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Learning objective

e an intuition for inference in graphical models
e why is it difficult?
e exact inference by variable elimination



Probability query

marginalization

P(Xl) = 23?2,---,% P(Xl,Xz = I2,.. .,Xn = :En)

Introducing evidence leads to a similar problem

P(X1 = 21 | Xon = am) = PEprinsen)




Probability query

marginalization

P(Xl) = 23?2,---,% P(Xl,Xz = I2,.. .,Xn = :En)

Introducing evidence leads to a similar problem

P(X1 = 21 | Xon = am) = PEprinsen)

MAP inference changes sum to max x* = argmaxx P(X = x)

maximum a posteriori



Probability query

marginalization P(Xi1)=>,, . P(X1,Xo=1,...,Xn=1n)

representation: O(|Vail(X;) x Val(X2)|)

inference: O(|Val(X1) x Val(X>)|) e

P(X1)




Probability query

marginalization P(Xi1)=>,, . P(X1,Xo=1,...,Xn=1n)

X
representation: O(|Val(Xi) x Val(Xs) x Val(X3)|) Xy !

inference: O(|Val(X1) x Val(X;) x Val(Xs)|)

Xo

P(X1)




Probability query

marginalization P(X,)=>, . P(X1,Xo=ua,...,Xn = zn)

Ty. «

complexity of representation & inference O(l]; [Val(X;)|)

e binary variables O(2")



Probability query

marginalization P(X,)=>, . P(X1,Xo=ua,...,Xn = zn)

To,. .

complexity of representation & inference O(l]; [Val(X;)|)

e binary variables O(2")

can have a compact representation of P:

e Bayes-net or Markov net
" eg pz)= L[5 ¢i(zi,zi) hasan O(n) representation



Probability query

marginalization P(X:)=), . P(X1,X>=1s,...,Xn = zs)

complexity of representation & inference O(l]; [Val(X;)|)

e binary variables O(2")

can have a compact representation of P:

e Bayes-net or Markov net
" eg pz)= L[5 ¢i(zi,zi) hasan O(n) representation

efficient inference ?



Complexity of inference

can we always avoid the exponential cost of inference? No!
can we at least guarantee a good approximation? No!

proof idea:

e reduce 3-SAT to inference in a graphical model

B despite this, graphical models are used for combinatorial optimization (why?)



Complexity of inference: proof

given a BN, decide whetherpP(x =z) > 0 is NP-complete

e pbelongs to NP
e NP-hardness: answering this query >> solving 3-SAT

SAT vars.

SAT clauses

X =1 iff satisfiable
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given a BN, decide whetherpP(x =z) > 0 is NP-complete

e pbelongs to NP
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X =1 iff satisfiable



Complexity of inference: proof

given a BN, decide whetherpP(x =z) > 0 is NP-complete

e belongs to NP
e NP-hardness: answering this query >> solving 3-SAT

SAT vars.

SAT clauses

X =1 iff satisfiable

given a BN, calculating P(X = z) is #P-complete



Complexity of approximate inference

given a BN, approximating P(X = z) with a relative error € is NP-hard

Proof: p>0&<P(X=1) >0 £ < P(X=1z)<p(l+e

our approximation




Complexity of approximate inference

given a BN, approximating P(X = | E = e) with an absolute error €

. \2
forany 0 <e<1! is NP-hard o(1—€) < P(X = 2) < p(1+e)



Complexity of approximate inference

given a BN, approximating P(X = | E = e) with an absolute error €

. ) \2
forany 0 <e<1! is NP-hard o(1—€) < P(X = 2) < p(1+e)

Proof:

° sequentia//y fix q =argmax, P(Qi=q|(Q1,...,Qi1) =(¢}...q¢ ;), X =1)
o either ¢/ >3 or ¢ >3

. 1 . .
e since €< 5 thisleads to a solution




so far...

e reduce the representation-cost using a graph structure
e inference-cost is in the worst case exponential
e can we reduce it using the graph structure?



