# Probabilistic Graphical Models 

Loopy BP and Bethe Free Energy
Siamak Ravanbakhsh

## Learning objective

- loopy belief propagation
- its variational derivation: Bethe approximation


## So far...

- exact inference:
- variable elimination
- equivalent to belief propagation (BP) in a clique tree


## So far...

- exact inference:
- variable elimination
- equivalent to belief propagation (BP) in a clique tree


## This lecture...

- what if the exact inference is too expensive? (i.e., the tree.width is large)
- continue to use BP: loopy BP
- why is this a good idea?
- answer using variational interpretation


## Recap: BP in clique trees

sum-product BP message update:
$\underset{\text { sepset }}{\delta_{i \rightarrow j}\left(S_{i, j}\right)}=\sum_{C_{i}-S_{i, j}} \psi_{i}\left(C_{i}\right) \prod_{\text {clusterclique }}{ }_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(S_{i, k}\right)$

- from leaves towards the root
- back to leaves



## Recap: BP in clique trees

sum-product BP message update:
$\underset{\text { sepset }}{\delta_{i \rightarrow j}}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \psi_{i}\left(C_{i}\right) \prod_{\text {clusterclique }}{ }_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(S_{i, k}\right)$

- from leaves towards the root
- back to leaves
marginal (belief) for each cluster:

$p_{i}\left(C_{i}\right) \propto \beta_{i}\left(C_{i}\right)=\psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}} \delta_{k \rightarrow i}\left(S_{i, k}\right)$


## Clique-tree for tree structures

- pairwise potentials $\phi_{i, j}\left(x_{i}, x_{j}\right)$
- tree width = 1
one possible clique-tree
what are the sepsets?



## Clique-tree for tree structures

- pairwise potentials $\phi_{i, j}\left(x_{i}, x_{j}\right)$
- tree width = 1
one possible clique-tree
what are the sepsets?

a different valid clique-tree
check for running intersection property


## BP for tree structures

- pairwise potentials $\phi_{i, j}\left(x_{i}, x_{j}\right)$
- message update

$$
\delta_{i \rightarrow j}\left(x_{j}\right)=\sum_{x_{i}} \phi_{i, j}\left(x_{i}, x_{j}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(x_{i}\right)
$$

- from leaves towards a root
- back to leaves



## BP for tree structures

- pairwise potentials $\phi_{i, j}\left(x_{i}, x_{j}\right)$
- message update

$$
\delta_{i \rightarrow j}\left(x_{j}\right)=\sum_{x_{i}} \phi_{i, j}\left(x_{i}, x_{j}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(x_{i}\right)
$$

- from leaves towards a root
- back to leaves
- marginal (belief) for each cluster

one cluster per factor

$$
\begin{aligned}
& p_{i}\left(x_{i}\right) \propto \prod_{k \in N b_{i}} \delta_{k \rightarrow i}\left(x_{i}\right) \\
& p_{i, j}\left(x_{i}, x_{j}\right) \propto \phi_{i, j}\left(x_{i}, x_{j}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(x_{i}\right) \prod_{k \in N b_{j}-i} \delta_{k \rightarrow j}\left(x_{j}\right)
\end{aligned}
$$

## BP for tree structures: reparametrization

graphical model represents

$$
\star \quad p(\mathbf{x})=\frac{1}{z} \prod_{i, j \in \mathcal{E}} \phi_{i, j}\left(x_{i}, x_{j}\right)
$$

write it in terms of marginals

$$
p(\mathbf{x})=\frac{\prod_{i, j \in \mathcal{E}} p_{i, j}\left(x_{i}, x_{j}\right)}{\prod_{i} p_{i}^{p b_{i} \mid-1}}
$$

why is this correct?
the denominator is adjusting for double-counts

## Variational interpretation

BP as I-projection

$$
\begin{aligned}
\arg \min _{q} D & (q \| p) \\
& \left\lvert\, \begin{array}{l}
\downarrow \\
p(x)=\frac{1}{Z} \prod_{k} \phi_{i, j}\left(x_{i}, x_{j}\right)
\end{array}\right. \\
& q(x)=\frac{\prod_{i, j \in \mathcal{E}} q_{i, j}\left(x_{i}, x_{j}\right)}{\prod_{i} q_{i}\left(x_{i}\right)^{\left|N b_{i}\right|-1}}
\end{aligned}
$$


write q in terms of marginals of interest minimization gives us the marginals $q_{i, j}, q_{i}$

