ({y : var} subst_canon M alpha (λx.N y x) (N’ y))

→ subst_canon M alpha (λx.llam λy.N y x) (llam λy.N’ y)
| sc_cspine : subst_spine M alpha (λx. S x) (S’)

→ subst_canon M alpha (λx.c_atom (atom_base (hd_cst c) (S x))) (c_atom (atom_base (hd_cst c) (S’)))
| sc_varspine_neq : ({y : var} subst_spine (M y) alpha (λx.S y x) (S’ y))

→ subst_canon (M y) alpha (λx.c_atom (atom_base (hd_var y) (S y x))) (c_atom (atom_base (hd_var y) (S’ y)))
| sc_varspine_eq : subst_spine M alpha (λx.S x) (S’) → reduce M alpha (S’) (N)

→ subst_canon M alpha (λx.c_atom (atom_base (hd_var x) (S x))) (N)

Figure 5–19: Hereditary Substitution over Canonical Terms

76

LF var_look : sim_subst → (var → ctx) → canon → tp_appro → type =
| vl_unr : depend_er A A’ → is_unr Ψ

→ var_look (s_snoc sigma M) (λx.snoc Ψ (decl x A unr)) M A’
| vl_lin : depend_er A A’ → is_unr Ψ

→ var_look (s_snoc sigma M) (λx.snoc Ψ (decl x A lin)) M A’
| vl_ind_unr : ({y : var} var_look sigma (λx.Ψ x) M A’)

→ var_look (s_snoc sigma N) (λx.snoc (Ψ x) (decl y A unr)) M A’
| vl_ind_unav : ({y : var} var_look sigma (λx.Ψ x) M A’)

→ var_look (s_snoc sigma N) (λx.snoc (Ψ x) (decl y A unav)) M A’

σΨ(x) Variable lookup

(σ,M)Ψ,x:A(x) = M : A−

(σ,M)Ψ,x̂:A(x) = M : A−

(σ,M)Ψ,y:A(x) = σΨ(x) where y 6= x

Figure 5–20: Variable Lookup

5.7 Simultaneous Substitution

Similar to hereditary substitution, due to the interdependency of the different parts,

we once again require a mutually-recursive definition of our LF-types in order to describe

simultaneous substitution. However, unlike the former, we now need to carry around two

contexts Ψ, the domain of our substitution, and an erased context Φ̃ representing bound

variables encountered in our descent, as shown in Fig.4–6.

We first take into consideration the variable lookup(var_look in Fig.5–20). Once again,

we use a function to declare which variable we are looking for. In this case, however, it is the

context that becomes a function, since we are sifting through it to find the desired variable.

Moreover, since the same type sometimes appears both in an erased and full form, we must

declare this erasure (depend_er A A’).

Unlike hereditary substitution, there is no need to directly define which variable is

being replaced. Instead, this is carried out through the substitution domain Ψ which we

77

pass around. Quickly note that, for the case where a variable appears in the substitution

domain, the rules also state that it must be absent from the bound variables. This is done

through the variable bindings themselves, ensuring that we are in a context devoid of the

variable in question.

Let us now look at the simultaneous substitution over canonical term (sim_subst_canon in

Fig.5–21). Looking at the type, sim_subst → ctx → ctx_erased → canon → canon → type, we carry

the simultaneous substitution, both contexts and the canonical term, and have as last ar-

gument the canonical term after substituting. Thus, once again, we are left with a relation

rather than a function proper. For this reason, uniqueness of substitution needs to be proven

separately as a lemma. We note that, in the case of lambda abstractions, we need to extend

both the explicit and LF-context. For this reason, we use a universal quantifier for y, {y:var},

to extend the LF-context, and manually extend the explicit context as an argument for the

hypothesis.

Special mention must be brought to the variable cases. There are two possible cases to

take into consideration: The first where the variable is only bound by the substitution, and

the other one where it is bound outside the substitution (In the tracking context). In the

former, we need to obtain the erased type of our variable (var_look sigma1 (λx.Psi1 x) M alpha) and

reduce the term with the substitution to obtain a normal form. We note that, as mentioned

above, we implicitly have that x is not in Phi. Also, the domain of the substitution must be

split.

