Probabilistic Graphical Models

Variable elimination

Siamak Ravanbakhsh

Fall 2019
Learning objective

- an intuition for inference in graphical models
- why is it difficult?
- exact inference by variable elimination
Probability query

marginalization

\[P(X_1) = \sum_{x_2, \ldots, x_n} P(X_1, X_2 = x_2, \ldots, X_n = x_n) \]

Introducing evidence leads to a similar problem

\[P(X_1 = x_1 \mid X_m = x_m) = \frac{P(X_1 = x_1, X_m = x_m)}{P(X_m = x_m)} \]
Probability query

marginalization

\[P(X_1) = \sum_{x_2, \ldots, x_n} P(X_1, X_2 = x_2, \ldots, X_n = x_n) \]

Introducing evidence leads to a similar problem

\[P(X_1 = x_1 \mid X_m = x_m) = \frac{P(X_1 = x_1, X_m = x_m)}{P(X_m = x_m)} \]

MAP inference changes sum to max

\[\mathbf{x}^* = \arg \max_{\mathbf{x}} P(\mathbf{X} = \mathbf{x}) \]

maximum a posteriori
Probability query

marginalization \[P(X_1) = \sum_{x_2, \ldots, x_n} P(X_1, X_2 = x_2, \ldots, X_n = x_n) \]

\[n = 2 \]

representation: \(\mathcal{O}(|Val(X_1) \times Val(X_2)|) \)

inference: \(\mathcal{O}(|Val(X_1) \times Val(X_2)|) \)
Probability query

marginalization \(P(X_1) = \sum_{x_2, \ldots, x_n} P(X_1, X_2 = x_2, \ldots, X_n = x_n) \)

\(n = 3 \)

representation: \(O(|Val(X_1) \times Val(X_2) \times Val(X_3)|) \)

inference: \(O(|Val(X_1) \times Val(X_2) \times Val(X_3)|) \)
Probability query

marginalization \[P(X_1) = \sum_{x_2, \ldots, x_n} P(X_1, X_2 = x_2, \ldots, X_n = x_n) \]

complexity of representation & inference \[\mathcal{O}(\prod_i |Val(X_i)|) \]

- binary variables \[\mathcal{O}(2^n) \]
Probability query

marginalization \(P(X_1) = \sum_{x_2, \ldots, x_n} P(X_1, X_2 = x_2, \ldots, X_n = x_n) \)

complexity of representation & inference \(\mathcal{O}(\prod_i |Val(X_i)|) \)

- binary variables \(\mathcal{O}(2^n) \)

can have a **compact representation** of \(P \):

- Bayes-net or Markov net
 - e.g. \(p(x) = \frac{1}{Z} \prod_{i=1}^{n-1} \phi_i(x_i, x_{i+1}) \) has an \(\mathcal{O}(n) \) representation
Probability query

marginalization \(P(X_1) = \sum_{x_2,\ldots,x_n} P(X_1, X_2 = x_2, \ldots, X_n = x_n) \)

complexity of representation & inference \(\mathcal{O}(\prod_i |Val(X_i)|) \)
- binary variables \(\mathcal{O}(2^n) \)

can have a **compact representation** of \(P \):
- Bayes-net or Markov net
 - e.g. \(p(x) = \frac{1}{Z} \prod_{i=1}^{n-1} \phi_i(x_i, x_{i+1}) \) has an \(\mathcal{O}(n) \) representation

efficient inference?
Complexity of inference

can we always avoid the exponential cost of inference? No!
can we at least guarantee a good approximation? No!

proof idea:

• reduce 3-SAT to inference in a graphical model
 ■ despite this, graphical models are used for combinatorial optimization (why?)
Complexity of inference: proof

given a BN, decide whether $P(X = x) > 0$ is NP-complete

- belongs to NP
- NP-hardness: *answering this query* \gg *solving 3-SAT*

![Diagram](image)

