Probabilistic Graphical Models

Variable elimination

Learning objective

- an intuition for inference in graphical models
- why is it difficult?
- exact inference by variable elimination

Probability query

marginalization

$$
P\left(X_{1}\right)=\sum_{x_{2}, \ldots, x_{n}} P\left(X_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)
$$

Introducing evidence leads to a similar problem

$$
P\left(X_{1}=x_{1} \mid X_{m}=x_{m}\right)=\frac{P\left(X_{1}=x_{1}, X_{m}=x_{m}\right)}{P\left(X_{m}=x_{m}\right)}
$$

Probability query

marginalization

$$
P\left(X_{1}\right)=\sum_{x_{2}, \ldots, x_{n}} P\left(X_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)
$$

Introducing evidence leads to a similar problem

$$
P\left(X_{1}=x_{1} \mid X_{m}=x_{m}\right)=\frac{P\left(X_{1}=x_{1}, X_{m}=x_{m}\right)}{P\left(X_{m}=x_{m}\right)}
$$

MAP inference changes sum to max $\mathbf{x}^{*}=\arg \max _{\mathbf{x}} P(\mathbf{X}=\mathbf{x})$
maximum a posteriori

Probability query

marginalization $\quad P\left(X_{1}\right)=\sum_{x_{2}, \ldots, x_{n}} P\left(X_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)$

$$
n=2
$$

representation: $\mathcal{O}\left(\left|\operatorname{Val}\left(X_{1}\right) \times \operatorname{Val}\left(X_{2}\right)\right|\right)$
inference:

$$
\mathcal{O}\left(\left|\operatorname{Val}\left(X_{1}\right) \times \operatorname{Val}\left(X_{2}\right)\right|\right)
$$

Probability query

marginalization $\quad P\left(X_{1}\right)=\sum_{x_{2}, \ldots, x_{n}} P\left(X_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)$
$n=3$
representation: $\mathcal{O}\left(\left|\operatorname{Val}\left(X_{1}\right) \times \operatorname{Val}\left(X_{2}\right) \times \operatorname{Val}\left(X_{3}\right)\right|\right) X_{3} \quad \nearrow \quad X_{1}$ inference: $\mathcal{O}\left(\left|\operatorname{Val}\left(X_{1}\right) \times \operatorname{Val}\left(X_{2}\right) \times \operatorname{Val}\left(X_{3}\right)\right|\right)$

Probability query

marginalization $P\left(X_{1}\right)=\sum_{x_{2}, \ldots, x_{n}} P\left(X_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)$
complexity of representation \& inference $\mathcal{O}\left(\prod_{i}\left|\operatorname{Val}\left(X_{i}\right)\right|\right)$

- binary variables $\mathcal{O}\left(2^{n}\right)$

Probability query

marginalization $P\left(X_{1}\right)=\sum_{x_{2}, \ldots, x_{n}} P\left(X_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)$
complexity of representation \& inference $\mathcal{O}\left(\prod_{i}\left|\operatorname{Val}\left(X_{i}\right)\right|\right)$

- binary variables $\mathcal{O}\left(2^{n}\right)$
can have a compact representation of P :
- Bayes-net or Markov net
- e.g. $p(x)=\frac{1}{Z} \prod_{i=1}^{n-1} \phi_{i}\left(x_{i}, x_{i+1}\right)$ has an $\mathcal{O}(n)$ representation

Probability query

marginalization $P\left(X_{1}\right)=\sum_{x_{2}, \ldots, x_{n}} P\left(X_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)$
complexity of representation \& inference $\mathcal{O}\left(\prod_{i}\left|\operatorname{Val}\left(X_{i}\right)\right|\right)$

- binary variables $\mathcal{O}\left(2^{n}\right)$
can have a compact representation of P :
- Bayes-net or Markov net
- e.g. $p(x)=\frac{1}{Z} \prod_{i=1}^{n-1} \phi_{i}\left(x_{i}, x_{i+1}\right)$ has an $\mathcal{O}(n)$ representation

efficient inference?