In the latter case, we need to verify that the variable is indeed in the tracking context

and split this context, before converting the individual parts into their erased form. The

reason for this approach, differing from the paper version, is to simplify the cases. If we have

78

and sim_subst_canon : sim_subst → ctx → ctx_erased → canon → canon → type =
| ssc_unr : ({y : var} sim_subst_canon sigma Ψ (cer_snoc Φ (decl_er y unr)) (N y) (N’ y)

→ sim_subst_canon sigma Ψ Φ (lam λy.N y) (lam λy.N’ y)
| ssc_lin : ({y : var} sim_subst_canon sigma Ψ (cer_snoc Φ (decl_er y lin)) (N y) (N’ y))

→ sim_subst_canon sigma Ψ Φ (llam λy.N y) (llam λy.N’ y)
| ssc_cspine : sim_subst_spine sigma Ψ Φ S S’

→ sim_subst_canon sigma Ψ Φ (c_atom (atom_base (hd_cst c) S)) (c_atom (atom_base (hd_cst c) S’))
| ssc_varspine_nin : reduce M alpha S’ N

→ ({x : var} var_look σ1 (λx.Ψ1 x) M alpha) → ctx_er Φ Φ̃

→ joining (cjoin Ψ (Ψ1 x) Ψ2) → sim_subst_spine σ2 Ψ2 Φ̃ S S’
→ sim_subst_canon sigma Ψ Φ̃ (c_atom (atom_base (hd_var x) S)) N

| ssc_varspine_in : ({y : var} in_ctx (λy.Φ1 y)) → joining (cjoin Φ (Φ1 y) Φ2)
→ ctx_er Φ Φ̃ → ctx_er Φ2 Φ̃2

→ sim_subst_spine σ Ψ Φ̃2 S S’
→ sim_subst_canon σ Ψ Φ̃ (c_atom (atom_base (hd_var y) S)) (c_atom (atom_base (hd_var y) S’))

[σ]Φ̃ΨM
Substitution of the variables of Ψ in a canonical term

(leaving elements of Φ̃ unchanged)
[σ]Φ̃Ψ(λy.N) = λy.N ′ where [σ]Φ̃,yΨ N = N ′, choosing y 6∈ Ψ, y 6∈ FV(σ)

[σ]Φ̃Ψ(λ̂y.N) = λ̂y.N ′ where [σ]Φ̃,ỹΨ N = N ′, choosing y 6∈ Ψ, y 6∈ FV(σ)

[σ]Φ̃Ψ(c · S) = c · S ′ where [σ]Φ̃ΨS = S ′

[σ]Φ̃Ψ(x · S) = reduce(M : α, S ′) where Ψ = Ψ1 ./ Ψ2 and x 6∈ Φ̃

and σΨ1(x) = M : α and [σ]Φ̃Ψ2
S = S ′

[σ]Φ̃Ψ(y · S) = y · S ′ where y ∈ Φ̃ and [σ]Φ̃ΨS = S ′

[σ]Φ̃Ψ(y · S) = y · S ′ where ỹ ∈ Φ̃, and [σ]
Φ̃\ỹ
Ψ S = S ′

Figure 5–21: Simultaneous Substitution over Canonical Terms

an unrestricted variable, then the join should be with the unrestricted part of the context,

while if we have a linear variable, the join should be with a context where the only linear

variable is this variable. We quickly note that the in_ctx relation ensures that the variable is

not found as unavailable, since this would be a non-sensical substitution.

5.8 Lemmas and Theorems

In our mechanization, we concentrate on key lemmas. In particular, we have proven lem-

mas about contexts and context join (Lemma 1) and the substitution split lemma (Lemma 4),

79

LF sub_split : joining (cjoin Φ Φ1 Φ2) → subst_typing σ Φ Ψ → type =
| sub_s : subst_typing σ Φ1 Ψ1 → subst_typing σ Φ2 Ψ2

→ joining (cjoin Ψ Ψ1 Ψ2)
→ sub_split (J1 : joining (cjoin Φ Φ1 Φ2)) (S : subst_typing σ Φ Ψ)
;
rec subst_split : (Γ:sch){J : [Γ ` joining (cjoin Φ Φ1 Φ2)]}
{S : [g ` subst_typing σ Φ Ψ]} [g ` sub_split J S]

Figure 5–22: Substitution Split Lemma

rec subst_lemma_canon : (Γ : sch) [Γ ` ctx_mer Φ1 Φ2 Ψ]
→ [Γ ` check_tp Ψ M A] → [Γ ` subst_typing σ Φ1 Φ′1]
→ [Γ ` unrest_ctx Φ1 Φ1]
→ [Γ ` sim_subst_ctx σ Φ1 Φ2 Φ′2]
→ [Γ ` ctx_mer Φ′1 Φ′2 Ψ′]
→ [Γ ` ctx_er Φ2 Φ̃2]
→ [Γ ` sim_subst_canon σ Φ1 Φ̃2 M N]
→ [Γ ` unrest_ctx Φ2 Φ2]

→ [Γ ` ctx_er Φ2 Φ̃2]

→ [Γ ` sim_subst_tp σ Φ1 Φ̃2 A B]
→ [Γ ` check_tp Ψ′ N B]

Figure 5–23: Simultaneous Substitution Property

subst_split in Fig.5–22). We believe that mechanizing the remaining parts is mostly straight-

forward, although it requires us to keep track of many different assumptions. In the function

subst_lemma_canon (Fig.5–23), that encodes the substitution lemma (Lemma 4), we have a total

of 11 arguments. The encoding is more complex than the paper definition, because we must

keep track of the linearity conditions separately. If this wasn’t the case, we could reduce this

number to five arguments.

