Probabilistic Graphical Models

Loopy BP and Bethe Free Energy

Siamak Ravanbakhsh Fall 2019



Learning objective

e |loopy belief propagation
e its variational derivation: Bethe approximation



So far...
e exact inference;

= variable elimination
= equivalent to belief propagation (BP) in a clique tree



So far...
e exact inference;

= variable elimination
m equivalent to belief propagation (BP) in a clique tree

This lecture...

e what if the exact inference is to0 expensive? e, te treewidth is large)
= continue to use BP: loopy BP
= why is this a good idea?
o answer using variational interpretation



Recap: BP in clique trees

sum-product BP message update:

0i~; (Sig) = 2ci—s,, Yi(Ci) 1 Inene,—j Or—i(Sik)

sepset cluster/clique
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e from leaves towards the root
e back to leaves (ven } Lo ==z osr s Gusa]— (4167
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Recap: BP in clique trees

sum-product BP message update:

0i~; (Sig) = 2ci—s,, Yi(Ci) 1 Inene,—j Or—i(Sik)

sepset cluster/clique

53a2(G,1)1

05,3(G.S): 04 5(GJ):
ZsYA(Cy) X 85,5

2 W5(Cs) X 8,5 2av(Cy

e from leaves towards the root
e back to leaves (ven } Lo ==z osr s Gusa]— (4167

8,_,,(D): 8, ,4(G.I): 85_,5(G.S):
marginal (belief) for each cluster: (2% KZDWCNM 2O X By

pi(Ci) o< Bi(Ci) = ¥i(Ci) [ rens, Ok—i(Sik)



Clique-tree for tree structures

e pairwise potentials ¢ ;(z:,z;)
e tree width =1

~. - one possible clique-tree

- — what are the sepsets?
one cluster per factor



Clique-tree for tree structures

e pairwise potentials ¢ ;(z:,z;)
e tree width =1

~. - one possible clique-tree

- — what are the sepsets?

one cluster per factor

a different valid clique-tree

— check for running intersection property



BP for tree structures

e pairwise potentials ¢ ;(z:, ;)
e message update
Oinj () = D og ij(%is T5) [Trenn,—j On—i(Ti)

® from leaves towards a root

® pack to leaves

one cluster per factor



BP for tree structures

e pairwise potentials ¢ ;(z;, ;)
e message update
Ginsj(5) = Doy, ii (%is T5) [Trenn,—j On—i(Ti)

® from leaves towards a root

® pack to leaves

e marginal (belief) for each cluster one cluster per factor
pi(xi) o< [ Tren, Ok—i(Ti)

Pi,j (@i, ©5) < Gij (@i, %) [ [nenn,—j Or—i(@i) [Lrens, —i Ok—s ()



BP for tree structures: reparametrization

graphical model represents
* p(x) — % Hi,jeS Pi; (wiv xj)

write it in terms of marginals

p(x) = IL jce Pij(iyz;) l

H.p\'NbZ-kl
one cluster per factor
why is this correct?

the denominator is adjusting for double-counts

substitute the marginals using BP messages to get (*)



Variational interpretation

BP as I-projection
arg ming D(q/|p)

l
p(@) = § [T 61 (@i, )

Hi je Qi,‘(miax')
Q(w) — quig(mij)Wbi—]l

write g in terms of marginals of interest

minimization gives us the marginals ¢i;, 4



Variational free energy

D(qllp) = 2.« q(X)l(ln q(z) —Inp(z))

—H(q) Eq[> i In s (@i, zj)] — In(Z)
— _H(q) o Eq [Zz,] 11’1 ¢Za.7 (wi7 33])] —I_ 11’1 Z ignore: does not depend on g

l-projection is equivalent to argmaxg H(q) + Eq[>_; ; In ¢ j(zi, z;)]

free energy is a lower-bound on In Z



Simplifying the free energy

arg ming D(q||p)

l

p(z) = 5 [} ¢ (zi, z;)

1L jee 9. (zisz;)
Q(x) p— H;Jqf(;ciJ)Nbijl

= arg max, H(q) + ]Eq [Z” In ¢z’,j (3% wy)]

so far did not use the decomposed form of q

both entropy and energy involve summation over exponentially many terms



Simplifying the free energy

arg ming D(q||p)

l

p(z) = 5 [} ¢ (zi, z;)

