Probabilistic Graphical Models

Learning with partial observations

Learning objectives

- different types of missing data
- learning with missing data and hidden vars:
- directed models
- undirected models
- develop an intuition for expectation maximization
- variational interpretation

Two settings for partial observations

- missing data
- each instance in \mathcal{D} is missing some values

Two settings for partial observations

- missing data
- each instance in \mathcal{D} is missing some values
- hidden variables
- variables that are never observed

Two settings for partial observations

- missing data
- each instance in \mathcal{D} is missing some values
- hidden variables
- variables that are never observed
latent variable models

- observations have common cause
- widely used in machine learning

Missing data

observation mechanism:

- generate the data point $X=\left[X_{1}, \ldots, X_{D}\right]$
- decide the values to observe $O_{X}=[1,0, \ldots, 0,1]$

Missing data

observation mechanism:

- generate the data point $X=\left[X_{1}, \ldots, X_{D}\right]$
- decide the values to observe $O_{X}=[1,0, \ldots, 0,1]$
hide observe
- observe X_{o} while X_{h} is missing $\left(X=\left[X_{h} ; X_{o}\right]\right)$

Missing data

observation mechanism:

- generate the data point $X=\left[X_{1}, \ldots, X_{D}\right]$
- decide the values to observe $O_{X}=[1,0, \ldots, 0,1]$
hide observe
- observe X_{o} while X_{h} is missing $\left(X=\left[X_{h} ; X_{o}\right]\right)$
missing completely at random (MCAR) $\quad P\left(X, O_{X}\right)=P(X) P\left(O_{X}\right)$

Missing data

observation mechanism:

- generate the data point $X=\left[X_{1}, \ldots, X_{D}\right]$
- decide the values to observe $O_{X}=[1,0, \ldots, 0,1]$
hide observe
- observe X_{o} while X_{h} is missing $\left(X=\left[X_{h} ; X_{o}\right]\right)$
missing completely at random (MCAR) $\quad P\left(X, O_{X}\right)=P(X) P\left(O_{X}\right)$

$$
p(x)=\theta^{x}(1-\theta)^{1-x} \quad \text { throw to generate }
$$

$p(o)=\psi^{o}(1-\psi)^{1-o}$ throw to decide show/hide

Learning with MCAR

Learning with MCAR

objective: learn a model for X , from the data $\mathcal{D}=\left\{x_{o}^{(1)}, \ldots, x_{o}^{(M)}\right\}$

$$
\text { each } x_{o} \text { may include values for a different subset of vars. }
$$

Learning with MCAR

missing completely at random (MCAR) $P(X, O)=P(X) P(O)$

$$
\begin{array}{ll}
p(x)=\theta^{x}(1-\theta)^{1-x} & \text { throw to generate } \\
p(o)=\psi^{o}(1-\theta)^{1-o} & \text { throw to decide show/hide }
\end{array}
$$

objective: learn a model for X, from the data $\mathcal{D}=\left\{x_{o}^{(1)}, \ldots, x_{o}^{(M)}\right\}$
each x_{o} may include values for a different subset of vars.
since $P(X, O)=P(X) P(O)$, we can ignore the obs. patterns
optimize: $\ell(\mathcal{D}, \theta)=\sum_{x_{o} \in \mathcal{D}} \log \sum_{x_{h}} p\left(x_{o}, x_{h}\right)$

A more general criteria

missing at random (MAR) $\quad O_{X} \perp X_{h} \mid X_{o}$
if there is information about the obs. pattern O_{X} in X_{h} then it is also in X_{o}

A more general criteria

missing at random (MAR) $O_{X} \perp X_{h} \mid X_{o}$
if there is information about the obs. pattern O_{X} in X_{h} then it is also in X_{o}