As of writing this, the mechanization spans approximately 1700 lines, and a version can

be found in the Beluga examples repository (https://github.com/Beluga-lang/Beluga/

tree/master/examples/lincx_mechanization).

80

CHAPTER 6
Related Work

In this chapter, we present other works that are related to the formalization and mech-

anization of linear systems.

6.1 LLF

The idea of using a logical framework methodology to build a specification language for

linear logic dates back a few decades, beginning with Cervesato and Pfenning’s description of

the linear logical framework LLF [10], which serves as a basis for our work. In their frame-

work, they provide linear implication((), additive pairs(&) and the unit type(>), along

with intuitionistic dependent function types (Π). LLF thus serves as a conservative exten-

sion to LF permitting us to represent and reason about linear objects on top of intuitionistic

ones. The idea of having a mixed system with both linear and intuitionistic variables is by

no means a recent feat.

The system LLF comes with its terms and types, along with its typing rules. An

interesting aspect of this language is that, while Lincx in its current state only allows for

an intuitionistic representation, LLF is more general and it was shown it could work with

classical logic, as an important example in the paper is the cut elimination in classical linear

logic.

Moreover, the paper served to lay some ground on the notion of using linear logic to

formalize imperative computations. In particular, based on Chirimar’s work [12], they show

how a Mini-ML with references can be embedded inside of LLF.

81

6.2 CELF

Developped by Anders Schack-Nielsen [35], CELF is an implementation of the concur-

rent logical framework CLF [40], which is an extension of LLF where monads are used to

encapsulate less well-behaved operators.

This system, also having roots in LLF, is thus in essence similar to Lincx. It also comes

with a linear unification. Due to its similarity to Lincx, it does give us confidence that this

should also be feasible in our system. We quickly note that there are some key differences

between both systems, in particular the use of affine variables in CELF, rather than purely

being restricted to the case of unrestricted and linear variables. This is in part due to linear

unification, and might imply such a need is also a necessary step towards the completion of

Lincx.

While as of yet not present in Lincx, CELF does include some additional features from

linear logic, such as the exponential, the additive conjunction and the unit. This in turn

builds confidence in the possibility of adding these constructs to our language.

Finally, while the essence of both systems are similar, CELF does lack some of the fea-

tures of Lincx, in particular the contextual-objects which allows us to reason more abstractly

about proof-trees.

6.3 Higher-Order Representation of Substructural Logics

While linear logic can be seen through the lenses of the context, where we split the

assumptions whenever using multiplicative constructors, handling it explicitly can be clumsy

and unnecessarily rigorous, as can be seen through the mechanization of Lincx in Beluga

(see Chapter 5).

82

In the absence of a satisfactory proof assistant that handles linearity, Crary [13] used

an alternate approach. Pfenning [29] proposed enforcing linearity using a meta-jdgement to

trace the use of assumptions throughout a typing derivation. Based on this principle, Crary

observed that proof terms alone are enough to track the use of restricted assumptions. Linear

logic is thus expressed using two judgements: the usual typing judgement, and a linearity

judgement.

This methodology was used to implement linear logic in Twelf. Thus, representing both

judgements, respectively, we have:

of : term → tp → type.

linear: (term → term) → type

The second judgements, linear(λx.Mx), can be read as “the variable x is used exactly

once in Mx”, thus respecting linearity. The first judgement, however, is similar to what we

would expect, except for one difference. Whenever we bind a variable, we need to ensure that

it is used linearly. For this reason, the lambda typing depends on the linearity judgement.

of/llam : of (llam ([x] M x)) (lolli A B)

<- ({x:term} of x A → of (M x) B)

<- linear ([x] M x)

On the other hand, special attention needs to be paid to the multiplicative and additive

constructors with the linear judgement. More explicit information is provided in the Crary’s

paper [13].

But while this ideology can work for some general systems, it does not allow one to

reason abstractly about contexts themselves, which is one of the key features of Lincx.

83

6.4 Other Approaches

While the quest to design meta-logics that allow us to reason about linear logical frame-

works is by no means recent, it has, in the past, been marred with difficulties.

