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1. Introduction 
 
The introduction of fault tolerance design in the software development process is 
an emerging area of active research. For our project, we are interested in 
modelling and simulating the behaviour of a real-time system used in a mine 
drainage environment, and observing how fault tolerance techniques can 
improve or change some performance metrics. In particular, we would like to 
analyze the dependability properties of the system which include the evaluation 
criteria reliability and safety.  
 

1.1 Project Description 
 
The application chosen is a standard in real-time systems literature: the pump 
control system (PCS). For example, Burns and Lister used PCS as a case study 
to discuss the TARDIS project (Timely and Reliable Distributed Systems). 
  
Our goals for the project are as follows: 
• to create a model for a real-time system based on the functional properties 
• to improve the model based on non-functional properties and to integrate 

fault-tolerant means into it. 
• to implement the models using PythonDEVS for simulation  
• to observe the improvement in the dependability metrics of the system 

introduced by fault-tolerance 
 

1.2 Timeline 
 

Project team  October 12, 2004 
Project proposal  October 20, 2004 
Prototype 1 (non FT model)  November 5, 2004 
Final presentation in class  December 3, 2004 
Post presentation and sources on website  December 22, 2004 

 

2. Fault-tolerant Systems 
 
Systems are developed to satisfy a set of requirements that meet a need. A 
requirement that is important in some systems is that they be highly dependable. 
Fault tolerance is a means of achieving dependability. Fault-tolerant systems 
aim to continue delivery of services despite the presence of hardware or software 
faults in the system. 
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There are three levels at which fault tolerance can be applied. Traditionally, fault 
tolerance has been used to compensate for faults in computing resources 
(hardware). By managing extra hardware resources, the computer subsystem 
increases its ability to continue operation. Hardware fault tolerance measures 
include redundant communications, replicated processors, additional memory, 
and redundant power/energy supplies. Hardware fault tolerance was particularly 
important in the early days of computing, when the time between machine 
failures was measured in minutes [1]. 
 
A second level of fault tolerance recognizes that a fault tolerant hardware 
platform does not, in itself, guarantee high availability to the system user. It is still 
important to structure the computer software to compensate for faults such as 
changes in program or data structures due to transients or design errors. This is 
software fault tolerance. Mechanisms such as checkpoint/restart, recovery 
blocks and multiple-version programs are often used at this level [1]. 
 
At a third level, the computer subsystem may provide functions that compensate 
for failures in other system facilities that are not computer-based. This is system 
fault tolerance. For example, software can detect and compensate for failures in 
sensors. Measures at this level are usually application-specific [1]. 
 

2.1 Fault Tolerance Mechanisms 
 
Error detection. This step involves identification of errors in the system and 
uses forms of active redundancy for this purpose.  
 
System Recovery. Compensation, a form of system recovery, involves the use 
of redundancy to mask an error by only selecting an acceptable result based on 
some algorithm, thus making it possible to transform to an error-free state. 
Modular redundancy along with majority voting is a common technique to 
achieve compensation.  
 
N-Modular Redundancy. This is a scheme for forward error recovery. N 
redundant units (U1… Un) are used, instead of one, and a voting scheme is used 
on their output. There are many types of voters which can be used. More 
interestingly, the ones we use for this implementation are the majority voter, 
which given n results will output the one which reoccurs the most, and the 
“maximum” voter , which outputs the highest value from amongst the n results 
received.  
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Figure 1. NMR redundancy and voting 
 

3. Case Study: Pump Control System 
3.1 TARDIS 
 
The Timely and Reliable Distributed Information Systems (TARDIS) project was 
initiated jointly by Prof. Alan Burns of University of York (York) and A. M. Lister of 
University of Queensland (Australia) in 1990. The TARDIS framework was 
targeted towards avionics, process control, military, and safety critical 
applications. It was developed with the intention of creating a framework which 
considered non-functional requirements and implementation constraints from the 
early stages of software development. 
 

3.2 Requirements Specification 
 
The basic task of the system is to pump the water that accumulates at the bottom 
of the shaft to the surface. Figure 2 illustrates the pump control system. 
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Figure 2. Pump Control System 

3.2.1 Functional Requirements 

• Pump operation. The pump is switched on when the water level is below the 
high-water level and the methane level is below critical. In addition to 
automatic operation, the operator and the supervisor are allowed to switch the 
pump on and off based on some conditions. The operator is only allowed to 
switch on the pump when the water level is above the low-water level, and the 
methane level is below critical. The supervisor however can switch it on only 
based on the methane level, which has to be below critical. The pump is 
switched off automatically when the water level goes below the low-water 
level or when the methane level reaches the critical level. The supervisor is 
allowed to switch it off only when the water level is below the high-water level.  