- Q_i (SAT vars.)
- C_j (SAT clauses)
- A_k (X = 1 iff satisfiable)
Complexity of inference: proof

given a BN, decide whether $P(X = x) > 0$ is NP-complete

- belongs to NP
- NP-hardness: answering this query \gg solving 3-SAT

$$P(X = x)$$
Complexity of inference: proof

given a BN, decide whether $P(X = x) > 0$ is NP-complete

- belongs to NP
- NP-hardness: answering this query >> solving 3-SAT

given a BN, calculating $P(X = x)$ is \#P-complete
Complexity of approximate inference

given a BN, approximating $P(X = x)$ with a relative error ϵ is **NP-hard**

Proof: $\rho > 0 \iff P(X = 1) > 0$

$$\frac{\rho}{1+\epsilon} \leq P(X = x) \leq \rho(1 + \epsilon)$$
Complexity of approximate inference

given a BN, approximating \(P(X = x \mid E = e) \) with an absolute error \(\epsilon \)
for any \(0 < \epsilon < \frac{1}{2} \) is NP-hard

\[
\rho(1 - \epsilon) \leq P(X = x) \leq \rho(1 + \epsilon)
\]
Complexity of approximate inference

given a BN, approximating \(P(X = x \mid E = e) \) with an absolute error \(\epsilon \) for any \(0 < \epsilon < \frac{1}{2} \) is \textbf{NP-hard}

\[
\rho(1 - \epsilon) \leq P(X = x) \leq \rho(1 + \epsilon)
\]

Proof:

- \textit{sequentially} fix \(q_i^* = \arg \max_q P(Q_i = q \mid (Q_1, \ldots, Q_{i-1}) = (q_1^* \ldots q_{i-1}^*), X = 1) \)
- either \(q_i^0 > \frac{1}{2} \) or \(q_i^1 > \frac{1}{2} \)
- since \(\epsilon < \frac{1}{2} \) this leads to a solution
so far...

- reduce the **representation-cost** using a graph structure
- **inference-cost** is in the worst case exponential
- can we reduce it using the graph structure?
Probability query: example

\[p(x) = \frac{1}{Z} \prod_{i=1}^{n-1} \phi_i(x_i, x_{i+1}) \]

\[V al(X_i) = \{1, \ldots, d\} \forall i \]

Take 1:

- *calculate n-dim. array* \(p(x) \)
- *marginalize it* \(p(x_n) = \sum_{-x_n} p(x) \)
Inference: example

\[p(x) = \frac{1}{Z} \prod_{i=1}^{n-1} \phi_i(x_i, x_{i+1}) \]

\[Z = \prod_{i=1}^{n-1} x_i + 1 \]

Take 2:

• calculate \(\tilde{p}(x_m) = \sum_{x_1} \cdots \sum_{x_{n-1}} \phi_1(x_1, x_2) \cdots \phi_{n-1}(x_{n-1}, x_n) \)
 ■ without building \(p(x) \)

• normalize it \(p(x_n) = \frac{\tilde{p}(x_n)}{\sum_{x_n} \tilde{p}(x_n)} \)

• idea: use the distributive law: \(ab + ac = a(b + c) \)

3 operations 2 operations
Inference and the **distributive law**

\[
ab + ac = a(b + c)
\]

3 operations \hspace{1cm} 2 operations

save computation by **factoring** the operations

in disguise \[
\sum_{x,y} f(x, y)g(y, z) = \sum_y g(y, z) \sum_x f(x, y)
\]

- assuming \[
|Val(X)| = |Val(Y)| = |Val(Z)| = d
\]

- complexity: from \(O(d^3)\) to \(O(d^2)\)
Inference: back to example

\[p(x) = \frac{1}{Z} \prod_{i=1}^{n-1} \phi_i(x_i, x_{i+1}) \]

\[\sum_{x_1} \ldots \sum_{x_n} \phi(x_1, x_2) \ldots \phi(x_{n-1}, x_n) \]

Take 2:

• objective \(\tilde{p}(x_m) = \sum_{x_1} \ldots \sum_{x_{n-1}} \phi_1(x_1, x_2) \ldots \phi_{n-1}(x_{n-1}, x_n) \)

• **systematically apply the factorization:**

\[\tilde{p}(x_m) = \sum_{x_{n-1}} \phi_{n-1}(x_{n-1}, x_n) \sum_{x_{n-2}} \phi_{n-2}(x_{n-2}, x_{n-1}) \ldots \sum_{x_1} \phi_1(x_1, x_2) \]

• complexity is \(\mathcal{O}(nd^2) \) instead of \(\mathcal{O}(d^n) \)
Inference: example 2

Objective: \[p(x_1 \mid \bar{x}_6) = \frac{p(x_1, \bar{x}_6)}{p(\bar{x}_6)} \]

\[\downarrow \]

another way to write \[P(X_1 \mid X_6 = \bar{x}_6) \]

