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Learning objectivesLearning objectives

different types of missing data
learning with missing data and hidden vars:

directed models
undirected models

develop an intuition for expectation maximization
variational interpretation
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Two settings for partial observationsTwo settings for partial observations

missing data
each instance in      is missing some values

hidden variables
variables that are never observed

D
why model hidden variables?

image credit: Murphy's book

effect

original causes

mediating cause

latent variable models

observations have common cause
widely used in machine learning
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observation mechanism:

generate the data point
decide the values to observe

X = [X  , … ,X  ]1 D

O  =X [1, 0, … , 0, 1]

hide observe

missing completely at random (MCAR)

throw to generate

throw to decide show/hide

P (X,O  ) =X P (X)P (O  )X

p(x) = θ (1 −x θ)1−x

p(o) = ψ (1 −o ψ)1−o

observe        while        is missingX  o X  h (X = [X  ;X  ])h o
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Learning with MCARLearning with MCAR

  missing completely at random (MCAR)

throw to generate

throw to decide show/hide

P (X,O) = P (X)P (O)

p(x) = θ (1 −x θ)1−x

p(o) = ψ (1 −o θ)1−o

objective: learn a model for X,  from the data D = {x  , … ,x  }o
(1)

o
(M)

ℓ(D, θ) =  log  p(x  ,x  )∑x  ∈Do
∑x  h o h

since                             , we can ignore the obs. patterns

optimize:

each        may include values for a different subset of vars.x  o

P (X,O) = P (X)P (O)
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no "extra" information in the obs. pattern > ignore it

A more general criteriaA more general criteria
  missing at random (MAR) O  ⊥X X  ∣X  h o

if there is information about the obs. pattern       in 
then it is also in 

O  X X  h

throw the thumb-tack twice
if             hide
otherwise show

X = [X  ,X  ]1 2

X  =2 1 X  1

X  1

X  o

missing at random

missing completely at random

ℓ(D, θ) =  log  p(x  ,x  )∑x  ∈Do
∑x  h

o hoptimize:

ex
am

pl
e
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Likelihood functionLikelihood function

fully observed data:
directed: likelihood decomposes
undirected: does not decompose, but it is concave

partially observed:
does not decompose
not convex anymore

for partial observations

ℓ(D, θ) =  log  p(x  ,x  )∑x  ∈Do
∑x  h

o h

marginal

likelihood for a single assignment
to the latent vars.
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y z=  log p(x) +∑x  log p(y∣x) +∑x,y  log p(z∣x)∑x,z

fully observed case decomposes:

ℓ(D, θ) =  log p(x, y, z)∑x,y,z∈D



Likelihood function: Likelihood function: exampleexample
for a directed model

marginal

x

y z=  log p(x) +∑x  log p(y∣x) +∑x,y  log p(z∣x)∑x,z

fully observed case decomposes:

x is always missing (e.g., in a latent variable model)

ℓ(D, θ) =  log p(x, y, z)∑x,y,z∈D

ℓ(D, θ) =  log  p(x)p(y∣x)p(z∣x)∑y,z∈D ∑x

cannot decompose it!
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Parameter learning Parameter learning with missing datawith missing data

option 1: obtain the gradient of marginal likelihood

option 2: expectation maximization (EM)

variational interpretation

Directed models:

undirected models:

obtain the gradient of marginal likelihood

EM is not a good option here

all of these options
need inference for each step of 
learning



log marginal likelihood:

ℓ(D) =  log  p(a)p(b)p(c∣a, b)p(d∣c)∑(a,d)∈D ∑b,c hidden

Gradient of the Gradient of the marginalmarginal likelihood likelihood
(directed models)

example
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log marginal likelihood:

ℓ(D) =  log  p(a)p(b)p(c∣a, b)p(d∣c)∑(a,d)∈D ∑b,c

 ℓ(D) =∂p(d ∣c )′ ′
∂

  p(d , c ∣a, d)
p(d ∣c )′ ′

1 ∑(a,d)∈D
′ ′

take the derivative:

hidden

need inference for this
what happens to this expression if every variable is observed?