## Variational free energy

$$
\begin{aligned}
& D(q \| p)=\sum_{\mathbf{x}} q(\mathbf{x})(\ln q(x)-\ln p(x)) \\
& \quad=-H(q)-\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right]+\ln Z_{\text {ignore: does not depend on } q}
\end{aligned}
$$

I-projection is equivalent to $\arg \max _{q} H(q)+\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right]$
free energy is a lower-bound on $\ln Z$

## Simplifying the free energy

$\arg \min _{q} D(q \| p)$

$$
p(x)=\frac{1}{Z} \prod_{k} \phi_{i, j}\left(x_{i}, x_{j}\right)
$$

$$
q(x)=\frac{\prod_{i, j \in \mathcal{E}} q_{i, j}\left(x_{i}, x_{j}\right)}{\prod_{i} q_{i}\left(x_{i}\right)^{N b_{i}-1}}
$$

$\equiv \arg \max _{q} H(q)+\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right]$

## so far did not use the decomposed form of $q$

both entropy and energy involve summation over exponentially many terms

## Simplifying the free energy

$\arg \min _{q} D(q \| p)$

$$
\begin{aligned}
& \downarrow \\
& \downarrow(x)=\frac{1}{Z} \prod_{k} \phi_{i, j}\left(x_{i}, x_{j}\right) \\
& q(x)=\frac{\prod_{i, j \in \in} q_{i, j}\left(x_{i}, x_{j}\right)}{\prod_{i} q_{i}\left(x_{i}\right)^{N b_{i}-1}}
\end{aligned}
$$



## Simplifying the free energy

$\arg \min _{q} D(q \| p)$

$$
\begin{aligned}
& \downarrow \\
& \downarrow(x)=\frac{1}{Z} \prod_{k} \phi_{i, j}\left(x_{i}, x_{j}\right) \\
& q(x)=\frac{\prod_{i, j \in \mathcal{E}} q_{i, j}\left(x_{i}, x_{j}\right)}{\prod_{i} q_{i}\left(x_{i}\right)^{N b_{i}-1}}
\end{aligned}
$$


$\equiv \arg \max _{q} H(q)+\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right]$

## Simplifying the free energy

$$
\begin{aligned}
& \arg \min _{q} D(q \| p) \\
& \downarrow \begin{array}{l}
\downarrow \\
p(x)=\frac{1}{Z} \prod_{k} \phi_{i, j}\left(x_{i}, x_{j}\right) \\
q(x)=\frac{\prod_{i, j \in \mathcal{E}} q_{i, j}\left(x_{i}, x_{j}\right)}{\prod_{i} q_{i}\left(x_{i}\right)^{N b_{i}-1}} \\
\equiv \arg \max _{q} H(q)+\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right] \\
\quad \downarrow \\
\sum_{i, j \in \mathcal{E}} \sum_{x_{i, j}} q_{i, j}\left(x_{i}, x_{j}\right) \ln \phi_{i, j}\left(x_{i}, x_{j}\right)
\end{array}
\end{aligned}
$$

## Simplifying the free energy

$$
\begin{aligned}
& \arg \min _{q} D(q \| p) \\
& p(x)=\frac{1}{Z} \prod_{k} \phi_{i, j}\left(x_{i}, x_{j}\right) \\
& q(x)=\frac{\prod_{i, j \in \mathcal{E}} q_{i, j}\left(x_{i}, x_{j}\right)}{\prod_{i} q_{i}\left(x_{i}\right)^{N b_{i} \mid-1}} \\
& \equiv \arg \max _{q} H(q)+\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right] \\
& \sum_{i, j \in \mathcal{E}} H\left(q_{i, j}\right)-\sum_{i}\left(\left|N b_{i}\right|-1\right) H\left(q_{i}\right) \text { follows from the decomposition of } \mathrm{q}
\end{aligned}
$$

