Probabilistic Graphical Models

Structure learning in Bayesian networks

Learning objectives

- why structure learning is hard?
- two approaches to structure learning
- constraint-based methods
- score based methods
- MLE vs Bayesian score

Structure learning in BayesNets

family of methods

- constraint-based methods
- estimate cond. independencies from the data
- find compatible BayesNets

Structure learning in BayesNets

family of methods

- constraint-based methods
- estimate cond. independencies from the data
- find compatible BayesNets
- search over the combinatorial space, maximizing a score $2^{\mathcal{O}\left(n^{2}\right)}$

Structure learning in BayesNets

family of methods

- constraint-based methods
- estimate cond. independencies from the data
- find compatible BayesNets
- search over the combinatorial space, maximizing a score
$2^{\mathcal{O}\left(n^{2}\right)}$
- Bayesian model averaging
- integrate over all possible structures

Structure learning in BayesNets

family of methods

- constraint-based methods
- estimate cond. independencies from the data
- find compatible BayesNets
- search over the combinatorial space, maximizing a score
- Bayesian model averaging

■ integrate over all possible structures

Structure learning in BayesNets

Identifiable up to I-equivalence
family of methods

- constraint-based methods
- estimate cond. independencies from the data
- find compatible BayesNets
a DAG with the same set of conditional independencies (CI) $\mathcal{I}(\mathcal{G})=\mathcal{I}\left(p_{\mathcal{D}}\right)$

Structure learning in BayesNets

Identifiable up to I-equivalence
family of methods

- constraint-based methods
- estimate cond. independencies from the data
- find compatible BayesNets
a DAG with the same set of conditional independencies (CI) $\mathcal{I}(\mathcal{G})=\mathcal{I}\left(p_{\mathcal{D}}\right)$

Structure learning in BayesNets

Identifiable up to I-equivalence

family of methods

- constraint-based methods
- estimate cond. independencies from the data
- find compatible BayesNets

Perfect MAP
a DAG with the same set of conditional independencies $(\mathrm{Cl}) \quad \mathcal{I}(\mathcal{G})=\mathcal{I}\left(p_{\mathcal{D}}\right)$

hypothesis testing

Structure learning in BayesNets

Identifiable up to I-equivalence

family of methods

- constraint-based methods
- estimate cond. independencies from the data
- find compatible BayesNets

Perfect MAP
a DAG with the same set of conditional independencies $(\mathrm{CI}) \quad \mathcal{I}(\mathcal{G})=\mathcal{I}\left(p_{\mathcal{D}}\right)$

$$
(\mathcal{G})=\perp\left(p_{\mathcal{D}}\right)
$$

hypothesis testing

$$
X \perp Y \mid \mathbf{Z} ?
$$

Structure learning in BayesNets

Identifiable up to I-equivalence

family of methods

- constraint-based methods
- estimate cond. independencies from the data
- find compatible BayesNets
a DAG with the same set of conditional independencies (CI) $\quad \mathcal{I}(\mathcal{G})=\mathcal{I}\left(p_{\mathcal{D}}\right)$
first attempt: a DAG that is I-map for $p_{\mathcal{D}} \quad \mathcal{I}(\mathcal{G}) \subseteq \mathcal{I}\left(p_{\mathcal{D}}\right)$

Perfect MAP

hypothesis testing

$$
X \perp Y \mid \mathbf{Z} ?
$$

minimal I-map from CI test

a DAG where removing an edge violates I-map property
input: IC test oracle; an ordering X_{1}, \ldots, X_{n} output: a minimal I-map G
for $\mathrm{i}=1 . . . n$

- find minimal $\mathbf{U} \subseteq\left\{X_{1}, \ldots, X_{i-1}\right\}$ s.t. $\quad\left(X_{i} \perp X_{1}, \ldots, X_{i-1}-\mathbf{U} \mid \mathbf{U}\right)$
- set $P a_{X_{i}} \leftarrow \mathbf{U}$

minimal I-map from CI test

∞

Problems:

- Cl tests involve many variables
- number of Cl tests is exponential
- a minimal I-MAP may be far from a P-MAP

minimal I-map from Cl test

${ }^{\circ}$

Problems:

- CI tests involve many variables
- number of Cl tests is exponential
- a minimal I-MAP may be far from a P-MAP

Example:

different orderings give different graphs

?

