Probabilistic Graphical Models

Structure learning in Bayesian networks

Siamak Ravanbakhsh

Fall 2019

Learning objectives

- why structure learning is hard?
- two approaches to structure learning
 - constraint-based methods
 - score based methods
- MLE vs Bayesian score

family of methods

- constraint-based methods
 - estimate cond. independencies from the data
 - find compatible BayesNets

family of methods

- constraint-based methods
 - estimate cond. independencies from the data
 - find compatible BayesNets
- search over the combinatorial space, maximizing a **score**

 $2^{\mathcal{O}(n^2)}$

family of methods

- constraint-based methods
 - estimate cond. independencies from the data
 - find compatible BayesNets
- search over the combinatorial space, maximizing a score $2^{\mathcal{O}(n^2)}$
- Bayesian model averaging
 - integrate over all possible structures

family of methods

- constraint-based methods
 - estimate cond. independencies from the data
 - find compatible BayesNets

- search over the combinatorial space, maximizing a **score**
- Bayesian model averaging
 - integrate over all possible structures

Identifiable up to I-equivalence

family of methods

- constraint-based methods
 - estimate cond. independencies from the data
 - find compatible BayesNets

a DAG with the same set of conditional independencies (CI) $\mathcal{I}(\mathcal{G}) = \mathcal{I}(p_{\mathcal{D}})$

Identifiable up to I-equivalence

family of methods

- constraint-based methods
 - estimate cond. independencies from the data
 - find compatible BayesNets

Perfect MAP

a DAG with the same set of conditional independencies (CI) $\mathcal{I}(\mathcal{G}) = \mathcal{I}(p_{\mathcal{D}})$

Identifiable up to I-equivalence

family of methods

- constraint-based methods
 - estimate cond. independencies from the data
 - find compatible BayesNets

hypothesis testing

Identifiable up to I-equivalence

family of methods

- constraint-based methods
 - estimate cond. independencies from the data
 - find compatible BayesNets

Identifiable up to I-equivalence

family of <u>methods</u>

- constraint-based methods
 - estimate cond. independencies from the data
 - find compatible BayesNets

Perfect MAP

a DAG with the same set of conditional independencies (CI) $\mathcal{I}(\mathcal{G}) = \mathcal{I}(p_{\mathcal{D}})$

first attempt: a DAG that is **I-map** for $p_{\mathcal{D}}$ $\mathcal{I}(\mathcal{G}) \subseteq \mathcal{I}(p_{\mathcal{D}})$

minimal I-map from CI test

a DAG where removing an edge violates I-map property

input: IC test oracle; an ordering X_1, \ldots, X_n **output**: a minimal I-map G

for i=1...n

• find minimal $\mathbf{U} \subseteq \{X_1, \dots, X_{i-1}\}$ s.t. $(X_i \perp X_1, \dots, X_{i-1} - \mathbf{U} \mid \mathbf{U})$ • set $Pa_{X_i} \leftarrow \mathbf{U}$ $X_i \perp NonDesc_{X_i} \mid Pa_{X_i}$

minimal I-map from CI test

Problems:

- CI tests involve many variables
- number of CI tests is exponential
- a minimal I-MAP may be far from a P-MAP

minimal I-map from CI test

Problems:

- CI tests involve many variables
- number of CI tests is exponential
- a minimal I-MAP may be far from a P-MAP

Identifiable up to I-equivalence

family of methods

- constraint-based methods
 - estimate cond. independencies from the data
 - find compatible BayesNets

a DAG with the same set of conditional independencies (CI)

first attempt: a DAG that is **I-map** for $p_{\mathcal{D}} \quad \mathcal{I}(\mathcal{G}) \subseteq \mathcal{I}(p_{\mathcal{D}})$ **second attempt:** a DAG that is **P-map** for $\quad \mathcal{I}(\mathcal{G}) = \mathcal{I}(p_{\mathcal{D}})$ can we find a perfect MAP with fewer IC tests involving fewer variables?