## Variational interpretation: marginal constraints

$\arg \max _{q} H(q)+\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right]$
marginals $q_{i, j}, q_{i}$ should be "valid" a real distribution with these marginals should exist marginal polytope

$$
\sum_{x_{i}} q_{i, j}\left(x_{i}, x_{j}\right)=q_{j}\left(x_{j}\right) \quad \forall i, j \in \mathcal{E}, x_{j}
$$

for tree graphical models this local consistency is enough

## Variational derivation of BP

$\arg \max _{\{q\}} \sum_{i, j \in \mathcal{E}} H\left(q_{i, j}\right)-\sum_{i}\left(\left|N b_{i}\right|-1\right) H\left(q_{i}\right)+\sum_{i, j \in \mathcal{E}} \sum_{x_{i, j}} q_{i, j}\left(x_{i}, x_{j}\right) \ln \phi_{i, j}\left(x_{i}, x_{j}\right)$

## Variational derivation of BP

$\arg \max _{\{q\}} \sum_{i, j \in \mathcal{E}} H\left(q_{i, j}\right)-\sum_{i}\left(\left|N b_{i}\right|-1\right) H\left(q_{i}\right)+\sum_{i, j \in \mathcal{E}} \sum_{x_{i, j}} q_{i, j}\left(x_{i}, x_{j}\right) \ln \phi_{i, j}\left(x_{i}, x_{j}\right)$

$$
\begin{aligned}
& \sum_{x_{i}} q_{i, j}\left(x_{i}, x_{j}\right)=q_{j}\left(x_{j}\right) \quad \forall i, j \in \mathcal{E}, x_{j} \\
& q_{i, j}\left(x_{i}, x_{j}\right) \geq 0 \quad \forall i, j \in \mathcal{E}, x_{i}, x_{j} \\
& \sum_{x_{i}} q_{i}\left(x_{i}\right)=1 \quad \forall i
\end{aligned}
$$

locally consistent marginal distributions

## Variational derivation of BP

$$
\begin{array}{cl}
\arg \max _{\{q\}} \sum_{i, j \in \mathcal{E}} H\left(q_{i, j}\right)-\sum_{i}\left(\left|N b_{i}\right|-1\right) H\left(q_{i}\right)+\sum_{i, j \in \mathcal{E}} \sum_{x_{i, j}} q_{i, j}\left(x_{i}, x_{j}\right) \ln \phi_{i, j}\left(x_{i}, x_{j}\right) \\
\sum_{x_{i}} q_{i, j}\left(x_{i}, x_{j}\right)=q_{j}\left(x_{j}\right) \quad \forall i, j \in \mathcal{E}, x_{j} & \text { locally consistent } \\
q_{i, j}\left(x_{i}, x_{j}\right) \geq 0 \quad \forall i, j \in \mathcal{E}, x_{i}, x_{j} & \text { marginal distributions } \\
\sum_{x_{i}} q_{i}\left(x_{i}\right)=1 \quad \forall i &
\end{array}
$$

BP update is derived as "fixed-points" of the Lagrangian

- BP messages are the (exponential form of the) Lagrange multipliers


## What happens if there are loops?

We can still apply BP update:

$$
\delta_{i \rightarrow j}\left(x_{j}\right) \propto \sum_{\substack{\downarrow \\ \text { proportional to } \\ \text { normalize the message for numerical stability }}}^{\downarrow} \phi_{i, j}\left(x_{i}, x_{j}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(x_{k}\right)
$$



## What happens if there are loops?

We can still apply BP update:

$$
\delta_{i \rightarrow j}\left(x_{j}\right) \underset{\substack{\downarrow \\ \text { proportional to } \\ \text { normalize the message for numerical stability }}}{\propto \sum_{x_{i}} \phi_{i, j}\left(x_{i}, x_{j}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(x_{k}\right)}
$$



