Probabilistic Graphical Models

Variational inference III: Mean-Field

Learning objectives

- naive mean-field method
- its derivation as I-projection
- its update equations

Previously: variational inference

$$
\begin{aligned}
D(q \| p)= & \sum_{\mathbf{x}} q(\mathbf{x})(\ln q(x)-\ln p(x)) \\
= & -H(q)-\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right]+\ln Z \\
\text { entropy } & \text { ignore: does not depend on q }
\end{aligned}
$$

the optimization is defined such that

- marginals of interest can be read from $q \in \mathcal{Q}$
- entropy and expected energy are easy to calculate/approximate

Previously: loopy BP

$$
\begin{aligned}
& \arg \min _{q} D(q \| p) \\
& \\
& \\
& \\
& \qquad \begin{array}{l}
\downarrow \\
p(x)=\frac{1}{Z} \prod_{k} \phi_{i, j}\left(x_{i}, x_{j}\right) \\
\\
\end{array} \quad q(x) \propto \frac{\prod_{i, j \in \mathcal{E}} \hat{q}_{i, j}\left(x_{i}, x_{j}\right)}{\prod_{i} \hat{q}_{i}\left(x_{i}\right)^{N b_{i}-1-1}}
\end{aligned}
$$

such that $\sum_{x_{i}} \hat{q}_{i, j}\left(x_{i}, x_{j}\right)=\hat{q}_{j}\left(x_{j}\right) \quad \forall i, j \in \mathcal{E}, x_{j}$

Previously: loopy BP

- pseudo-marginals can be read from q

Previously: loopy BP

$$
\begin{aligned}
& \arg \min _{q} D(q \| p) \\
& \downarrow \begin{array}{l}
\downarrow \\
p(x)=\frac{1}{Z} \prod_{k} \phi_{i, j}\left(x_{i}, x_{j}\right)
\end{array} \\
& \text { Q } \quad q(x) \propto \frac{\prod_{i, j \in} \hat{q}_{i, j}\left(x_{i}, x_{j}\right)}{\prod_{i} \hat{q}_{i}\left(x_{i}\right)^{1 N_{i} \mid-1}}
\end{aligned}
$$

such that $\sum_{x_{i}} \hat{q}_{i, j}\left(x_{i}, x_{j}\right)=\hat{q}_{j}\left(x_{j}\right) \quad \forall i, j \in \mathcal{E}, x_{j}$

- pseudo-marginals can be read from q
- entropy term is approximated (Bethe approximation)

Previously: loopy BP

$\hat{q}_{i, j}$

$\arg \min _{q} D(q \| p)$

$$
\downarrow \downarrow
$$

$\mathcal{Q} \quad q(x) \propto \frac{\Pi_{i j \in \varepsilon} \hat{q}_{i j}\left(x_{i}, x_{j}\right)}{\prod_{i} \hat{q}_{i}\left(x_{i}\right)^{N_{i}-1}-1}$
such that $\sum_{x_{i}} \hat{q}_{i, j}\left(x_{i}, x_{j}\right)=\hat{q}_{j}\left(x_{j}\right) \quad \forall i, j \in \mathcal{E}, x_{j}$

- pseudo-marginals can be read from q
- entropy term is approximated (Bethe approximation)
- expected energy term is exact

Naive mean-field: objective

I-project p into the product form

$$
\begin{aligned}
& \arg \min _{q \in \mathcal{Q}} D(q \| p) \\
& \quad \begin{array}{l}
\downarrow \\
p(x)=\frac{1}{Z} \prod_{I} \phi_{I}\left(x_{I}\right) \\
\text { a sut }
\end{array} \\
& q(x)=\prod_{i} q_{i}\left(x_{i}\right)
\end{aligned}
$$

Naive mean-field: objective

I-project p into the product form

$$
\begin{gathered}
\arg \min _{q \in \mathcal{Q}} D(q \| p) \\
\left\lvert\, \begin{array}{l}
\downarrow \\
p(x)=\frac{1}{Z} \\
q(x)=\prod_{I} \phi_{I}\left(x_{I}\right) \\
\text { a subset ofvars. }
\end{array}\right. \\
\left.=\arg \min _{q \in \mathcal{Q}}-H(q)-\mathbb{E}_{q}\left[\sum_{I} \ln \phi_{I}\left(x_{I}\right)\right)\right]+\ln Z \\
\downarrow \\
\sum_{i} H\left(q_{i}\right) \\
\downarrow \\
\sum_{I} \sum_{x_{I}}\left(\prod_{i \in I} q_{i}\left(x_{i}\right)\right) \ln \phi_{I}\left(x_{I}\right)
\end{gathered}
$$