• Pump monitoring. Every operation on the pump and its state alterations are 
logged.  

• Environment monitoring. The environment sensors for methane, carbon 
monoxide gas, and airflow need to be constantly monitored and logged. The 
critical levels of these sensor values may lead to the pump being shutdown or 
to alarms being raised.  

• Operator information. The operator should receive information about all 
critical readings of sensors.   

During the modelling phase, our project will abstract away from the following:  
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• Pump and environment monitoring: the logging of the readings from the 
environment sensors and the pump operations will not modelled. 

• Operator and Supervisor: these will be replaced by a passive human 
controller in our model.   

3.2.2 Non-functional Requirements 
 
Burns and Lister describe three non-functional requirements in their paper: 
timing, security and dependability. For the scope of this project, we focus on the 
latter. 
 
For PCS, the dependability requirements ensure that the system is reliable and 
safe. 
 
Reliability in the pump system is measured by the number of shifts that can be 
allowed to be lost if the pump does not operate when it should be. In this case, a 
system can be said to be reliable if it loses at most 1 shift in 100. Also, even on 
pump failure, a water accretion period of one hour is allowed before a shift is 
defined as lost. 
 
Safety of the pump system is related to the probability that an explosion can 
occur if the pump is operated when the methane level is above critical. In this 
case, the probability is assumed to be less than 10-7 during the lifetime of the 
system. 
 

3.3 System Architecture 

3.3.1 Logical Architecture 
 
The logical architecture considers the functional requirements of the system, and 
in this case also the security requirement. Hence, for this system, the functional 
requirements can be mapped to four classes: pump subsystem, data logger 
(introduced due to pump monitoring), environment subsystem, and operator. 
As mentioned previously, our project will not look into data logging issues, and 
will replace the supervisor and operator entities by a passive human controller 
who receives alarms but does not respond to them. 
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Figure 3. Logical architecture of the pump control system 

 
Figure 4. Logical architecture refinements 

 
 

3.4 Failure Scenarios 
 
At the subsystems level, safety of the system can be threatened due to the 
failures mentioned below. 
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• The environment subsystem sends an incorrect methane value to the 
pump subsystem.  

• The environment subsystem fails to generate an alarm when the methane 
level goes above critical.  

• The communication subsystem does not notify the pump subsystem about 
the alarm.  

• The pump subsystem fails to switch off the pump after receiving the alarm.  
 
From the above, it can be deduced that safety of the system is dependent on the 
environment subsystem, the pump subsystem, and the communication medium 
between them. Two types of failures can affect safety: fail-silent and fail-noisy.  
 
The first step would be to create fault containment areas. The task of raising an 
alarm can be avoided, if the pump subsystem can be assigned an additional 
operation of checking the methane level continuously. This way the pump can 
switch itself off when it receives no response from the environment subsystem. 
This does not increase the design complexity. The system is now only affected 
by failures in a fail-noisy manner. In addition, time-stamping may be used when 
sending methane readings to enable the pump subsystem to realize when it’s 
getting old readings and act accordingly. 
 
In the case of reliability, to prevent loss of shift, the pump should be repaired 
before the water accretion period passes. 
 
Since sensors only fail in a fail-noisy manner, replication of the sensors is 
required to tolerate hardware failure. Three sets of sensors can be used along 
with N-modular redundancy (NMR) technique (discussed in Section 2.1) for 
detecting and tolerating faults. In a similar way, the other components in the 
system can be analyzed and measures taken to achieve dependability. 
 
Our focus in this project is to apply fault tolerance techniques in order to solve 
the first failure scenario. We will implement replication using the NMR technique 
to produce the non-faulty system. 
 

4. Modelling of the System 
4.1 Modelling Formalism 
 
As the states in PCS change only in accordance to external events, the 
appropriate choice of a modelling formalism is the Discrete EVent System 
specification. In addition, PCS is composed of many different interacting 
subsystems, and DEVS, being highly modularized, allows for a clean model of 
such a system. 
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4.2 Outline of the Solution 
 
We follow an iterative development process, comprising of the stages analysis, 
design, code, and testing.  
 