D,I,S,G,L
(a topological ordering)

Structure learning in BayesNets

Identifiable up to I-equivalence

family of methods

- constraint-based methods
- estimate cond. independencies from the data
- find compatible BayesNets
a DAG with the same set of conditional independencies (CI)
first attempt: a DAG that is I-map for $p_{\mathcal{D}} \quad \mathcal{I}(\mathcal{G}) \subseteq \mathcal{I}\left(p_{\mathcal{D}}\right)$
second attempt: a DAG that is P-map for $\mathcal{I}(\mathcal{G})=\mathcal{I}\left(p_{\mathcal{D}}\right)$
can we find a perfect MAP with fewer IC tests
involving fewer variables?

Perfect map from CI test

only up to I-equivalence the same set of Cls

- same skeleton
- same immoralities

Perfect map from CI test

only up to I-equivalence the same set of Cls

- same skeleton
- same immoralities

procedure:

1. find the undirected skeleton using Cl tests
2. identify immoralities in the undirected graph

Perfect map from CI test

1. finding the undirected skeleton
observation: if X and Y are not adjacent then $X \perp Y \mid P a_{X} \quad$ OR $\quad X \perp Y \mid P a_{Y}$

Perfect map from Cl test

1. finding the undirected skeleton
observation: if X and Y are not adjacent then $X \perp Y \mid P a_{X} \quad$ OR $\quad X \perp Y \mid P a_{Y}$ assumption: max number of parents d

Perfect map from CI test

1. finding the undirected skeleton
observation: if X and Y are not adjacent then $X \perp Y \mid P a_{X} \quad$ OR $\quad X \perp Y \mid P a_{Y}$ assumption: max number of parents d
idea: search over all subsets of size d , and check Cl above

Perfect map from CI test

1. finding the undirected skeleton
observation: if X and Y are not adjacent then $X \perp Y \mid P a_{X} \quad$ OR $\quad X \perp Y \mid P a_{Y}$ assumption: max number of parents d
idea: search over all subsets of size d , and check Cl above
input: Cl oracle; bound on \#parents d
output: undirected skeleton
initialize H as a complete undirected graph
for all pairs X_{i}, X_{j}
for all subsets \mathbf{U} of size $\leq d$ (within current neighbors of X_{i}, X_{j})
If $X_{i} \perp X_{j} \mid \mathbf{U}$ then remove $X_{i}-X_{j}$ from \mathbf{H}
return \mathbf{H}

Perfect map from CI test

1. finding the undirected skeleton
observation: if X and Y are not adjacent then $X \perp Y \mid P a_{X} \quad$ OR $\quad X \perp Y \mid P a_{Y}$ assumption: max number of parents d
idea: search over all subsets of size d , and check Cl above
input: Cl oracle; bound on \#parents d
output: undirected skeleton
initialize H as a complete undirected graph
for all pairs X_{i}, X_{j}
for all subsets \mathbf{U} of size $\leq d$ (within current neighbors of X_{i}, X_{j})

$$
\mathcal{O}\left(n^{d+2}\right)
$$

If $X_{i} \perp X_{j} \mid \mathbf{U}$ then remove $X_{i}-X_{j}$ from \mathbf{H}
return \mathbf{H}

Perfect map from CI test

potential immorality
$X-Z, Y-Z \in \mathcal{H}, X-Y \notin \mathcal{H}$
\underbrace{X}_{Z}

Perfect map from CI test

2. finding the immoralities

Perfect map from CI test

2. finding the immoralities

Perfect map from CI test

2. finding the immoralities
potential immorality
$X-Z, Y-Z \in \mathcal{H}, X-Y \notin \mathcal{H}$

not immorality only if

$$
X_{i} \perp X_{j} \mid \mathbf{U} \Rightarrow Z \in \mathbf{U}
$$

- save the U when removing X-Y
- see if Z in \mathbf{U} ?
- if no, then we have immorality

```
input: Cl oracle; bound on #parents d
output: undirected skeleton
initialize H}\mathrm{ as a complete undirected graph
for all pairs }\mp@subsup{X}{i}{},\mp@subsup{X}{j}{
    for all subsets U of size
    If }\mp@subsup{X}{i}{}\perp\mp@subsup{X}{j}{}|\mathbf{U}\mathrm{ then remove }\mp@subsup{X}{i}{}-\mp@subsup{X}{j}{f}\mathrm{ from H
return H
```


Perfect map from CI test

3. propagate the constraints
at this point: a mix of directed and undirected edges