In proof theory, McDowell and Miller [26, 27] and later Gacek et. al. [17] propose a two-

level approach to reason about formal systems where we rely on a first-order sequent calculus

together with inductive definitions and induction on natural numbers as a meta-reasoning

language. We encode our formal system in a specification logic that is then embedded in the

first-order sequent calculus: the reasoning language. The design of the two-level approach is

in principle modular, and in fact, McDowell’s Ph.D. thesis [26] describes a linear specification

logic. However, the context of assumptions is encoded as a list explicitly in this approach.

As a consequence, we need to reason modulo the equational properties of context joins and

we may need to prove properties about the uniqueness of assumptions. Such bureaucratic

reasoning then still pollutes our main proof.

In type theory, McCreight and Schürmann [25] give a tailored meta-logic L+
ω for linear

LF, which is an extension of the meta-logic for LF [37]. While L+
ω also characterize partial

linear derivations using contextual objects that depend on a linear context, the approach

does not define an equational theory on contexts and context variables. It also does not sup-

port reasoning about contextual objects modulo such an equational theory. In addition L+
ω

does not cleanly separate the meta-theoretic (co)inductive reasoning about linear derivations

from specifying and modelling the linear derivations themselves. We believe the modular

design of Beluga, i.e. the clean separation of representing and modelling specifications

and derivations on one hand and reasoning about such derivations on the other, offers many

advantages and more robust and also supports extensions to (co)inductive definitions [7, 38].

84

The hybrid logical framework HLF by Reed [34] is in principle capable to support

reasoning about linear specifications. In HLF, we reason about objects that are valid at a

specific world, instead of objects that are valid within a context. However, contexts and

worlds seem closely connected.

Most recently Bock and Schürmann [5] propose a contextual logical framework XLF.

Similarly to Lincx, it is also based on contextual modal type theory with first-class contexts.

However, context variables have a strong nominal flavor in their system. In particular, Bock

and Schürmann allow multiple context variables in the context and each context variable is

associated with a list of variable names (and other context variable domains) from which

it must be disjoint – otherwise the system is prone to repetition of linear variables upon

instantiation.

On a more fundamental level the difference between HLF and XLF on the one hand and

our approach on the other is how we think about encoding meta-theoretic proofs. HLF and

XLF follow the philosophy of Twelf system and encoding proofs as relations. This makes it

sometimes challenging to establish that a given relation constitutes an inductive proof and

hence both systems have been rarely used to establish such meta-theoretic proofs. More

importantly, the proof-theoretic strength of this approach is limited. For example, it is

challenging to encode formal systems and proofs that rely on (co)inductive definitions such

as proofs by logical relations and bisimulation proofs within the logical framework itself. We

believe the modular design of separating cleanly between Lincx as a specification framework

and embedding Lincx into the proof and programming language Beluga provides a simpler

foundation for representing the meta-theory of linear systems. Intuitively, meta-proofs about

85

linear systems only rely on linearity to model the linear derivations – however the reasoning

about these linear derivation trees is not linear, but remains intuitionistic.

86

CHAPTER 7
Conclusion

In this work, we have presented Lincx, a linear contextual modal logical framework with

first-class contexts and context variables presented using a nominal form: a foundation to

model linear systems and derivations. In particular, Lincx satisfies the necessary require-

ments to serve as a specification and index language for Beluga. It should thus provide

a suitable foundation to implement proofs about linear derivation trees as recursive func-

tions. Part of the work also consists in the mechanization of key equational properties of

context joins in Beluga, along with progress towards proofs relating to the formalization of

substitution. Our confidence in Lincx is thus further cemented through this mechanization.

7.1 Future Work

While Lincx currently has a sufficient representation to formalize some systems, it is

currently not in its final form. Ideally, we would want to expand the system to a full linear

logic. This means that additive constructs along with their unit would need to be added.

This might prove to be a challenge, and could possibly affect the nature of canonicity, and

further investigation is thus needed. Similarly, despite having unrestricted assumptions in

our system, it would be interested to add the exponential to Lincx, which might require

some additional work in order to better understand the relation between our intuitionistic

assumptions and those obtained from transforming linear assumptions through the exponen-

tial.

87

While we are interested in expanding the language with more constructs from LLF,

we are also interested in adding more constructs from the contextual logical framework, in

particular, a great addition to the system would be that of substitution variables and first-

class substitution. This would allow us to reason more abstractly about substitution. Due

to the challenges this poses, the interplay between different contexts in our system should

be further investigated, looking at the relationship between the domain and codomain of

different substitution.

While part of the mechanization has been completed, it would be a great milestone if

we could completely formalize the language and prove all of its desired properties within

Beluga. Considering most proofs have been completed on paper, this should not pose too

much of a challenge, and should mostly be an exercise in rigor. It remains, however, that a

complete mechanization of Lincx would allow for a great level of confidence in the system.