Hi,'e qi,’(fci,m')
Q(33) — H;qf(xij)|NbZ——J1




Simplifying the free energy

arg ming D(q||p)

l

p(z) = 5 [} ¢ (zi, z;)
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Simplifying the free energy

arg ming D(q||p)

l

p(z) = 5 [} ¢ (zi, z;)

Hi,'e qz',’(l’i,m')
Q(m) — H:qf(xij)|Nbi—J1

= arg max, H(q) + E, [Z” In ¢; j (i, ;)]

l
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Simplifying the free energy

arg ming D(q||p)

l

p(z) = 5 [} ¢ (zi, z;)

Hi,'e qz',’(l’i,m')
Q(m) — H:qf(xij)|Nbi—J1

= arg max, H(q) + E, [Z” In ¢; (x4, ;)]

l

Dijee 2uas; Big (Tir @) In gy (i, )

v

Zi,jeé’ H(qfl,]) - Zz(’NbZ‘ - 1)H(q1) follows from the decomposition of g



Variational interpretation: marginal constraints

arg max, H(q) + E, [Zi,j In ¢; (@i, ;)]

l

D ijeg Doy % (Tis ;) In @y (i, ;)

e Hgig) — Si(INbi| — 1) H(g:)

ma rg| nals Qij, Qi ShOUId be "Va Iid" a real distribution with these marginals should exist

Do, (T i) = qi(zj) Vi, j € &, x;

for tree graphical models this local consistency is enough



Variational derivation of BP

argmaxygy >_; ;ce H(qis) — 2 ([Nbi| = 1)H(a:) + X jee Do, @5 (®i, T5) In @i j (i, ;)



Variational derivation of BP

argmaxig} > ;e H(qig) — 2o (INbi| = D) H(qi) + 325 jeg D0y, @i (%is T5) In @i j (i, )

S @i (zis x) = gi(z;) Vi, j € €,z locally consistent
marginal distributions
gij(zi,z;) >0 Vi, je &, z,x;



Variational derivation of BP

argmaxig} > ;e H(qig) — 2o (INbi| = D) H(qi) + 325 jeg D0y, @i (%is T5) In @i j (i, )

S @i (zis x) = gi(z;) Vi, j € €,z locally consistent
marginal distributions
gij(zi,z;) >0 Vi, j €&, z,x;

BP update is derived as "fixed-points" of the Lagrangian

® pp messages are the (exponential form of the) Lagrange multipliers



What happens if there are loops?

We can still apply BP update: \

Gimsj () 0 Doy, #ii(%is T5) [ renn,—j Or—i(Th)

proportional to /

—

O

normalize the message for numerical stability

O
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We can still apply BP update: \ @
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What happens if there are loops?

O

We can still apply BP update: \

Gimsj () o€ Doy, #ii(%is T5) [ renn,—j Or—i(Th) —

proportional to / \)

normalize the message for numerical stability

e update the messages synchronously or sequentially
e may not converge (oscillating behavior)



What happens if there are loops?

O

We can still apply BP update: \
di—j(z;) Oic >z Di (@i Tj) [ ke nn,—j Ok—i(@k) —

proportional to / \)

normalize the message for numerical stability

e update the messages synchronously or sequentially
e may not converge (oscillating behavior)
e even when convergent only gives an approximation:

p(:) o< [Txens, Ok—i(z:i) is not (proportional to) the exact marginal  p(z:)



Loopy BP on factor graphs

P(1,2,4) P13,5)

p(x) = % I1; ¢1(=1)

I1c{,..., N} is asubset of variables ) ~ \




Loopy BP on factor graphs

P12} P35}

p(x) = % [1; ¢:(zr)

I1c{,..., N} is asubset of variables )‘ ~\
@ @) @) @

variable-to-factor message: (i) o< [1jieg,ger 05—i(i)




Loopy BP on factor graphs

P{1,2,4) ®3,5)

p(x) = 7 [1; ¢1(zr)

I1c{,..., N} is asubset of variables )‘ ~\
@ @) @) @

variable-to-factor message: (i) o< [1jieg,ger 05—i(i)

factor-to-variable message:  dr—i(@i) o< >, dr(r) [1jer—i 05 1(s)



Loopy BP on factor graphs

P12} P35}

p(x) = % [1; ¢:(zr)

I1c{,..., N} is asubset of variables )‘ ~\
@ @) @) @

variable-to-factor message: (i) o< [ jieg,ger 05—i(i)

factor-to-variable message:  dr—i(@i) o< >y, dr(xr) [1jer—i 05 1(s)

after convergence: 5(zi) < [[es ds-i(z:)



