Probabilistic Graphical Models

Loopy BP and Bethe Free Energy

Loopy Dr and Detrie Free Energ

Siamak Ravanbakhsh

Fall 2019

Learning objective

- loopy belief propagation
- its variational derivation: Bethe approximation

So far...

- exact inference:
 - variable elimination
 - equivalent to belief propagation (BP) in a clique tree

So far...

- exact inference:
 - variable elimination
 - equivalent to belief propagation (BP) in a clique tree

This lecture...

- what if the exact inference is too expensive? (i.e., the tree-width is large)
 - continue to use BP: loopy BP
 - why is this a good idea?
 - answer using variational interpretation

Recap: BP in clique trees

sum-product **BP** message update:

$$\delta_{i o j}(S_{i,j}) = \sum_{C_i-S_{i,j}} \psi_i(C_i) \prod_{k\in Nb_i-j} \delta_{k o i}(S_{i,k})$$
sepset

- from leaves towards the root
- back to leaves

Recap: BP in clique trees

Coherence Difficulty Intelligence Grade SAT Letter Job

sum-product **BP** message update:

$$\delta_{i o j}(S_{i,j}) = \sum_{C_i-S_{i,j}} \psi_i(C_i) \prod_{k\in Nb_i-j} \delta_{k o i}(S_{i,k})$$
sepset

- from leaves towards the root
- back to leaves

marginal (belief) for each cluster:

$$p_i(C_i) \propto eta_i(C_i) = \psi_i(C_i) \prod_{k \in Nb_i} \delta_{k
ightarrow i}(S_{i,k})$$

Clique-tree for tree structures

- ullet pairwise potentials $\phi_{i,j}(x_i,x_j)$
- tree width = 1

one possible clique-tree

what are the sepsets?

Clique-tree for tree structures

- pairwise potentials $\phi_{i,j}(x_i,x_j)$
- tree width = 1

one possible clique-tree

what are the sepsets?

a different valid clique-tree

check for running intersection property

BP for tree structures

- pairwise potentials $\phi_{i,j}(x_i,x_j)$
- message update

$$\delta_{i o j}(x_j) = \sum_{x_i} \phi_{i,j}(x_i,x_j) \prod_{k\in Nb_i-j} \delta_{k o i}(x_i)$$

- from leaves towards **a** root
- back to leaves

BP for tree structures

- pairwise potentials $\phi_{i,j}(x_i,x_j)$
- message update

$$\delta_{i o j}(x_j) = \sum_{x_i} \phi_{i,j}(x_i,x_j) \prod_{k\in Nb_i-j} \delta_{k o i}(x_i)$$

- from leaves towards **a** root
- back to leaves

$$ullet$$
 marginal (belief) for each cluster $p_i(x_i) \propto \prod_{k \in Nb_i} \delta_{k
ightarrow i}(x_i)$

$$p_{i,j}(x_i,x_j) \propto \phi_{i,j}(x_i,x_j) \prod_{k \in Nb_i-j} \delta_{k o i}(x_i) \prod_{k \in Nb_j-i} \delta_{k o j}(x_j)$$

BP for tree structures: reparametrization

graphical model represents

$$m{\star} \quad p(\mathbf{x}) = rac{1}{z} \prod_{i,j \in \mathcal{E}} \phi_{i,j}(x_i,x_j)$$

write it in terms of marginals

$$p(\mathbf{x}) = rac{\prod_{i,j \in \mathcal{E}} p_{i,j}(x_i,x_j)}{\prod_i p_i^{|Nb_i|-1}}$$

why is this correct?

the denominator is adjusting for double-counts substitute the marginals using BP messages to get (*)

Variational interpretation

BP as I-projection

write q in terms of marginals of interest minimization gives us the marginals $q_{i,j}, q_i$

Variational free energy

$$egin{aligned} D(q\|p) &= \sum_{\mathbf{x}} q(\mathbf{x}) (\ln q(x) - \ln p(x)) \ &-H(q) & \mathbb{E}_q[\sum_{i,j} \ln \phi_{i,j}(x_i,x_j)] - \ln(Z) \end{aligned}$$
 $= -H(q) - \mathbb{E}_q[\sum_{i,j} \ln \phi_{i,j}(x_i,x_j)] + \ln Z_{ ext{ignore: does not depend on } q}$

