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Learning objectivesLearning objectives

why structure learning is hard?
two approaches to structure learning

constraint-based methods
score based methods

MLE vs Bayesian score
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Structure learningStructure learning in BayesNets in BayesNets

Identifiable up to I-equivalence

family of methods

constraint-based methods
estimate cond. independencies from the data

find compatible BayesNets

a DAG with the same set of conditional independencies (CI) I(G) = I(p  )D

hypothesis testing

first attempt: a DAG that is I-map for

Perfect MAP

p  D I(G) ⊆ I(p  )D

X ⊥ Y ∣ Z?



minimal I-mapminimal I-map from CI test from CI test

input: IC test oracle; an ordering
output: a minimal I-map G
 
for i=1...n
 

find minimal                                      s.t.
set

X  , … ,X  1 n

(X  ⊥i X  , … ,X  −1 i−1 U ∣ U)U ⊆ {X  , … ,X  }1 i−1

X  1 X  nX  i

Pa  ←X  i U X  ⊥ NonDesc  ∣ Pa  i X  i X  i

a DAG where removing an edge violates I-map property
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minimal I-mapminimal I-map from CI test from CI test
Problems:

CI tests involve many variables
number of CI tests is exponential
a minimal I-MAP may be far from a P-MAP

different orderings give different graphs Example:

D,I,S,G,L
(a topological ordering)

L,S,G,I,D L,D,S,I,G



Structure learningStructure learning in BayesNets in BayesNets

Identifiable up to I-equivalence

family of methods

constraint-based methods
estimate cond. independencies from the data

find compatible BayesNets

a DAG with the same set of conditional independencies (CI)

I(G) = I(p  )D

first attempt: a DAG that is I-map for p  D I(G) ⊆ I(p  )D

can we find a perfect MAP with fewer IC tests
involving fewer variables?

second attempt: a DAG that is P-map for
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Perfect mapPerfect map from CI test from CI test

only up to I-equivalence
the same set of CIs

same skeleton
same immoralities

procedure:

1. find the undirected skeleton using CI tests
2. identify immoralities in the undirected graph
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1. finding the undirected skeleton

observation: if X and Y are not adjacent then                                 ORX ⊥ Y ∣ Pa  X X ⊥ Y ∣ Pa  Y

assumption: max number of parents d

idea: search over all subsets of size d, and check CI above

input: CI oracle; bound on #parents d

output: undirected skeleton

initialize H as a complete undirected graph

for all pairs
     for all subsets U of size            (within current neighbors of                 )

             If                      then remove                from H
return H

X  ,X  i j

≤ d

X  ⊥i X  ∣j U X  −i X  j

X  ,X  i j = O((n ) ×2 O((n − 2) )d

O(n )d+2
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Perfect mapPerfect map from CI test from CI test
2. finding the immoralities

input: CI oracle; bound on #parents d

output: undirected skeleton

initialize H as a complete undirected graph

for all pairs
     for all subsets U of size            (within current neighbors of                 )

             If                      then remove                from H
return H

X  ,X  i j

≤ d

X  ⊥i X  ∣j U X  −i X  j

X  ,X  i j

potential immorality
X − Z,Y − Z ∈ H,X − Y  ∈ H

not immorality only if

X  ⊥i X  ∣j U⇒ Z ∈ U

save the U when removing X-Y
see if Z in U?

if no, then we have immorality

X Y

Z

YX

Z
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Perfect mapPerfect map from CI test from CI test
3. propagate the constraints

at this point: a mix of directed and undirected edges
add directions using the following rules (needed to preserve immoralities / DAG structure)

until convergence
Example

Ground truth DAG

undirected skeleton
+immoralities using rules R1,R2,R3

for exact CI tests, this guarantees the exact I-equivalence family
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conditional independence (CI) testconditional independence (CI) test

how to decide                         from the datasetX ⊥ Y ∣ Z D

large deviance  rejects the null hypothesis (of conditional independence)

d(D) > tpick a threshold

p-value is the probability of false rejection pvalue(t) = P ({D : d(D) > t} ∣ X ⊥ Y ∣ Z)

over all possible datasets

it is possible to derive the distribution of deviance measures

e.g.,         distribution
reject a hypothesis (CI) for small p-values (.05)

χ2

.05

.95
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Mutual informationMutual information

how much information does X encode about Y?

I(X,Y ) = H(X) − H(X∣Y ) = H(Y ) − H(Y ∣X)

reduction in the uncertainty of X after observing Y

symmetric = I(Y ,X)

= D  (p(x, y)∥p(x)p(y))KL

I(X,Y ) =  p(x, y) log(  )∑x,y p(x)p(y)
p(x,y)

positive

conditional entropy  p(x)H(p(y∣x))∑x
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= N   p  (x  ,Pa  ) log  + log p  (x  )∑i∑x  ,Pa  i x  i
D i x  i

(
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p  (x  ,Pa  )D i x  i
D i )

using the definition of mutual information = N  I  (X  ,Pa  ) −∑i D i X  i
H  (X  )D i

using the empirical distribution
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Optimal solution for Optimal solution for treestrees
likelihood score ℓ(D, θ ) =∗ N  I  (X  ,Pa  ) −∑i D i X  i

H  (X  )D i

structure learning algorithms use mutual information in the structure search:

Chow-Liu algorithm: find the max-spanning tree:
 edge-weights = mutual information

add direction to edges later

make sure each node has at most one parent (i.e., no v-structure)

does not depend on structure

I  (X  ,X  )D i j

I  (X  ,X  ) =D j i I  (X  ,X  )D i j
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Bayesian Score Bayesian Score for BayesNetsfor BayesNets

P (G∣D) ∝ P (D∣G)P (G)

G θ

 P (D∣θ,G)P (θ ∣∫
θ∈Θ  G

G)dθ marginal likelihood for a structure

assuming local and global parameter independence

factorizes to the marginal likelihood of each node

log
score  (G,D) =B log P (D∣G) + log P (G)

G

for Dirichlet-multinomial has closed form

score  (G,D) ≈B ℓ(D, θ  ) −∗
G  log(∣D∣)K2

1Bayesian Information Criterion (BIC)

#parameters

for large sample size

any exp-family member

Akaike Information Criterion (AIC) ℓ(D, θ  ) −∗
G  K2

1
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G  1

G  2

= ∣D∣

The Bayesian score is biased towards simpler structures



Bayesian Score Bayesian Score for BayesNetsfor BayesNets

Example The Bayesian score is biased towards simpler structures

= ∣D∣

data sampled from ICU alarm Bayesnet

Bayesian score of the true model (509 params.)
simplified model (359 params)

simplified model (214 params)
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Structure searchStructure search

 is NP-hardarg max  Score(D,G)G

use heuristic search algorithms (discussed for MAP inference)

local search using: edge addition
edge deletion
edge reversal

use the decomposition of the score

O(N )2 possible moves

collect sufficient statistics (frequencies)
estimate the score

example ICU-alarm network
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SummarySummary

Structure learning is NP-hard
Make assumptions to simplify:

constraint-based methods:
limit the max number of parents

rely on CI tests

identifies the I-equivalence class

score based methods:
tree structure

use a Bayesian score + heuristic search

finds a locally optimal structure