Complexity of inference

can we always avoid the exponential cost of inference? No!
can we at least guarantee a good approximation? No!

proof idea:

- reduce 3-SAT to inference in a graphical model
- despite this, graphical models are used for combinatorial optimization (why?)

Complexity of inference: proof

given a BN, decide whether $P(X=x)>0$ is NP-complete

- belongs to NP
- NP-hardness: answering this query >> solving 3-SAT

Complexity of inference: proof

given a BN, decide whether $P(X=x)>0$ is NP-complete

- belongs to NP
- NP-hardness: answering this query >> solving 3-SAT

Complexity of inference: proof

given a BN , decide whether $P(X=x)>0$ is NP-complete

- belongs to NP
- NP-hardness: answering this query >> solving 3-SAT

given a BN, calculating $P(X=x)$ is \#P-complete

Complexity of approximate inference

given a BN, approximating $P(X=x)$ with a relative error ϵ is NP-hard

Proof: $\quad \rho>0 \Leftrightarrow P(X=1)>0$

$$
\frac{\rho}{1+\epsilon} \leq P(X=x) \leq \rho(1+\epsilon)
$$

our approximation

Complexity of approximate inference

given a BN , approximating $P(X=x \mid E=e)$ with an absolute error ϵ for any $0<\epsilon<\frac{1}{2}$ is NP-hard

$$
\rho(1-\epsilon) \leq P(X \stackrel{\downarrow}{=} x) \leq \rho(1+\epsilon)
$$

Complexity of approximate inference

given a BN , approximating $P(X=x \mid E=e)$ with an absolute error ϵ for any $0<\epsilon<\frac{1}{2}$ is NP-hard

$$
\rho(1-\epsilon) \leq P(X \stackrel{\downarrow}{=} x) \leq \rho(1+\epsilon)
$$

Proof:

- sequentially fix $q_{i}^{*}=\arg \max _{q} P\left(Q_{i}=q \mid\left(Q_{1}, \ldots, Q_{i-1}\right)=\left(q_{1}^{*} \ldots q_{i-1}^{*}\right), X=1\right)$
- either $q_{i}^{0}>\frac{1}{2}$ or $q_{i}^{1}>\frac{1}{2}$
- since $\epsilon<\frac{1}{2}$ this leads to a solution

so far...

- reduce the representation-cost using a graph structure
- inference-cost is in the worst case exponential
- can we reduce it using the graph structure?

Probability query: example

$$
\begin{aligned}
& p(\mathbf{x})=\frac{1}{Z} \prod_{i=1}^{n-1} \phi_{i}\left(x_{i}, x_{i+1}\right) \\
& \operatorname{Val}\left(X_{i}\right)=\{1, \ldots, d\} \forall i
\end{aligned}
$$

Take 1:

- calculate n-dim. array $\mathrm{p}(\mathrm{x})$
- marginalize it $\quad p\left(x_{n}\right)=\sum_{-x_{n}} p(\mathbf{x}) \quad \mathcal{O}\left(d^{n}\right)$

Inference: example

$$
p(\mathbf{x})=\frac{1}{Z} \prod_{i=1}^{n-1} \phi_{i}\left(x_{i}, x_{i+1}\right)
$$

Take 2:

- calculate $\tilde{p}\left(x_{m}\right)=\sum_{x_{1}} \ldots \sum_{x_{n-1}} \phi_{1}\left(x_{1}, x_{2}\right) \ldots \phi_{n-1}\left(x_{n-1}, x_{n}\right)$
- without building $p(\mathbf{x})$
- normalize it $p\left(x_{n}\right)=\tilde{p}\left(x_{n}\right) /\left(\sum_{x_{n}} \tilde{p}\left(x_{n}\right)\right)$
- idea: use the distrilbutive law: $a b+a c=a(b+c)$