Probability query: example

px) = LIS dilwinzi) @) -v - (O—O—)---@)

Val(X;) = {1,...,d}Vi p(xn)?

Take 1:

e calculate n-dim. array p(x)
O(d"™)

e marginalize it p(zn) =3 , p(x)



Inference: example

p(x) = %H?;ll Gi (T Tit1) @ .o o O—O—O co e @

Take 2:
e calculate p(zn) =3, .- >, b1z, 22) . b 1(Tn1,20)
= without building p(x)

e normalize it p(z,) = p(zn)/ (>, B(zn))
e idea: use the ab+ ac = a(b+ c)



Inference and the distributive lav

distributive law ab +ac = a(b+c)

save comutation by factoring the operations
in disguise >, f(=,v)9(y,2) = >_,9(y,2) >, f(z,y)

® asSUMINg |Val(X)| = [Val(Y)| = |Val(Z)| = d

o from O(d?) to O(d?)



Inference:s.«wexample
p(x) = 3 T1i5, ¢i(@i, i) @ O—O—O @
Take 2:

® ObjECtive p(xm) = Zml cen an—1 d1(z1,22) - . pn-1(Tn-1,n)

e systematically apply the factorization:
P(@m) =0  In1(To-1,Zn) Dy, Pn2(Tn-2,Tn-1) ... >, ¢1(T1,22)

e complexity is O(nd?) instead of O(d")



Inference: example 2

Objective: p(z1 | Tg) = pgf(}—’f)ﬁ) X4
! x;
another way to write P(Xl | X6 = 1_,'6) X()
(used in Jordan's textbook) Xl

e calculate the numerator
e denominator is then easy

P(Z6) = 2z, P(21,T6) X, X,

source: Michael Jordan's book



Inference: example 2

X>

o

X3 Xs

p(z1,%6) = Z Z Z ZP (z1)p(z2 [ 21)p(zs [ 21)p(za | 22)p(25 | 23)p(Z6 | 22, 25)

To T3 T4 I

= pl@1) Y plez2|z1) Y plrs|@1) > plwa|we) Y plas|xs)p(Es | w2, w5) ®
x2 T3 x4 z5 0(d3)
= p(z1) Y _plws|z1) Y plrs|z) Y plea|zo)ms(zs, z3)

source: Michael Jordan's book



Inference: example X;

-

X Xs

p(z1,%6) = plz1) ZP(-’EQ | 1) ZP(-’% | 71) ZP(-’M | z9)ms (T2, x3)
T T3 T4

= p(z1) Y _pla2|z1) Y plos|z)ms(z,z3) Y plas| o)
T2 x3 T4 O(dz)
= pl@1) Y _plza|z)ma(zs) Y plas|zi)ms(zs, z3).

9 Tr3

source: Michael Jordan's book



Inference: example

X,

X; Xs

p(wl,iﬁﬁ) = T] ZP Tz"ﬁ ZP T3|T1 Zp T4|TQ s 12 13)

= 331 E pxg\.m E ijg‘ZEl :I?g,:l’?;g Z:p I/I‘IQ is constant
T4

= p(xy) Zp (z2 | z1)my(z2) Zp z3 | x1)ms(x9, T3).

To T3 IO(dS)

= p(z1) Zp(:z:g | x1)my(z9)ms(zq, x2)

I O(d?)

= p(z1)ma(xy).



Inference: example

overall complexity O(d®) instead of O(d°)
E—

if we had built the 5d array of
p(z1, %2, T3, %4, T5 | Tg)

in the general case (’)(dn)



Inference: example (undirected version)

P(T1,T6) = % Yog, . o D@1, 2)P(1, 23) P22, 23) P23, T5) P2, 5, T6) 0 (6, To)

using a delta-function for conditioning

1 if g = Tg
§(zg, Tg) =
(26, ) {0, otherwise

add it as a local potential




Inference: example (undirected version)

every step remains the same
p(mh 1_36) - Z Z:@ (331, $2)¢($1, $3)¢(CE2, $3)¢(£B3, $5)¢($2, L5, wﬁ)d("'cﬁa 3_36)