Perfect map from CI test

at this point: a mix of directed and undirected edges add directions using the following rules (needed to preserve immoralities $/$ DAG structure) until convergence

R3

for exact Cl tests, this guarantees the exact I-equivalence family

Perfect map from CI test

at this point: a mix of directed and undirected edges
add directions using the following rules (needed to preserve immoralities $/$ DAG structure) until convergence

Example

Ground truth DAG

(a)

(b)

(c)
for exact Cl tests, this guarantees the exact I-equivalence family

Perfect map from CI test

at this point: a mix of directed and undirected edges
add directions using the following rules (needed to preserve immoralities $/$ DAG structure) until convergence

for exact Cl tests, this guarantees the exact I-equivalence family

Perfect map from CI test

at this point: a mix of directed and undirected edges
add directions using the following rules (needed to preserve immoralities $/$ DAG structure) until convergence

for exact Cl tests, this guarantees the exact I-equivalence family

conditional independence (CI) test

how to decide $X \perp Y \mid Z$ from the dataset \mathcal{D}

conditional independence (CI) test

how to decide $X \perp Y \mid Z$ from the dataset \mathcal{D}
measure the deviance of $p_{\mathcal{D}}(X \mid Z) p_{\mathcal{D}}(Y \mid Z)$ from $\quad p_{\mathcal{D}}(X, Y \mid Z)$

- conditional mututal information

$$
d_{I}(\mathcal{D})=\mathbb{E}_{Z}\left[\mathbf{D}\left(p_{\mathcal{D}}(X, Y \mid Z) \| p_{\mathcal{D}}(X \mid Z) p_{\mathcal{D}}(Y \mid Z)\right)\right]
$$

- χ^{2} statistics

conditional independence (CI) test

how to decide $X \perp Y \mid Z$ from the dataset \mathcal{D}
measure the deviance of $p_{\mathcal{D}}(X \mid Z) p_{\mathcal{D}}(Y \mid Z)$ from $\quad p_{\mathcal{D}}(X, Y \mid Z)$

- conditional mututal information

$$
d_{I}(\mathcal{D})=\mathbb{E}_{Z}\left[\mathbf{D}\left(p_{\mathcal{D}}(X, Y \mid Z) \| p_{\mathcal{D}}(X \mid Z) p_{\mathcal{D}}(Y \mid Z)\right)\right]
$$

- χ^{2} statistics
using frequencies in the dataset
$d_{\chi^{2}}(\mathcal{D})=|\mathcal{D}| \sum_{x, y, z} \frac{\left(p_{\mathcal{D}}(x, y, z)-p_{\mathcal{D}}(z) p_{\mathcal{D}}(x \mid z) p_{\mathcal{D}}(y \mid z)\right)^{2}}{p_{\mathcal{D}}(z) p_{\mathcal{D}}(x \mid z) p_{\mathcal{D}}(y \mid z)}$

conditional independence (CI) test

how to decide $X \perp Y \mid Z$ from the dataset \mathcal{D}
measure the deviance of $p_{\mathcal{D}}(X \mid Z) p_{\mathcal{D}}(Y \mid Z)$ from $\quad p_{\mathcal{D}}(X, Y \mid Z)$

- conditional mututal information

$$
d_{I}(\mathcal{D})=\mathbb{E}_{Z}\left[\mathbf{D}\left(p_{\mathcal{D}}(X, Y \mid Z) \| p_{\mathcal{D}}(X \mid Z) p_{\mathcal{D}}(Y \mid Z)\right)\right]
$$

- χ^{2} statistics

$$
d_{\chi^{2}}(\mathcal{D})=|\mathcal{D}| \sum_{x, y, z} \frac{\left(p_{\mathcal{D}}(x, y, z)-p_{\mathcal{D}}(z) p_{\mathcal{D}}(x \mid z) p_{\mathcal{D}}(y \mid z)\right)^{2}}{p_{\mathcal{D}}(z) p_{\mathcal{D}}(x \mid z) p_{\mathcal{D}}(y \mid z)}
$$

large deviance rejects the null hypothesis (of conditional independence)

conditional independence (CI) test

how to decide $X \perp Y \mid Z$ from the dataset \mathcal{D}
measure the deviance of $p_{\mathcal{D}}(X \mid Z) p_{\mathcal{D}}(Y \mid Z)$ from $\quad p_{\mathcal{D}}(X, Y \mid Z)$