Naive mean-field: objective

I-project p into the product form

$$
\begin{aligned}
& \arg \min _{q \in \mathcal{Q}} D(q \| p) \\
& \downarrow \stackrel{\downarrow}{p(x)}=\frac{1}{Z} \prod_{I} \phi_{I}\left(x_{I}\right) \\
& q(x)=\prod_{i} q_{i}\left(x_{i}\right) \\
& \left.=\arg \min _{q \in \mathcal{Q}}-\underset{\downarrow}{H(q)}-\mathbb{E}_{q}\left[\sum_{I} \ln \phi_{I}\left(x_{I}\right)\right)\right]+\ln Z \\
& \sum_{i} H\left(q_{i}\right) \quad \sum_{I} \sum_{x_{I}}\left(\prod_{i \in I} q_{i}\left(x_{i}\right)\right) \ln \phi_{I}\left(x_{I}\right)
\end{aligned}
$$

- both terms are tractable for family Q
- the objective is non-convex
- lower-bound on Z

Is I-projection the right choice in MF?

M-projection of p into a q with factorized form $q(x)=\prod_{k} q\left(x_{k}\right)$ gives $q^{M}(x)=\prod_{k} p\left(x_{k}\right)$

$$
\text { Proof } \begin{aligned}
& D(p \| q)=\mathbb{E}_{p}[\ln p(x)]-\sum_{k} \mathbb{E}_{p}\left[\ln q\left(x_{k}\right)\right] \\
& =\mathbb{E}_{p}\left[\ln \frac{p(x)}{\Pi_{k} p\left(x_{k}\right)}\right]+\sum_{k} \mathbb{E}_{p}\left[\ln \frac{p\left(x_{k}\right)}{q\left(x_{k}\right]}\right] \\
& =D\left(p \| q^{M}\right)+\sum_{k} D\left(p\left(x_{k}\right) \| q\left(x_{k}\right)\right)
\end{aligned}
$$

minimized when this is zero! $q=q^{M}$

Is I-projection the right choice in MF?

M-projection of pinto a q with factorized form $q(x)=\prod_{k} q\left(x_{k}\right)$ gives $q^{M}(x)=\prod_{k} p\left(x_{k}\right)$

calculating the M-projection:

$$
D\left(p \| \prod_{k} q\left(x_{k}\right)\right)=-\mathbb{E}_{p}[\ln q]+\text { const. }=-\mathbb{E}_{p}\left[\sum_{k} \ln q_{k}\right]+\text { const. }=-\sum_{k} \mathbb{E}_{p_{k}}\left[\ln q_{k}\right]+\text { const. }
$$

Is I-projection the right choice in MF?

M-projection of p into a q with factorized form $q(x)=\prod_{k} q\left(x_{k}\right)$ gives $q^{M}(x)=\prod_{k} p\left(x_{k}\right)$

calculating the M-projection:

Optimization

objective: $\arg \max _{q} \sum_{i} H\left(q_{i}\right)+\sum_{I}\left(\prod_{i \in I} q_{i}\left(x_{i}\right)\right) \ln \phi_{I}\left(x_{I}\right)$
(block) coordinate descent:

- optimize qi, one at a time
- non-convex
- stable convergence points are local optima

Optimization

objective: $\arg \max _{q} \sum_{i} H\left(q_{i}\right)+\sum_{I}\left(\prod_{i \in I} q_{i}\left(x_{i}\right)\right) \ln \phi_{I}\left(x_{I}\right)$
(block) coordinate descent:

- optimize qi, one at a time
- non-convex
- stable convergence points are local optima

Example

$$
p(a, b)=\mathbb{I}(a=b)(.5-\epsilon)+\mathbb{I}(a \neq b) \epsilon
$$

Derivation of updates

optimizing individual $q_{i}\left(x_{i}\right)$

$$
\arg \max _{q_{i}} H\left(q_{i}\right)+\sum_{I \mid i \in I} \sum_{x_{I}}\left(\prod_{j \in I} q_{j}\left(x_{j}\right)\right) \ln \phi_{I}\left(x_{I}\right)+C\left(q_{-i}\right)
$$