We start by designing the real-world behaviour of PCS. Each subsystem (pump, 
environment, communication) is modelled as an atomic or coupled DEVS. After 
modelling the functional requirements, we need to model a fault injection 
mechanism. The fault injector would alter the normal behaviour of the system on 
a periodic basis in order to make a subsystem fail. For example, a fault in the 
methane sensor would generate faulty (noisy) methane readings of the 
environment, which would be propagated to the environment monitor, and 
through the communication subsystem to the pump controller. This wrong 
methane reading could possibly force the pump to shut off when it is not 
supposed to, or it might fail to cause a critical alarm to be raised. The simulation 
results should show how the performance varies over time in the absence and 
presence of faults. 

Next, the model is adapted to integrate fault tolerance techniques. Replication of 
sensors with maximum voting is one possibility. For example, even if one of the 
methane sensors fails (caused by the fault injector), an event is still passed on to 
the subsystem based on the state of the other sensors. With the same fault 
injection technique, we simulate the model to see how it behaves with FT means, 
as in, how the performance changes. 

The system behaviour to be modelled is discrete event-based, it will thus be 
suitable to use the DEVS (Discrete Event System Specification) formalism. 
 

4.3 Model of the Original System 
 
DEVS model of the original system 

4.3.1 Methane Sensor 
 
States: This sensor may either be READING the level of methane in the 
environment or IDLE between readings. A reading is generated every 2 seconds. 
 
Output: Upon transitioning from READING to IDLE, the sensor outputs the level 
of methane in the environment at that time. Faults will be injected internally in 
order to have the sensor output an accurate reading ninety percent of the time, 
and a false reading 10 percent of the time. 
 
A methane reading is a positive integer between 0 and 10, and is non-critical 
below 7. 
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4.3.2 Carbon Monoxide Sensor 
 
States: This sensor may either be READING the level of carbon monoxide in the 
environment or IDLE between readings. A reading is generated every 6 seconds. 
 
Output: Upon transitioning from READING to IDLE, the sensor outputs the level 
of carbon monoxide in the environment at that time. Faults will be injected 
internally in order to have the sensor output an accurate reading 91 percent of 
the time, and a false reading 9 percent of the time. 
 
A carbon monoxide reading is a positive integer between 0 and 10, and is non-
critical below 5. 

4.3.3 Airflow Sensor 
 
States: This sensor may either be READING the airflow in the environment or 
IDLE between readings. A reading is generated every 5 seconds. 
 
Output: Upon transitioning from READING to IDLE, the sensor outputs the airflow 
in the environment at that time. Faults will be injected internally in order to have 
the sensor output an accurate reading 88 percent of the time, and a false reading 
12 percent of the time. 
 
An airflow reading is a positive integer between 0 and 10, and is non-critical 
below 3. 

4.3.4 Environment monitor 
 
States: The monitor may either be processing sensor readings ('PROCESSING'), 
responding to a query ('QUERYING') or doing nothing ('IDLE').  
 
Output: Upon receiving a query, the monitor responds by sending an 
acknowledgement which contains a message stating whether the last methane 
level received was critical or not critical. Upon receiving readings from the 
environment sensor, it outputs alarms when the readings are critical.  

 
All messages to and from the pump controller or to the human controller are sent 
through the communication DEVS.  

4.3.5 Pump Controller 
 
States:  It may either be processing a water sensor reading and sending an 
operation to the pump ('PROCESSING-WATER'), processing a methane alarm 
('PROCESSING-ALARM'), processing a query acknowledgement 
('PROCESSING-ACK'), or doing nothing ('IDLE'). 
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Output: Upon receiving a water low reading, the pump controller sends an ”off” 
message to the pump to make it switch off. If the controller receives a water high 
reading, it turns the pump to ready mode and sends a query to the environment 
monitor: the controller will only ask the pump to turn on if the methane level is not 
critical. If an acknowledgement is received stating that the methane level is high, 
then the controller will turn the pump off, otherwise, it will turn it on. Similarly, 
when the controller receives a methane alarm, it turns the pump off.  

4.3.6 Water Sensor 
 
States: will randomly switch between the HIGH and LOW states.  
 
Output: the state to which the sensor is transitioning.  
 

4.4 Model of the Fault-Tolerant System 
 
DEVS model of the fault-tolerant system 
 
In this model, each of the environment sensors is replicated 3 times. Each of 
these replicated sensors behaves in a regular fashion as described in Section 
4.3, and will output either an accurate or false result. In order for all sensors to 
agree on the accurate reading (rather than having each randomly generate one 
as in the non fault tolerant system), levels are generated in a separate DEVS 
called the actualRGenerator.  
 
actualRGenerator DEVS. Every 1.9 seconds, this DEVS will generate an 
accurate reading for the environment sensors. These readings are stored 
globally in the class and can be accessed without passing through in and out 
ports of DEVS. 
 