Inference and the distributive law

distributive law

$$
a b+a c=a(b+c)
$$

save comutation by factoring the operations
in disguise $\sum_{x, y} f(x, y) g(y, z)=\sum_{y} g(y, z) \sum_{x} f(x, y)$

- assuming $|\operatorname{Val}(X)|=|\operatorname{Val}(Y)|=|\operatorname{Val}(Z)|=d$
- complexity: from $\mathcal{O}\left(d^{3}\right)$ to $\mathcal{O}\left(d^{2}\right)$

Inference:back to example

$$
p(x)=\frac{1}{Z} \prod_{i=1}^{n-1} \phi_{i}\left(x_{i}, x_{i+1}\right)
$$

Take 2:

- objective $\tilde{p}\left(x_{m}\right)=\sum_{x_{1}} \ldots \sum_{x_{n-1}} \phi_{1}\left(x_{1}, x_{2}\right) \ldots \phi_{n-1}\left(x_{n-1}, x_{n}\right)$
- systematically apply the factorization:

$$
\tilde{p}\left(x_{m}\right)=\sum_{x_{n-1}} \phi_{n-1}\left(x_{n-1}, x_{n}\right) \sum_{x_{n-2}} \phi_{n-2}\left(x_{n-2}, x_{n-1}\right) \ldots \sum_{x_{1}} \phi_{1}\left(x_{1}, x_{2}\right)
$$

- complexity is $\mathcal{O}\left(n d^{2}\right)$ instead of $\mathcal{O}\left(d^{n}\right)$

Inference: example 2

Objective: $p\left(x_{1} \mid \bar{x}_{6}\right)=\frac{p\left(x_{1}, \bar{x}_{6}\right)}{p\left(\bar{x}_{6}\right)}$

$\underset{\text { (used in jordan's textbook) }}{\text { another ay }} \underset{1}{ }\left(X_{1} \mid X_{6}=\bar{x}_{6}\right)$

- calculate the numerator
- denominator is then easy

$$
p\left(\bar{x}_{6}\right)=\sum_{x_{1}} p\left(x_{1}, \bar{x}_{6}\right)
$$

Inference: example 2

$$
\begin{aligned}
p\left(x_{1}, \bar{x}_{6}\right) & =\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right) \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) \sum_{x_{5}} p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right. \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) m_{5}\left(x_{2}, x_{3}\right)
\end{aligned}
$$

Inference: example

$$
\begin{aligned}
& p\left(x_{1}, \bar{x}_{6}\right)=p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) m_{5}\left(x_{2}, x_{3}\right) \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) m_{5}\left(x_{2}, x_{3}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) m_{4}\left(x_{2}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) m_{5}\left(x_{2}, x_{3}\right) .
\end{aligned}
$$

Inference: example

$$
\begin{aligned}
& p\left(x_{1}, \bar{x}_{6}\right)=p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right) m_{5}\left(x_{2}, x_{3}\right) \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) m_{5}\left(x_{2}, x_{3}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right)_{\text {is constant }}^{R_{3}} \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) m_{4}\left(x_{2}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) m_{5}\left(x_{2}, x_{3}\right) . \\
& =p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} \mid x_{1}\right) m_{4}\left(x_{2}\right) m_{3}\left(x_{1}, x_{2}\right) \\
& =p\left(x_{1}\right) m_{2}\left(x_{1}\right) .
\end{aligned}
$$

Inference: example

overall complexity $\mathcal{O}\left(d^{3}\right)$ instead of $\mathcal{O}\left(d^{5}\right)$
if we had built the 5 d array of $p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \mid \bar{x}_{6}\right)$
in the general case $\mathcal{O}\left(d^{n}\right)$