I-projection is equivalent to $rg \max_q H(q) + \mathbb{E}_q[\sum_{i,j} \ln \phi_{i,j}(x_i,x_j)]$

free energy is a lower-bound on $\ln Z$

$$rg \min_q D(oldsymbol{q}|p) \ igg| p(x) = rac{1}{Z} \prod_k \phi_{i,j}(x_i,x_j) \ q(x) = rac{\prod_{i,j \in \mathcal{E}} q_{i,j}(x_i,x_j)}{\prod_i q_i(x_i)^{|Nb_i|-1}}$$

$$egin{aligned} \equiv rg \max_q H(q) + \mathbb{E}_q[\sum_{i,j} \ln \phi_{i,j}(x_i,x_j)] \end{aligned}$$

so far did not use the **decomposed form of q**

both entropy and energy involve summation over exponentially many terms

$$rg\min_q D(oldsymbol{q}|p) \ oldsymbol{\downarrow} p(x) = rac{1}{Z} \prod_k \phi_{i,j}(x_i,x_j) \ oldsymbol{q}(x) = rac{\prod_{i,j \in \mathcal{E}} q_{i,j}(x_i,x_j)}{\prod_i q_i(x_i)^{|Nb_i|-1}}$$

$$rg\min_q D(oldsymbol{q}|p) \ oldsymbol{\downarrow} p(x) = rac{1}{Z} \prod_k \phi_{i,j}(x_i,x_j) \ oldsymbol{q}(x) = rac{\prod_{i,j \in \mathcal{E}} q_{i,j}(x_i,x_j)}{\prod_i q_i(x_i)^{|Nb_i|-1}}$$

$$\equiv rg \max_q rac{H(q)}{H(q)} + \mathbb{E}_q[\sum_{i,j} \ln \phi_{i,j}(x_i,x_j)]$$

$$egin{aligned} \equiv rg \max_q egin{aligned} H(q) + \mathbb{E}_q[\sum_{i,j} \ln \phi_{i,j}(x_i,x_j)] \ \downarrow \ \sum_{i,j \in \mathcal{E}} \sum_{x_{i,j}} q_{i,j}(x_i,x_j) \ln \phi_{i,j}(x_i,x_j) \end{aligned}$$

Variational interpretation: marginal constraints

marginals $q_{i,j},q_i$ should be "valid" a real distribution with these marginals should exist marginal polytope

$$\sum_{x_i} q_{i,j}(x_i,x_j) = q_j(x_j) \quad orall i,j \in \mathcal{E}, x_j$$

for tree graphical models this local consistency is enough

Variational derivation of BP

$$rg \max_{\{q\}} \ \sum_{i,j \in \mathcal{E}} H(q_{i,j}) - \sum_{i} (|Nb_i| - 1) H(q_i) + \sum_{i,j \in \mathcal{E}} \sum_{x_{i,j}} q_{i,j}(x_i, x_j) \ln \phi_{i,j}(x_i, x_j)$$

Variational derivation of BP

$$rg \max_{\{q\}} \ \sum_{i,j \in \mathcal{E}} H(q_{i,j}) - \sum_{i} (|Nb_i| - 1) H(q_i) + \sum_{i,j \in \mathcal{E}} \sum_{x_{i,j}} q_{i,j}(x_i, x_j) \ln \phi_{i,j}(x_i, x_j)$$

$$\sum_{x_i} q_{i,j}(x_i,x_j) = q_j(x_j) \quad orall i,j \in \mathcal{E}, x_j$$

$$q_{i,j}(x_i,x_j) \geq 0 \quad orall i, j \in \mathcal{E}, x_i, x_j$$

$$\sum_{x_i} q_i(x_i) = 1 \quad orall i$$

locally consistent

marginal distributions

Variational derivation of BP

$$rg \max_{\{q\}} \ \sum_{i,j \in \mathcal{E}} H(q_{i,j}) - \sum_{i} (|Nb_i| - 1) H(q_i) + \sum_{i,j \in \mathcal{E}} \sum_{x_{i,j}} q_{i,j}(x_i, x_j) \ln \phi_{i,j}(x_i, x_j)$$

$$\sum_{x_i} q_{i,j}(x_i,x_j) = q_j(x_j) \quad orall i,j \in \mathcal{E}, x_j$$

$$q_{i,j}(x_i,x_j) \geq 0 \quad orall i, j \in \mathcal{E}, x_i, x_j$$

$$\sum_{x_i} q_i(x_i) = 1 \quad orall i$$

locally consistent

marginal distributions

BP update is derived as "fixed-points" of the Lagrangian

BP messages are the (exponential form of the) Lagrange multipliers

We can still apply BP update:

$$\delta_{i o j}(x_j)$$
 $\propto \sum_{x_i} \phi_{i,j}(x_i,x_j) \prod_{k\in Nb_i-j} \delta_{k o i}(x_k)$ \downarrow proportional to normalize the message for numerical stability

