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Learning objectives

e why structure learning is hard?
e two approaches to structure learning

m constraint-based methods
m score based methods

e MLE vs Bayesian score
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e search over the combinatorial space, maximizing a score

e Bayesian model averaging

B integrate over all possible structures
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Structure learning in BayesNets

Identifiable up to I-equivalence

family of methods

e constraint-based methods

B estimate cond. independencies from the data
® find compatible BayesNets
Perfect MAP

a DAG with the same set of conditional independencies (Cl) Z(G) = Z(pp)

first attempt: a DAG that is I-map for pp Z(G) C Z(pp) l

hypothesis testing
X 1Y |Z?



minimal I-map from Cl test

a DAG where removing an edge violates I-map property

input: IC test oracle; an ordering X,..., X,
output: a minimal I-map G

Lo LGl I o E RN >

e findminimal UC {X,,...,X; 1} st (X;LX,....,X;1—U|U)
* sel pgy + U
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minimal I-map from Cl test

@ Problems:

® (I tests involve many variables
® number of Cl tests is exponential
® a minimal I-MAP may be far from a P-MAP

different orderings give different graphs

()—(1)
A
> Gl B B ca'e c«:/ o
> 0 o &
D,I,S,G,L L,S,G,I,D L,D,S,1,G

(a topological ordering)




Structure learning in BayesNets

Identifiable up to I-equivalence

family of methods

e constraint-based methods

B estimate cond. independencies from the data

® find compatible BayesNets

a DAG with the same set of conditional independencies (Cl)

first attempt: a DAG that is I-map for pp Z(G) C Z(pp)

second attempt: a DAG that is P-map for Z(G) = Z(pp)
can we find a perfect MAP with fewer IC tests

involving fewer variables?
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Perfect map from CI test

only up to I-equivalence

the same set of Cls
e same skeleton
e same immoralities @ 9 @ @

procedure:

1. find the undirected skeleton using Cl tests
2. identify immoralities in the undirected graph
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Perfect map from CI test

observation: if Xand Y are not adjacentthen X L Y | Pax OR X LY | Pay
assumption: max number of parents d

idea: search over all subsets of size d, and check Cl above

input: Cl oracle; bound on #parents d
output: undirected skeleton
initialize H as a complete undirected graph
for all pairs X;, X; (f)(nd+2)
for all subsets U of size < d  within current neighbors of x;, x;, ) _ o) x O((n - 2)Y)
If X; L X;|U thenremove X; —X; fromH

return H
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Perfect map from CI test

potential immorality

X-ZY—-ZcH,X-Y&H »
oy
©



Perfect map from CI test

potential immorality not immorality only if

X-Z)Y-Z X-Y
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Perfect map from CI test

potential immorality not immorality only if

X-ZY-ZcHX-YdH

N

4

e save the U when removing X-Y
e seeifZinU?
= if no, then we have immorality

S

©

If x, 1 X; | uthenremove x, _Xjfrom H
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Perfect map from CI test

at this point: a mix of directed and undirected edges

add dil’eCtionS USing the fO”OWing rU|eS (needed to preserve immoralities / DAG structure)
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Perfect map from CI test

at this point: a mix of directed and undirected edges
add direCtiOHS USing the fO”OWing rU|eS (needed to preserve immoralities / DAG structure)

undirected skeleton
Exa mple +immoralities

Ground truth DAG

until convergence
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Perfect map from CI test

at this point: a mix of directed and undirected edges
add direCtiOHS USing the fO”OWing rUIeS (needed to preserve immoralities / DAG structure)

undirected skeleton
Example +immoralities using rules R1,R2,R3

until convergence

for exact Cl tests, this guarantees the exact I-equivalence family
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pick a threshold d(D) >t

p-value is the probability of false rejection pvalue(t) = P({D:d(D) >t} | X LY | Z)
N

over all possible datasets @



conditional independence (Cl) test

howtodecide X 1Y | Z from the dataset D

large deviance rejects the null hypothesis (of conditional independence)

pick a threshold d(D) >t

p-value is the probability of false rejection pvalue(t) = P({D:d(D) >t} | X LY | Z)
N
over all possible datasets @

it is possible to derive the distribution of deviance measures @

°* eg., x* distribution
reject a hypothesis (Cl) for small p-values (.05)

.95

.05
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Mutual information

how much information does X encode about Y?

reduction in the uncertainty of X after observing Y
I(X,Y)=H(X)—-H(X|Y) =HY)-HY|X)
| BT - (Y, X)

conditional entropy >, p(z)H (p(y|z))

I(X,Y) =Y, p(z,y) log(224)

= Dxr(p(z, y)|p(z)p(y))



M LE in BayES'nEtS mutual information form

log-likelihood U(D;0) = > ,cp >_ilogp(zi | Paz;;0;pa,)



