

Modelling and Simulation of a
Pump Control System

Sadaf Mustafiz
Miriam Zia

COMP 522 Project Report

School of Computer Science
McGill University, Montréal

December 22, 2004

Modelling and Simulation of a Pump Control System 2

Contents

1. Introduction ... 3

1.1 Project Description ... 3
1.2 Timeline ... 3

2. Fault-tolerant Systems ... 3
2.1 Fault Tolerance Mechanisms ... 4

3. Case Study: Pump Control System .. 5
3.1 TARDIS .. 5
3.2 Requirements Specification .. 5
3.3 System Architecture... 7
3.4 Failure Scenarios ... 8

4. Modelling of the System... 9
4.1 Modelling Formalism.. 9
4.2 Outline of the Solution ... 10
4.3 Model of the Original System ... 10
4.4 Model of the Fault-Tolerant System .. 12
4.5 Performance Metrics.. 12

5. Simulation .. 13
5.1 Implementation ... 13
5.2 Results ... 14

6. Future Work ... 20

7. Conclusion... 21

References ... 21

Modelling and Simulation of a Pump Control System 3

1. Introduction

The introduction of fault tolerance design in the software development process is
an emerging area of active research. For our project, we are interested in
modelling and simulating the behaviour of a real-time system used in a mine
drainage environment, and observing how fault tolerance techniques can
improve or change some performance metrics. In particular, we would like to
analyze the dependability properties of the system which include the evaluation
criteria reliability and safety.

1.1 Project Description

The application chosen is a standard in real-time systems literature: the pump
control system (PCS). For example, Burns and Lister used PCS as a case study
to discuss the TARDIS project (Timely and Reliable Distributed Systems).

Our goals for the project are as follows:
• to create a model for a real-time system based on the functional properties
• to improve the model based on non-functional properties and to integrate

fault-tolerant means into it.
• to implement the models using PythonDEVS for simulation
• to observe the improvement in the dependability metrics of the system

introduced by fault-tolerance

1.2 Timeline

Project team October 12, 2004
Project proposal October 20, 2004
Prototype 1 (non FT model) November 5, 2004
Final presentation in class December 3, 2004
Post presentation and sources on website December 22, 2004

2. Fault-tolerant Systems

Systems are developed to satisfy a set of requirements that meet a need. A
requirement that is important in some systems is that they be highly dependable.
Fault tolerance is a means of achieving dependability. Fault-tolerant systems
aim to continue delivery of services despite the presence of hardware or software
faults in the system.

Modelling and Simulation of a Pump Control System 4

There are three levels at which fault tolerance can be applied. Traditionally, fault
tolerance has been used to compensate for faults in computing resources
(hardware). By managing extra hardware resources, the computer subsystem
increases its ability to continue operation. Hardware fault tolerance measures
include redundant communications, replicated processors, additional memory,
and redundant power/energy supplies. Hardware fault tolerance was particularly
important in the early days of computing, when the time between machine
failures was measured in minutes [1].

A second level of fault tolerance recognizes that a fault tolerant hardware
platform does not, in itself, guarantee high availability to the system user. It is still
important to structure the computer software to compensate for faults such as
changes in program or data structures due to transients or design errors. This is
software fault tolerance. Mechanisms such as checkpoint/restart, recovery
blocks and multiple-version programs are often used at this level [1].

At a third level, the computer subsystem may provide functions that compensate
for failures in other system facilities that are not computer-based. This is system
fault tolerance. For example, software can detect and compensate for failures in
sensors. Measures at this level are usually application-specific [1].

2.1 Fault Tolerance Mechanisms

Error detection. This step involves identification of errors in the system and
uses forms of active redundancy for this purpose.

System Recovery. Compensation, a form of system recovery, involves the use
of redundancy to mask an error by only selecting an acceptable result based on
some algorithm, thus making it possible to transform to an error-free state.
Modular redundancy along with majority voting is a common technique to
achieve compensation.