— Z Zm (1, z2) (1, 3) (T2, T3)P(3, T5) M6 (T2, X5)

— % sz ¢(a:1, :1:2) - ,m4(.’132) ZIS ¢($1, a:3)m5(:132, x3) X,

= % Do, P(1,22) - .y ma(z2)ms(21, 2) ;

e %m2($1) ?<
except: in Bayes-nets Z=1

e qt this point normalization is easy! X X;



Variable elimination

input: =% = {¢1,...,¢x} a set of factors
output: lexm 11 ¢1(Dx)

goover zi,...,Z; insome order:

m collect all the relevant factors: ¥t = {¢ € &' | z;, € Scope|¢]}
= calculate their product: 9 = [[4cq: ¢
" marginalize out x;,: ¢ =3, ¥

= update the set of factors: & = &1 — ¥ + {y!}

return the product of factors in &*=™



Variable elimination: example
e input: ®=° = {¢1,..., ¢k } a set of factors

= {p(z2 | z1),p(x3 | z1),p(Z6 | T2, %5), p(%4 | T2),p(z5 | 23)}

» output: 3, [, ¢(Dy)

ple,z6) = DY > > plz)p(ez|z1)p(s| 21)p(es | 2)p(as | 3)p(E6 | 72, 25)

To T3 T4 T



Variable elimination: example

* gooverx;,...,x; insome order:

X4
L5y Lgy L3y L2 X,

o

X3 X5



Variable elimination: example
e for x5 :
= collect all the relevant factors Wt = {¢ € ® | z;, € Scope[s]}
= calculate their product ¥ = [[;cq: ¢

X4
X>

W0 = {p(z | @2, 75), p(w5 | 73)} ©<

Yi(x2, 23, 25) = p(T6 | T2, x5)p(x5 | T3)
X3 Xs



Variable elimination: example

e for x5 :
= Ut = {¢p e d |z, € Scope|p|}
u Y = que\lﬂf ¢

= marginalize out zxy

X>
o0 = {p(Z6 | z2,5),p(x5 | 3)}

X,
Vi (2,23, 25) = p(Z6 | T2, 25)p(T5 | *3) ©<

Yi(z2,23) = D, Yi(@2, T3, 25)

X3 Xs



Variable elimination: example

e for x5 :
= Ut = {¢p € ®' | z;, € Scope[p|}
u Py = Hng‘I/t ¢

= marginalize out zxy

Z3
x
o0 = {p(Z6 | z2,5),p(x5 | 3)} ’

Vi (2,23, 5) = p(Z6 | T2, 25)p(T5 | 23)—

Yi(z2,23) = D, Yi(@2, T3, 25)

L2




Variable elimination: example

e for Ty :
. V' = {¢ € &' | z;, € Scope[¢]}
[ ] ¢t — H¢€qjt ¢
| L5

= update the set of factors &' = &1 — ¥t + {4/}

¢£($27 m3) — ch5 wt(w% L3, $5)

TO = {p(x2 | z1),p(xs | 1), (%6 | z2,25),p(xs | 22),p(z5 | 23)}

! = {p(zy | z1),p(z3 | 21),p(24 | T2), i (22, 73)}



Variable elimination: example

e for x5
m Ut = {¢p € ®' | z;, € Scope[p]}
u Py = que\I/f ¢
| w5
. o' =@ — '+ {4}

Pt = {p(w2 ‘ C131)717(5173 ’ C13'1)717(374 ‘ m2)7¢£(273)}

repeat for x4, 3, T2



Variable elimination: example

calculating p(«;): following the graph
using the order Tg,Ts5, T4, T3, T2

3% = {p(x2 | 1),p(x3 | 1), p(26 | w2, 25), p(zs | 22), (25 | 23)}




Variable elimination: example

calculating p(x1)

using the order Tg,Ts5, T4, T3, T2

&' = {p(zs | z1),p(z3 | 21), V! (22, 25), p(2s | 22),p(5 | 23)}

"p,l (x27 2175)

X4

Xs

t

1



Variable elimination: example

calculating p(x1)

using the order xg¢,Ts5, T4, T3, T2

(Pl — {p(w2 | CEl))

p(x3 | z1),9] (22, 25),p(24 | 2), 0(25 | 23)}

$2,$3,$5 ¢2 wZ,m?)