Gradient of the Gradient of the marginalmarginal likelihood likelihood
(directed models)

example



Gradient of the Gradient of the marginalmarginal likelihood likelihood
for a Bayesian Network with CPT

 ℓ(D) =∂p(x  ∣pa  )i x  i

∂
  p(x  ∣pa  ∣x  )

p(x  ∣pa  )i x  i

1 ∑x  ∈Do
i x  i o

run inference for each observationsome specific assignment

(directed models)
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(directed models)



Gradient of the Gradient of the marginalmarginal likelihood likelihood
for a Bayesian Network with CPT

 ℓ(D) =∂p(x  ∣pa  )i x  i

∂
  p(x  ∣pa  ∣x  )

p(x  ∣pa  )i x  i

1 ∑x  ∈Do
i x  i o

a technical issue:

gradient is always non-negative
no constraint of the form

reparametrize (e.g., using softmax)

or use Lagrange multipliers

run inference for each observationsome specific assignment

 p(x∣pa  ) =∑x x 1

 ℓ(D; θ) =∂θ
∂

   ∑(c ,d )∈D′ ′ ∂p(d ∣c )′ ′
∂ℓ(D)

∂θ
∂p(d ∣c )′ ′

for other parametrizations (beyond simple CPTs) use the chain rule:

(directed models)
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use the current parameters        to get the marginals
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θ
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Expectation MaximizationExpectation Maximization
E-step:
for each  
use the current parameters        to get the marginals

hidden

expected sufficient statistics

θ

M-step:
use the marginals (similar to completely observed data) to learn

a, d ∈ D
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Expectation MaximizationExpectation Maximization
E-step:
for each  
use the current parameters        to get the marginals

hidden

expected sufficient statistics

θ

M-step:
use the marginals (similar to completely observed data) to learn

a, d ∈ D

p  (B), p  (A), p  (C), p  (A,B,C), p  (D,C)θ,D θ,D θ,D θ,D θ,D

p  (C =θ,D c ,D =′ d ) =′
  p  (c , d ∣a, d)N

1 ∑(a,d)∈D θ
′ ′

in general we need inference to estimate this sufficient statistics

θ

more generally: expected sufficient statistics

θ  C∣DE.g., update using p  (C,D)θ,D θ  =D∣C
new

 

p  (C)θ,D

p  (C,D)θ,D

d =′ dnonzero for

p  (C)θ,Dand

(directed models)example



E-step:
for each  
use the current parameters        to get the marginalsθ

x  ∈o D

{p  (X  ), p  (X  ,Pa  )}θ,D i θ,D i X  i

for a Bayesian Network with CPT

Expectation MaximizationExpectation Maximization
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E-step:
for each  
use the current parameters        to get the marginalsθ

M-step:
use the marginals (similar to completely observed data) to learn

x  ∈o D

{p  (X  ), p  (X  ,Pa  )}θ,D i θ,D i X  i

θnew

θ  =X  ∣Pa  i X  i

new
 

p  (Pa  )θ,D X  i

p  (X  ,Pa  )θ,D i X  i

for a Bayesian Network with CPT
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E-step:
for each  
use the current parameters        to get the marginalsθ

M-step:
use the marginals (similar to completely observed data) to learn

x  ∈o D

{p  (X  ), p  (X  ,Pa  )}θ,D i θ,D i X  i

θnew

θ  =X  ∣Pa  i X  i

new
 

p  (Pa  )θ,D X  i

p  (X  ,Pa  )θ,D i X  i

for a Bayesian Network with CPT

Expectation MaximizationExpectation Maximization
(directed models)

for undirected models: M-step is the expensive part

perform E-step within each iteration of M-step: equivalent to gradient descent
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alarm network



Expectation Maximization: Expectation Maximization: exampleexample

1000 training instances
50% of variables are observed (in each instance)

fast initial improvement

change in different parameter values

train log-likelihood

test log-likelihood



Expectation Maximization: Expectation Maximization: exampleexample

local optima in EM:

number of local maxima effect of multiple restarts

alarm network

a single hidden variable
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EM iteration:
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maximizes the expected log-likelihood

E-step:
soft-complete the data

M-step:
maximize the full likelihood



Expected log-likelihoodExpected log-likelihood
(directed models)

Original objective:
ℓ(D, θ) =  log  p  (x  ,x  )∑x  ∈Do

∑x  h
θ o h

EM iteration:

p  (x  )θ o

 E  [log p  (x  ,x  )]∑x  ∈Do p  (x  ∣x  )θ h o θ o h

maximizes the expected log-likelihood

E-step:
soft-complete the data

M-step:
maximize the full likelihood

how are these objectives related?
any guarantees for EM?
variational interpretation relates these two
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Variational interpretationVariational interpretation of EM of EM