Next, we need to consider the long term goal of Lincx, which is to be extended to a full

linear programming and reasoning framework. Thus, some work needs to be expanded upon

in order to achieve this state. Amongst other things, unification needs to be investigated.

While some work on linear unification has been done by Anders [35], we still need to ensure

adequacy of the algorithm towards Lincx, and extend it to handle Lincx’ meta-objects.

Similarly, pattern coverage and totality checking must also be adapted. We believe, however,

that these shouldn’t pose a challenge.

Finally, we would be interested in implementing such a framework. This work would

follow the implementation of Beluga and possibly use the latter as a frame from which to

build Lincx as a complete programming and reasoning framework. We then would like to

encode some important and interesting case studies within this implementation.

88

REFERENCES

[1] https://www.rust-lang.org/en-us/.

[2] Olivier Savary Belanger, Stefan Monnier, and Brigitte Pientka. Programming type-
safe transformations using higher-order abstract syntax. In Georges Gonthier and
Michael Norrish, editors, 3rd International Conference on Certified Programs and Proofs
(CPP’13), Lecture Notes in Computer Science (LNCS 8307), pages 243–258. Springer,
2013.

[3] Jesper Bengtson, Jonas Braband Jensen, and Lars Birkedal. Charge! - A framework
for higher-order separation logic in Coq. In Lennart Beringer and Amy P. Felty, edi-
tors, Third International Conference on Interactive Theorem Proving (ITP’12), Lecture
Notes in Computer Science (LNCS 7406), pages 315–331. Springer, 2012.

[4] Josh Berdine, Peter W. O’Hearn, Uday S. Reddy, and Hayo Thielecke. Linear
continuation-passing. Higher-Order and Symbolic Computation, 15(2-3):181–208, 2002.

[5] Peter Brottveit Bock and Carsten Schürmann. A contextual logical framework. In
20th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR‘15), Lecture Notes in Computer Science (LNCS 9450), pages 402–
417. Springer, 2015.

[6] Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions.
In Paul Gastin and François Laroussinie, editors, 21th International Conference on
Concurrency Theory (CONCUR’10), Lecture Notes in Computer Science (LNCS 6269),
pages 222–236. Springer, 2010.

[7] Andrew Cave and Brigitte Pientka. Programming with binders and indexed data-types.
In 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’12), pages 413–424. ACM, 2012.

[8] Andrew Cave and Brigitte Pientka. First-class substitutions in contextual type the-
ory. In 8th ACM SIGPLAN International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP’13), pages 15–24. ACM, 2013.

89

90

[9] Andrew Cave and Brigitte Pientka. A case study on logical relations using contextual
types. In I. Cervesato and K.Chaudhuri, editors, 10th International Workshop on Logi-
cal Frameworks and Meta-Languages: Theory and Practice (LFMTP’15), pages 18–33.
Electronic Proceedings in Theoretical Computer Science (EPTCS), 2015.

[10] Iliano Cervesato and Frank Pfenning. A linear logical framework. In E. Clarke, editor,
11th Annual Symposium on Logic in Computer Science, pages 264–275, New Brunswick,
New Jersey, 1996. IEEE Press.

[11] Iliano Cervesato and Frank Pfenning. A linear spine calculus. Journal of Logic and
Computation, 13(5):639–688, 2003.

[12] J. L. Chirimar. Proof Theoretic Approach to Specication Languages. PhD thesis, Uni-
versity of Pennsylvania, 1995.

[13] Karl Crary. Higher-order representation of substructural logics. SIGPLAN Not., 2010.

[14] Olivier Danvy and Andrzej Filinski. Representing control: A study of the CPS trans-
formation. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[15] Henry DeYoung and Carsten Schürmann. Linear Logical Voting Protocols, pages 53–70.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[16] Matthew Fluet, Greg Morrisett, and Amal J. Ahmed. Linear regions are all you need. In
Peter Sestoft, editor, 15th European Symposium on Programming (ESOP’06), Lecture
Notes in Computer Science (LNCS 3924), pages 7–21. Springer, 2006.

[17] Andrew Gacek, Dale Miller, and Gopalan Nadathur. A two-level logic approach to
reasoning about computations. Journal of Automated Reasoning, 49(2):241–273, 2012.

[18] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1097.

[19] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, January 1993.

[20] Martin Hofmann. The strength of non-size increasing computation. SIGPLAN Not.,
37(1):260–269, January 2002.

[21] J. Maraist, M. Odersky, D.N. Turner, and P. Wadler. Call-by-name, call-by-value, call-
by-need and the linear lambda calculus. Theoretical Computer Science, 1999.

[22] Chris Martens, Anne-Gwenn Bosser, João F. Ferreira, and Marc Cavazza. Linear Logic
Programming for Narrative Generation. Springer Berlin Heidelberg, 2013.