- conditional mututal information

$$
d_{I}(\mathcal{D})=\mathbb{E}_{Z}\left[\mathbf{D}\left(p_{\mathcal{D}}(X, Y \mid Z) \| p_{\mathcal{D}}(X \mid Z) p_{\mathcal{D}}(Y \mid Z)\right)\right]
$$

- χ^{2} statistics

$$
d_{\chi^{2}}(\mathcal{D})=|\mathcal{D}| \sum_{x, y, z} \frac{\left(p_{\mathcal{D}}(x, y, z)-p_{\mathcal{D}}(z) p_{\mathcal{D}}(x \mid z) p_{\mathcal{D}}(y \mid z)\right)^{2}}{p_{\mathcal{D}}(z) p_{\mathcal{D}}(x \mid z) p_{\mathcal{D}}(y \mid z)}
$$

large deviance rejects the null hypothesis (of conditional independence) \downarrow
pick a threshold $d(\mathcal{D})>t$

conditional independence (CI) test

how to decide $X \perp Y \mid Z$ from the dataset \mathcal{D}
measure the deviance of $p_{\mathcal{D}}(X \mid Z) p_{\mathcal{D}}(Y \mid Z)$ from $\quad p_{\mathcal{D}}(X, Y \mid Z)$

- conditional mututal information

$$
d_{I}(\mathcal{D})=\mathbb{E}_{Z}\left[\mathbf{D}\left(p_{\mathcal{D}}(X, Y \mid Z)| | p_{\mathcal{D}}(X \mid Z) p_{\mathcal{D}}(Y \mid Z)\right)\right]
$$

- χ^{2} statistics

$$
d_{\chi^{2}}(\mathcal{D})=|\mathcal{D}| \sum_{x, y, z} \frac{\left(p_{\mathcal{D}}(x, y, z)-p_{\mathcal{D}}(z) p_{\mathcal{D}}(x \mid z) p_{\mathcal{D}}(y \mid z)\right)^{2}}{p_{\mathcal{D}}(z) p_{\mathcal{D}}(x \mid z) p_{\mathcal{D}}(y \mid z)}
$$

large deviance rejects the null hypothesis (of conditional independence)
\downarrow
pick a threshold $d(\mathcal{D})>t$
\mathbf{p}-value is the probability of false rejection $\quad p$ value $(t)=P(\{\mathcal{D}: d(\mathcal{D})>t\}|X \perp Y| Z)$

conditional independence (CI) test

how to decide $\quad X \perp Y \mid Z$ from the dataset \mathcal{D}
large deviance rejects the null hypothesis (of conditional independence)
$\stackrel{\downarrow}{\text { pick a threshold }} d(\mathcal{D})>t$
p-value is the probability of false rejection $\quad p$ value $(t)=P(\underset{\substack{\downarrow \\ \text { over all possible datasets } \\ \downarrow}}{\substack{\mathcal{D} \\ \hline \\ \hline}}$

conditional independence (CI) test

how to decide $\quad X \perp Y \mid Z$ from the dataset \mathcal{D}
large deviance rejects the null hypothesis (of conditional independence)
\downarrow
pick a threshold $d(\mathcal{D})>t$
p-value is the probability of false rejection $\quad p$ value $(t)=P(\underset{\substack{~ \\ \text { over all possible datasets }: d(\mathcal{D})>t\}}}{\substack{\downarrow \\ \text { ond }}}$
it is possible to derive the distribution of deviance measures - e.g., χ^{2} distribution
reject a hypothesis (CI) for small p-values (.05)

Structure learning in BayesNets

family of methods

- constraint-based methods
- estimate cond. independencies from the data
- find compatible BayesNets
- search over the combinatorial space, maximizing a score
- Bayesian model averaging

- integrate over all possible structures

Mutual information

how much information does X encode about Y ? reduction in the uncertainty of X after observing Y

Mutual information

how much information does X encode about Y ? reduction in the uncertainty of X after observing Y
$I(X, Y)=H(X)-H(X \mid Y)$

Mutual information

how much information does X encode about Y ? reduction in the uncertainty of X after observing Y
$I(X, Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)$
$\downarrow \quad$ symmetric $=I(Y, X)$
conditional entropy $\sum_{x} p(x) H(p(y \mid x))$