Derivation of updates

objective: $\arg _{\max }^{q} \sum_{i} H\left(q_{i}\right)+\sum_{I} \sum_{x_{I}}\left(\prod_{i \in I} q_{i}\left(x_{i}\right)\right) \ln \phi_{I}\left(x_{I}\right)$
optimizing individual $q_{i}\left(x_{i}\right)$

$$
\arg \max _{q_{i}} H\left(q_{i}\right)+\underset{\text { only the Markov blanket of "i" appears }}{\sum_{I \mid i \in I} \sum_{x_{I}}\left(\prod_{j \in I} q_{j}\left(x_{j}\right)\right) \ln \phi_{I}\left(x_{I}\right)+\underset{\text { ignore: terms that do not depend on qi }}{C\left(q_{-i}\right)}}
$$

$$
\arg \max _{q_{i}} H\left(q_{i}\right)+\sum_{x_{i}} q_{i}\left(x_{i}\right)\left[\sum_{I i \in I} \sum_{x_{L-i}}\left(\prod_{j \in I, j \neq i} q_{j}\left(x_{j}\right)\right) \ln \phi_{I}\left(x_{I}\right)\right]_{\ln g\left(x_{i}\right)}
$$

Derivation of updates

objective: $\arg _{\max }^{q} \sum_{i} H\left(q_{i}\right)+\sum_{I} \sum_{x_{I}}\left(\prod_{i \in I} q_{i}\left(x_{i}\right)\right) \ln \phi_{I}\left(x_{I}\right)$
optimizing individual $q_{i}\left(x_{i}\right)$
$\arg \max _{q_{i}} H\left(q_{i}\right)+\sum_{\text {only the Markov blanket of "il' appears }} \sum_{x_{I}}\left(\prod_{j \in I} q_{j}\left(x_{j}\right)\right) \ln \phi_{I}\left(x_{I}\right)+\underset{\text { ignore: terms that do not depend on qi }}{C\left(q_{-i}\right)}$
$\arg \max _{q_{i}} H\left(q_{i}\right)+\sum_{x_{i}} q_{i}\left(x_{i}\right)\left[\sum_{I \mid i \in I} \sum_{x_{I-i}}\left(\prod_{j \in I, j \neq i} q_{j}\left(x_{j}\right)\right) \ln \phi_{I}\left(x_{I}\right)\right] \ln g\left(x_{i}\right)$
$\arg \max _{q_{i}}-D\left(q_{i}\left(x_{i}\right) \|_{\sum_{x_{i}} g\left(x_{i}\right)} g\left(x_{i}\right)\right) \quad$ minimized by $\quad q_{i}\left(x_{i}\right) \propto g\left(x_{i}\right)$

Derivation of updates

objective: $\arg \max _{q} \sum_{i} H\left(q_{i}\right)+\sum_{I} \sum_{x_{I}}\left(\prod_{i \in I} q_{i}\left(x_{i}\right)\right) \ln \phi_{I}\left(x_{I}\right)$
optimizing individual $q_{i}\left(x_{i}\right)$
$\arg \max _{q_{i}} H\left(q_{i}\right)+\sum_{\text {only the Markov blanket of "il" appears }} \sum_{\text {ignore: terms that do not depend on qi }}$
$\arg \max _{q_{i}} H\left(q_{i}\right)+\sum_{x_{i}} q_{i}\left(x_{i}\right)\left[\sum_{I \mid i \in I} \sum_{x_{I-i}}\left(\prod_{j \in I, j \neq i} q_{j}\left(x_{j}\right)\right) \ln \phi_{I}\left(x_{I}\right)\right]_{\ln g\left(x_{i}\right)}$
$\arg \max _{q_{i}}-D\left(q_{i}\left(x_{i}\right) \|_{\sum_{x_{i}} g\left(x_{i}\right)} g\left(x_{i}\right)\right) \quad$ minimized by $\quad q_{i}\left(x_{i}\right) \propto g\left(x_{i}\right)$
closed form update: $\quad q_{i}\left(x_{i}\right) \propto \exp \left(\mathbb{E}_{q_{M B(i)}} \sum_{I \mid i \in I} \ln \phi_{I}\left(x_{I}\right)\right)$