- update the messages synchronously or sequentially


## What happens if there are loops?

We can still apply BP update:

$$
\delta_{i \rightarrow j}\left(x_{j}\right) \propto \sum_{\substack{\downarrow \\ \text { proportional to } \\ \text { normalize the message for numerical stability }}} \phi_{i, j}\left(x_{i}, x_{j}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(x_{k}\right)
$$



- update the messages synchronously or sequentially
- may not converge (oscillating behavior)


## What happens if there are loops?

We can still apply BP update:

$$
\delta_{i \rightarrow j}\left(x_{j}\right) \underset{\substack{\downarrow \\ \text { proportional to } \\ \text { normalize the message for numerical stability }}}{\propto \sum_{x_{i}} \phi_{i, j}\left(x_{i}, x_{j}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(x_{k}\right)}
$$



- update the messages synchronously or sequentially
- may not converge (oscillating behavior)
- even when convergent only gives an approximation:

$$
\hat{p}\left(x_{i}\right) \propto \prod_{k \in N b_{i}} \delta_{k \rightarrow i}\left(x_{i}\right) \text { is not (proportional to) the exact marginal } p\left(x_{i}\right)
$$

## Loopy BP on factor graphs

$$
\begin{aligned}
p(\mathbf{x})=\frac{1}{Z} & \prod_{I} \phi_{I}\left(x_{I}\right) \\
& I \subseteq\{1, \ldots, N\} \text { is a subset of variables }
\end{aligned}
$$



## Loopy BP on factor graphs

$$
\begin{aligned}
p(\mathbf{x})=\frac{1}{Z} & \prod_{I} \phi_{I}\left(x_{I}\right) \\
& I \subseteq\{1, \ldots, N\} \text { is a subset of variables }
\end{aligned}
$$


variable-to-factor message: $\quad \delta_{i \rightarrow I}\left(x_{i}\right) \propto \prod_{J \mid i \in J, J \neq I} \delta_{J \rightarrow i}\left(x_{i}\right)$

## Loopy BP on factor graphs

$$
\begin{aligned}
p(\mathbf{x})=\frac{1}{Z} & \prod_{I} \phi_{I}\left(x_{I}\right) \\
& I \subseteq\{1, \ldots, N\} \text { is a subset of variables }
\end{aligned}
$$


variable-to-factor message:

$$
\delta_{i \rightarrow I}\left(x_{i}\right) \propto \prod_{J \mid i \in J, J \neq I} \delta_{J \rightarrow i}\left(x_{i}\right)
$$

factor-to-variable message: $\quad \delta_{I \rightarrow i}\left(x_{i}\right) \propto \sum_{x_{I-i}} \phi_{I}\left(x_{I}\right) \prod_{j \in I-i} \delta_{j \rightarrow I}\left(x_{i}\right)$

## Loopy BP on factor graphs

$$
\begin{aligned}
p(\mathbf{x})=\frac{1}{Z} & \prod_{I} \phi_{I}\left(x_{I}\right) \\
& I \subseteq\{1, \ldots, N\} \text { is a subset of variables }
\end{aligned}
$$


variable-to-factor message: $\quad \delta_{i \rightarrow I}\left(x_{i}\right) \propto \prod_{J \mid i \in J, J \neq I} \delta_{J \rightarrow i}\left(x_{i}\right)$
factor-to-variable message: $\quad \delta_{I \rightarrow i}\left(x_{i}\right) \propto \sum_{x_{I-i}} \phi_{I}\left(x_{I}\right) \prod_{j \in I-i} \delta_{j \rightarrow I}\left(x_{i}\right)$
after convergence: $\quad \hat{p}\left(x_{i}\right) \propto \prod_{J \mid i \in J} \delta_{J \rightarrow i}\left(x_{i}\right)$

## (Loopy) BP has found many applications

Machine Learning:

- clustering
- tensor factorization


Social network analysis:

- stochastic block modelling

NLP and bioinformatics:

- Viterbi algorithm


Combinatorial optimization:


## Application: LDPC coding using BP

low-density parity check
$x_{1}, \ldots, x_{n}$ are sent through a noisy channel
$y_{1}, \ldots, y_{n}$ are observerd

$$
p\left(y_{i}=1 \mid x_{i}=1\right)=p\left(y_{i}=0 \mid x_{i}=0\right)=1-\epsilon
$$