The results from a set of replicated sensors are sent to a voter. We have two 
versions of the fault tolerant system modelled. In one version, we use a 
maximum voter, in which the highest value received for the replicated sensors 
will be the one considered as the real one. The second version implements a 
majority voter in which the dominant reading is considered as the real one.  
 
The set of replicated sensors and their voter are combined in a coupled DEVS, 
the output of which is sent to the environment monitor. From there, the behaviour 
described in Section 4.3 is modelled.  
 

4.5 Performance Metrics 
 
We keep track of two dependability metrics: safety of the system and reliability of 
the sensors. Burns and Lister describe reliability of the pump in [3], however, the 
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pump can only fail in a mechanical way, and recovering for this failure only 
implies repairing or replacing the pump. Therefore, this is not an interesting 
measure of dependability for the purpose of our project. Hence, we have 
replaced the pump reliability by that of the methane sensor, as it is a safety 
critical component. This differs from the description of the reliability requirement 
given in Section 3.2.2. 

4.5.1 Safety of the system 
 
We keep track of the safety of the system throughout the simulation time by 
assuming the following: 

• Whenever a methane sensor outputs the accurate environment reading, 
the safety of the system is met. 

• If the methane sensor outputs a false reading which is inaccurately non-
critical, then the safety of the system is threatened. 

• If the methane sensor outputs a false reading which is in accordance with 
the accurate reading (that is it is critical when the accurate reading is 
critical, and not critical when the accurate reading is not critical), then the 
safety of the system is not threatened. 

 
This recording is done inside the MethaneSensor DEVS, and safety failures and 
successes are written to file.  

4.5.2 Reliability of the methane sensor 
 
We keep track of the dependability of the methane sensor throughout simulation 
time by assuming the following: 

• whenever the accurate reading is output, the sensor is reliable. 
• whenever the false reading is output, the sensor is not reliable. 

 
This recording is done inside the MethaneSensor DEVS as well, and reliability 
failures and successes are written to file.  

5. Simulation 
5.1 Implementation 
 
The models were implemented using the PythonDEVS simulator [6]. To run the 
simulation, two other files need to be available in the same location: DEVS.py 
and Simulator.py. These files can be found in [6].  
 
There are 3 pythonDEVS files: 
 
PCS.py: is the implementation of the original pump control system, without any 
fault tolerance applied to it. 
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FTPCS-maximum.py: is the fault tolerant pump control system with replicated 
environment sensors (3 copies of each) and NMR used to detect failures. The 
voter here receives 3 readings and outputs the highest value as the correct one. 
FTPCS-majority.py: if the fault tolerant pump control system with replicated 
sensors, however, this one uses a majority voter.  
 

5.2 Results 
 
Each of the above three models was run 5 times, for a simulation time of 2000 
seconds every run. For each run, safety and reliability were logged then 
analyzed.  

5.2.1 Safety with PCS.py 
 
The five experimental results were as follows: 
 

Experiment # Total readings Failure 
cases 

Failure Probability 

1 1000 26 2.6% 
2 1000 25 2.5% 
3 1000 23 2.3% 
4 1000 23 2.3% 
5 1000 30 3.0% 

 
The average probability of failure of the safety requirement was 2.54%, which is 
considerably high as failure may cause loss of life. The following graph depicts 
the safety of the system with regards to time (a 1 denotes that the system 
satisfied the safety condition, a 0 denotes otherwise). 
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Figure 5. Safety metric from PCS 

5.2.2 Safety with FTPCS-maximum.py 
 
The five experimental results were as follows: 
 

Experiment # Total readings Failure 
cases 

Failure Probability 

1 1000 0 0% 
2 1000 0 0% 
3 1000 0 0% 
4 1000 0 0% 
5 1000 0 0% 

 
The average failure probability was 0%! The following graph depicts the safety of 
the system with regards to time. 
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Safety Levels of FTPCS (using Maximum Voter)
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Figure 6. Safety results from FTPCS 

 
NMR reduces failure occurrences because it always picks the highest value to 
output. It is a safe strategy at the cost of reliability, as will be shown in Section 
5.2.4. 
 

5.2.3 Reliability with PCS.py 
 
The five experimental results were as follows: 
 

Experiment # Total readings Failure 
cases 

Failure Probability 

1 1000 105 10.5% 
2 1000 119 11.9% 
3 1000 105 10.5% 
4 1000 97 9.7% 
5 1000 118 11.8% 

 
The average probability of the failure of the reliability requirement was 10.88%, 
which is in accordance to the probability that we coded into the methane sensor 
DEVS of 10% failure. The following graphs depict the reliability of the system with 
regards to time (or chunks of time). 