Recall: variational inference

D  (q(x)∣p(x)) =KL −H(q) − E  [log p(x)])q

p(x) =  

Z

 (x)p~

for a latent variable model
p(x  ∣h x  ) =o  

p(x  )o
p(x  ,x  )h o

E  [log p(x  ,x  )] −q h o log p(x  )o

min  q

min  q

= −H(q) − E  [log  (x)]) +q p~ log Z

- variational free energy
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for a latent variable model
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D  (q(x  )∣p(x  ∣x  )) =KL h h o −H(q) − E  [log p(x  ,x  )] −q h o log p(x  )o

Variational interpretationVariational interpretation of EM of EM

for a latent variable model

re-arrange

log p (x  ) =θ o D  (q(x  )∣p  (x  ∣x  )) +KL h θ h o H(q) + E [log p  (x  ,x  )]q θ h o

original objective expected log-likelihood wrt q

Coordinate ascent:

E-step: optimize q for a fixed       (variational inference)
M-step: optimize      for a fixed q

θ
θ

ignored by EM
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Coordinate ascent:

E-step: optimize q for a fixed  
M-step: optimize      for a fixed qθ

θ

log p  (x  )θ o



guaranteed improvement of

 

EM as coordinate ascentEM as coordinate ascent

Coordinate ascent:

E-step: optimize q for a fixed  
M-step: optimize      for a fixed qθ

θ

log p  (x  )θ o



guaranteed improvement of
converges to a local optimum
 

EM as coordinate ascentEM as coordinate ascent

Coordinate ascent:

E-step: optimize q for a fixed  
M-step: optimize      for a fixed qθ

θ

log p  (x  )θ o



Amortized inference Amortized inference in latent variable modelsin latent variable models

log p (x  ) =θ o D  (q(x  )∣p  (x  ∣x  )) +KL h θ h o H(q) + E [log p  (x  ,x  )]q θ h o
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Amortized inference Amortized inference in latent variable modelsin latent variable models

evidence lower bound (ELBO) is a lower-bound on the likelihood

                        instead of
     amortization: make q a function of observations

log p (x  ) =θ o D  (q(x  )∣p  (x  ∣x  )) +KL h θ h o H(q) + E [log p  (x  ,x  )]q θ h o
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Amortized inference Amortized inference in latent variable modelsin latent variable models

evidence lower bound (ELBO) is a lower-bound on the likelihood

                        instead of
     amortization: make q a function of observations

log p (x  ) =θ o D  (q(x  )∣p  (x  ∣x  )) +KL h θ h o H(q) + E [log p  (x  ,x  )]q θ h o

q  (x  ∣ψ h x  )o

p  (x  ,x  ) =θ h o p  (x  )p  (x  ∣x  )θ h θ o h

−D  (q  (x  ∣KL ψ h x  )∣p  (x  )) +o θ h E  [log p  (x  ∣x  )]q  ψ θ o h

q(x  )h

x  h

x  o

p  (x  )θ h

p  (x  ∣x  )θ o h

q  (x ∣x  )ψ h o

maximize ELBO by jointly optimizing ψ, θ



Amortized inference Amortized inference in latent variable modelsin latent variable models

evidence lower bound (ELBO) is a lower-bound on the likelihood

                        instead of
     amortization: make q a function of observations

log p (x  ) =θ o D  (q(x  )∣p  (x  ∣x  )) +KL h θ h o H(q) + E [log p  (x  ,x  )]q θ h o

q  (x  ∣ψ h x  )o

p  (x  ,x  ) =θ h o p  (x  )p  (x  ∣x  )θ h θ o h

−D  (q  (x  ∣KL ψ h x  )∣p  (x  )) +o θ h E  [log p  (x  ∣x  )]q  ψ θ o h

q(x  )h

x  h

x  o

p  (x  )θ h

p  (x  ∣x  )θ o h

q  (x ∣x  )ψ h o

maximize ELBO by jointly optimizing ψ, θ
use neural networks to represent cond. distributions
use back propagation for optimization

Variational Auto-Encoder (VAE)



Undirected models Undirected models with latent variableswith latent variables

linear exponential family p(x; θ) =  exp(⟨θ,ϕ(x)⟩)
Z(θ)