Inference: example (undirected version)

$$
p\left(x_{1}, \bar{x}_{6}\right)=\frac{1}{Z} \sum_{x_{2}, \ldots, x_{5}} \phi\left(x_{1}, x_{2}\right) \phi\left(x_{1}, x_{3}\right) \phi\left(x_{2}, x_{3}\right) \phi\left(x_{3}, x_{5}\right) \phi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right)
$$

using a delta-function for conditioning

$$
\delta\left(x_{6}, \overline{x_{6}}\right) \triangleq \begin{cases}1, & \text { if } x_{6}=\bar{x}_{6} \\ 0, & \text { otherwise }\end{cases}
$$

add it as a local potential

Inference: example (undirected version)

every step remains the same

$$
\begin{aligned}
& p\left(x_{1}, \bar{x}_{6}\right)=\frac{1}{Z} \sum_{x_{2}, \ldots, x_{5}} \phi\left(x_{1}, x_{2}\right) \phi\left(x_{1}, x_{3}\right) \phi\left(x_{2}, x_{3}\right) \phi\left(x_{3}, x_{5}\right) \phi\left(x_{2}, x_{5}, x_{6}\right) \delta\left(x_{6}, \bar{x}_{6}\right) \\
& =\frac{1}{Z} \sum_{x_{2}, \ldots, x_{5}} \phi\left(x_{1}, x_{2}\right) \phi\left(x_{1}, x_{3}\right) \phi\left(x_{2}, x_{3}\right) \phi\left(x_{3}, x_{5}\right) m_{6}\left(x_{2}, x_{5}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \phi\left(x_{1}, x_{2}\right) \ldots, m_{4}\left(x_{2}\right) \sum_{x_{3}} \phi\left(x_{1}, x_{3}\right) m_{5}\left(x_{2}, x_{3}\right) \\
& =\frac{1}{Z} \sum_{x_{2}} \phi\left(x_{1}, x_{2}\right) \ldots, m_{4}\left(x_{2}\right) m_{3}\left(x_{1}, x_{2}\right) \\
& =\frac{1}{Z} m_{2}\left(x_{1}\right) \\
& \text { except: in Bayes-nets } Z=1 \\
& \text { - at this point normalization is easy! }
\end{aligned}
$$

Variable elimination

- input: $\Phi^{t=0}=\left\{\phi_{1}, \ldots, \phi_{K}\right\}$ a set of factors (e.g. CPDS)
- output: $\sum_{x_{i_{1}}, \ldots, x_{i m}} \prod_{k} \phi_{k}\left(\mathbf{D}_{k}\right)$
- go over $x_{i_{1}}, \ldots, x_{i_{m}}$ in some order:
- collect all the relevant factors: $\Psi^{t}=\left\{\phi \in \Phi^{t} \mid x_{i_{t}} \in S \operatorname{cope}[\phi]\right\}$
- calculate their product: $\psi_{t}=\prod_{\phi \in \Psi^{t}} \phi$
- marginalize out $x_{i_{t}}: \psi_{t}^{\prime}=\sum_{x_{i t}} \psi_{t}$
- update the set of factors: $\Phi^{t}=\Phi^{t-1}-\Psi^{t}+\left\{\psi_{t}^{\prime}\right\}$
- return the product of factors in $\Phi^{t=m}$

Variable elimination: example

- input: $\Phi^{t=0}=\left\{\phi_{1}, \ldots, \phi_{K}\right\}$ a set of factors (e.g. CPDS)

$$
\Phi^{0}=\left\{p\left(x_{2} \mid x_{1}\right), p\left(x_{3} \mid x_{1}\right), p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right), p\left(x_{4} \mid x_{2}\right), p\left(x_{5} \mid x_{3}\right)\right\}
$$

- output: $\sum_{x_{i_{1}}, \ldots, x_{i m}} \Pi_{k} \phi_{k}\left(\mathbf{D}_{k}\right)$

$p\left(x_{1}, \bar{x}_{6}\right)=\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) p\left(x_{5} \mid x_{3}\right) p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right)$