- calculate the numerator
- denominator is then easy

\[p(\bar{x}_6) = \sum_{x_1} p(x_1, \bar{x}_6) \]

source: Michael Jordan's book
Inference: example 2

\[
p(x_1, \bar{x}_6) = \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(x_1)p(x_2 | x_1)p(x_3 | x_1)p(x_4 | x_2)p(x_5 | x_3)p(\bar{x}_6 | x_2, x_5)
\]

\[
= p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3} p(x_3 | x_1) \sum_{x_4} p(x_4 | x_2) \sum_{x_5} p(x_5 | x_3)p(\bar{x}_6 | x_2, x_5)
\]

\[
= p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3} p(x_3 | x_1) \sum_{x_4} p(x_4 | x_2)m_5(x_2, x_3)
\]

\[\mathcal{O}(d^3)\]

source: Michael Jordan's book
Inference: example

\[p(x_1, \tilde{x}_6) = p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3} p(x_3 | x_1) \sum_{x_4} p(x_4 | x_2) m_5(x_2, x_3) \]

\[= p(x_1) \sum_{x_2} p(x_2 | x_1) \sum_{x_3} p(x_3 | x_1) m_5(x_2, x_3) \sum_{x_4} p(x_4 | x_2) \quad \mathcal{O}(d^2) \]

\[= p(x_1) \sum_{x_2} p(x_2 | x_1) m_4(x_2) \sum_{x_3} p(x_3 | x_1) m_5(x_2, x_3). \]

source: Michael Jordan's book
\[p(x_1, \bar{x}_6) = p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3} p(x_3 \mid x_1) \sum_{x_4} p(x_4 \mid x_2)m_5(x_2, x_3) \]

\[= p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3} p(x_3 \mid x_1) m_4(x_2) \sum_{x_3} p(x_3 \mid x_1)m_5(x_2, x_3) \]

\[= p(x_1) \sum_{x_2} p(x_2 \mid x_1) m_4(x_2) m_3(x_1, x_2) \]

\[= p(x_1) m_2(x_1). \]
Inference: example

overall complexity $O(d^3)$ instead of $O(d^5)$

if we had built the 5d array of

$$p(x_1, x_2, x_3, x_4, x_5 \mid \bar{x}_6)$$

in the general case $O(d^n)$
Inference: example (undirected version)

\[p(x_1, \bar{x}_6) = \frac{1}{Z} \sum_{x_2, \ldots, x_5} \phi(x_1, x_2) \phi(x_1, x_3) \phi(x_2, x_3) \phi(x_3, x_5) \phi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6) \]

using a delta-function for conditioning

\[\delta(x_6, \bar{x}_6) \triangleq \begin{cases}
1, & \text{if } x_6 = \bar{x}_6 \\
0, & \text{otherwise}
\end{cases} \]

add it as a local potential
Inference: **example (undirected version)**

every step remains the same

\[p(x_1, \bar{x}_6) = \frac{1}{Z} \sum_{x_2, \ldots, x_5} \phi(x_1, x_2)\phi(x_1, x_3)\phi(x_2, x_3)\phi(x_3, x_5)\phi(x_2, x_5, x_6)\delta(x_6, \bar{x}_6) \]

\[= \frac{1}{Z} \sum_{x_2, \ldots, x_5} \phi(x_1, x_2)\phi(x_1, x_3)\phi(x_2, x_3)\phi(x_3, x_5)m_6(x_2, x_5) \]

\[= \frac{1}{Z} \sum_{x_2} \phi(x_1, x_2) \ldots, m_4(x_2) \sum_{x_3} \phi(x_1, x_3)m_5(x_2, x_3) \]

\[= \frac{1}{Z} \sum_{x_2} \phi(x_1, x_2) \ldots, m_4(x_2)m_3(x_1, x_2) \]

\[= \frac{1}{Z} m_2(x_1) \]

except: in Bayes-nets Z=1

- **at this point normalization is easy!**
Variable elimination

- **input:** \(\Phi^{t=0} = \{\phi_1, \ldots, \phi_K\} \) a set of factors (e.g. CPDs)
- **output:** \(\sum_{x_{i_1}, \ldots, x_{i_m}} \prod_k \phi_k(D_k) \)
- go over \(x_{i_1}, \ldots, x_{i_m} \) in some order:
 - collect all the relevant factors: \(\Psi^t = \{\phi \in \Phi^t \mid x_{i_t} \in \text{Scope}[\phi]\} \)
 - calculate their product: \(\psi_t = \prod_{\phi \in \Psi^t} \phi \)
 - marginalize out \(x_{i_t} \): \(\psi'_t = \sum_{x_{i_t}} \psi_t \)
 - update the set of factors: \(\Phi^t = \Phi^{t-1} - \Psi^t + \{\psi'_t\} \)
- return the product of factors in \(\Phi^{t=m} \)
Variable elimination: example