V

Ζ

Y

X

Ζ

X

V

only up to **I-equivalence** the same set of CIs

- same skeleton
- same immoralities

only up to **I-equivalence**

- the same set of Cls
 - same skeleton
 - same immoralities

WY

Ζ

procedure:

find the undirected skeleton using CI tests
 identify immoralities in the undirected graph

1. finding the undirected skeleton

observation: if X and Y are not adjacent then $X \perp Y \mid Pa_X$ OR $X \perp Y \mid Pa_Y$

1. finding the undirected skeleton

observation: if X and Y are not adjacent then $X \perp Y \mid Pa_X$ OR $X \perp Y \mid Pa_Y$

assumption: max number of parents d

1. finding the undirected skeleton

observation: if X and Y are not adjacent then $X \perp Y \mid Pa_X$ OR $X \perp Y \mid Pa_Y$

assumption: max number of parents d

idea: search over all subsets of size d, and check CI above

1. finding the undirected skeleton

observation: if X and Y are not adjacent then $X \perp Y \mid Pa_X$ OR $X \perp Y \mid Pa_Y$

assumption: max number of parents d

idea: search over all subsets of size d, and check CI above

```
input: CI oracle; bound on #parents d

output: undirected skeleton

initialize H as a complete undirected graph

for all pairs X_i, X_j

for all subsets U of size \leq d (within current neighbors of X_i, X_j)

If X_i \perp X_j \mid \mathbf{U} then remove X_i - X_j from H

return H
```

1. finding the undirected skeleton

observation: if X and Y are not adjacent then $X \perp Y \mid Pa_X$ OR $X \perp Y \mid Pa_Y$

assumption: max number of parents d

idea: search over all subsets of size d, and check CI above

input: CI oracle; bound on #parents d **output:** undirected skeleton *initialize* **H** as a complete *undirected* graph for all pairs X_i, X_j for all subsets **U** of size $\leq d$ (within current neighbors of X_i, X_j) If $X_i \perp X_j \mid \mathbf{U}$ then remove $X_i - X_j$ from **H** return **H**

 $\mathcal{O}(n^{d+2}) = \mathcal{O}((n^2) imes \mathcal{O}((n-2)^d))$

2. finding the immoralities

potential immorality

 $X-Z,Y-Z\in\mathcal{H},X-Y
ot\in\mathcal{H}$

2. finding the immoralities

potential immorality $X - Z, Y - Z \in \mathcal{H}, X - Y \notin \mathcal{H}$ $\overbrace{Z}^{(X)}$

2. finding the immoralities

not immorality only if

 $X_i \perp X_j \mid \mathbf{U} \Rightarrow Z \in \mathbf{U}$

2. finding the immoralities

potential immorality

 $X-Z,Y-Z\in\mathcal{H},X-Y
ot\in\mathcal{H}$

input: CI oracle; bound on #parents d output: undirected skeleton *initialize* **H** as a complete *undirected* graph for all pairs X_i, X_j for all subsets U of size $d \leq d$ (within current neighbors of X_i, X_j^j If $X_i \perp X_i \mid \mathbf{U}$ then remove $X_i - X_i$ from **H** return H

not immorality only if

 $X_i \perp X_i \mid \mathbf{U} \Rightarrow Z \in \mathbf{U}$

- save the **U** when removing X-Ysee if Z in **U?**
- - if no, then we have immorality

3. propagate the constraints

at this point: a mix of directed and undirected edges

3. propagate the constraints

at this point: a mix of directed and undirected edges add directions using the following rules (needed to preserve immoralities / DAG structure) until convergence

3. propagate the constraints

at this point: a mix of directed and undirected edges

add directions using the following rules (needed to preserve immoralities / DAG structure)

until convergence

3. propagate the constraints

at this point: a mix of directed and undirected edges

add directions using the following rules (needed to preserve immoralities / DAG structure)

until convergence

3. propagate the constraints

at this point: a mix of directed and undirected edges

add directions using the following rules (needed to preserve immoralities / DAG structure)

until convergence

how to decide $|X \perp Y \mid Z|$ from the dataset $|\mathcal{D}|$

how to decide $\ X \perp Y \mid Z$ from the dataset $\ \mathcal{D}$

measure the deviance of $p_{\mathcal{D}}(X \mid Z)p_{\mathcal{D}}(Y \mid Z)$ from $p_{\mathcal{D}}(X, Y \mid Z)$

• conditional mututal information

 $d_I(\mathcal{D}) = \mathbb{E}_Z[\mathbf{D}(p_\mathcal{D}(X,Y|Z)||p_\mathcal{D}(X|Z)p_\mathcal{D}(Y|Z))]$