Variable elimination: example

- go over $x_{i_{1}}, \ldots, x_{i_{m}}$ in some order:
$x_{5}, x_{4}, x_{3}, x_{2}$

Variable elimination: example

- for x_{5} :
- collect all the relevant factors $\Psi^{t}=\left\{\phi \in \Phi^{t} \mid x_{i_{t}} \in \operatorname{Scope}[\phi]\right\}$
- calculate their product $\psi_{t}=\prod_{\phi \in \Psi^{t}} \phi$

$$
\begin{aligned}
& \Psi^{0}=\left\{p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right), p\left(x_{5} \mid x_{3}\right)\right\} \\
& \psi_{t}\left(x_{2}, x_{3}, x_{5}\right)=p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right) p\left(x_{5} \mid x_{3}\right)
\end{aligned}
$$

Variable elimination: example

- for x_{5} :
- collect all the relevant factors $\Psi^{t}=\left\{\phi \in \Phi^{t} \mid x_{i_{t}} \in \operatorname{Scope}[\phi]\right\}$
- calculate their product $\psi_{t}=\prod_{\phi \in \Psi^{t}} \phi$
- marginalize out x_{5}

$$
\begin{aligned}
& \Psi^{0}=\left\{p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right), p\left(x_{5} \mid x_{3}\right)\right\} \\
& \psi_{t}\left(x_{2}, x_{3}, x_{5}\right)=p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right) p\left(x_{5} \mid x_{3}\right) \\
& \psi_{t}^{\prime}\left(x_{2}, x_{3}\right)=\sum_{x_{5}} \psi_{t}\left(x_{2}, x_{3}, x_{5}\right)
\end{aligned}
$$

Variable elimination: example

- for x_{5} :
- collect all the relevant factors $\Psi^{t}=\left\{\phi \in \Phi^{t} \mid x_{i_{t}} \in \operatorname{Scope}[\phi]\right\}$
- calculate their product $\psi_{t}=\prod_{\phi \in \Psi^{t}} \phi$
- marginalize out x_{5}

Variable elimination: example

- for x_{5} :
- collect all the relevant factors $\Psi^{t}=\left\{\phi \in \Phi^{t} \mid x_{i_{t}} \in \operatorname{Scope}[\phi]\right\}$
- calculate their product $\psi_{t}=\prod_{\phi \in \Psi^{t}} \phi$
- marginalize out x_{5}
- update the set of factors $\Phi^{t}=\Phi^{t-1}-\Psi^{t}+\left\{\psi_{t}^{\prime}\right\}$

$$
\begin{aligned}
& \psi_{t}^{\prime}\left(x_{2}, x_{3}\right)=\sum_{x_{5}} \psi_{t}\left(x_{2}, x_{3}, x_{5}\right) \\
& \Phi^{0}=\left\{p\left(x_{2} \mid x_{1}\right), p\left(x_{3} \mid x_{1}\right), p\left(\bar{x}_{6} \mid x_{2}, x_{5}\right), p\left(x_{4} \mid x_{2}\right), p\left(x_{5} \mid x_{3}\right)\right\} \\
& \downarrow \\
& \Phi^{1}=\left\{p\left(x_{2} \mid x_{1}\right), p\left(x_{3} \mid x_{1}\right), p\left(x_{4} \mid x_{2}\right), \psi_{t}^{\prime}\left(x_{2}, x_{3}\right)\right\}
\end{aligned}
$$

Variable elimination: example

- for x_{5} :
- collect all the relevant factors $\Psi^{t}=\left\{\phi \in \Phi^{t} \mid x_{i_{t}} \in \operatorname{Scope}[\phi]\right\}$
- calculate their product $\psi_{t}=\prod_{\phi \in \Psi^{t}} \phi$
- marginalize out x_{5}
- update the set of factors $\Phi^{t}=\Phi^{t-1}-\Psi^{t}+\left\{\psi_{t}^{\prime}\right\}$
$\Phi^{1}=\left\{p\left(x_{2} \mid x_{1}\right), p\left(x_{3} \mid x_{1}\right), p\left(x_{4} \mid x_{2}\right), \psi_{t}^{\prime}(2,3)\right\}$
repeat for x_{4}, x_{3}, x_{2}