We can still apply BP update:

$$\delta_{i o j}(x_j) igtherdressim \sum_{x_i} \phi_{i,j}(x_i,x_j) \prod_{k\in Nb_i-j} \delta_{k o i}(x_k)$$
 proportional to normalize the message for numerical stability

update the messages synchronously or sequentially

We can still apply BP update:

$$\delta_{i o j}(x_j)$$
 $\propto \sum_{x_i} \phi_{i,j}(x_i,x_j) \prod_{k\in Nb_i-j} \delta_{k o i}(x_k)$ \downarrow proportional to normalize the message for numerical stability

- update the messages synchronously or sequentially
- may not converge (oscillating behavior)

We can still apply BP update:

$$\delta_{i o j}(x_j)$$
 $\propto \sum_{x_i} \phi_{i,j}(x_i,x_j) \prod_{k\in Nb_i-j} \delta_{k o i}(x_k)$ \downarrow proportional to normalize the message for numerical stability

- update the messages synchronously or sequentially
- may not converge (oscillating behavior)
- even when convergent only gives an approximation:

$$\hat{p}(x_i) \propto \prod_{k \in Nb_i} \delta_{k o i}(x_i)$$
 is not (proportional to) the exact marginal $p(x_i)$

variable-to-factor message: $\delta_{i \to I}(x_i) \propto \prod_{J \mid i \in J, J \neq I} \delta_{J \to i}(x_i)$

variable-to-factor message: $\delta_{i \to I}(x_i) \propto \prod_{J \mid i \in J, J \neq I} \delta_{J \to i}(x_i)$

factor-to-variable message: $\delta_{I \to i}(x_i) \propto \sum_{x_{I-i}} \phi_I(x_I) \prod_{j \in I-i} \delta_{j \to I}(x_i)$

variable-to-factor message: $\delta_{i \to I}(x_i) \propto \prod_{J \mid i \in J, J \neq I} \delta_{J \to i}(x_i)$

factor-to-variable message: $\delta_{I \to i}(x_i) \propto \sum_{x_{I-i}} \phi_I(x_I) \prod_{j \in I-i} \delta_{j \to I}(x_i)$

after convergence: $\hat{p}(x_i) \propto \prod_{J|i \in J} \delta_{J \to i}(x_i)$

(Loopy) BP has found many applications

Machine Learning:

clustering

https://graph-tool.skewed.de

• tensor factorization

Vision:

- inpainting &denoising
- stereo matching

Social network analysis:

stochastic block modelling

NLP and bioinformatics:

• Viterbi algorithm

Combinatorial optimization:

Application: LDPC coding using BP

low-density parity check

 x_1, \dots, x_n are sent through a noisy channel

 y_1, \dots, y_n are observerd

$$p(y_i = 1 \mid x_i = 1) = p(y_i = 0 \mid x_i = 0) = 1 - \epsilon$$

Application: LDPC coding using BP

low-density parity check

 x_1, \dots, x_n are sent through a noisy channel

 y_1, \ldots, y_n are observerd

$$p(y_i = 1 \mid x_i = 1) = p(y_i = 0 \mid x_i = 0) = 1 - \epsilon$$

the message satisfies parity constraints:

$$\phi_{stu}(x_s,x_t,x_u) = egin{cases} 1 & ext{if } x_s \oplus x_t \oplus x_u = 1 \ 0 & ext{otherwise} \end{cases}$$