## Application: LDPC coding using BP

low-density parity check
$x_{1}, \ldots, x_{n}$ are sent through a noisy channel
$y_{1}, \ldots, y_{n}$ are observerd
$p\left(y_{i}=1 \mid x_{i}=1\right)=p\left(y_{i}=0 \mid x_{i}=0\right)=1-\epsilon$
the message satisfies parity constraints:

$$
\phi_{s t u}\left(x_{s}, x_{t}, x_{u}\right)= \begin{cases}1 & \text { if } x_{s} \oplus x_{t} \oplus x_{u}=1 \\ 0 & \text { otherwise }\end{cases}
$$

## Application: LDPC coding using BP

low-density parity check
$x_{1}, \ldots, x_{n}$ are sent through a noisy channel $y_{1}, \ldots, y_{n}$ are observerd
$p\left(y_{i}=1 \mid x_{i}=1\right)=p\left(y_{i}=0 \mid x_{i}=0\right)=1-\epsilon$
the message satisfies parity constraints:

$$
\phi_{s t u}\left(x_{s}, x_{t}, x_{u}\right)= \begin{cases}1 & \text { if } x_{s} \oplus x_{t} \oplus x_{u}=1 \\ 0 & \text { otherwise }\end{cases}
$$


joint dist. over unobserved message:

$$
p(x \mid y)=\prod_{s, t, u} \phi\left(x_{s}, x_{t}, x_{u}\right) \prod_{i=1}^{n}(1-\epsilon) \mathbb{I}\left(x_{i}=y_{i}\right)+\epsilon \mathbb{I}\left(x_{i} \neq y_{i}\right)
$$

## Application: LDPC coding using BP

joint dist. over unobserved message:
$p(x \mid y)=\prod_{s, t, u} \phi\left(x_{s}, x_{t}, x_{u}\right) \prod_{i=1}^{n}(1-\epsilon) \mathbb{I}\left(x_{i}=y_{i}\right)+\epsilon \mathbb{I}\left(x_{i} \neq y_{i}\right)$

## inference problems

- most likely joint assignment

$$
x^{*}=\arg \max _{x} p(x \mid y)
$$



## Application: LDPC coding using BP

joint dist. over unobserved message:

$$
p(x \mid y)=\prod_{s, t, u} \phi\left(x_{s}, x_{t}, x_{u}\right) \prod_{i=1}^{n}(1-\epsilon) \mathbb{I}\left(x_{i}=y_{i}\right)+\epsilon \mathbb{I}\left(x_{i} \neq y_{i}\right)
$$

## inference problems

- most likely joint assignment

$$
x^{*}=\arg \max _{x} p(x \mid y)
$$

- max-marginals $x_{i}^{*}=\arg \max _{x_{i}} p\left(x_{i} \mid y\right)$
- calculate the marginals $p\left(x_{i} \mid y\right) \forall i$
- using loopy BP



## Application: LDPC coding using BP

joint dist. over unobserved message:

$$
p(x \mid y)=\prod_{s, t, u} \psi\left(x_{s}, x_{t}, x_{u}\right) \prod_{i=1}^{n}(1-\epsilon) \mathbb{I}\left(x_{i}=y_{i}\right)+\epsilon \mathbb{I}\left(x_{i} \neq y_{i}\right)
$$

inference problems

- most likely joint assignment

$$
x^{*}=\arg \max _{x} p(x \mid y)
$$



## Application: LDPC coding using BP

joint dist. over unobserved message:

$$
p(x \mid y)=\prod_{s, t, u} \psi\left(x_{s}, x_{t}, x_{u}\right) \prod_{i=1}^{n}(1-\epsilon) \mathbb{I}\left(x_{i}=y_{i}\right)+\epsilon \mathbb{I}\left(x_{i} \neq y_{i}\right)
$$

## inference problems

- most likely joint assignment

$$
x^{*}=\arg \max _{x} p(x \mid y)
$$

- max-marginals $x_{i}^{*}=\arg \max _{x_{i}} p\left(x_{i} \mid y\right)$
- calculate the marginals $p\left(x_{i} \mid y\right) \forall i$
- using loopy BP