Mutual information

how much information does X encode about Y ?
reduction in the uncertainty of X after observing Y

$$
I(X, Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
$$

$$
\downarrow \quad \text { symmetric }=I(Y, X)
$$

$$
\text { conditional entropy } \sum_{x} p(x) H(p(y \mid x))
$$

$$
I(X, Y)=\sum_{x, y} p(x, y) \log \left(\frac{p(x, y)}{p(x) p(y)}\right)
$$

Mutual information

how much information does X encode about Y ?
reduction in the uncertainty of X after observing Y

$$
I(X, Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
$$

$$
\downarrow \quad \text { symmetric }=I(Y, X)
$$

$$
\text { conditional entropy } \sum_{x} p(x) H(p(y \mid x))
$$

$$
\begin{aligned}
I(X, Y) & =\sum_{x, y} p(x, y) \log \left(\frac{p(x, y)}{p(x) p(y)}\right) \\
& =D_{K L}(p(x, y) \| p(x) p(y))
\end{aligned}
$$

MLE in Bayes-nets mutual information form

log-likelihood

$$
\ell(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right)
$$

MLE in Bayes-nets mutual information form

log-likelihood

$$
\begin{aligned}
\ell(\mathcal{D} ; \theta) & =\sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right) \\
& =\sum_{i} \sum_{\left(x_{i}, P a_{x_{i}}\right) \in \mathcal{D}} \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right)
\end{aligned}
$$

MLE in Bayes-nets mutual information form

log-likelihood
using the empirical distribution

$$
\begin{aligned}
\ell(\mathcal{D} ; \theta) & =\sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right) \\
& =\sum_{i} \sum_{\left(x_{i}, P a_{x_{i}}\right) \in \mathcal{D}} \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right) \\
& =N \sum_{i} \sum_{x_{i}, P a_{x_{i}}} p_{\mathcal{D}}\left(x, P a_{x_{i}}\right) \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right)
\end{aligned}
$$

MLE in Bayes-nets mutual information form

log-likelihood
using the empirical distribution

$$
\begin{aligned}
\ell(\mathcal{D} ; \theta) & =\sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right) \\
& =\sum_{i} \sum_{\left(x_{i}, P a_{x_{i}}\right) \in \mathcal{D}} \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right) \\
& =N \sum_{i} \sum_{x_{i}, P a_{x_{i}}} p_{\mathcal{D}}\left(x, P a_{x_{i}}\right) \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right)
\end{aligned}
$$

use MLE estimate $\ell\left(\mathcal{D}, \theta^{*}\right)=N \sum_{i} \sum_{x_{i}, P a_{x_{i}}} p_{\mathcal{D}}\left(x_{i}, P a_{x_{i}}\right) \log p_{\mathcal{D}}\left(x_{i} \mid P a_{x_{i}}\right)$

MLE in Bayes-nets mutual information form

log-likelihood

$$
\begin{aligned}
\ell(\mathcal{D} ; \theta) & =\sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right) \\
& =\sum_{i} \sum_{\left(x_{i}, P a_{x_{i}}\right) \in \mathcal{D}} \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right) \\
& =N \sum_{i} \sum_{x_{i}, P a_{x_{i}}} p_{\mathcal{D}}\left(x, P a_{x_{i}}\right) \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right)
\end{aligned}
$$

use MLE estimate $\ell\left(\mathcal{D}, \theta^{*}\right)=N \sum_{i} \sum_{x_{i}, P a_{x_{i}}} p_{\mathcal{D}}\left(x_{i}, P a_{x_{i}}\right) \log p_{\mathcal{D}}\left(x_{i} \mid P a_{x_{i}}\right)$

$$
=N \sum_{i} \sum_{x_{i}, P a_{x_{i}}} p_{\mathcal{D}}\left(x_{i}, P a_{x_{i}}\right)\left(\log \frac{p_{\mathcal{D}}\left(x_{i}, P a_{x_{i}}\right)}{p_{\mathcal{D}}\left(x_{i}\right) p_{\mathcal{D}}\left(P a_{x_{i}}\right)}+\log p_{\mathcal{D}}\left(x_{i}\right)\right)
$$