• χ^2 statistics

how to decide $|X \perp Y \mid Z|$ from the dataset $|\mathcal{D}|$

measure the deviance of $p_{\mathcal{D}}(X \mid Z)p_{\mathcal{D}}(Y \mid Z)$ from $p_{\mathcal{D}}(X, Y \mid Z)$

conditional mututal information

• χ^2 statistics

 $egin{aligned} d_I(\mathcal{D}) &= \mathbb{E}_Z[\mathbf{D}(p_\mathcal{D}(X,Y|Z)||p_\mathcal{D}(X|Z)p_\mathcal{D}(Y|Z))] \ \mathcal{D}^2 ext{ statistics} \ d_{\chi^2}(\mathcal{D}) &= |\mathcal{D}| \sum_{x,y,z} rac{(p_\mathcal{D}(x,y,z) - p_\mathcal{D}(z)p_\mathcal{D}(x|z)p_\mathcal{D}(y|z))^2}{p_\mathcal{D}(z)p_\mathcal{D}(x|z)p_\mathcal{D}(y|z)} \end{aligned}$

using frequencies in the dataset

how to decide $|X \perp Y \mid Z|$ from the dataset $|\mathcal{D}|$

measure the deviance of $p_{\mathcal{D}}(X \mid Z)p_{\mathcal{D}}(Y \mid Z)$ from $p_{\mathcal{D}}(X, Y \mid Z)$

conditional mututal information

• χ^2 statistics

$$d_{\chi^2}(\mathcal{D}) = |\mathcal{D}| \sum_{x,y,z} rac{(p_\mathcal{D}(x,y,z) - p_\mathcal{D}(z)p_\mathcal{D}(x|z)p_\mathcal{D}(y|z))^2}{p_\mathcal{D}(z)p_\mathcal{D}(x|z)p_\mathcal{D}(y|z)}$$

 $d_I(\mathcal{D}) = \mathbb{E}_Z[\mathbf{D}(p_{\mathcal{D}}(X, Y|Z)||p_{\mathcal{D}}(X|Z)p_{\mathcal{D}}(Y|Z))]$ using frequencies in the dataset

large deviance rejects the null hypothesis (of conditional independence)

how to decide $|X \perp Y \mid Z|$ from the dataset $|\mathcal{D}|$

measure the deviance of $p_{\mathcal{D}}(X \mid Z)p_{\mathcal{D}}(Y \mid Z)$ from $p_{\mathcal{D}}(X, Y \mid Z)$

conditional mututal information

 $d_I(\mathcal{D}) = \mathbb{E}_Z[\mathbf{D}(p_\mathcal{D}(X,Y|Z)||p_\mathcal{D}(X|Z)p_\mathcal{D}(Y|Z))]$

• χ^2 statistics

 $d_{\chi^2}(\mathcal{D}) = |\mathcal{D}| \sum_{x,y,z} \frac{(p_{\mathcal{D}}(x,y,z) - p_{\mathcal{D}}(z)p_{\mathcal{D}}(x|z)p_{\mathcal{D}}(y|z))^2}{p_{\mathcal{D}}(z)p_{\mathcal{D}}(x|z)p_{\mathcal{D}}(y|z)}$

using frequencies in the dataset

large deviance rejects the null hypothesis (of conditional independence) pick a threshold $\ d(\mathcal{D}) > t$

conditional independence (CI) test

how to decide $\ X \perp Y \mid Z$ from the dataset $\ \mathcal{D}$

measure the deviance of $p_{\mathcal{D}}(X \mid Z)p_{\mathcal{D}}(Y \mid Z)$ from $p_{\mathcal{D}}(X, Y \mid Z)$

conditional mututal information

• χ^2 statistics

 $egin{aligned} &d_I(\mathcal{D}) = \mathbb{E}_Z[\mathbf{D}(p_\mathcal{D}(X,Y|Z)||p_\mathcal{D}(X|Z)p_\mathcal{D}(Y|Z))]\ &d_Z^2 ext{ statistics}\ &d_{\chi^2}(\mathcal{D}) = |\mathcal{D}|\sum_{x,y,z}rac{(p_\mathcal{D}(x,y,z)-p_\mathcal{D}(z)p_\mathcal{D}(x|z)p_\mathcal{D}(y|z))^2}{p_\mathcal{D}(z)p_\mathcal{D}(x|z)p_\mathcal{D}(y|z)} \end{aligned}$