1

gradient in the fully observed setting ∇  ℓ(θ,D) =θ ∣D∣(E  [ϕ(x)] −D E  [ϕ(x)])p  θ

expectation wrt the data expectation wrt the model
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Undirected models Undirected models with latent variableswith latent variables

linear exponential family p(x; θ) =  exp(⟨θ,ϕ(x)⟩)
Z(θ)

1

gradient in the fully observed setting ∇  ℓ(θ,D) =θ ∣D∣(E  [ϕ(x)] −D E  [ϕ(x)])p  θ

expectation wrt the data expectation wrt the model

partial observation:

∇  ℓ(θ,D) =θ ∣D∣(E  [ϕ(x)] −D,θ E  [ϕ(x)])p  θ

x = (x  ,x  )o h
not observed

p(x  ; θ) =o   exp(⟨θ,ϕ(x)⟩)∑x  h Z(θ)
1marginal likelihood:

gradient in the partially obs. case

re
ca

ll

wrt both data and model: we need to do inference to calculate expected sufficient statistics (similar to E-step in EM)



Example:Example:  Restricted Boltzmann Machine (RBM)Restricted Boltzmann Machine (RBM)

binary RBM: p(h, v) =  exp(  θ  v  h  )Z(θ)
1 ∑i,j i,j i j

v  ,h  ∈i j {0, 1}fordata: D = {v }  

(m)
m
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binary RBM: p(h, v) =  exp(  θ  v  h  )Z(θ)
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v  ,h  ∈i j {0, 1}for
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ℓ(D; θ) =  log   exp(  θ  v  h  )∑v∈D ∑h Z(θ)
1 ∑i,j i,j i jwe want to optimize:

 ℓ(D; θ) ∝∂  θ  i,j

∂ E  [v  h  ] −D,θ i j E  [v  h  ]p  θ i jgradient:
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Example:Example:  Restricted Boltzmann Machine (RBM)Restricted Boltzmann Machine (RBM)

binary RBM: p(h, v) =  exp(  θ  v  h  )Z(θ)
1 ∑i,j i,j i j

v  ,h  ∈i j {0, 1}for

sufficient statistics: ϕ(v  ,h  ) =i j v  h  i j

data: D = {v }  

(m)
m

ℓ(D; θ) =  log   exp(  θ  v  h  )∑v∈D ∑h Z(θ)
1 ∑i,j i,j i jwe want to optimize:

 ℓ(D; θ) ∝∂  θ  i,j

∂ E  [v  h  ] −D,θ i j E  [v  h  ]p  θ i jgradient:
= (   v  E  [h  ∣v  ]) −M

1 ∑v  ∈Di
′ i

′
p  θ j i

′ E  [v  h  ])p  θ i j

sampling-based inference: sample h | v use Gibbs sampling:
sample both h,v using current parameters



summarysummary

learning with partial observations:

missing data
optimize the likelihood when missing at random

latent variables
can produce expressive probabilistic models   

  problem is not convex
how to learn the model?

directly estimate the gradient (directed and undirected)

use EM (directed models)

variational interpretation + relation to ELBO



Example: Gaussian mixture model

model parameters

p(y∣x; {μ  , Σ  }) =k k  exp(−  (y −
 ∣2πΣ  ∣x

1
2
1 μ  ) Σ  (y −x

T
x
−1 μ  ))x

x

y

p(x;π) =  π  ∏k k
I(x=k)

θ = [π, {μ  , Σ  }]k k



Example: Gaussian mixture model

E-step: calculate                 for each

model parameters

y ∈ D

p(y∣x; {μ  , Σ  }) =k k  exp(−  (y −
 ∣2πΣ  ∣x

1
2
1 μ  ) Σ  (y −x

T
x
−1 μ  ))x

x

y

p(x;π) =  π  ∏k k
I(x=k)

p(x∣y)

p(x∣y) ∝ p(x;π)p(y∣x;μ, Σ) = π  N (y;μ  , Σ  )k k k

now we have "probabilistically completed" instances
update the parameters (easy in a Bayes-net)

θ = [π, {μ  , Σ  }]k k
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T
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   N
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 p(x=k∣y)y∑y∈D mean of a weighted set of instances

Σ  =k  

 p(x=k∣y)∑y∈D

 p(x=k∣y)(y−μ  )(y−μ  )∑y∈D k k
T

covariance of a weighted set of instances
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