MLE in Bayes-nets mutual information form

log-likelihood
using the empirical distribution

$$
\begin{aligned}
\ell(\mathcal{D} ; \theta) & =\sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right) \\
& =\sum_{i} \sum_{\left(x_{i}, P a_{x_{i}}\right) \in \mathcal{D}} \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right) \\
& =N \sum_{i} \sum_{x_{i}, P a_{x_{i}}} p_{\mathcal{D}}\left(x, P a_{x_{i}}\right) \log p\left(x_{i} \mid P a_{x_{i}} ; \theta_{i \mid P a_{i}}\right)
\end{aligned}
$$

use MLE estimate $\ell\left(\mathcal{D}, \theta^{*}\right)=N \sum_{i} \sum_{x_{i}, P a_{x_{i}}} p_{\mathcal{D}}\left(x_{i}, P a_{x_{i}}\right) \log p_{\mathcal{D}}\left(x_{i} \mid P a_{x_{i}}\right)$

$$
=N \sum_{i} \sum_{x_{i}, P a_{x_{i}}} p_{\mathcal{D}}\left(x_{i}, P a_{x_{i}}\right)\left(\log \frac{p_{\mathcal{D}}\left(x_{i}, P a_{x_{i}}\right)}{p_{\mathcal{D}}\left(x_{i}\right) p_{\mathcal{D}}\left(P a_{x_{i}}\right)}+\log p_{\mathcal{D}}\left(x_{i}\right)\right)
$$

$$
\text { using the definition of mutual information } \quad=N \sum_{i} I_{\mathcal{D}}\left(X_{i}, P a_{X_{i}}\right)-H_{\mathcal{D}}\left(X_{i}\right)
$$

Optimal solution for trees

likelihood score $\quad \ell\left(\mathcal{D}, \theta^{*}\right)=N \sum_{i} I_{\mathcal{D}}\left(X_{i}, P a_{X_{i}}\right)-H_{\mathcal{D}}\left(X_{i}\right)$

Optimal solution for trees

likelihood score $\quad \ell\left(\mathcal{D}, \theta^{*}\right)=N \sum_{i} I_{\mathcal{D}}\left(X_{i}, P a_{X_{i}}\right)-H_{\mathcal{D}}\left(X_{i}\right)$
does not depend on structure

Optimal solution for trees

likelihood score $\quad \ell\left(\mathcal{D}, \theta^{*}\right)=N \sum_{i} I_{\mathcal{D}}\left(X_{i}, P a_{X_{i}}\right)-H_{\mathcal{D}}\left(X_{i}\right)$
does not depend on structure
$I_{\mathcal{D}}\left(\stackrel{\downarrow}{X}_{i}, X_{j}\right)$

Optimal solution for trees

likelihood score

$$
\ell\left(\mathcal{D}, \theta^{*}\right)=N \sum_{i} I_{\mathcal{D}}\left(X_{i}, P a_{X_{i}}\right)-H_{\mathcal{D}}\left(X_{i}\right)
$$

structure learning algorithms use mutual information in the structure search:

- Chow-Liu algorithm: find the max-spanning tree:
- edge-weights = mutual information

■ add direction to edges later $I_{\mathcal{D}}\left(X_{j}, X_{i}\right)=I_{\mathcal{D}}\left(X_{i}, X_{j}\right)$

- make sure each node has at most one parent (i.e., no v-structure)

Bayesian Score for BayesNets

Bayesian about both structure \mathcal{G} and parameters θ
$P(\mathcal{G} \mid \mathcal{D}) \propto P(\mathcal{D} \mid \mathcal{G}) P(\mathcal{G})$

Bayesian Score for BayesNets

Bayesian about both structure \mathcal{G} and parameters θ

$$
P(\mathcal{G} \mid \mathcal{D}) \propto P(\mathcal{D} \mid \mathcal{G}) P(\mathcal{G}) \stackrel{\log }{\longrightarrow} \quad \operatorname{score}_{B}(\mathcal{G}, \mathcal{D})=\log P(\mathcal{D} \mid \mathcal{G})+\log P(\mathcal{G})
$$

Bayesian Score for BayesNets

Bayesian Score for BayesNets

Bayesian Score for BayesNets

Bayesian Score for BayesNets

Bayesian about both structure \mathcal{G} and parameters θ
$P(\mathcal{G} \mid \mathcal{D}) \propto P(\mathcal{D} \mid \mathcal{G}) P(\mathcal{G}) \xrightarrow{\log } \operatorname{score}_{B}(\mathcal{G}, \mathcal{D})=\log P(\mathcal{D} \mid \mathcal{G})+\log P(\mathcal{G})$
\downarrow
$\int_{\theta \in \Theta_{\mathcal{G}}} P(\mathcal{D} \mid \theta, \mathcal{G}) P(\theta \mid \mathcal{G}) \mathrm{d} \theta \quad$ marginal likelihood for a structure \mathcal{G}
\downarrow assuming local and global parameter independence
factorizes to the marginal likelihood of each node
for Dirichlet-multinomial has closed form
for large sample size
any exp-family member