using frequencies in the dataset

large deviance rejects the null hypothesis (of conditional independence) pick a threshold $d(\mathcal{D}) > t$

p-value is the probability of false rejection pvalue $(t) = P(\{\mathcal{D} : d(\mathcal{D}) > t\} \mid X \perp Y \mid Z)$

conditional independence (CI) test

how to decide $|X \perp Y \mid Z$ from the dataset $|\mathcal{D}|$

large deviance rejects the null hypothesis (of conditional independence) \downarrow pick a threshold $d(\mathcal{D}) > t$

p-value is the probability of false rejection $pvalue(t) = P(\{\mathcal{D} : d(\mathcal{D}) > t\} \mid X \perp Y \mid Z)$ \downarrow over all possible datasets \bigcirc

conditional independence (CI) test

how to decide $|X \perp Y \mid Z$ from the dataset $|\mathcal{D}|$

large deviance rejects the null hypothesis (of conditional independence) \downarrow pick a threshold $d(\mathcal{D}) > t$

p-value is the probability of false rejection $pvalue(t) = P(\{\mathcal{D} : d(\mathcal{D}) > t\} | X \perp Y | Z)$ wover all possible datasets (\mathcal{D}) it is possible to derive the distribution of deviance measures • e.g., χ^2 distribution reject a hypothesis (CI) for small p-values (.05)

Structure learning in BayesNets

family of methods

- constraint-based methods
 - estimate cond. independencies from the data
 - find compatible BayesNets
- search over the combinatorial space, maximizing a **score**
- Bayesian model averaging
 - integrate over all possible structures

how much information does X encode about Y? reduction in the uncertainty of X after observing Y

how much information does X encode about Y?

reduction in the uncertainty of X after observing Y

I(X,Y) = H(X) - H(X|Y) \downarrow conditional entropy $\sum_{x} p(x) H(p(y|x))$

how much information does X encode about Y?

reduction in the uncertainty of X after observing Y

how much information does X encode about Y?

reduction in the uncertainty of X after observing Y

$$I(X,Y) = \sum_{x,y} p(x,y) \log(rac{p(x,y)}{p(x)p(y)})$$

how much information does X encode about Y?

reduction in the uncertainty of X after observing Y

$$I(X,Y) = \sum_{x,y} p(x,y) \log(rac{p(x,y)}{p(x)p(y)})$$

 $= D_{KL}(p(x,y) \| p(x) p(y))$ positive

log-likelihood $\ell(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_{i} \log p(x_i \mid Pa_{x_i}; \theta_{i \mid Pa_i})$

 $\begin{array}{ll} \mathsf{log-likelihood} & \ell(\mathcal{D};\theta) = \sum_{x \in \mathcal{D}} \sum_{i} \log p(x_i \mid Pa_{x_i};\theta_{i \mid Pa_i}) \\ & = \sum_{i} \sum_{(x_i, Pa_{x_i}) \in \mathcal{D}} \log p(x_i \mid Pa_{x_i};\theta_{i \mid Pa_i}) \end{array}$

log-likelihood

$$egin{aligned} \ell(\mathcal{D}; heta) &= \sum_{x\in\mathcal{D}}\sum_i\log p(x_i\mid Pa_{x_i}; heta_{i\mid Pa_i}) \ &= \sum_i\sum_{(x_i,Pa_{x_i})\in\mathcal{D}}\log p(x_i\mid Pa_{x_i}; heta_{i\mid Pa_i}) \end{aligned}$$

using the empirical distribution

$$N = N \sum_i \sum_{x_i, Pa_{x_i}} p_{\mathcal{D}}(x, Pa_{x_i}) \log p(x_i \mid Pa_{x_i}; heta_{i \mid Pa_i})$$