- **input:** $\Phi^{t=0} = \{\phi_1, \ldots, \phi_K\}$ a set of factors (e.g. CPDs)

\[
\Phi^0 = \{p(x_2 \mid x_1), p(x_3 \mid x_1), p(\bar{x}_6 \mid x_2, x_5), p(x_4 \mid x_2), p(x_5 \mid x_3)\}
\]

- **output:**
 \[
 \sum_{x_{i_1}, \ldots, x_{i_m}} \prod_k \phi_k(D_k)
 \]

\[
p(x_1, \bar{x}_6) = \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1)p(x_4 \mid x_2)p(x_5 \mid x_3)p(\bar{x}_6 \mid x_2, x_5)
\]
Variable elimination: example

- go over x_{i_1}, \ldots, x_{i_m} in some order:

x_5, x_4, x_3, x_2
Variable elimination: example

- for x_5:
 - collect all the relevant factors $\Psi^t = \{\phi \in \Phi^t \mid x_i \in \text{Scope}[\phi]\}$
 - calculate their product $\psi_t = \prod_{\phi \in \Psi^t} \phi$

\[
\Psi^0 = \{p(x_6 \mid x_2, x_5), p(x_5 \mid x_3)\}
\]

\[
\psi_t(x_2, x_3, x_5) = p(x_6 \mid x_2, x_5)p(x_5 \mid x_3)
\]
Variable elimination: example

• for \(x_5 \):
 - collect all the relevant factors \(\Psi^t = \{ \phi \in \Phi^t \mid x_{i_t} \in \text{Scope}[\phi] \} \)
 - calculate their product \(\psi_t = \prod_{\phi \in \Psi^t} \phi \)
 - marginalize out \(x_5 \)

\[
\Psi^0 = \{ p(x_6 \mid x_2, x_5), p(x_5 \mid x_3) \}
\]
\[
\psi_t(x_2, x_3, x_5) = p(x_6 \mid x_2, x_5)p(x_5 \mid x_3)
\]
\[
\psi'_t(x_2, x_3) = \sum_{x_5} \psi_t(x_2, x_3, x_5)
\]
Variable elimination: example

- for x_5:
 - collect all the relevant factors $\Psi^t = \{\phi \in \Phi^t \mid x_{i_t} \in \text{Scope}[\phi]\}$
 - calculate their product $\psi_t = \prod_{\phi \in \Psi^t} \phi$
 - **marginalize out** x_5

\[
\Psi^0 = \{p(x_6 \mid x_2, x_5), p(x_5 \mid x_3)\}
\]
\[
\psi_t(x_2, x_3, x_5) = p(\bar{x}_6 \mid x_2, x_5)p(x_5 \mid x_3)
\]
\[
\psi'_t(x_2, x_3) = \sum_{x_5} \psi_t(x_2, x_3, x_5)
\]
Variable elimination: example

- for x_5:
 - collect all the relevant factors $\Psi^t = \{\phi \in \Phi^t \mid x_{i_t} \in \text{Scope}[\phi]\}$
 - calculate their product $\psi_t = \prod_{\phi \in \Psi^t} \phi$
 - marginalize out x_5
 - update the set of factors $\Phi^t = \Phi^{t-1} - \Psi^t + \{\psi'_t\}$

$$\psi'_t(x_2, x_3) = \sum_{x_5} \psi_t(x_2, x_3, x_5)$$

$$\Phi^0 = \{p(x_2 \mid x_1), p(x_3 \mid x_1), p(\bar{x}_6 \mid x_2, x_5), p(x_4 \mid x_2), p(x_5 \mid x_3)\}$$

$$\downarrow$$

$$\Phi^1 = \{p(x_2 \mid x_1), p(x_3 \mid x_1), p(x_4 \mid x_2), \psi'_t(x_2, x_3)\}$$
Variable elimination: example

• for x_5 :
 ■ collect all the relevant factors $\Psi^t = \{\phi \in \Phi^t \mid x_{i_t} \in \text{Scope}[\phi]\}$
 ■ calculate their product $\psi_t = \prod_{\phi \in \Psi^t} \phi$
 ■ marginalize out x_5
 ■ update the set of factors $\Phi^t = \Phi^{t-1} - \Psi^t + \{\psi'_t\}$