## Loops and variational interepretation

$$
\begin{array}{rl}
\arg \max _{q} & H(q)+\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right] \\
& \stackrel{\downarrow}{\sum_{i, j \in \mathcal{E}} \sum_{x_{i, j}} q_{i, j}\left(x_{i}, x_{j}\right) \ln \phi_{i, j}\left(x_{i}, x_{j}\right)} \\
& \sum_{i, j \in \mathcal{E}} H\left(q_{i, j}\right)-\sum_{i}\left(\left|N b_{i}\right|-1\right) H\left(q_{i}\right)
\end{array}
$$



## Loops and variational interepretation


the entropy term is not exact anymore

- called Bethe approximation to the entropy
- generally not convex anymore (multiple fixed points)


## Loops and variational interepretation

$$
\begin{gathered}
\arg \max _{q} H(q)+\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right] \\
\mathbb{L}: \quad \sum_{x_{i}} q_{i, j}\left(x_{i}, x_{j}\right)=q_{j}\left(x_{j}\right) \quad \forall i, j \in \mathcal{E}, x_{j}
\end{gathered}
$$

## Loops and variational interepretation

$$
\begin{aligned}
& \arg \max _{q} H(q)+\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right] \\
& \mathbb{L}: \quad \sum_{x_{i}} q_{i, j}\left(x_{i}, x_{j}\right)=q_{j}\left(x_{j}\right) \quad \forall i, j \in \mathcal{E}, x_{j}
\end{aligned}
$$

the entropy term is not exact anymore
Local consistency constraints are inadequate:

- locally consistent $q_{i, j}, q_{i}$ may not be marginals for any joint dist.


## Loops and variational interepretation

$$
\begin{aligned}
& \qquad \arg \max _{q} H(q)+\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right] \\
& \mathbb{L}: \sum_{x_{i}} q_{i, j}\left(x_{i}, x_{j}\right)=q_{j}\left(x_{j}\right) \quad \forall i, j \in \mathcal{E}, x_{j} \\
& \text { the entropy term is not exact anymore }
\end{aligned}
$$

Local consistency constraints are inadequate:


- locally consistent $q_{i, j}, q_{i}$ may not be marginals for any joint dist.


## Variations on BP

$\arg \max _{q} H(q)+\mathbb{E}_{q}\left[\sum_{i, j} \ln \phi_{i, j}\left(x_{i}, x_{j}\right)\right]$

- the entropy term is not exact anymore:
- improved entropy approximations (e.g., region-based, convex)
- local consistency constraints are inadequate
- tighter constraints (e.g., marginal consistency of larger clusters)


## Variations on BP: cluster-graph

cluster-graph generalizes clique-tree

- clusters are not necessarily max-cliques
- running intersection property
- family-preserving property
- $S_{i, j} \underset{\downarrow}{\subseteq} C_{i} \cap C_{j}$
instead of $=$ in clique-tree


## Variations on BP: cluster-graph

cluster-graph generalizes clique-tree

- clusters are not necessarily max-cliques
- running intersection property
- family-preserving property
- $S_{i, j} \underset{\downarrow}{\subseteq} C_{i} \cap C_{j}$
instead of $=$ in clique-tree
similar reparametrization:

$$
p(\mathbf{x}) \propto \frac{\prod_{i} \hat{p}\left(C_{i}\right)}{\prod_{i, j} \hat{p}\left(S_{i, j}\right)}
$$

## Variations on BP: cluster-graph

a factor-graph
cluster-graph generalizes clique-tree

- clusters are not necessarily max-cliques
- running intersection property

- family-preserving property
- $S_{i, j} \underset{\downarrow}{\downarrow} C_{i} \cap C_{j}$
instead of $=$ in clique-tree
similar reparametrization:

$$
p(\mathbf{x}) \propto \frac{\prod_{i} \hat{p}\left(C_{i}\right)}{\prod_{i, j} \hat{p}\left(S_{i, j}\right)}
$$