Bayesian Information Criterion (BIC) $\operatorname{score}_{B}(\mathcal{G}, \mathcal{D}) \approx \ell\left(\mathcal{D}, \theta^{*} \mathcal{G}\right)-\frac{1}{2} \log (|\mathcal{D}|) K$

Bayesian Score for BayesNets

Bayesian about both structure \mathcal{G} and parameters θ
$P(\mathcal{G} \mid \mathcal{D}) \propto P(\mathcal{D} \mid \mathcal{G}) P(\mathcal{G}) \xrightarrow{\log } \operatorname{score}_{B}(\mathcal{G}, \mathcal{D})=\log P(\mathcal{D} \mid \mathcal{G})+\log P(\mathcal{G})$ \downarrow
$\int_{\theta \in \Theta_{\mathcal{G}}} P(\mathcal{D} \mid \theta, \mathcal{G}) P(\theta \mid \mathcal{G}) \mathrm{d} \theta \quad$ marginal likelihood for a structure \mathcal{G} \downarrow assuming local and global parameter independence
factorizes to the marginal likelihood of each node for Dirichlet-multinomial has closed form

Bayesian Information Criterion (BIC) $\operatorname{score}_{B}(\mathcal{G}, \mathcal{D}) \approx \ell\left(\mathcal{D}, \theta^{*}{ }_{\mathcal{G}}\right)-\frac{1}{2} \log (|\mathcal{D}|) K$

Bayesian Score for BayesNets

Bayesian about both structure \mathcal{G} and parameters θ

Bayesian Score for BayesNets

Example The Bayesian score is biased towards simpler structures

Bayesian Score for BayesNets

Example The Bayesian score is biased towards simpler structures

data sampled from ICU alarm Bayesnet

Structure search

$\arg \max _{\mathcal{G}} \operatorname{Score}(\mathcal{D}, \mathcal{G})$ is NP-hard
use heuristic search algorithms (discussed for MAP inference)

Structure search

$\arg \max _{\mathcal{G}} \operatorname{Score}(\mathcal{D}, \mathcal{G})$ is NP-hard
use heuristic search algorithms (discussed for MAP inference)
local search using: edge addition
edge deletion
edge reversal

Structure search

$\arg \max _{\mathcal{G}} \operatorname{Score}(\mathcal{D}, \mathcal{G})$ is NP-hard
use heuristic search algorithms (discussed for MAP inference)
local search using: edge addition edge deletion edge reversal
$\because \mathcal{O}\left(N^{2}\right)$ possible moves

Structure search

$\arg \max _{\mathcal{G}} \operatorname{Score}(\mathcal{D}, \mathcal{G})$ is NP-hard
use heuristic search algorithms (discussed for MAP inference)
local search using: edge addition edge deletion edge reversal

- collect sufficient statistics (frequencies)
- estimate the score

Structure search

$\arg \max _{\mathcal{G}} \operatorname{Score}(\mathcal{D}, \mathcal{G})$ is NP-hard
use heuristic search algorithms (discussed for MAP inference)
local search using: edge addition edge deletion edge reversal
$\mathcal{O}\left(N^{2}\right)$ possible moves

- collect sufficient statistics (frequencies)
- estimate the score

use the decomposition of the score

Structure search

$\arg \max _{\mathcal{G}} \operatorname{Score}(\mathcal{D}, \mathcal{G})$ is NP-hard
use heuristic search algorithms (discussed for MAP inference)
local search using: edge addition
edge deletion
edge reversal
\odot
$\mathcal{O}\left(N^{2}\right)$ possible moves

- collect sufficient statistics (frequencies)
- estimate the score

use the decomposition of the score
example ICU-alarm network

Summary

Structure learning is NP-hard
Make assumptions to simplify:

Summary

Structure learning is NP-hard

Make assumptions to simplify:

- constraint-based methods:
- limit the max number of parents
- rely on Cl tests
- identifies the l-equivalence class

Summary

Structure learning is NP-hard

Make assumptions to simplify:

- constraint-based methods:
- limit the max number of parents
- rely on Cl tests
- identifies the I-equivalence class
- score based methods:
- tree structure

■ use a Bayesian score + heuristic search

- finds a locally optimal structure