->->o<

t=2

X4



Variable elimination: example

calculating p(x1)

using the order xg¢,Ts5, T4, T3, T2

= {p(z2 | z1),p(x3 | 1), ¥5(22, 23), p(x4 | 22)} t=2

X4

X: ¢2 L2, L3, L5 ¢2 wz’m?’

& » = O

X Xs




Variable elimination: example

calculating p(x1)

using the order x¢,Ts5, T4, T3, T2

®* = {p(z2 | z1),p(z3 | 21), Vs (za, 23), p(zs | 72)}

X4
X>

. P3(w2,@4)  P5(x2) X,
o =» =

X, X

t

3



Variable elimination: example

calculating p(x1)

using the order x¢,Ts5, T4, T3, T2

®3 = {p(x2 | 1), p(x3 | 1), ¥y (22, 23), Y5 (x2)}

X4
X>

. P3(w, 1) P5(x2) X,
o =» =

X, X3

t

3



Variable elimination: example

calculating p(x1)

using the order xg¢,Ts5, T4, T3, T2
— {p(wZ | wl),p(ibg { $1),¢§($2,$3)7¢§($2)}

X, 5131,332,5133 1,04 331,5132

e

X3

t

4



Variable elimination: example

calculating p(x1)

using the order xg¢,Ts5, T4, T3, T2
$* = {p(wZ | 531),1/1%(502),1#&(231,332)}

X, 5131,332,5133 ¢4 331,5132

e

X3

t

4



Variable elimination: example

calculating p(x1)

using the order xg¢,Ts5, T4, T3, T2
&* = {p(z2 | 21), P5(22), Yy (w1, 22)}

6 Vs (z1,22)  Ps(1)

o -

t=5



Variable elimination: example

calculating p(x1)

using the order xg¢,Ts5, T4, T3, T2
®° = {5 (1)}

6 VY5 (21, x2) @bé(f’?l) X,

B > O

t=5



Variable elimination: example
P(T1) = 2 D0, 0y D(@1, T2)P(21, 3) (22, 23)P(23, T5) P(2, 5, T6)

at final iteration: ®° = {¢}(z;)} N

the marginal of interest p(z1) = 29%(z1) O

One more elimination step: ®% = {y;(0) = Z}

e gives the partition function 7z =3 ¢/(z;)



Complexity

e goover Lipy- -+ Li, in some order:

collect all the relevant factors: ¥t = {¢ € ®' | ;, € Scope[d]}
 calculate their product: ¢, = [],cq: ¢

" marginalize out =i . ¥ =3,

" update the set of factors: @t = &t~ — ¥t 4 {4}

complexity: number of varsin ¥;:  O(max; d¥eorelill)

e depends on the graph structure



Induced graph

complexity of step t: number of vars in O( d/Seoretindl)

e depends on the graph structure

induced graph

e add edges created during the elimination
e maximal cliques correspond to v¢; Vt




Induced graph

e maximal cliques correspond to some ¥ why?

B take one such clique - e.g., {X2, X3, X5}
B take the first to be eliminated - e.g., X5

B gll the edges to X5 exist before its elimination

B therefore, removing Xs will create a factor with  Scopely:] = { X2, X3, X5}



Induced graph

e maximal cliques correspond to some ¥ why?