91

[23] Chris Martens and Karl Crary. LF in LF: Mechanizing the metatheories of LF in Twelf.
In 7th International Workshop on Logical Frameworks and Meta-languages:Theory and
Practice (LFMTP’12), pages 23–32. ACM, 2012.

[24] Andrew McCreight. Practical tactics for separation logic. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel, editors, 22nd International Conference
on Theorem Proving in Higher Order Logics (TPHOLs’09), Lecture Notes in Computer
Science (LNCS 5674), pages 343–358. Springer, 2009.

[25] Andrew McCreight and Carsten Schürmann. A meta-linear logical framework. In 4th
International Workshop on Logical Frameworks and Meta-Languages (LFM’04), 2004.

[26] Raymond McDowell. Reasoning in a Logic with Definitions and Induction. PhD thesis,
University of Pennsylvania, 1997.

[27] Raymond C. McDowell and Dale A. Miller. Reasoning with higher-order abstract syntax
in a logical framework. ACM Transactions on Computational Logic, 3(1):80–136, 2002.

[28] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type
theory. ACM Transactions on Computational Logic, 9(3):1–49, 2008.

[29] Frank Pfenning. Structural cut elimination in linear logic. Technical report, Carnegie
Mellon University, 1994.

[30] Brigitte Pientka. A type-theoretic foundation for programming with higher-order ab-
stract syntax and first-class substitutions. In 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’08), pages 371–382. ACM, 2008.

[31] Brigitte Pientka and Andrew Cave. Inductive Beluga:Programming Proofs (System De-
scription). In Amy P. Felty and Aart Middeldorp, editors, 25th International Conference
on Automated Deduction (CADE-25), Lecture Notes in Computer Science (LNCS 9195),
pages 272–281. Springer, 2015.

[32] Brigitte Pientka and Joshua Dunfield. Beluga: a framework for programming and rea-
soning with deductive systems (System Description). In J. Giesl and R. Haehnle, editors,
5th International Joint Conference on Automated Reasoning (IJCAR’10), Lecture Notes
in Artificial Intelligence (LNAI 6173), pages 15–21. Springer, 2010.

[33] Paolo Pistone. Polymorphism and the notion of type: the input of linear logic. 2016.

[34] Jason Reed. A hybrid logical framework. PhD thesis, Carnegie Mellon, 2009.

92

[35] Anders Schack-Nielsen. Implementing Substructural Logical Frameworks. PhD thesis,
IT University of Copenhagen, 2011.

[36] Anders Schack-Nielsen and Carsten Schürmann. Pattern unification for the lambda
calculus with linear and affine types. In Karl Crary and Marino Miculan, editors, Inter-
national Workshop on Logical Frameworks and Meta-Languages: Theory and Practice
(LFMTP’10), volume 34 of Electronic Proceedings in Theoretical Computer Science
(EPTCS), pages 101–116, July 2010.

[37] Carsten Schürmann. Automating the Meta Theory of Deductive Systems. PhD thesis,
Department of Computer Science, Carnegie Mellon University, 2000. CMU-CS-00-146.

[38] David Thibodeau, Andrew Cave, and Brigitte Pientka. Indexed codata. In Jacques
Garrigue, Gabriele Keller, and Eijiro Sumii, editors, 21st ACM SIGPLAN International
Conference on Functional Programming (ICFP’16), pages 351–363. ACM, 2016.

[39] David Walker and Kevin Watkins. On regions and linear types. In Benjamin C.
Pierce, editor, 6th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’01), pages 181–192. ACM, 2001.

[40] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent
logical framework I: Judgments and properties. Technical Report CMU-CS-02-101,
Department of Computer Science, Carnegie Mellon University, 2002.

APPENDIX A
Appendix

We present here partial proofs and generalized reformulations of lemmas and theorems

mentioned in Chapter 4 of this paper. We also give definitions of single hereditary substitu-

tion and simultaneous meta-substitution.

Lemma 2. If ∆; Ψ ` σ ⇐ Φ then ∆; Ψ ` σ ⇐ Φ.

Proof. Proof by induction on typing derivation D :: ∆; Ψ ` σ ⇐ Φ. We show a couple of

cases below, the remaining ones are straightforward.

Case. D = unr(Γ)

∆;ψm,Γ ` idψm ⇐ ψm

unr(Γ) by assumption

∆;ψε,Γ ` idψm ⇐ ψε by substitution typing

Case. D = ∆; Ψ1 ` σ ⇐ Φ ∆; Ψ2 `M ⇐ [σ]ΦA Ψ = Ψ1 ./ Ψ2

∆; Ψ ` σ,M ⇐ Φ, x̂:A

∆; Ψ1 ` σ ⇐ Φ by IH

Ψ = Ψ1 = Ψ2 by Lemma 1(4)

∆; Ψ ` σ,M ⇐ Φ, x̌:A by substitution typing

A.1 Hereditary Single Substitution

Hereditary single substitution in Lincx closely follows [8]. We present complete rules

on Fig. A–1.