(Loopy) BP has found many applications

Machine Learning: Vision:
* clustering
e tensor factorization °

e inpainting &denoising
e stereo matching

www._jianxiongxiao.cont®*

Social network analysis:

e stochastic block modelling

9p pamays-|o03-ydeud//isdny

Combinatorial - -
optimization:

e Viterbi algorithm



Application: LDPC coding using BP

low-density parity check

z1,.--,Zn are sent through a noisy channel
Yy1,..-,Yn are observerd

plyi=1]z;=1)=p(y; =0|z; =0)=1—¢



Application: LDPC coding using BP

low-density parity check

z1,.--,Zn are sent through a noisy channel
Yy1,..-,Yn are observerd

plyi=1]z;=1)=p(y; =0|z; =0)=1—¢

the message satisfies parity constraints:

1 ife, DDz, =1

0 otherwise

¢stu(msa L, xu) — {



Application: LDPC coding using BP

low-density parity check

z1,..-,Zn are sent through a noisy channel o

y1,---,Yn are observerd Y2

p(yizlIwizl)zp(y,-ZO\xi:O):l—e y3

the message satisfies parity constraints: o
Ys
1 ife, DDz, =1
stu\Lsy Lty Ly ) = . Y
botu ) {O otherwise ’ T6

joint dist. over unobserved message:

p(x | y) = [, 0 O(xss 2, 20) [1im (1 — )L(zi = yi) + ell(z: # i)

image: wainwright&jordan



Application: LDPC coding using BP

low-density parity check

joint dist. over unobserved message:

p( | y) =40 S(@ss 2o, 2u) [ [0 (1 — €)L(mi = i) + ell(zi # vi)

W
inference problems
Y2
e most likely joint assignment ,
3
z* = argmax, p(z | y)
Y4
Ys
Ye

L6

image: wainwright&jordan



Application: LDPC coding using BP

low-density parity check

joint dist. over unobserved message:

p( | y) =40 S(@ss 2o, 2u) [ [0 (1 — €)L(mi = i) + ell(zi # vi)

31
inference problems
Y2

e most likely joint assignment )
Y3

z* = argmax, p(z | y) "

e max-marginals ; = argmax,, p(z; | y)

= calculate the marginals p(: | y)Vi
= using loopy BP 6

image: wainwright&jordan



Application: LDPC coding using BP

low-density parity check

joint dist. over unobserved message:

p(@ | y) =1L ¥(@s; 2, ) [T, (1 —e)l(z; =y

inference problems

e most likely joint assignment

z* = arg max, p(z | y)

image: wainwright&jordan



Application: LDPC coding using BP

low-density parity check

joint dist. over unobserved message:

p(z | y) = 1,10 (@5, 2a) TT11 (1 — €)L(z; =

inference problems
e most likely joint assignment
z* = arg max, p(z | y)
e max-marginals ; = argmax,, p(z; | y)

= calculate the marginals p(: | y)Vi
= yusing loopy BP

image: wainwright&jordan



Loops and variational interepretation

arg max, H(q) + E, [Zi,j In ¢; (i, ;)]

!

D ijee Do, 3, (Tis ) In @i (i, ;)

S e Hlgig) — S4(IN6:| — 1)H(g)



Loops and variational interepretation

arg max, H(q) + E, [Zi,j In ¢; (@i, ;)]

!

D ijee Do, 3, (Tis ) In @i (i, ;)

A 4

2ijee H(giz) — 22;(INbi| — 1)H (q:)
the entropy term is not exact anymore

e called to the entropy
e generally not convex anymore (multiple fixed points)



Loops and variational interepretation

arg max, H(g) + Eq [Zi,j In ¢; (@i, ;)]

L: Do (@i, z5) = gi(w;) Vi, j € €,



Loops and variational interepretation

arg max, H(q) + E, [Zi,j In ¢; (@i, ;)]

L: Do (@i, @) = qi(w5) Vi, j € €, x;

Local consistency constraints are inadequate:

e |ocally consistent g, may not be marginals for any joint dist.



Loops and variational interepretation

[pla «v«3yPn,yP13,... ’pm7n]

arg max, H(g) + Eq [Zi,j In ¢; (@i, ;)]

[q1,---7QTL,q1,3,---7Qm,n]
L: Do @j(@i, @) = qi(x;) Vi, j €& xj

L(G)

Local consistency constraints are inadequate:

e |ocally consistent g, may not be marginals for any joint dist.