Variable elimination: example

calculating $p\left(x_{1}\right)$: following the graph
using the order $x_{6}, x_{5}, x_{4}, x_{3}, x_{2}$
$\Phi^{0}=\left\{p\left(x_{2} \mid x_{1}\right), p\left(x_{3} \mid x_{1}\right), p\left(x_{6} \mid x_{2}, x_{5}\right), p\left(x_{4} \mid x_{2}\right), p\left(x_{5} \mid x_{3}\right)\right\} \quad \mathrm{t}=1$

Variable elimination: example

calculating $p\left(x_{1}\right)$
using the order $x_{6}, x_{5}, x_{4}, x_{3}, x_{2}$
$\Phi^{1}=\left\{p\left(x_{2} \mid x_{1}\right), p\left(x_{3} \mid x_{1}\right), \psi_{1}^{\prime}\left(x_{2}, x_{5}\right), p\left(x_{4} \mid x_{2}\right), p\left(x_{5} \mid x_{3}\right)\right\}$

Variable elimination: example

calculating $p\left(x_{1}\right)$
using the order $x_{6}, x_{5}, x_{4}, x_{3}, x_{2}$
$\Phi^{1}=\left\{p\left(x_{2} \mid x_{1}\right), p\left(x_{3} \mid x_{1}\right), \psi_{1}^{\prime}\left(x_{2}, x_{5}\right), p\left(x_{4} \mid x_{2}\right), p\left(x_{5} \mid x_{3}\right)\right\} \quad \mathrm{t}=2$

Variable elimination: example

calculating $p\left(x_{1}\right)$
using the order $x_{6}, x_{5}, x_{4}, x_{3}, x_{2}$
$\Phi^{2}=\left\{p\left(x_{2} \mid x_{1}\right), p\left(x_{3} \mid x_{1}\right), \psi_{2}^{\prime}\left(x_{2}, x_{3}\right), p\left(x_{4} \mid x_{2}\right)\right\}$

$\psi_{2}\left(x_{2}, x_{3}, x_{5}\right) \psi_{2}^{\prime}\left(x_{2}, x_{3}\right)$

Variable elimination: example

calculating $p\left(x_{1}\right)$
using the order $x_{6}, x_{5}, x_{4}, x_{3}, x_{2}$
$\Phi^{2}=\left\{p\left(x_{2} \mid x_{1}\right), p\left(x_{3} \mid x_{1}\right), \psi_{2}^{\prime}\left(x_{2}, x_{3}\right), p\left(x_{4} \mid x_{2}\right)\right\}$

Variable elimination: example

calculating $p\left(x_{1}\right)$
using the order $x_{6}, x_{5}, x_{4}, x_{3}, x_{2}$
$\Phi^{3}=\left\{p\left(x_{2} \mid x_{1}\right), p\left(x_{3} \mid x_{1}\right), \psi_{2}^{\prime}\left(x_{2}, x_{3}\right), \psi_{3}^{\prime}\left(x_{2}\right)\right\}$

Variable elimination: example

calculating $p\left(x_{1}\right)$
using the order $x_{6}, x_{5}, x_{4}, x_{3}, x_{2}$
$\Phi^{3}=\left\{p\left(x_{2} \mid x_{1}\right), p\left(x_{3} \mid x_{1}\right), \psi_{2}^{\prime}\left(x_{2}, x_{3}\right), \psi_{3}^{\prime}\left(x_{2}\right)\right\}$