## Variations on BP: cluster-graph

a factor-graph
cluster-graph generalizes clique-tree

- clusters are not necessarily max-cliques
- running intersection property
- family-preserving property
- $S_{i, j} \underset{\downarrow}{\square} C_{i} \cap C_{j}$
instead of $=$ in clique-tree

corresponding cluster-graph (the same BP updates)

similar reparametrization:

$$
p(\mathbf{x}) \propto \frac{\prod_{i} \hat{p}\left(C_{i}\right)}{\prod_{i, j} \hat{p}\left(S_{i, j}\right)}
$$

## Variations on BP: cluster-graph

a factor-graph

## cluster-graph generalizes clique-tree

- clusters are not necessarily max-cliques
- running intersection property
- family-preserving property
- $S_{i, j} \underset{\downarrow}{\square} C_{i} \cap C_{j}$
instead of $=$ in clique-tree

corresponding cluster-graph (the same BP updates)

similar reparametrization:

$$
p(\mathbf{x}) \propto \frac{\prod_{i} \hat{p}\left(C_{i}\right)}{\prod_{i, j} \hat{p}\left(S_{i, j}\right)}
$$

improved cluster-graph (better entropy approximation + marginal constraint)


## BP in practice

- works well when:
- locally tree-like graphs
- dense graphs with weak interactions


## BP in practice

- works well when:
- locally tree-like graphs
- dense graphs with weak interactions

(a)
- sequential update works better than parallel update

(b)

(e)
$11 \times 11$ Ising grid

(c)

(f)
- improved convergence by damping (smoothing) the update

$$
\delta_{i \rightarrow I}^{(t+1)}\left(x_{i}\right) \propto(1-\alpha) \delta_{i \rightarrow I}^{(t)}\left(x_{i}\right)+\alpha \prod_{J \mid i \in J, J \neq I} \delta_{J \rightarrow i}^{(t)}\left(x_{i}\right)
$$

## Summary

belief propagation: efficient deterministic inference

- exact in clique-tree = variable elimination
- application of distributive Iaw


## Summary

belief propagation: efficient deterministic inference

- exact in clique-tree = variable elimination
- application of distributive law
- optimization perspective:
- KL-divergence minimization
- approximate objective (Bethe free energy) and constraints


## Summary

belief propagation: efficient deterministic inference

- exact in clique-tree = variable elimination
- application of distributive law
- optimization perspective:
- KL-divergence minimization
- approximate objective (Bethe free energy) and constraints
- works well in (cluster) graphs with loops (large tree-width)


## bonus slides

## Loopy BP on factor graphs: complexity

## variable-to-factor message:

- from each var to all neighbors

$$
\delta_{i \rightarrow I}\left(x_{i}\right) \propto \prod_{J \mid i \in J, J \neq I} \delta_{J \rightarrow i}\left(x_{i}\right)
$$



## Loopy BP on factor graphs: complexity

variable-to-factor message:

- from each var to all neighbors

$$
\delta_{i \rightarrow I}\left(x_{i}\right) \propto \prod_{J \mid i \in J, J \neq I} \delta_{J \rightarrow i}\left(x_{i}\right)
$$

$$
\underset{\substack{n u m b e r ~ o f ~ v a r s ~}}{\downarrow d \Delta_{\text {max }}{ }^{2}} \underset{\substack{\text { max neighbours } \\ \text { (2 for binary) }}}{\downarrow}
$$


factor-to-variable messages:
$\delta_{I \rightarrow i}\left(x_{i}\right) \propto \sum_{x_{I-i}} \phi_{I}\left(x_{I}\right) \prod_{j \in I-i} \delta_{j \rightarrow I}\left(x_{i}\right)$ $\boldsymbol{d}^{\mid \text {Scope }_{\text {max }} \mid}| |$ Scope $_{\text {max }} \mid$

## Loopy BP on factor graphs: complexity

variable-to-factor message:

- from each var to all neighbors

$$
\delta_{i \rightarrow I}\left(x_{i}\right) \propto \prod_{J i \in J, J, J \neq I} \delta_{J \rightarrow i}\left(x_{i}\right)
$$

$$
5
$$