Closed form update

for each node i:

three factors that involve xi:

$$
\begin{aligned}
& \phi_{i, l, m}\left(x_{i}, x_{l}, x_{m}\right)=p\left(x_{i} \mid x_{l}, x_{m}\right) \\
& \phi_{i, n, o}\left(x_{i}, x_{n}, x_{o}\right)=p\left(x_{o} \mid x_{i}, x_{n}\right) \\
& \phi_{i, j, k}\left(x_{i}, x_{j}, x_{k}\right)=p\left(x_{j} \mid x_{i}, x_{k}\right)
\end{aligned}
$$

Closed form update

for each node i:

- initialize qi (random or uniform)
- iteratively update qi for each node i
- until convergence

three factors that involve xi:

$$
\begin{aligned}
& \phi_{i, l, m}\left(x_{i}, x_{l}, x_{m}\right)=p\left(x_{i} \mid x_{l}, x_{m}\right) \\
& \phi_{i, n, o}\left(x_{i}, x_{n}, x_{o}\right)=p\left(x_{o} \mid x_{i}, x_{n}\right) \\
& \phi_{i, j, k}\left(x_{i}, x_{j}, x_{k}\right)=p\left(x_{j} \mid x_{i}, x_{k}\right)
\end{aligned}
$$

Example: MF in Ising grid

recall the Ising model:

$$
\begin{aligned}
p(x) & \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \\
x_{i} & \in\{-1,+1\} \quad \underset{\text { local field }}{\downarrow}
\end{aligned}
$$

Example: MF in Ising grid

recall the Ising model:

$$
\begin{aligned}
p(x) & \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \\
x_{i} & \in\{-1,+1\} \quad \underset{\text { local field }}{\downarrow}
\end{aligned}
$$

for each node i:

Example: MF in Ising grid

recall the Ising model:

$$
\begin{aligned}
p(x) & \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \\
x_{i} & \in\{-1,+1\} \quad \underset{\text { local field }}{\downarrow}
\end{aligned}
$$

for each node i:
$q_{i}\left(x_{i}\right) \propto \exp \left(\mathbb{E}_{q_{M B(i)}}\left[h_{i} x_{i}+\sum_{j} x_{i} x_{j} J_{i, j}\right]\right)$

Example: MF in Ising grid

recall the Ising model:

$$
\begin{aligned}
p(x) & \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \\
x_{i} & \in\{-1,+1\} \quad \underset{\text { local field }}{\downarrow}
\end{aligned}
$$

for each node i:

$$
\begin{aligned}
& q_{i}\left(x_{i}\right) \propto \exp \left(\mathbb{E}_{q_{M B(i)}}\left[h_{i} x_{i}+\sum_{j} x_{i} x_{j} J_{i, j}\right]\right) \\
& =\exp \left(x_{i}\left(h_{i}+\mathbb{E}_{q_{M B(i)}} \sum_{j} x_{j} J_{i, j}\right)\right)
\end{aligned}
$$

Example: MF in Ising grid

recall the Ising model:

$$
\begin{aligned}
p(x) & \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \\
x_{i} & \in\{-1,+1\} \quad \underset{\text { local field }}{\downarrow}
\end{aligned}
$$

for each node i:

$$
\begin{aligned}
& q_{i}\left(x_{i}\right) \propto \exp \left(\mathbb{E}_{q_{M B(i)}}\left[h_{i} x_{i}+\sum_{j} x_{i} x_{j} J_{i, j}\right]\right) \\
& =\exp \left(x_{i}\left(h_{i}+\mathbb{E}_{q_{M B(i)}} \sum_{j} x_{j} J_{i, j}\right)\right) \\
& =\exp \left(x_{i}\left(h_{i}+\sum_{j} J_{i, j} \mathbb{E}_{q_{j}}\left[x_{j}\right]\right)\right)
\end{aligned}
$$

Example: MF in Ising grid

recall the Ising model:

$$
\begin{aligned}
& p(x) \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \\
& x_{i} \in\{-1,+1\} \quad \underset{\text { |ocal field }}{\downarrow}
\end{aligned}
$$

for each node i:

$$
\begin{aligned}
& q_{i}\left(x_{i}\right) \propto \exp \left(\mathbb{E}_{q_{M B(i)}}\left[h_{i} x_{i}+\sum_{j} x_{i} x_{j} J_{i, j}\right]\right) \\
& =\exp \left(x_{i}\left(h_{i}+\mathbb{E}_{q_{M B(i)}} \sum_{j} x_{j} J_{i, j}\right)\right) \\
& =\exp \left(x_{i}\left(h_{i}+\sum_{j} J_{i, j} \mathbb{E}_{q_{j}}\left[x_{j}\right]\right)\right) \\
& =\exp \left(x_{i}\left(h_{i}+\sum_{j} J_{i, j} \mu_{j}\right)\right)
\end{aligned}
$$