N-Modular Redundancy. This is a scheme for forward error recovery. N
redundant units (U1… Un) are used, instead of one, and a voting scheme is used
on their output. There are many types of voters which can be used. More
interestingly, the ones we use for this implementation are the majority voter,
which given n results will output the one which reoccurs the most, and the
“maximum” voter , which outputs the highest value from amongst the n results
received.

Modelling and Simulation of a Pump Control System 5

Figure 1. NMR redundancy and voting

3. Case Study: Pump Control System
3.1 TARDIS

The Timely and Reliable Distributed Information Systems (TARDIS) project was
initiated jointly by Prof. Alan Burns of University of York (York) and A. M. Lister of
University of Queensland (Australia) in 1990. The TARDIS framework was
targeted towards avionics, process control, military, and safety critical
applications. It was developed with the intention of creating a framework which
considered non-functional requirements and implementation constraints from the
early stages of software development.

3.2 Requirements Specification

The basic task of the system is to pump the water that accumulates at the bottom
of the shaft to the surface. Figure 2 illustrates the pump control system.

Modelling and Simulation of a Pump Control System 6

Figure 2. Pump Control System

3.2.1 Functional Requirements

• Pump operation. The pump is switched on when the water level is below the
high-water level and the methane level is below critical. In addition to
automatic operation, the operator and the supervisor are allowed to switch the
pump on and off based on some conditions. The operator is only allowed to
switch on the pump when the water level is above the low-water level, and the
methane level is below critical. The supervisor however can switch it on only
based on the methane level, which has to be below critical. The pump is
switched off automatically when the water level goes below the low-water
level or when the methane level reaches the critical level. The supervisor is
allowed to switch it off only when the water level is below the high-water level.

• Pump monitoring. Every operation on the pump and its state alterations are
logged.

• Environment monitoring. The environment sensors for methane, carbon
monoxide gas, and airflow need to be constantly monitored and logged. The
critical levels of these sensor values may lead to the pump being shutdown or
to alarms being raised.

• Operator information. The operator should receive information about all
critical readings of sensors.

During the modelling phase, our project will abstract away from the following:

Modelling and Simulation of a Pump Control System 7

• Pump and environment monitoring: the logging of the readings from the
environment sensors and the pump operations will not modelled.

• Operator and Supervisor: these will be replaced by a passive human
controller in our model.

3.2.2 Non-functional Requirements

Burns and Lister describe three non-functional requirements in their paper:
timing, security and dependability. For the scope of this project, we focus on the
latter.

For PCS, the dependability requirements ensure that the system is reliable and
safe.

Reliability in the pump system is measured by the number of shifts that can be
allowed to be lost if the pump does not operate when it should be. In this case, a
system can be said to be reliable if it loses at most 1 shift in 100. Also, even on
pump failure, a water accretion period of one hour is allowed before a shift is
defined as lost.

Safety of the pump system is related to the probability that an explosion can
occur if the pump is operated when the methane level is above critical. In this
case, the probability is assumed to be less than 10-7 during the lifetime of the
system.

3.3 System Architecture

3.3.1 Logical Architecture

The logical architecture considers the functional requirements of the system, and
in this case also the security requirement. Hence, for this system, the functional
requirements can be mapped to four classes: pump subsystem, data logger
(introduced due to pump monitoring), environment subsystem, and operator.
As mentioned previously, our project will not look into data logging issues, and
will replace the supervisor and operator entities by a passive human controller
who receives alarms but does not respond to them.

Modelling and Simulation of a Pump Control System 8

Figure 3. Logical architecture of the pump control system

Figure 4. Logical architecture refinements

3.4 Failure Scenarios

At the subsystems level, safety of the system can be threatened due to the
failures mentioned below.

Modelling and Simulation of a Pump Control System 9

• The environment subsystem sends an incorrect methane value to the
pump subsystem.

• The environment subsystem fails to generate an alarm when the methane
level goes above critical.

• The communication subsystem does not notify the pump subsystem about
the alarm.

• The pump subsystem fails to switch off the pump after receiving the alarm.

From the above, it can be deduced that safety of the system is dependent on the
environment subsystem, the pump subsystem, and the communication medium
between them. Two types of failures can affect safety: fail-silent and fail-noisy.