B take one such clique - e.g., {X2, X3, X5}
B take the first to be eliminated - e.g., X5

B gll the edges to X5 exist before its elimination

B therefore, removing Xs will create a factor with  Scopely:] = { X2, X3, X5}

e the induced graph is chordal

all the loops > 3 have a chord
® 3 similar argument



Tree-width

maximal cliques correspond to ¥

cost of marginalizing ; is O(dSerelvl)

largest cligue dominates the cost of variable elimination » ¥,

e tree-width of a tree =1
e NP-hard to calculate the tree-width
e use heuristics to find good orderings



Ordering heuristics

choose the next vertex to eliminate by:

e minimizing the effect of the created clique/factor

® min-neighbours: #neigbours in the current graph

® min-weight: product of cardinality of neighbours




Ordering heuristics

choose the next vertex to eliminate by:

e minimizing the effect of the created clique/factor

® min-neighbours: #neigbours in the current graph

® min-weight: product of cardinality of neighbours

e minimizing the effect of fill edges

B min-fill: number of fill-edges after its elimination
B weighted min-fill: edges are weighted by the

product of the cardinality of the two vertices




Ordering heuristics

minimizing the #fill edges tends to work better in practice

to minimize the cost one could:

® try different heuristics
® calculate the max-clique size
® pick the best ordering

® apply variable elimination

comparing the size of factors

Munin1

Munin2

nEINEl

TRl

n

I

1l

i

1)

Best HUGIN MIN MIN MIN WMIN- MIN- MIN- MIN- WMIN- Best HUGIN MIN- MIN- MIN- WMIN- M\N M\N M\N WM\NV
known Fill  Fill N W Fill Fill known N W Fill Fill
(1) (H (H (1 (10) (100 (10) (10 (Y] ()] ()] n (10) (10) (10) HO)
Munin3 Munin4
30
25
20

1l

Best HUGIN
known

MIN- MIN MIN- WMIN-
Fill Fill
(1) (1) m m

Water

MIN- MIN NIIN WMIN
(10) 110' (10) (10)

Best HUGIN
known

M\N M\N MIN- WMIN-
Fill Fill
11) H) M m

Diabetes

M\N MIN- M\N WM\N-
(10) (10) (10) HOD

SN WARO O N® O
RS A

I

i

i |

B HUG!N

MIN MIN MIN- WMIN
Fill Fill
(1) (ﬂ m m

MIN MIN- MIN- WMIN-

w Fill Fill
(10) (100 (100  (10)

o m

...

L

Best HUGIN
nown

M\N M\N MIN- WM\N
Fill Fill
H) H) m

M\N MIN- M\N WM\N-
(10) (10) (mi ‘10)



Answering other queries

we saw variable elimination (VE) for marginalization

P(X1) = > ay..zn P(X1, X2 = 23,

Introducing evidence leads to a similar problem

P(X1, X =2p,
P(Xy | Xm =zm) = Ea(}(m:mm) )

® useVEtoget P(Xi, X, =2zn)
e marginalize this to get P(Xm = zm)
® devide!



Answering other queries

we saw variable elimination (VE) for marginalization
PXi=mz)=>, . PXi=z,Xo=m,...,Xn = x,)
MAP inference: sum — max
Q(X1 = 1) = maxy, . o P(X1,X2 =x2,...,Xn =)

® run VE with maximization instead of summation
® eliminating ALL the variables gives a single value max, P(X = x)
® we can also get the maximizing assignment as well (later!)

arg maxx P(X = x)



quiz: tree width

what is the tree-width in these graphical models?



qguiz: induced graph

what are the fill-edges corresponding to the following elimination
order? A,B,C,D,E,F

e @ @ A C E
> >
e @ e B D F



qguiz: induced graph

what are the fill-edges corresponding to the following elimination
order? A,B,C,D,E,F

(4 (© &) 1) (© &
S>>
SE D OOE



qguiz: induced graph

what are the fill-edges corresponding to the following elimination
order? A,B,C,D,E,F

OO DO E
S
OO GO

is this graph chordal? how about this one?



Summary

e inference in graphical models is NP-hard

= even approximating it is NP-hard
e brute-force inference has an exponential cost
e use the graph structure + distributive law:

= variable elimination algorithm
m cost grows with the tree-width of the graph

= NP-hard to calculate the tree-width / optimal ordering
= use heuristics