93

The following theorem establishes typing for single substitutions. Notice that it is more

general compared to the variant presented in Chapter 4.

Theorem 2 (Hereditary single substitution property). 1. If ∆; Ψ `M ⇐ A and ∆; Ψ, x:A,Φ `

J then ∆; Ψ, [M/x]AΦ ` [M/x]∗A(J) where ∗ ∈ {c, s, l}.

2. If ∆; Ψ1 ` M ⇐ A, ∆; Ψ2, x̂:A,Φ ` J and Ψ = Ψ1 ./ Ψ2 then ∆; Ψ,Φ ` [M/x]∗A(J)

where ∗ ∈ {c, s, l}.

3. If ∆; Ψ1 `M ⇐ A, ∆; Ψ2 ` S > A ⇒ B, Ψ = Ψ1 ./ Ψ2 and reduce(M : A−, S) = M ′

then ∆; Ψ `M ′ ⇐ B

A.2 Typing for Meta-Terms

Rules for constructing a context of a given schema presented on Fig. A–2 describe four

possible initial cases of context construction, which correspond to four cases of constructing

a valid context. Note that since their instantiations should contain the same variables (albeit

with some variables becoming unavailable), all the context variables should have the same

schema. Next, we have three cases for context extension, i.e.: extending a context with

either an unrestricted, a linear or an unavailable variable. In either case, we must ensure

that the schema as an element of the proper type, and the proper status, for the context

variable, which is to say, an unrestricted variable should expects an unrestricted element,

while a linear or unavailable variable expects a linear schema element.

Typing of other meta-terms, as presented on Fig. A–3 is straightforward: a meta-object

Ψ̃.R has type (Ψ ` P), if R has type P in the context Ψ. The typing of variable objects, i.e.

an object of type (Ψ ` #A), must be reconsidered carefully. A parameter type is inhabited

only by variable objects, i.e. either concrete variables from Ψ or parameter variable associated

94

with a variable substitution. The typing for parameter variables follows the typing for meta-

objects. There are two cases to consider when we have a concrete variable x from the context:

either Ψ contains only unrestricted variable declarations and x : A is one of them; or x is in

fact a linear variable of type A which forces Ψ to be a context with only one linear declaration

x̂:A.

A.3 Meta-Substitution

id(Ψ) Identity substitution

id(·) = ·

id(idψ) = idψ

id(Ψ, x:A) = id(Ψ), η-exp(A−)(x, ε)

id(Ψ, x̂:A) = id(Ψ), η-exp(A−)(x, ε)

id(Ψ, x̌:A) = id(Ψ), η-exp(A−)(x, ε)

η-expA(H,S) η-expansion

η-expa(H,S) = H · S

η-expα→β(H,S) = λx.η-expβ(H,S@η-expα(x))

η-expα(β(H,S) = λ̂x.η-expβ(H,S@̂η-expα(x))

95

reduce(M : α, S) = N N is the result of reducing M applied to the spine S

reduce(λx.M : α→ β, (N ;S)) = reduce([N/x]cαM : β, S)

reduce(λ̂x.M : α (β, (N ;̂S)) = reduce([N/x]cαM : β, S)

reduce(R : a, ε) = R

reduce(M : α, S) = ⊥

[M/x]cαN = N ′ N ′ is a result of substituting M for x in a canonical term N

[M/x]cα(λy.N) = λy.N ′ where [M/x]cαN = N ′, choosing y 6= x, y 6∈ FV(M)

[M/x]cα(λ̂y.N) = λ̂y.N ′ where [M/x]cαN = N ′, choosing y 6= x, y 6∈ FV(M)

[M/x]cα(u[σ]) = u[σ′] where [M/x]sασ = σ′

[M/x]cα(c · S) = c · S ′ where [M/x]lαS = S ′

[M/x]cα(x · S) = N where [M/x]lαS = S ′ and reduce(M : α, S ′) = N

[M/x]cα(y · S) = y · S ′ where [M/x]lαS = S ′ and x 6= y

[M/x]cα(p[σ] · S) = p[σ′] · S ′ where [M/x]sασ = σ′ and [M/x]lαS = S ′

[M/x]lαS = S ′ S ′ is a result of substituting M for x in a spine S

[M/x]lα(ε) = ε

[M/x]lα(N ;S) = N ′ ;S ′ where [M/x]cαN = N ′ and [M/x]lαS = S ′

[M/x]lα(N ;̂S) = N ′ ;̂S ′ where [M/x]cαN = N ′ and [M/x]lαS = S ′

[M/x]sασ = σ′ σ′ is a result of substituting M for x in a substitution σ

[M/x]sα(·) = ·
[M/x]sα(idψ) = idψ
[M/x]sα(σ,N) = σ′, N ′ where [M/x]sασ = σ′ and [M/x]cαN = N ′