 



Modelling and Simulation of a Pump Control System      17 

Reliability Levels of Original Model
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Figure 7. Reliability metric from PCS 
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Figure 8. Reliability metric from PCS (column form) 
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5.2.4 Reliability with FTPCS-maximum.py 
 
The five experimental results were as follows:  
 

Experiment # Total readings Failure 
cases 

Failure Probability 

1 1000 107 10.7% 
2 1000 143 14.3% 
3 1000 104 10.4% 
4 1000 111 11.1% 
5 1000 129 12.9% 

 
The sensors failed to be reliable 11.88% of the time. The following graphs depict 
the reliability of the system with regards to time (or chunks of time). This failure 
rate does not present much improvement on the non fault-tolerant system. This 
could be explained by the fact that the maximum voter will always pick the 
highest value to output, no matter if it is the accurate one or the false one. Then 
we can imagine a situation where the accurate reading is 2, but a false reading 
received is 8, then 8 will be voted to be the correct reading. This is a safe 
situation, however, at the cost of lowering the reliability of the sensors. Then we 
must devise a way in which both safety and reliability can be met, without having 
large trade-offs. One such solution would be to use a different kind of voter, 

Figure 9. R

namely a majority voter.  

eliability metric from FTPCS (maximum voting) 
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Figure 10. Reliability metric from FTPCS (maximum voting) 
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5.2.5 Reliability with FTPCS-majority.py 

he five experimental results were as follows: 

Experiment # Total readings Failure Failure Probability 

 
T
 

cases 
26 

2 1000 21 2.1% 
3 1000 17 1.7% 
4 1000 31 3.1% 
5 1000 13 1.3% 

1 1000 2.6% 

 
hen the average failure rate of reliability is 2.16%! A solid improvement on the T

original model and on the maximum-voting scheme.  The following graph depict 
the reliability of the system with regards to time. 
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Reliability Levels of FTPCS (using Majority Voter)
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Figure 11. Reliability metrics from FTPCS (majority voting) 
 

6. Future Work 
 
Modelling and simulation of the pump control system is work in progress and 
may be extended to model some of the techniques mentioned by Burns and 
Lister for solving the other types of failures described in Section 3.4 (failure 
scenarios), for example, improving dependability of the environment monitor and 
the pump controller by replicating them and using NMR for failure detection. In 
addition, one may experiment with alternate FT techniques to study whether they 
improve PCS dependability. However, it may also be extended to simulate other 
performance metrics affecting the system, such as timeliness and security. 
 
As mentioned earlier, the operator and supervisor of the pump were replaced by 
a human controller coded as a passive DEVS. The model could be extended to 
include two separate human controllers with different access rights, and model 
their interaction with the PCS.  
 
Thirdly, a fault injector may be modelled as a separate and external DEVS which 
would send events to system components in order to provoke their failure. As it 
stands now, our faults are injected within the component whose failure is desired, 
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for example, the methane sensor will fail-noisy 10% of the time by generating a 
false environment reading. 
 
Lastly, as a simulation is meant to emulate real behaviour, it would be more 
accurate to gather real values for the failure rates of a certain brand of 
environment sensors used in practice, or a more accurate (rather than just 
random) function of how airflow, methane and carbon monoxide levels vary in 
mining environment.   
 

7. Conclusion 
 
With regards to the simulation results, it is an obvious conclusion that both safety 
and reliability are improved with the application of fault tolerance techniques, 
however, depending on which type of voter to use, certain compromises are 
made between safety of the system and reliability of the methane sensors.  Using 
a majority voter optimizes the system as both reliability and safety requirements 
are met and dependability of the system is guaranteed.   
 
It is then safe to say that modelling formalisms used to represent system 
behaviour are a useful tool for analyzing the system structure and observing 
where faults may occur. Simulation results are a good indicator and measure of 
the non-functional requirements that a specific system must obey.  
 
To guarantee the design of a fault-tolerant system, one can model “what-if” 
situations, that is to say every possible way in which failures may occur, and 
adjust this model by adding some fault tolerance techniques in order to improve 
system performance. We can go further and inspect which amongst many fault 
tolerance techniques not only fix the problem but actually optimize performance. 
If such a step is taken during the design and analysis phase of any project, 
development cost would be reduced (as the system would be built right the first 
time) while non-functional requirements would have been addressed earlier on in 
the development cycle, and simulation results would have emulated the expected 
behaviour of the fault-tolerant system.  
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