The first step would be to create fault containment areas. The task of raising an
alarm can be avoided, if the pump subsystem can be assigned an additional
operation of checking the methane level continuously. This way the pump can
switch itself off when it receives no response from the environment subsystem.
This does not increase the design complexity. The system is now only affected
by failures in a fail-noisy manner. In addition, time-stamping may be used when
sending methane readings to enable the pump subsystem to realize when it’s
getting old readings and act accordingly.

In the case of reliability, to prevent loss of shift, the pump should be repaired
before the water accretion period passes.

Since sensors only fail in a fail-noisy manner, replication of the sensors is
required to tolerate hardware failure. Three sets of sensors can be used along
with N-modular redundancy (NMR) technique (discussed in Section 2.1) for
detecting and tolerating faults. In a similar way, the other components in the
system can be analyzed and measures taken to achieve dependability.

Our focus in this project is to apply fault tolerance techniques in order to solve
the first failure scenario. We will implement replication using the NMR technique
to produce the non-faulty system.

4. Modelling of the System
4.1 Modelling Formalism

As the states in PCS change only in accordance to external events, the
appropriate choice of a modelling formalism is the Discrete EVent System
specification. In addition, PCS is composed of many different interacting
subsystems, and DEVS, being highly modularized, allows for a clean model of
such a system.

Modelling and Simulation of a Pump Control System 10

4.2 Outline of the Solution

We follow an iterative development process, comprising of the stages analysis,
design, code, and testing.

We start by designing the real-world behaviour of PCS. Each subsystem (pump,
environment, communication) is modelled as an atomic or coupled DEVS. After
modelling the functional requirements, we need to model a fault injection
mechanism. The fault injector would alter the normal behaviour of the system on
a periodic basis in order to make a subsystem fail. For example, a fault in the
methane sensor would generate faulty (noisy) methane readings of the
environment, which would be propagated to the environment monitor, and
through the communication subsystem to the pump controller. This wrong
methane reading could possibly force the pump to shut off when it is not
supposed to, or it might fail to cause a critical alarm to be raised. The simulation
results should show how the performance varies over time in the absence and
presence of faults.

Next, the model is adapted to integrate fault tolerance techniques. Replication of
sensors with maximum voting is one possibility. For example, even if one of the
methane sensors fails (caused by the fault injector), an event is still passed on to
the subsystem based on the state of the other sensors. With the same fault
injection technique, we simulate the model to see how it behaves with FT means,
as in, how the performance changes.

The system behaviour to be modelled is discrete event-based, it will thus be
suitable to use the DEVS (Discrete Event System Specification) formalism.

4.3 Model of the Original System

DEVS model of the original system

4.3.1 Methane Sensor

States: This sensor may either be READING the level of methane in the
environment or IDLE between readings. A reading is generated every 2 seconds.

Output: Upon transitioning from READING to IDLE, the sensor outputs the level
of methane in the environment at that time. Faults will be injected internally in
order to have the sensor output an accurate reading ninety percent of the time,
and a false reading 10 percent of the time.

A methane reading is a positive integer between 0 and 10, and is non-critical
below 7.

Modelling and Simulation of a Pump Control System 11

4.3.2 Carbon Monoxide Sensor

States: This sensor may either be READING the level of carbon monoxide in the
environment or IDLE between readings. A reading is generated every 6 seconds.

Output: Upon transitioning from READING to IDLE, the sensor outputs the level
of carbon monoxide in the environment at that time. Faults will be injected
internally in order to have the sensor output an accurate reading 91 percent of
the time, and a false reading 9 percent of the time.

A carbon monoxide reading is a positive integer between 0 and 10, and is non-
critical below 5.

4.3.3 Airflow Sensor

States: This sensor may either be READING the airflow in the environment or
IDLE between readings. A reading is generated every 5 seconds.

Output: Upon transitioning from READING to IDLE, the sensor outputs the airflow
in the environment at that time. Faults will be injected internally in order to have
the sensor output an accurate reading 88 percent of the time, and a false reading
12 percent of the time.