$\psi_{4}\left(x_{1}, x_{2}, x_{3}\right) \psi_{4}^{\prime}\left(x_{1}, x_{2}\right)$

Variable elimination: example

calculating $p\left(x_{1}\right)$
using the order $x_{6}, x_{5}, x_{4}, x_{3}, x_{2}$
$\Phi^{4}=\left\{p\left(x_{2} \mid x_{1}\right), \psi_{3}^{\prime}\left(x_{2}\right), \psi_{4}^{\prime}\left(x_{1}, x_{2}\right)\right\}$

$$
\psi_{4}\left(x_{1}, x_{2}, x_{3}\right) \psi_{4}^{\prime}\left(x_{1}, x_{2}\right)
$$

Variable elimination: example

calculating $p\left(x_{1}\right)$
using the order $x_{6}, x_{5}, x_{4}, x_{3}, x_{2}$
$\Phi^{4}=\left\{p\left(x_{2} \mid x_{1}\right), \psi_{3}^{\prime}\left(x_{2}\right), \psi_{4}^{\prime}\left(x_{1}, x_{2}\right)\right\}$

Variable elimination: example

calculating $p\left(x_{1}\right)$
using the order $x_{6}, x_{5}, x_{4}, x_{3}, x_{2}$
$\Phi^{5}=\left\{\psi_{5}^{\prime}\left(x_{1}\right)\right\}$

Variable elimination: example

$$
p\left(x_{1}\right)=\frac{1}{Z} \sum_{x_{2}, \ldots, x_{6}} \phi\left(x_{1}, x_{2}\right) \phi\left(x_{1}, x_{3}\right) \phi\left(x_{2}, x_{3}\right) \phi\left(x_{3}, x_{5}\right) \phi\left(x_{2}, x_{5}, x_{6}\right)
$$

at final iteration: $\Phi^{5}=\left\{\psi_{5}^{\prime}\left(x_{1}\right)\right\}$
the marginal of interest $p\left(x_{1}\right)=\frac{1}{Z} \psi_{5}^{\prime}\left(x_{1}\right)$

One more elimination step: $\Phi^{6}=\left\{\psi_{6}^{\prime}(\emptyset)=Z\right\}$

- gives the partition function $Z=\sum_{x_{1}} \psi_{5}^{\prime}\left(x_{1}\right)$

Complexity

- go over $\boldsymbol{x}_{i_{1}}, \ldots, \boldsymbol{x}_{i_{m}}$ in some order:
- collect all the relevant factors: $\Psi^{t}=\left\{\phi \in \Phi^{t} \mid x_{i_{t}} \in \operatorname{Scope}[\phi]\right\}$
- calculate their product: $\psi_{t}=\prod_{\phi \in \Psi^{t}} \phi$
- marginalize out $x_{i_{t}}: \psi_{t}^{\prime}=\sum_{x_{i t}} \psi_{t}$
- update the set of factors: $\Phi^{t}=\Phi^{t-1}-\Psi^{t}+\left\{\psi_{t}^{\prime}\right\}$
complexity: number of vars in $\psi_{t}: \mathcal{O}\left(\max _{t} d^{\left|S \operatorname{cope}\left[\psi_{t}\right]\right|}\right)$
- depends on the graph structure

Induced graph

complexity of step t: number of vars in $\psi_{t} \quad \mathcal{O}\left(d^{\left|S \operatorname{cope}\left[\psi_{t}\right]\right|}\right)$

- depends on the graph structure

induced graph

- add edges created during the elimination
- maximal cliques correspond to $\psi_{t} \quad \forall t$

Induced graph

- maximal cliques correspond to some ψ_{t} why?
- take one such clique - e.g., $\left\{X_{2}, X_{3}, X_{5}\right\}$
- take the first to be eliminated - e.g., X_{5}
- all the edges to X_{5} exist before its elimination

- therefore, removing X_{5} will create a factor with S cope $\left[\psi_{t}\right]=\left\{X_{2}, X_{3}, X_{5}\right\}$