$\Phi^1 = \{p(x_2 \mid x_1), p(x_3 \mid x_1), p(x_4 \mid x_2), \psi'_i(2, 3)\}$

repeat for x_4, x_3, x_2
Variable elimination: example

calculating $p(x_1)$: following the graph

using the order x_6, x_5, x_4, x_3, x_2

$$\Phi^0 = \{p(x_2 \mid x_1), p(x_3 \mid x_1), p(x_6 \mid x_2, x_5), p(x_4 \mid x_2), p(x_5 \mid x_3)\}$$
Variable elimination: example

calculating $p(x_1)$

using the order x_6, x_5, x_4, x_3, x_2

$\Phi^1 = \{p(x_2 \mid x_1), p(x_3 \mid x_1), \psi_1'(x_2, x_5), p(x_4 \mid x_2), p(x_5 \mid x_3)\}$

$t=1$
Variable elimination: example

calculating \(p(x_1) \)

using the order \(x_6, x_5, x_4, x_3, x_2 \)

\[
\Phi^1 = \{ p(x_2 \mid x_1), p(x_3 \mid x_1), \psi_1(x_2, x_5), p(x_4 \mid x_2), p(x_5 \mid x_3) \}
\]
Variable elimination: example

calculating \(p(x_1) \)

using the order \(x_6, x_5, x_4, x_3, x_2 \)

\[\Phi^2 = \{ p(x_2 \mid x_1), p(x_3 \mid x_1), \psi_2(x_2, x_3), p(x_4 \mid x_2) \} \]
Variable elimination: example

calculating $p(x_1)$

using the order x_6, x_5, x_4, x_3, x_2

$\Phi^2 = \{p(x_2 \mid x_1), p(x_3 \mid x_1), \psi_2(x_2, x_3), p(x_4 \mid x_2)\}$

t=3
Variable elimination: example

calculating \(p(x_1) \)

using the order \(x_6, x_5, x_4, x_3, x_2 \)

\[\Phi^3 = \{ p(x_2 \mid x_1), p(x_3 \mid x_1), \psi_2(x_2, x_3), \psi_3'(x_2) \} \]
Variable elimination: example

calculating \(p(x_1) \)

using the order \(x_6, x_5, x_4, x_3, x_2 \)

\[\Phi^3 = \{ p(x_2 \mid x_1), p(x_3 \mid x_1), \psi'_2(x_2, x_3), \psi'_3(x_2) \} \]
Variable elimination: example

calculating \(p(x_1) \)

using the order \(x_6, x_5, x_4, x_3, x_2 \)

\[\Phi^4 = \{p(x_2 \mid x_1), \psi'_3(x_2), \psi'_4(x_1, x_2)\} \]
Variable elimination: example

calculating $p(x_1)$

using the order x_6, x_5, x_4, x_3, x_2

$\Phi^4 = \{p(x_2 \mid x_1), \psi_3'(x_2), \psi_4'(x_1, x_2)\}$

$\Phi^4 = \{p(x_2 \mid x_1), \psi_3'(x_2), \psi_4'(x_1, x_2)\}$

$t=5$
Variable elimination: example

calculating \(p(x_1) \)
using the order \(x_6, x_5, x_4, x_3, x_2 \)
\[
\Phi^5 = \{\psi'_5(x_1)\}
\]
Variable elimination: example

\[p(x_1) = \frac{1}{Z} \sum_{x_2,\ldots,x_6} \phi(x_1, x_2) \phi(x_1, x_3) \phi(x_2, x_3) \phi(x_3, x_5) \phi(x_2, x_5, x_6) \]

at final iteration: \(\Phi^5 = \{\psi'_5(x_1)\} \)

the **marginal** of interest \(p(x_1) = \frac{1}{Z} \psi'_5(x_1) \)

One more elimination step: \(\Phi^6 = \{\psi'_6(\emptyset) = Z\} \)

- gives the **partition function** \(Z = \sum_{x_1} \psi'_5(x_1) \)
Complexity

• go over x_{i_1}, \ldots, x_{i_m} in some order:
 ▪ collect all the relevant factors: $\Psi^t = \{\phi \in \Phi^t \mid x_{i_t} \in \text{Scope}[\phi]\}$
 ▪ calculate their product: $\psi_t = \prod_{\phi \in \Psi^t} \phi$
 ▪ marginalize out x_{i_t}: $\psi'_t = \sum_{x_{i_t}} \psi_t$
 ▪ update the set of factors: $\Phi^t = \Phi^{t-1} - \Psi^t + \{\psi'_t\}$

complexity: number of vars in ψ_t: $\mathcal{O}(\max_t d^{\text{Scope}[\psi_t]})$