An airflow reading is a positive integer between 0 and 10, and is non-critical
below 3.

4.3.4 Environment monitor

States: The monitor may either be processing sensor readings ('PROCESSING'),
responding to a query ('QUERYING') or doing nothing ('IDLE').

Output: Upon receiving a query, the monitor responds by sending an
acknowledgement which contains a message stating whether the last methane
level received was critical or not critical. Upon receiving readings from the
environment sensor, it outputs alarms when the readings are critical.

All messages to and from the pump controller or to the human controller are sent
through the communication DEVS.

4.3.5 Pump Controller

States: It may either be processing a water sensor reading and sending an
operation to the pump ('PROCESSING-WATER'), processing a methane alarm
('PROCESSING-ALARM'), processing a query acknowledgement
('PROCESSING-ACK'), or doing nothing ('IDLE').

Modelling and Simulation of a Pump Control System 12

Output: Upon receiving a water low reading, the pump controller sends an ”off”
message to the pump to make it switch off. If the controller receives a water high
reading, it turns the pump to ready mode and sends a query to the environment
monitor: the controller will only ask the pump to turn on if the methane level is not
critical. If an acknowledgement is received stating that the methane level is high,
then the controller will turn the pump off, otherwise, it will turn it on. Similarly,
when the controller receives a methane alarm, it turns the pump off.

4.3.6 Water Sensor

States: will randomly switch between the HIGH and LOW states.

Output: the state to which the sensor is transitioning.

4.4 Model of the Fault-Tolerant System

DEVS model of the fault-tolerant system

In this model, each of the environment sensors is replicated 3 times. Each of
these replicated sensors behaves in a regular fashion as described in Section
4.3, and will output either an accurate or false result. In order for all sensors to
agree on the accurate reading (rather than having each randomly generate one
as in the non fault tolerant system), levels are generated in a separate DEVS
called the actualRGenerator.

actualRGenerator DEVS. Every 1.9 seconds, this DEVS will generate an
accurate reading for the environment sensors. These readings are stored
globally in the class and can be accessed without passing through in and out
ports of DEVS.

The results from a set of replicated sensors are sent to a voter. We have two
versions of the fault tolerant system modelled. In one version, we use a
maximum voter, in which the highest value received for the replicated sensors
will be the one considered as the real one. The second version implements a
majority voter in which the dominant reading is considered as the real one.

The set of replicated sensors and their voter are combined in a coupled DEVS,
the output of which is sent to the environment monitor. From there, the behaviour
described in Section 4.3 is modelled.

4.5 Performance Metrics

We keep track of two dependability metrics: safety of the system and reliability of
the sensors. Burns and Lister describe reliability of the pump in [3], however, the

Modelling and Simulation of a Pump Control System 13

pump can only fail in a mechanical way, and recovering for this failure only
implies repairing or replacing the pump. Therefore, this is not an interesting
measure of dependability for the purpose of our project. Hence, we have
replaced the pump reliability by that of the methane sensor, as it is a safety
critical component. This differs from the description of the reliability requirement
given in Section 3.2.2.

4.5.1 Safety of the system

We keep track of the safety of the system throughout the simulation time by
assuming the following:

• Whenever a methane sensor outputs the accurate environment reading,
the safety of the system is met.

• If the methane sensor outputs a false reading which is inaccurately non-
critical, then the safety of the system is threatened.

• If the methane sensor outputs a false reading which is in accordance with
the accurate reading (that is it is critical when the accurate reading is
critical, and not critical when the accurate reading is not critical), then the
safety of the system is not threatened.

This recording is done inside the MethaneSensor DEVS, and safety failures and
successes are written to file.

4.5.2 Reliability of the methane sensor

We keep track of the dependability of the methane sensor throughout simulation
time by assuming the following:

• whenever the accurate reading is output, the sensor is reliable.
• whenever the false reading is output, the sensor is not reliable.

This recording is done inside the MethaneSensor DEVS as well, and reliability
failures and successes are written to file.