Figure A–1: Hereditary Single Substitution

96

∆ ` Ψ ⇐ G Context Ψ checks against schema G

∆ ` · ⇐ G

ψi : G ∈ ∆

∆ ` ψε ⇐ G

ψi : G ∈ ∆

∆ ` ψi ⇐ G

∆ ` ψk ⇐ G ∆ ` ψl ⇐ G m = k ./ l

∆ ` ψm ⇐ G

∆ ` Ψ ⇐ G λ(
−−−→
xi:Ai).B ∈ G ∆; Ψ ` σ ⇐ (

−−−→
xi:Ai) ∆; Ψ ` A = [σ]

(
−−−→
xi:Ai)

B

∆ ` Ψ, x:A ⇐ G

∆ ` Ψ ⇐ G λ(
−−−→
xi:Ai).B̂ ∈ G ∆; Ψ ` σ ⇐ (

−−−→
xi:Ai) ∆; Ψ ` A = [σ]

(
−−−→
xi:Ai)

B

∆ ` Ψ, x̂:A ⇐ G

∆ ` Ψ ⇐ G λ(
−−−→
xi:Ai).B̂ ∈ G ∆; Ψ ` σ ⇐ (

−−−→
xi:Ai) ∆; Ψ ` A = [σ]

(
−−−→
xi:Ai)

B

∆ ` Ψ, x̌:A ⇐ G

Figure A–2: Typing Rules for Contexts of a Given Schema

∆ ` C ⇐ U Meta-level term C checks agains type U

∆; Ψ ` R ⇐ P

∆ ` Ψ̃.R ⇐ (Ψ ` P)

x:A ∈ Ψ unr(Ψ)

∆ ` Ψ̃.x ⇐ (Ψ ` #A)

unr(Ψ1) unr(Ψ2)

∆ ` (Ψ̃1, x̂, Ψ̃2).x ⇐ (Ψ1, x̂:A,Ψ2 ` #A)

p : (Φ ` #A) ∈ ∆ ∆; Ψ ` π ⇐ Φ ∆; Ψ ` B = [π]Φ(A)

∆ ` Ψ̃.p[π] ⇐ (Ψ ` #B)

Figure A–3: Typing Rules for Meta-Terms

97

JΘK∆M Simultaneous meta-substitution for terms

JΘK∆(λx.M) = λx.M ′ where JΘK∆M = M ′

JΘK∆(λ̂x.M) = λ̂x.M ′ where JΘK∆M = M ′

JΘK∆(u[σ]) = R′ where Θ∆(u) = Ψ̃.R : (Ψ ` P) and JΘK∆ σ = σ′

and [σ′]ΨR = R′

JΘK∆(c · S) = c · S ′ where JΘK∆ S = S ′

JΘK∆(x · S) = x · S ′ where JΘK∆ S = S ′

JΘK∆(p[σ] · S) = M ′ where Θ∆(p) = Ψ̃.x : (Ψ ` #A) and JΘK∆ σ = σ′

and JΘK∆ S = S ′ and σ′Ψ(x) = M : α
and reduce(M : α, S ′) = M ′

JΘK∆(p[σ] · S) = q[τ ′] · S ′ where Θ∆(p) = Ψ̃.q[π] : (Ψ ` #A) and JΘK∆ σ = σ′

and JΘK∆ S = S ′ and [σ′]π = τ

JΘK∆σ Simultaneous meta-substitution for substitutions

JΘK∆(·) = ·
JΘK∆(idψ) = id(Ψ) where Θ∆(ψε) = Ψ

JΘK∆(σ,M) = σ′,M ′ where JΘK∆ σ = σ′ and JΘK∆ M = M ′

JΘK∆Ψ Simultaneous meta-substitution for contexts

JΘK∆(·) = ·
JΘK∆(ψm) = Ψ where Θ∆(ψm) = Ψ

JΘK∆(Ψ, x:A) = Ψ′, x:A′ where JΘK∆ Ψ = Ψ′ and JΘK∆ A = A′

JΘK∆(Ψ, x̂:A) = Ψ′, x̂:A′ where JΘK∆ Ψ = Ψ′ and JΘK∆ A = A′

JΘK∆(Ψ, x̌:A) = Ψ′, x̌:A′ where JΘK∆ Ψ = Ψ′ and JΘK∆ A = A′

Figure A–4: Simultaneous Meta-Substitution

98