Example: MF in Ising grid

recall the Ising model:

$$
\begin{aligned}
& p(x) \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \\
& x_{i} \in\{-1,+1\} \quad \underset{\text { |ocal field }}{\downarrow}
\end{aligned}
$$

for each node i:

$$
\begin{aligned}
& q_{i}\left(x_{i}\right) \propto \exp \left(\mathbb{E}_{q_{M B(i)}}\left[h_{i} x_{i}+\sum_{j} x_{i} x_{j} J_{i, j}\right]\right) \\
& =\exp \left(x_{i}\left(h_{i}+\mathbb{E}_{q_{M B(i)}} \sum_{j} x_{j} J_{i, j}\right)\right) \\
& =\exp \left(x_{i}\left(h_{i}+\sum_{j} J_{i, j} \mathbb{E}_{q_{j}}\left[x_{j}\right]\right)\right) \\
& =\exp \left(x_{i}\left(h_{i}+\sum_{j} J_{i, j} \mu_{j}\right)\right) \\
& \quad \underset{\text { mean-field! }}{\downarrow} m_{i}
\end{aligned}
$$

Example: MF in Ising grid

recall the Ising model:

$$
\begin{aligned}
p(x) & \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \\
x_{i} & \in\{-1,+1\} \quad \underset{\text { local field }}{\downarrow}
\end{aligned}
$$

for each node i:

$$
\begin{aligned}
& q_{i}\left(x_{i}\right) \propto \exp \left(\mathbb{E}_{q_{M B(i)}}\left[h_{i} x_{i}+\sum_{j} x_{i} x_{j} J_{i, j}\right]\right) \\
& =\exp \left(x_{i}\left(h_{i}+\mathbb{E}_{q_{M B(i)}} \sum_{j} x_{j} J_{i, j}\right)\right) \\
& =\exp \left(x_{i}\left(h_{i}+\sum_{j} J_{i, j} \mathbb{E}_{q_{j}}\left[x_{j}\right]\right)\right) \\
& =\exp \left(x_{i}\left(h_{i}+\underset{\quad \sum_{j}}{ } J_{i, j} \mu_{j}\right)\right) \\
& \quad \underset{\text { mean-field! }!}{ } m_{i}
\end{aligned}
$$

Example: MF in Ising grid

recall the Ising model:

$$
\begin{aligned}
p(x) & \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \\
x_{i} & \in\{-1,+1\} \quad \underset{\text { local field }}{\downarrow}
\end{aligned}
$$

for each node i:

$$
\begin{aligned}
& q_{i}\left(x_{i}\right) \propto \exp \left(\mathbb{E}_{q_{M B(i)}}\left[h_{i} x_{i}+\sum_{j} x_{i} x_{j} J_{i, j}\right]\right) \\
& =\exp \left(x_{i}\left(h_{i}+\mathbb{E}_{q_{M B(i)}} \sum_{j} x_{j} J_{i, j}\right)\right) \\
& =\exp \left(x_{i}\left(h_{i}+\sum_{j} J_{i, j} \mathbb{E}_{q_{j}}\left[x_{j}\right]\right)\right) \\
& =\exp \left(x_{i}\left(h_{i}+\sum_{j} J_{i, j} \mu_{j}\right)\right) \\
& \downarrow q_{i}\left(x_{i}=+1\right)=\frac{\exp \left(m_{i}\right)}{\exp \left(m_{i}\right)+\exp \left(-m_{i}\right)}=\sigma\left(2 m_{i}\right)
\end{aligned}
$$