5. Simulation
5.1 Implementation

The models were implemented using the PythonDEVS simulator [6]. To run the
simulation, two other files need to be available in the same location: DEVS.py
and Simulator.py. These files can be found in [6].

There are 3 pythonDEVS files:

PCS.py: is the implementation of the original pump control system, without any
fault tolerance applied to it.

Modelling and Simulation of a Pump Control System 14

FTPCS-maximum.py: is the fault tolerant pump control system with replicated
environment sensors (3 copies of each) and NMR used to detect failures. The
voter here receives 3 readings and outputs the highest value as the correct one.
FTPCS-majority.py: if the fault tolerant pump control system with replicated
sensors, however, this one uses a majority voter.

5.2 Results

Each of the above three models was run 5 times, for a simulation time of 2000
seconds every run. For each run, safety and reliability were logged then
analyzed.

5.2.1 Safety with PCS.py

The five experimental results were as follows:

Experiment # Total readings Failure
cases

Failure Probability

1 1000 26 2.6%
2 1000 25 2.5%
3 1000 23 2.3%
4 1000 23 2.3%
5 1000 30 3.0%

The average probability of failure of the safety requirement was 2.54%, which is
considerably high as failure may cause loss of life. The following graph depicts
the safety of the system with regards to time (a 1 denotes that the system
satisfied the safety condition, a 0 denotes otherwise).

Modelling and Simulation of a Pump Control System 15

Safety Levels of PCS.py

0

0.2

0.4

0.6

0.8

1

1.2

1 87 17
3

25
9

34
5

43
1

51
7

60
3

68
9

77
5

86
1

94
7

10
33

11
19

12
05

12
91

13
77

14
63

15
49

16
35

17
21

18
07

18
93

19
79

time (s)

sa
fe

ty

Figure 5. Safety metric from PCS

5.2.2 Safety with FTPCS-maximum.py

The five experimental results were as follows:

Experiment # Total readings Failure
cases

Failure Probability

1 1000 0 0%
2 1000 0 0%
3 1000 0 0%
4 1000 0 0%
5 1000 0 0%

The average failure probability was 0%! The following graph depicts the safety of
the system with regards to time.

Modelling and Simulation of a Pump Control System 16

Safety Levels of FTPCS (using Maximum Voter)

0

0.2

0.4

0.6

0.8

1

1.2

1 91 18
1

27
1

36
1

45
1

54
1

63
1

72
1

81
1

90
1

99
1

10
81

11
71

12
61

13
51

14
41

15
31

16
21

17
11

18
01

18
91

19
81

time (s)

sa
fe

ty

Figure 6. Safety results from FTPCS

NMR reduces failure occurrences because it always picks the highest value to
output. It is a safe strategy at the cost of reliability, as will be shown in Section
5.2.4.

5.2.3 Reliability with PCS.py

The five experimental results were as follows:

Experiment # Total readings Failure
cases

Failure Probability

1 1000 105 10.5%
2 1000 119 11.9%
3 1000 105 10.5%
4 1000 97 9.7%
5 1000 118 11.8%

The average probability of the failure of the reliability requirement was 10.88%,
which is in accordance to the probability that we coded into the methane sensor
DEVS of 10% failure. The following graphs depict the reliability of the system with
regards to time (or chunks of time).

Modelling and Simulation of a Pump Control System 17

Reliability Levels of Original Model

0

0.2

0.4

0.6

0.8

1

1.2
1 79 15
7

23
5

31
3

39
1

46
9

54
7

62
5

70
3

78
1

85
9

93
7

10
15

10
93

11
71

12
49

13
27

14
05

14
83

15
61

16
39

17
17

17
95

18
73

19
51

time (s)

re
lia

bi
lit

y

Figure 7. Reliability metric from PCS

Reliability Levels of Original Model

0

10

20

30

40

50

60

70

80

90

100

0-100 101-
200

201-
300

301-
400

401-
500

501-
600

601-
700

701-
800

801-
900

901-
1000

time periods (100 s each)

re
lia

bi
lit

y

success
failures

Figure 8. Reliability metric from PCS (column form)