Application: LDPC coding using BP

low-density parity check

 x_1, \ldots, x_n are sent through a noisy channel y_1, \ldots, y_n are observerd

$$p(y_i = 1 \mid x_i = 1) = p(y_i = 0 \mid x_i = 0) = 1 - \epsilon$$

the message satisfies parity constraints:

$$\phi_{stu}(x_s, x_t, x_u) = egin{cases} 1 & ext{if } x_s \oplus x_t \oplus x_u = 1 \ 0 & ext{otherwise} \end{cases}$$

joint dist. over unobserved message:

$$p(x \mid y) = \prod_{s,t,u} \phi(x_s, x_t, x_u) \prod_{i=1}^n (1-\epsilon) \mathbb{I}(x_i = y_i) + \epsilon \mathbb{I}(x_i
eq y_i)$$

image: wainwright&jordan

Application: LDPC coding using BP low-density parity check

joint dist. over unobserved message:

$$p(x \mid y) = \prod_{s,t,u} \phi(x_s, x_t, x_u) \prod_{i=1}^n (1-\epsilon) \mathbb{I}(x_i = y_i) + \epsilon \mathbb{I}(x_i
eq y_i)$$

inference problems

most likely joint assignment

$$x^* = rg \max_x p(x \mid y)$$

image: wainwright&jordan

Application: LDPC coding using BP low-density parity check

joint dist. over unobserved message:

$$p(x \mid y) = \prod_{s.t.u} \phi(x_s, x_t, x_u) \prod_{i=1}^n (1-\epsilon) \mathbb{I}(x_i = y_i) + \epsilon \mathbb{I}(x_i
eq y_i)$$

inference problems

most likely joint assignment

$$x^* = rg \max_x p(x \mid y)$$

- ullet max-marginals $x_i^* = rg \max_{x_i} p(x_i \mid y)$
 - lacktriangle calculate the marginals $p(x_i \mid y) \forall i$
 - using loopy BP

image: wainwright&jordan

Application: LDPC coding using BP low-density parity check

joint dist. over unobserved message:

$$p(x \mid y) = \prod_{s.t.u} \psi(x_s, x_t, x_u) \prod_{i=1}^n (1-\epsilon) \mathbb{I}(x_i = y_i) + \epsilon \mathbb{I}(x_i
eq y_i)$$

inference problems

most likely joint assignment

$$x^* = rg \max_x p(x \mid y)$$

image: wainwright&jordan

Application: LDPC coding using BP

low-density parity check

joint dist. over unobserved message:

$$p(x \mid y) = \prod_{s.t.u} \psi(x_s, x_t, x_u) \prod_{i=1}^n (1-\epsilon) \mathbb{I}(x_i = y_i) + \epsilon \mathbb{I}(x_i
eq y_i)$$

inference problems

• most likely **joint** assignment

$$x^* = rg \max_x p(x \mid y)$$

- ullet max-marginals $x_i^* = rg \max_{x_i} p(x_i \mid y)$
 - lacktriangle calculate the marginals $p(x_i \mid y) \forall i$
 - using loopy BP

image: wainwright&jordan

the entropy term is not exact anymore

- called Bethe approximation to the entropy
- generally not convex anymore (multiple fixed points)

$$rg \max_q H(q) + \mathbb{E}_q[\sum_{i,j} \ln \phi_{i,j}(x_i,x_j)]$$

$$\mathbb{L}: egin{array}{c} \sum_{x_i} q_{i,j}(x_i,x_j) = q_j(x_j) & orall i,j \in \mathcal{E}, x_j \end{array}$$

$$rg \max_q H(q) + \mathbb{E}_q[\sum_{i,j} \ln \phi_{i,j}(x_i,x_j)]$$

$$\mathbb{L}: egin{array}{c} \sum_{x_i} q_{i,j}(x_i,x_j) = q_j(x_j) & orall i,j \in \mathcal{E}, x_j \end{array}$$

the entropy term is not exact anymore

Local consistency constraints are inadequate:

• locally consistent $q_{i,j}, q_i$ may not be marginals for any joint dist.

$$rg \max_q H(q) + \mathbb{E}_q[\sum_{i,j} \ln \phi_{i,j}(x_i,x_j)]$$

$$\mathbb{L}: egin{array}{c} \sum_{x_i} q_{i,j}(x_i,x_j) = q_j(x_j) & orall i,j \in \mathcal{E}, x_j \end{array}$$

the entropy term is not exact anymore

Local consistency constraints are inadequate:

• locally consistent $q_{i,j}, q_i$ may not be marginals for any joint dist.