Induced graph

- maximal cliques correspond to some ψ_{t} why?
- take one such clique - e.g., $\left\{X_{2}, X_{3}, X_{5}\right\}$
- take the first to be eliminated - e.g., X_{5}
- all the edges to X_{5} exist before its elimination

- therefore, removing X_{5} will create a factor with S cope $\left[\psi_{t}\right]=\left\{X_{2}, X_{3}, X_{5}\right\}$
- the induced graph is chordal
all the loops > 3 have a chord
- a similar argument

Tree-width

maximal cliques correspond to ψ_{t}
cost of marginalizing ψ_{t} is $\mathcal{O}\left(d^{\mid S c o p e\left[\psi_{t}\right]}\right)$
largest clique dominates the cost of variable elimination

the tree-width $\min _{\text {orderings }} \max _{\psi_{t}} \operatorname{scope}\left[\psi_{t}\right]-1$

- tree-width of a tree $=1$
- NP-hard to calculate the tree-width
- use heuristics to find good orderings

Ordering heuristics

choose the next vertex to eliminate by:

- minimizing the effect of the created clique/factor
- min-neighbours: \#neigbours in the current graph
- min-weight: product of cardinality of neighbours

Ordering heuristics

choose the next vertex to eliminate by:

- minimizing the effect of the created clique/factor
- min-neighbours: \#neigbours in the current graph
- min-weight: product of cardinality of neighbours
- minimizing the effect of fill edges
- min-fill: number of fill-edges after its elimination
- weighted min-fill: edges are weighted by the product of the cardinality of the two vertices

Ordering heuristics

minimizing the \#fill edges tends to work better in practice
to minimize the cost one could:

- try different heuristics
- calculate the max-clique size
- pick the best ordering
- apply variable elimination

Answering other queries

we saw variable elimination (VE) for marginalization

$$
P\left(X_{1}\right)=\sum_{x_{2}, \ldots, x_{n}} P\left(X_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)
$$

Introducing evidence leads to a similar problem

$$
P\left(X_{1} \mid X_{m}=x_{m}\right)=\frac{P\left(X_{1}, X_{m}=x_{m}\right)}{P\left(X_{m}=x_{m}\right)}
$$

- use VE to get $P\left(X_{1}, X_{m}=x_{m}\right)$
- marginalize this to get $P\left(X_{m}=x_{m}\right)$
- devide!

Answering other queries

we saw variable elimination (VE) for marginalization

$$
P\left(X_{1}=x_{1}\right)=\sum_{x_{2}, \ldots, x_{n}} P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)
$$

MAP inference: sum \longrightarrow max

$$
Q\left(X_{1}=x_{1}\right)=\max _{x_{2}, \ldots, x_{n}} P\left(X_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)
$$

- run VE with maximization instead of summation
- eliminating ALL the variables gives a single value $\max _{\mathbf{x}} P(\mathbf{X}=\mathbf{x})$
- we can also get the maximizing assignment as well (later!)

$$
\arg \max _{\mathbf{x}} P(\mathbf{X}=\mathbf{x})
$$

quiz: tree width

what is the tree-width in these graphical models?

quiz: induced graph

what are the fill-edges corresponding to the following elimination order? A, B, C, D, E, F

A
C
E
$B \quad D$
F

quiz: induced graph

what are the fill-edges corresponding to the following elimination order? A, B, C, D, E, F

quiz: induced graph

what are the fill-edges corresponding to the following elimination order? A, B, C, D, E, F

is this graph chordal?

how about this one?

Summary

- inference in graphical models is NP-hard
- even approximating it is NP-hard
- brute-force inference has an exponential cost
- use the graph structure + distributive law:
- variable elimination algorithm
- cost grows with the tree-width of the graph
- NP-hard to calculate the tree-width / optimal ordering
- use heuristics