Modelling and Simulation of a Pump Control System 18

5.2.4 Reliability with FTPCS-maximum.py

The five experimental results were as follows:

Experiment # Total readings Failure
cases

Failure Probability

1 1000 107 10.7%
2 1000 143 14.3%
3 1000 104 10.4%
4 1000 111 11.1%
5 1000 129 12.9%

The sensors failed to be reliable 11.88% of the time. The following graphs depict
the reliability of the system with regards to time (or chunks of time). This failure
rate does not present much improvement on the non fault-tolerant system. This
could be explained by the fact that the maximum voter will always pick the
highest value to output, no matter if it is the accurate one or the false one. Then
we can imagine a situation where the accurate reading is 2, but a false reading
received is 8, then 8 will be voted to be the correct reading. This is a safe
situation, however, at the cost of lowering the reliability of the sensors. Then we
must devise a way in which both safety and reliability can be met, without having
large trade-offs. One such solution would be to use a different kind of voter,

Figure 9. R

namely a majority voter.

eliability metric from FTPCS (maximum voting)

Reliability Levels of FTPCS (using Maximum Voter)

0

0.2

0.4

0.6

0.8

1

1.2

1 81 16
1

24
1

32
1

40
1

48
1

56
1

64
1

72
1

80
1

88
1

96
1

10
41

11
21

12
01

12
81

13
61

14
41

15
21

16
01

16
81

17
61

18
41

19
21

time (s)

re
lia

bi
lit

y

Modelling and Simulation of a Pump Control System 19

Figure 10. Reliability metric from FTPCS (maximum voting)

Reliability Levels of FTPCS (using Maximum Voter)

0

10

20

30

40

50

60

70

80

90

100

0-100 101-
200

201-
300

301-
400

401-
500

501-
600

601-
700

701-
800

801-
900

901-
1000

time period (each 100 s)

re
lia

bi
lit

y

success
failures

5.2.5 Reliability with FTPCS-majority.py

he five experimental results were as follows:

Experiment # Total readings Failure Failure Probability

T

cases
26

2 1000 21 2.1%
3 1000 17 1.7%
4 1000 31 3.1%
5 1000 13 1.3%

1 1000 2.6%

hen the average failure rate of reliability is 2.16%! A solid improvement on the T

original model and on the maximum-voting scheme. The following graph depict
the reliability of the system with regards to time.

Modelling and Simulation of a Pump Control System 20

Reliability Levels of FTPCS (using Majority Voter)

0

0.2

0.4

0.6

0.8

1

1.2
1 87 17
3

25
9

34
5

43
1

51
7

60
3

68
9

77
5

86
1

94
7

10
33

11
19

12
05

12
91

13
77

14
63

15
49

16
35

17
21

18
07

18
93

19
79

time (s)

re
lia

bi
lit

y

Figure 11. Reliability metrics from FTPCS (majority voting)

6. Future Work

Modelling and simulation of the pump control system is work in progress and
may be extended to model some of the techniques mentioned by Burns and
Lister for solving the other types of failures described in Section 3.4 (failure
scenarios), for example, improving dependability of the environment monitor and
the pump controller by replicating them and using NMR for failure detection. In
addition, one may experiment with alternate FT techniques to study whether they
improve PCS dependability. However, it may also be extended to simulate other
performance metrics affecting the system, such as timeliness and security.

As mentioned earlier, the operator and supervisor of the pump were replaced by
a human controller coded as a passive DEVS. The model could be extended to
include two separate human controllers with different access rights, and model
their interaction with the PCS.

Thirdly, a fault injector may be modelled as a separate and external DEVS which
would send events to system components in order to provoke their failure. As it
stands now, our faults are injected within the component whose failure is desired,

Modelling and Simulation of a Pump Control System 21

for example, the methane sensor will fail-noisy 10% of the time by generating a
false environment reading.

Lastly, as a simulation is meant to emulate real behaviour, it would be more
accurate to gather real values for the failure rates of a certain brand of
environment sensors used in practice, or a more accurate (rather than just
random) function of how airflow, methane and carbon monoxide levels vary in
mining environment.