M LE in BayES'nEtS mutual information form

log-likelihood U(D;0) = >_,cp >_ilogp(zi | Pas;;0;pa,)

- Ez Z(xz ,Paz, )€D lOg p(wl ‘ Pa’%a 9i|Pai)



M LE in BayES'nEtS mutual information form

log-likelihood U(D;0) = > pep Xoi10gp(i | Pag,; 04pa;)
- Ez Z(wi,Pami )eD logp(wl ‘ Pa’ﬂvm 9i|Paz‘)

using the empirical distribution = NZZ Zwi,P%. PD (:1;, Pa,wi) logp(gci | Pa,,; 9i|Pai)



M LE in BayES'nEtS mutual information form

log-likelihood U(D;0) = > pep Xo;10g p(i | Pag,; 0;pa;)
- Ez Z(wi,Pami )eD logp(wl ‘ Pa’ﬂvm 0i|Paz‘)

using the empirical distribution = NZZ Zwi,P%. PD (:1;, Pa,xi) logp(gci | Pa,,; 9i|Pai)

use MLE estimate 4(D,0%) = N.; > .. pa,, Po(€i, Pas;)logpo (i | Pas,)



M LE in BayES'nEtS mutual information form

log-likelihood U(D;0) = > pep Xo;10g p(i | Pag,; 0;pa;)
- Ez Z(wi,Pami )eD logp(wl ‘ Pa’ﬂvm 9i|Paz‘)

using the empirical distribution = NZZ Zwi,P%. PD (:1;, Pa,xi) logp(gci | Pa,,; 9i|Pai)

use MLE estimate 4(D,0") = N>, > ., pa, Po(zi, Pas,)logpp(zi | Pas,)

x;,Pag.
= sz zmi,pawi pD(CBia Pa’mi) (log Plf(zi)po(Péii) + logPD(mi))



M LE in BayES'nEtS mutual information form

log-likelihood U(D;0) = > pep Xo;10g p(i | Pag,; 0;pa;)
- Ez Z(wi,Pami )eD logp(wl ‘ Pa’ﬂvm 9i|Paz‘)

using the empirical distribution = NZZ Zwi,P%. PD (:1;, Pa,xi) logp(gci | Pa,,; 9i|Pai)

use MLE estimate 4(D,0") = N>, > ., pa, Po(zi, Pas,)logpp(zi | Pas,)

x;,Pag.
= sz zmi,pawi pD(CBia Pa’mi) (log Plf(zi)po(Péii) + logPD(mi))

using the definition of mutual information = NZZ ID(Xz', Pa,Xl_) — HD(Xz)
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Optimal solution for trees

likelihood score  4(D,6") = N _; In(X;, Pax,) — Hp(Xi)
l does not depend on structure

Ip(X;, X;)

structure lea rning algorithms use mutual information in the structure search:

* Chow-Liu algorithm: find the max-spanning tree:
B edge-weights = mutual information
B add direction to edges later In(X;, X;) = In(X;, X;)

O make sure each node has at most one parent (i.e., no v-structure)
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Bayesian Score for BayesNets

Bayesian about both structure G and parameters 6

P(G|D) x P(D|G)P(G) 10% scorep(G, D) = log P(D|G) + log P(G)

l

fee@ D‘@ g) (9 ] g)d9 marginal likelihood for a structure

assuming local and global parameter independence for large sample size

) ) ) ) any exp-family member
factorizes to the marginal likelihood of each node
for Dirichlet-multinomial has closed form

#parameters

Bayesian Information Criterion (BIC)  scoreg (G, D) ~ £(D, 0*g) — 3 log(|D|) K
Akaike Information Criterion (AIC) L(D,0g) — %K



Bayesian Score for BayesNets

Example The Bayesian score is biased towards simpler structures
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Bayesian Score for BayesNets

Example The Bayesian score is biased towards simpler structures

data sampled from ICU alarm Bayesnet

-161 ——— Bayesian score of the true model (509 params.)
- "'—_ ........... 6&4\'\ simplified model (359 params)
S 8 g : ...... | simplified model (214 params)

a |
a -20r :
3 :
—x -2} i
q 5
i -
245 :
| :

0 SbO 1,000 1500 2,000 2500 3,000
M = |D|
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Structure search

arg maxg Score(D,G) js NP-hard

use heuristic search algorithms (discussed for MAP inference)

edge addition
edge deletion
edge reversal

@ O(N?) possible moves

l

* collect sufficient statistics (frequencies)
e estimate the score

l

@ use the decomposition of the score

local search using:

example ICU-alarm network

--------- Parameter learning
——— Structurelearning

KL Divergence

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
M
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Summary

Structure learning is NP-hard
Make assumptions to simplify:

e constraint-based methods:

B |imit the max number of parents
® rely on Cl tests

B dentifies the /-equivalence class
e score based methods:
B tree structure

B use a Bayesian score + heuristic search

® finds a locally optimal structure