Example: MF in Ising grid

recall the Ising model:

$$
\begin{aligned}
p(x) & \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \\
x_{i} & \in\{-1,+1\} \quad \underset{\text { local field }}{\downarrow}
\end{aligned}
$$

for each node i:

$$
\begin{aligned}
& q_{i}\left(x_{i}\right) \propto \exp \left(\mathbb{E}_{q_{M B(i)}}\left[h_{i} x_{i}+\sum_{j} x_{i} x_{j} J_{i, j}\right]\right) \\
& =\exp \left(x_{i}\left(h_{i}+\mathbb{E}_{q_{M B(i)}} \sum_{j} x_{j} J_{i, j}\right)\right) \\
& =\exp \left(x_{i}\left(h_{i}+\sum_{j} J_{i, j} \mathbb{E}_{q_{j}}\left[x_{j}\right]\right)\right) \\
& =\exp \left(x_{i}\left(h_{i}+\sum_{j} J_{i, j} \mu_{j}\right)\right) \\
& \underset{\text { mean-field! }!}{\downarrow} m_{i}
\end{aligned} q_{i}\left(x_{i}=+1\right)=\frac{\exp \left(m_{i}\right)}{\exp \left(m_{i}\right)+\exp \left(-m_{i}\right)}=\sigma\left(2 m_{i}\right) .
$$

Example: MF in the Ising grid

apply MF to image denoising prior $p(x) \propto \exp \left(\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \quad$ where $\quad J_{i, j}>0$
iter. 1
iter. 3
iter. 15

Example: MF in the Ising grid

apply MF to image denoising prior $p(x) \propto \exp \left(\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \quad$ where $\quad J_{i, j}>0$ likelihood $p(y \mid x) \propto \exp \left(\sum_{i} x_{i} y_{i} J_{i}\right)$ where $J_{i}>0$

Example: MF in the Ising grid

apply MF to image denoising prior $p(x) \propto \exp \left(\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \quad$ where $\quad J_{i, j}>0$ likelihood $p(y \mid x) \propto \exp \left(\sum_{i} x_{i} y_{i} J_{i}\right)$ where $J_{i}>0$ posterior $\quad p(x \mid y) \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right)$

Example: MF in the Ising grid

apply MF to image denoising prior $p(x) \propto \exp \left(\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \quad$ where $\quad J_{i, j}>0$ likelihood $p(y \mid x) \propto \exp \left(\sum_{i} x_{i} y_{i} J_{i}\right)$ where $J_{i}>0$ posterior $\quad p(x \mid y) \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right)$

Example: MF in the Ising grid

apply MF to image denoising prior $p(x) \propto \exp \left(\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right) \quad$ where $\quad J_{i, j}>0$ likelihood $p(y \mid x) \propto \exp \left(\sum_{i} x_{i} y_{i} J_{i}\right)$ where $J_{i}>0$ posterior $\quad p(x \mid y) \propto \exp \left(\sum_{i} x_{i} h_{i}+\sum_{i, j \in \mathcal{E}} x_{i} x_{j} J_{i, j}\right)$

iter. 1

iter. 3

iter. 15

Example: MF for multivariate Gaussian

Recap

mean parametrization $\quad p(\mathbf{x} ; \mu, \Sigma)=\frac{1}{\sqrt{|2 \pi \Sigma|}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)$

Example: MF for multivariate Gaussian

Recap

mean parametrization $p(\mathbf{x} ; \mu, \Sigma)=\frac{1}{\sqrt{|2 \pi \Sigma|}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)$

$$
\begin{aligned}
& \eta=\Sigma^{-1} \mu \\
& \Lambda=\Sigma^{-1}
\end{aligned}
$$

Example: MF for multivariate Gaussian

Recap

mean parametrization $p(\mathbf{x} ; \mu, \Sigma)=\frac{1}{\sqrt{|2 \pi \Sigma|}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)$

canonical parametrization $p(\mathbf{x} ; \eta, \Lambda)=\sqrt{\frac{|\Lambda|}{(2 \pi)^{n}}} \exp \left(-\frac{1}{2} \mathbf{x}^{T} \Lambda \mathbf{x}+\eta \mathbf{x}-\frac{1}{2} \eta^{T} \Lambda \eta\right)$

Example: MF for multivariate Gaussian

Recap

mean parametrization $p(\mathbf{x} ; \mu, \Sigma)=\frac{1}{\sqrt{|2 \pi \Sigma|}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)$

canonical parametrization $p(\mathbf{x} ; \eta, \Lambda)=\sqrt{\frac{\mid \Lambda)^{n}}{(2 \pi)^{n}}} \exp \left(-\frac{1}{2} \mathbf{x}^{T} \Lambda \mathbf{x}+\eta \mathbf{x}-\frac{1}{2} \eta^{T} \Lambda \eta\right)$

Example: MF for multivariate Gaussian

given a multivariate Gaussian (η, Λ)
I-project it into product of univariates of "any" form