7. Conclusion

With regards to the simulation results, it is an obvious conclusion that both safety
and reliability are improved with the application of fault tolerance techniques,
however, depending on which type of voter to use, certain compromises are
made between safety of the system and reliability of the methane sensors. Using
a majority voter optimizes the system as both reliability and safety requirements
are met and dependability of the system is guaranteed.

It is then safe to say that modelling formalisms used to represent system
behaviour are a useful tool for analyzing the system structure and observing
where faults may occur. Simulation results are a good indicator and measure of
the non-functional requirements that a specific system must obey.

To guarantee the design of a fault-tolerant system, one can model “what-if”
situations, that is to say every possible way in which failures may occur, and
adjust this model by adding some fault tolerance techniques in order to improve
system performance. We can go further and inspect which amongst many fault
tolerance techniques not only fix the problem but actually optimize performance.
If such a step is taken during the design and analysis phase of any project,
development cost would be reduced (as the system would be built right the first
time) while non-functional requirements would have been addressed earlier on in
the development cycle, and simulation results would have emulated the expected
behaviour of the fault-tolerant system.

References

[1] “A Conceptual Framework for System Fault Tolerance”, March 30 1995,

Centre for High Integrity Software Systems Assurance, NIST.
[2] Bolduc, J.-S., Vangheluwe, H., “A Modeling and Simulation Package for

Classic Hierarchical DEVS”, July 2002.
[3] Burns, A., and Lister, A.M., “An Architectural Framework for Timely and

Reliable Distributed Information Systems (TARDIS): Description and Case

Modelling and Simulation of a Pump Control System 22

Study”, University of York (Computer Science) Technical Report YCS
140(1990).

[4] Burns, A., Lister, A.M., “A framework for building dependable systems”, The
Computer Journal, Vol. 34 No. 2, April 1991, pp. 73- 181.
 http://moncs.cs.mcgill.ca/MSDL/research/projects/DEVS/.

[5] Mustafiz, S. “Addressing Fault Tolerance in Software Development: A
Comparative Study”, M.Sc. Thesis, School of Computer Science, McGill
University, June 2004.

[6] PythonDEVS website, November 2002,
[7] Vangheluwe, H., “The discrete event system specification (DEVS) formalism”.

http://moncs.cs.mcgill.ca/MSDL/research/projects/DEVS/

	Sadaf Mustafiz
	
	COMP 522 Project Report

	1.Introduction31.1Project Description31.2Timeline32.Fault-tolerant Systems32.1Fault Tolerance Mechanisms43.Case Study: Pump Control System53.1TARDIS53.2Requirements Specification53.3System Architecture73.4Failure Scenarios84.Modelling of the System94.1Mo
	Project Description
	Timeline

	Fault-tolerant Systems
	Fault Tolerance Mechanisms

	Case Study: Pump Control System
	TARDIS
	Requirements Specification
	Functional Requirements
	Non-functional Requirements
	For PCS, the dependability requirements ensure that the system is reliable and safe.
	Reliability in the pump system is measured by the number of shifts that can be allowed to be lost if the pump does not operate when it should be. In this case, a system can be said to be reliable if it loses at most 1 shift in 100. Also, even on pump fai
	Safety of the pump system is related to the probability that an explosion can occur if the pump is operated when the methane level is above critical. In this case, the probability is assumed to be less than 10-7 during the lifetime of the system.

	System Architecture
	Logical Architecture

	Failure Scenarios

	Modelling of the System
	Modelling Formalism
	Outline of the Solution
	Model of the Original System
	Methane Sensor
	Carbon Monoxide Sensor
	Airflow Sensor
	Environment monitor
	Pump Controller
	Water Sensor

	Model of the Fault-Tolerant System
	Performance Metrics
	Safety of the system
	Reliability of the methane sensor

	Simulation
	Implementation
	Results
	Safety with PCS.py
	Safety with FTPCS-maximum.py
	Reliability with PCS.py
	Reliability with FTPCS-maximum.py
	Reliability with FTPCS-majority.py

	Future Work
	Conclusion
	References