• depends on the graph structure
Induced graph

Complexity of step t: number of vars in $\psi_t \in \mathcal{O}(d|\text{Scope}[\psi_t]|)$

- depends on the **graph structure**

Induced graph

- add edges created during the elimination
- maximal cliques correspond to $\psi_t \quad \forall t$
Induced graph

- maximal cliques correspond to some ψ_t why?
 - take one such clique - e.g., $\{X_2, X_3, X_5\}$
 - take the first to be eliminated - e.g., X_5
 - all the edges to X_5 exist before its elimination
 - therefore, removing X_5 will create a factor with $\text{Scope}[\psi_t] = \{X_2, X_3, X_5\}$
Induced graph

- maximal cliques correspond to some ψ_t why?
 - take one such clique - e.g., $\{X_2, X_3, X_5\}$
 - take the first to be eliminated - e.g., X_5
 - all the edges to X_5 exist before its elimination
 - therefore, removing X_5 will create a factor with $\text{Scope}[^\psi_t] = \{X_2, X_3, X_5\}$

- the induced graph is **chordal** all the loops > 3 have a chord
 - a similar argument
Tree-width

maximal cliques correspond to ψ_t
cost of marginalizing ψ_t is $O(d^{\text{Scope}[\psi_t]})$
largest clique dominates the cost of variable elimination

the **tree-width** $\min_{\text{orderings}} \max_{\psi_t} \text{scope}[\psi_t] - 1$

- tree-width of a tree = 1
- **NP-hard** to calculate the tree-width
- use heuristics to find good orderings
Ordering heuristics

choose the next vertex to eliminate by:

- minimizing the effect of the created clique/factor
 - **min-neighbours**: #neighbours in the current graph
 - **min-weight**: product of cardinality of neighbours
Ordering heuristics

choose the next vertex to eliminate by:

- minimizing the effect of the created clique/factor
 - **min-neighbours**: \#neighbours in the current graph
 - **min-weight**: product of cardinality of neighbours

- minimizing the effect of fill edges
 - **min-fill**: number of fill-edges after its elimination
 - **weighted min-fill**: edges are weighted by the product of the cardinality of the two vertices
Ordering heuristics

minimizing the #fill edges tends to work better in practice
to minimize the cost one could:

• try different heuristics
• calculate the max-clique size
• pick the best ordering
• apply variable elimination
Answering other queries

we saw variable elimination (VE) for marginalization

\[P(X_1) = \sum_{x_2, \ldots, x_n} P(X_1, X_2 = x_2, \ldots, X_n = x_n) \]

Introducing evidence leads to a similar problem

\[P(X_1 \mid X_m = x_m) = \frac{P(X_1, X_m = x_m)}{P(X_m = x_m)} \]

- use VE to get \(P(X_1, X_m = x_m) \)
- marginalize this to get \(P(X_m = x_m) \)
- devide!
Answering other queries

we saw variable elimination (VE) for marginalization

\[P(X_1 = x_1) = \sum_{x_2, \ldots, x_n} P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) \]

MAP inference: sum → max

\[Q(X_1 = x_1) = \max_{x_2, \ldots, x_n} P(X_1, X_2 = x_2, \ldots, X_n = x_n) \]

• run VE with maximization instead of summation
• eliminating ALL the variables gives a single value \(\max_x P(X = x) \)
• we can also get the maximizing assignment as well (later!)

\[\arg \max_x P(X = x) \]
quiz: tree width

what is the tree-width in these graphical models?
quiz: induced graph

what are the fill-edges corresponding to the following elimination order? A, B, C, D, E, F
quiz: induced graph

what are the fill-edges corresponding to the following elimination order? A, B, C, D, E, F
quiz: induced graph

what are the fill-edges corresponding to the following elimination order? A, B, C, D, E, F

is this graph chordal? how about this one?
Summary

- inference in graphical models is NP-hard
 - even approximating it is NP-hard
- brute-force inference has an exponential cost
- use the graph structure + distributive law:
 - variable elimination algorithm
 - cost grows with the tree-width of the graph
 - NP-hard to calculate the tree-width / optimal ordering
 - use heuristics