Example: MF for multivariate Gaussian

given a multivariate Gaussian (η, Λ)
I-project it into product of univariates of "any" form
mean-field update:

$$
\ln q_{i}\left(x_{i}\right)=\mathbb{E}_{q_{M B(i)}}\left[-\sum_{j \in M B(i)} x_{i} x_{j} \Lambda_{i j}-\frac{1}{2} \Lambda_{i i} x_{i}^{2}+\eta_{i} x_{i}\right]+\text { const. }
$$

Example: MF for multivariate Gaussian

given a multivariate Gaussian (η, Λ)
I-project it into product of univariates of "any" form
mean-field update:

$$
\begin{aligned}
& \ln q_{i}\left(x_{i}\right)= \mathbb{E}_{q_{M B(i)}}\left[-\sum_{j \in M B(i)} x_{i} x_{j} \Lambda_{i j}-\frac{1}{2} \Lambda_{i i} x_{i}^{2}+\eta_{i} x_{i}\right]+\text { const. } \\
& \text { from the precision matrix } \\
& \mu_{j} \quad \\
&=-\frac{1}{2} \Lambda_{i i} x_{i}^{2}-\sum_{j \in M B(i)} x_{i} \mathbb{E}\left[x_{j}\right] \Lambda_{i j}+\eta_{i} x_{i}+\text { const } .
\end{aligned}
$$

Example: MF for multivariate Gaussian

given a multivariate Gaussian (η, Λ)
I-project it into product of univariates of "any" form
mean-field update:

$$
\begin{aligned}
& \ln q_{i}\left(x_{i}\right)= \mathbb{E}_{q_{M B(i)}}\left[-\sum_{j \in M B(i)} x_{i} x_{j} \Lambda_{i j}-\frac{1}{2} \Lambda_{i i} x_{i}^{2}+\eta_{i} x_{i}\right]+\text { const. } \\
& \text { from the precision matrix } \\
& \mu_{j} \quad \\
&=-\frac{1}{2} \Lambda_{i i} x_{i}^{2}-\sum_{j \in M B(i)} x_{i} \mathbb{E}\left[x_{j}\right] \Lambda_{i j}+\eta_{i} x_{i}+\text { const } .
\end{aligned}
$$

it follows that $q_{i}\left(x_{i}\right)$ has a univariate Gaussian form: $q_{i}\left(x_{i}\right)=\mathcal{N}\left(x_{i} ; \mu_{i}, \sigma^{2}\right)$

$$
\begin{aligned}
& \mu_{i} \leftarrow \Lambda_{i i}^{-1}\left(\eta_{i}-\sum_{j \in M B(i)} \Lambda_{i j} \mu_{j}\right) \\
& \sigma_{i}^{2} \leftarrow \Lambda_{i i}^{-1}
\end{aligned}
$$

Example: MF for multivariate Gaussian

given a multivariate Gaussian (η, Λ)
I-project it into product of univariates of "any" form
it follows that $q_{i}\left(x_{i}\right)$ has a univariate Gaussian form: $q_{i}\left(x_{i}\right)=\mathcal{N}\left(x_{i} ; \mu_{i}, \sigma^{2}\right)$

$$
\begin{aligned}
& \mu_{i} \leftarrow \Lambda_{i i}^{-1}\left(\eta_{i}-\sum_{j \in M B(i)} \Lambda_{i j} \mu_{j}\right) \\
& \sigma_{i}^{2} \leftarrow \Lambda_{i i}^{-1}
\end{aligned}
$$

since the projection has the same mean
this gives an iterative solution for $\mu=\Lambda^{-1} \eta$

- with (η, Λ) as input

Structured mean-field

replace the product form $q(x)=\prod_{k} q_{k}\left(x_{k}\right)$ with tractable sub-structures $\quad q(x)=\prod_{I} q_{I}\left(x_{I}\right)$
allow efficient exact inference

Structured mean-field

replace the product form $q(x)=\prod_{k} q_{k}\left(x_{k}\right)$
with tractable sub-structures $\quad q(x)=\prod_{I} q_{I}\left(x_{I}\right)$
allow efficient exact inference
updates are produced by coordinate descent in each substructure

Summary

I-project into tractable sub-graphs:

- naive mean-field
- perform coordinate descent

Inherits the mode-seeking behavior of I-projection
optimal in special settings (e.g., some dense graphs with weak interactions) less restricted than BP in the choice of dists.
in practice, LBP often performs better