Variations on BP

$$rg \max_q H(q) + \mathbb{E}_q[\sum_{i,j} \ln \phi_{i,j}(x_i,x_j)]$$

- the entropy term is not exact anymore:
 - improved entropy approximations (e.g., region-based, convex)
- local consistency constraints are inadequate
 - tighter constraints (e.g., marginal consistency of larger clusters)

cluster-graph generalizes clique-tree

- clusters are not necessarily max-cliques
- running intersection property
- family-preserving property
- $S_{i,j} \subseteq C_i \cap C_j$ instead of = in clique-tree

cluster-graph generalizes clique-tree

- clusters are not necessarily max-cliques
- running intersection property
- family-preserving property
- $S_{i,j} \subseteq C_i \cap C_j$ \downarrow instead of = in clique-tree

similar reparametrization:

$$p(\mathbf{x})$$
 $\propto \frac{\prod_i \hat{p}(C_i)}{\prod_{i,j} \hat{p}(S_{i,j})}$ instead of = in clique-tree

cluster-graph generalizes clique-tree

- clusters are not necessarily max-cliques
- running intersection property
- family-preserving property

similar reparametrization:

$$p(\mathbf{x}) \propto \frac{\prod_i \hat{p}(C_i)}{\prod_{i,j} \hat{p}(S_{i,j})}$$
 instead of = in clique-tree

cluster-graph generalizes clique-tree

- clusters are not necessarily max-cliques
- running intersection property
- family-preserving property
- $S_{i,j} \subseteq C_i \cap C_j$ instead of = in clique-tree

similar reparametrization:

corresponding cluster-graph (the same BP updates)

cluster-graph generalizes clique-tree

- clusters are not necessarily max-cliques
- running intersection property
- family-preserving property
- $S_{i,j} \subseteq C_i \cap C_j$ \downarrow instead of = in clique-tree

similar reparametrization:

corresponding cluster-graph (the same BP updates)

improved cluster-graph (better entropy approximation + marginal constraint)

BP in practice

11 x 11 Ising grid

- works well when:
 - locally tree-like graphs
 - dense graphs with weak interactions

BP in practice

- works well when:
 - locally tree-like graphs
 - dense graphs with weak interactions

• sequential update works better than parallel update

improved convergence by damping (smoothing) the update

$$\delta^{(t+1)}_{i o I}(x_i) \propto (1-lpha) \delta^{(t)}_{i o I}(x_i) + lpha \prod_{J|i\in J, J
eq I} \delta^{(t)}_{J o i}(x_i)$$

Summary

belief propagation: efficient deterministic inference

- exact in clique-tree = variable elimination
 - application of distributive law

Summary

belief propagation: efficient deterministic inference

- exact in clique-tree = variable elimination
 - application of distributive law
- optimization perspective:
 - KL-divergence minimization
 - approximate objective (Bethe free energy) and constraints

Summary

belief propagation: efficient deterministic inference

- exact in clique-tree = variable elimination
 - application of distributive law
- optimization perspective:
 - KL-divergence minimization
 - approximate objective (Bethe free energy) and constraints
- works well in (cluster) graphs with loops (large tree-width)

bonus slides

Loopy BP on factor graphs: complexity

variable-to-factor message:

• from each var to all neighbors

$$\delta_{i o I}(x_i) \propto \prod_{J|i\in J, J
eq I} rac{\delta_{J o i}}{\delta_{J o i}}(x_i)$$

Loopy BP on factor graphs: complexity

variable-to-factor message:

• from each var to all neighbors

$$\delta_{i o I}(x_i) \propto \prod_{J|i\in J, J
eq I} \delta_{J o i}(x_i)$$

factor-to-variable messages:

$$\delta_{I o i}(x_i) \propto \sum_{x_{I-i}} \phi_I(x_I) \prod_{j\in I-i} \delta_{j o I}(x_i)$$

Loopy BP on factor graphs: complexity

variable-to-factor message:

• from each var to all neighbors

$$\delta_{i o I}(x_i) \propto \prod_{J|i\in J, J
eq I} rac{oldsymbol{\delta_{J o i}}}{oldsymbol{\delta_{J o i}}}(x_i)$$

factor-to-variable messages:

$$\delta_{I o i}(x_i) \propto \sum_{x_{I-i}} \phi_I(x_I) \prod_{j\in I-i} \delta_{j o I}(x_i)$$