Variations on BP

arg max, H(g) + E, [Zi,j In ¢; (i, z;)]

e the entropy term is not exact anymore:

= improved entropy approximations (e.g., region-based, convex)
e |ocal consistency constraints are inadequate

m tighter constraints (e.g., marginal consistency of larger clusters)



Variations on BP: cluster-graph

cluster-graph generalizes clique-tree

® clusters are not necessarily max-cliques
® running intersection property
® family-preserving property

® Si,j C C; ﬂCj

i

instead of = in clique-tree
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i
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. p(C;
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Variations on BP: cluster-graph

a factor-graph

cluster-graph generalizes clique-tree

® clusters are not necessarily max-cliques

® running intersection property
® family-preserving property
® Si,j C C; N Cj

i

instead of = in clique-tree

similar reparametrization:

. p(C;
P (o) BE 17, 55,

l

instead of = in clique-tree



Variations on BP: cluster-graph

a factor-graph

cluster-graph generalizes clique-tree

® clusters are not necessarily max-cliques

® running intersection property

L family-preserving property corresponding cluster-graph (the same BP updates)
e 5, €CiNC, (:4.8.¢] [2BcD] (3:8DF| [ 48E ] [ 5DE |
instead of = in clique-tree (ea] [72) [sc] [9p] [we] [07]

similar reparametrization:

. p(C;
P (o) BE 17, 55,

l

instead of = in clique-tree



Variations on BP: cluster-graph

a factor-graph

cluster-graph generalizes clique-tree

® clusters are not necessarily max-cliques

® running intersection property

L family-preserving property corresponding cluster-graph (the same BP updates)
° 5, €CiNC, (:4.8.c] [2BcD] (3:8DF] [48E ] [ 5DE |
instead of = in clique-tree (ea] [72) [sc] [9p] [we] [i07]

similar reparametrization:

improved cluster-graph (better entropy approximation + marginal constraint)

p(X) X HHZI?E?)) (:4.8.¢) (2BcD| (28DF] [ 48E ]| [s5DE |
i,j P\Pij

l ’ / 12:B,C

instead of = in clique-tree (64 78] [s&c] [9p] [w0E] [11:F]




BP in practice

11 x 11 Ising grid
e works well when:

B |ocally tree-like graphs

® dense graphs with weak interactions



BP in practice

11 x 11 Ising grid

e works well when: R E
B |ocally tree-like graphs @ Vi 35\ E A
. dense graphs With Weak inte ra Ctions * DF;U 1'07"’20 30 40 50 60 70 80 90 100 U[lu 0.1 0.2 0.3 0.4 05 DU 0.1 0.2 0.3 0.4 0.
Time (seconds) Time (secon ds) Time (secon ds)
(a) (b) (©)
1.0 10
e sequential update works better :: J[\NM ! i i
than parallel update : .

0 0.1 0.2 03 0.4 05 0 0.1 0.2 0.3 0.4 05
Time (seconds) Time (secon ds)

(d) (e)

‘ --- Synchronous  — Asynchronous  -— No smoothing — True ‘

e improved convergence by damping (smoothing) the update

t+1 t t
O (i) o< (1 )8 (@) + o Tl ies.er 85 (i)



Summary

belief propagation: efficient deterministic inference

e exactin clique-tree = variable elimination
= application of distributive law
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Summary

belief propagation: efficient deterministic inference

e exactin clique-tree = variable elimination

= application of distributive law
e optimization perspective:

= KL-divergence minimization

= approximate objective (Bethe free energy) and constraints
e works well in (cluster) graphs with loops (large tree-width)



bonus slides



Loopy BP on factor graphs: complexity
P1,2,4) ®y3,5)

variable-to-factor message:

| / A A
® from each var to all neighbors )
T A
(@) o< [ jie,000 00 (@:) J rriax @ @ @ @

number of vars

max neighbours

domain size
(2 for binary)
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Loopy BP on factor graphs: complexity
P1,2,4) ®y3,5)

variable-to-factor message:

| / A A
® from each var to all neighbors )
T A
(@) o< [ jie,000 00 (@:) J rriax @ @ @ @

number of vars

max neighbours

domain size
(2 for binary)

factor-to-variable messages: ;,d/Scopems|

S Copemax ‘

51%1‘ (1'2) o Ezl,i ¢I (ZEI) HjeI—i (331) number of factors vars in a factor