 $\begin{array}{ll} \mbox{log-likelihood} & \ell(\mathcal{D};\theta) = \sum_{x \in \mathcal{D}} \sum_i \log p(x_i \mid Pa_{x_i};\theta_{i \mid Pa_i}) \\ & = \sum_i \sum_{(x_i,Pa_{x_i}) \in \mathcal{D}} \log p(x_i \mid Pa_{x_i};\theta_{i \mid Pa_i}) \\ & \text{using the empirical distribution} & = N \sum_i \sum_{x_i,Pa_{x_i}} p_{\mathcal{D}}(x,Pa_{x_i}) \log p(x_i \mid Pa_{x_i};\theta_{i \mid Pa_i}) \end{array}$

use MLE estimate $\ell(\mathcal{D}, \theta^*) = N \sum_i \sum_{x_i, Pa_{x_i}} p_{\mathcal{D}}(x_i, Pa_{x_i}) \log p_{\mathcal{D}}(x_i \mid Pa_{x_i})$

$$\begin{split} \mathsf{log-likelihood} \quad \ell(\mathcal{D};\theta) &= \sum_{x \in \mathcal{D}} \sum_i \log p(x_i \mid Pa_{x_i};\theta_{i \mid Pa_i}) \\ &= \sum_i \sum_{(x_i, Pa_{x_i}) \in \mathcal{D}} \log p(x_i \mid Pa_{x_i};\theta_{i \mid Pa_i}) \\ \mathsf{using the empirical distribution} \quad &= N \sum_i \sum_{x_i, Pa_{x_i}} p_{\mathcal{D}}(x, Pa_{x_i}) \log p(x_i \mid Pa_{x_i};\theta_{i \mid Pa_i}) \end{split}$$

use MLE estimate $\ell(\mathcal{D}, \theta^*) = N \sum_i \sum_{x_i, Pa_{x_i}} p_{\mathcal{D}}(x_i, Pa_{x_i}) \log p_{\mathcal{D}}(x_i \mid Pa_{x_i})$

$$N = N \sum_i \sum_{x_i, Pa_{x_i}} p_{\mathcal{D}}(x_i, Pa_{x_i}) \left(\log rac{p_{\mathcal{D}}(x_i, Pa_{x_i})}{p_{\mathcal{D}}(x_i)p_{\mathcal{D}}(Pa_{x_i})} + \log p_{\mathcal{D}}(x_i)
ight)$$

log-likelihood $\ell(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_{i} \log p(x_i \mid Pa_{x_i}; \theta_{i \mid Pa_i})$ $= \sum_i \sum_{(x_i, Pa_{x_i}) \in \mathcal{D}} \log p(x_i \mid Pa_{x_i}; \theta_{i \mid Pa_i})$

using the empirical distribution

$$N = N \sum_i \sum_{x_i, Pa_{x_i}} p_{\mathcal{D}}(x, Pa_{x_i}) \log p(x_i \mid Pa_{x_i}; heta_{i \mid Pa_i})$$

use MLE estimate $\ell(\mathcal{D}, \theta^*) = N \sum_i \sum_{x_i, Pa_{x_i}} p_{\mathcal{D}}(x_i, Pa_{x_i}) \log p_{\mathcal{D}}(x_i \mid Pa_{x_i})$

$$N = N \sum_i \sum_{x_i, Pa_{x_i}} p_{\mathcal{D}}(x_i, Pa_{x_i}) \left(\log rac{p_{\mathcal{D}}(x_i, Pa_{x_i})}{p_{\mathcal{D}}(x_i)p_{\mathcal{D}}(Pa_{x_i})} + \log p_{\mathcal{D}}(x_i)
ight)$$

using the definition of mutual information

$$= N \sum_i I_{\mathcal{D}}(X_i, Pa_{X_i}) - H_{\mathcal{D}}(X_i)$$

likelihood score $\ell(\mathcal{D}, \theta^*) = N \sum_i I_{\mathcal{D}}(X_i, Pa_{X_i}) - H_{\mathcal{D}}(X_i)$

likelihood score $\ell(\mathcal{D}, \theta^*) = N \sum_i I_{\mathcal{D}}(X_i, Pa_{X_i}) - H_{\mathcal{D}}(X_i)$

does not depend on structure

likelihood score $\ell(\mathcal{D}, \theta^*) = N \sum_i I_{\mathcal{D}}(X_i, Pa_{X_i}) - H_{\mathcal{D}}(X_i)$ does not depend on structure $I_{\mathcal{D}}(X_i, X_j)$

likelihood score $\ell(\mathcal{D}, \theta^*) = N \sum_i I_{\mathcal{D}}(X_i, Pa_{X_i}) - H_{\mathcal{D}}(X_i)$ does not depend on structure $I_{\mathcal{D}}(X_i, X_i)$

structure learning algorithms use mutual information in the structure search:

- **Chow-Liu algorithm**: find the max-spanning **tree**:
 - edge-weights = mutual information
 - add direction to edges later $I_{\mathcal{D}}(X_j, X_i) = I_{\mathcal{D}}(X_i, X_j)$
 - ^O make sure each node has at most one parent (i.e., no v-structure)

Bayesian about both structure $\,\mathcal{G}\,$ and parameters $\,\theta\,$ $P(\mathcal{G}|\mathcal{D}) \propto P(\mathcal{D}|\mathcal{G})P(\mathcal{G})$

Bayesian about both structure $\, \mathcal{G} \,$ and parameters $\, heta \,$

$$P(\mathcal{G}|\mathcal{D}) \propto P(\mathcal{D}|\mathcal{G})P(\mathcal{G}) \stackrel{\log}{\longrightarrow}$$

 $\mathrm{score}_B(\mathcal{G},\mathcal{D}) = \log P(\mathcal{D}|\mathcal{G}) + \log P(\mathcal{G})$

Bayesian about both structure \mathcal{G} and parameters θ $P(\mathcal{G}|\mathcal{D}) \propto P(\mathcal{D}|\mathcal{G})P(\mathcal{G}) \xrightarrow{\log} \operatorname{score}_B(\mathcal{G},\mathcal{D}) = \log P(\mathcal{D}|\mathcal{G}) + \log P(\mathcal{G})$ $\int_{\theta \in \Theta_{\mathcal{G}}} P(\mathcal{D}|\theta,\mathcal{G})P(\theta \mid \mathcal{G})d\theta$ marginal likelihood for a structure \mathcal{G}

for Dirichlet-multinomial has closed form

Example The Bayesian score is biased towards simpler structures

Example The Bayesian score is biased towards simpler structures

data sampled from ICU alarm Bayesnet

 $\arg \max_{\mathcal{G}} \operatorname{Score}(\mathcal{D}, \mathcal{G})$ is NP-hard

use heuristic search algorithms (discussed for MAP inference)

```
\operatorname{arg\,max}_{\mathcal{G}}\operatorname{Score}(\mathcal{D},\mathcal{G}) is NP-hard
```

use heuristic search algorithms (discussed for MAP inference)

local search using: edge addition edge deletion edge reversal

```
\operatorname{arg} \operatorname{max}_{\mathcal{G}} \operatorname{Score}(\mathcal{D}, \mathcal{G}) is NP-hard
```

use heuristic search algorithms (discussed for MAP inference)

local search using: edge addition edge deletion edge reversal


```
\operatorname{arg\,max}_{\mathcal{G}}\operatorname{Score}(\mathcal{D},\mathcal{G}) is NP-hard
```

use heuristic search algorithms (discussed for MAP inference)

local search using: edge addition edge deletion edge reversal

- collect sufficient statistics (frequencies)
- estimate the score

```
\operatorname{arg\,max}_{\mathcal{G}}\operatorname{Score}(\mathcal{D},\mathcal{G}) is NP-hard
```

use heuristic search algorithms (discussed for MAP inference)

local search using: edge addition edge deletion edge reversal

```
\mathcal{O}(N^2) possible moves
```

- collect sufficient statistics (frequencies)
- estimate the score

use the **decomposition** of the score

```
\arg \max_{\mathcal{G}} \operatorname{Score}(\mathcal{D}, \mathcal{G}) is NP-hard
```

use heuristic search algorithms (discussed for MAP inference)

Summary

Structure learning is NP-hard Make assumptions to simplify:

Summary

Structure learning is NP-hard Make assumptions to simplify:

- constraint-based methods:
 - limit the max number of parents
 - rely on CI tests
 - identifies the *I-equivalence class*

Summary

Structure learning is NP-hard Make assumptions to simplify:

- constraint-based methods:
 - limit the max number of parents
 - rely on CI tests
 - identifies the *l-equivalence class*
- score based methods:
 - tree structure
 - use a Bayesian score + heuristic search
 - finds a *locally optimal* structure