A more general criteria

missing at random (MAR) $O_{X} \perp X_{h} \mid X_{o}$
if there is information about the obs. pattern O_{X} in X_{h} then it is also in X_{o}
no "extra" information in the obs. pattern > ignore it
optimize: $\ell(\mathcal{D}, \theta)=\sum_{x_{o} \in \mathcal{D}} \log \sum_{x_{h}} p\left(x_{o}, x_{h}\right)$

marginal Likelihood function
 for partial observations

- fully observed data:
- directed: likelihood decomposes
- undirected: does not decompose, but it is concave
marginal Likelihood function for partial observations
- fully observed data:
- directed: likelihood decomposes
- undirected: does not decompose, but it is concave
- partially observed:
- - does not decompose
- not convex anymore

marginal Likelihood function for partial observations

- fully observed data:
- directed: likelihood decomposes
- undirected: does not decompose, but it is concave
- partially observed:- does not decompose
- not convex anymore

$$
\ell(\mathcal{D}, \theta)=\sum_{x_{o} \in \mathcal{D}} \log \sum_{x_{h}} p\left(x_{o}, x_{h}\right)
$$

likelihood for a single assignment to the latent vars.

marginal Likelihood function: example

for a directed model
fully observed case decomposes:

$$
\begin{aligned}
\ell(D, \theta) & =\sum_{x, y, z \in \mathcal{D}} \log p(x, y, z) \\
& =\sum_{x} \log p(x)+\sum_{x, y} \log p(y \mid x)+\sum_{x, z} \log p(z \mid x)
\end{aligned}
$$

marginal Likelihood function: example

for a directed model
fully observed case decomposes:

$$
\begin{aligned}
\ell(D, \theta) & =\sum_{x, y, z \in \mathcal{D}} \log p(x, y, z) \\
& =\sum_{x} \log p(x)+\sum_{x, y} \log p(y \mid x)+\sum_{x, z} \log p(z \mid x)
\end{aligned}
$$

x is always missing (e.g., in a latent variable model)

$$
\begin{gathered}
\ell(D, \theta)=\sum_{y, z \in \mathcal{D}} \log \sum_{x} p(x) p(y \mid x) p(z \mid x) \\
\text { cannot decompose it! }
\end{gathered}
$$

Parameter learning with missing data

Directed models:
option 1: obtain the gradient of marginal likelihood
option 2: expectation maximization (EM)

- variational interpretation

Parameter learning with missing data

Directed models:
option 1: obtain the gradient of marginal likelihood
option 2: expectation maximization (EM)

- variational interpretation
undirected models:
obtain the gradient of marginal likelihood
- EM is not a good option here

Parameter learning with missing data

Directed models:
option 1: obtain the gradient of marginal likelihood
option 2: expectation maximization (EM)

- variational interpretation
undirected models:
obtain the gradient of marginal likelihood
- EM is not a good option here

Gradient of the marginal likelihood

example

log marginal likelihood:

$$
\ell(\mathcal{D})=\sum_{(a, d) \in \mathcal{D}} \log \sum_{b, c} p(a) p(b) p(c \mid a, b) p(d \mid c)
$$

Gradient of the marginal likelihood

example

log marginal likelihood:

$$
\ell(\mathcal{D})=\sum_{(a, d) \in \mathcal{D}} \log \sum_{b, c} p(a) p(b) p(c \mid a, b) p(d \mid c)
$$

log marginal ikelinood:
take the derivative:

$$
\frac{\partial}{\partial p\left(d^{\prime} \mid c^{\prime}\right)} \ell(\mathcal{D})=\frac{1}{p\left(d^{\prime} \mid c^{\prime}\right)} \sum_{(a, d) \in \mathcal{D}} p\left(d^{\prime}, c^{\prime} \mid a, d\right)
$$

Gradient of the marginal likelihood

example

log marginal likelihood:

$$
\ell(\mathcal{D})=\sum_{(a, d) \in \mathcal{D}} \log \sum_{b, c} p(a) p(b) p(c \mid a, b) p(d \mid c)
$$

take the derivative:

$$
\frac{\partial}{\partial p\left(d^{\prime} \mid c^{\prime}\right)} \ell(\mathcal{D})=\frac{1}{p\left(d^{\prime} \mid c^{\prime}\right)} \sum_{(a, d) \in \mathcal{D}} p\left(d^{\prime}, c^{\prime} \mid a, d\right)
$$

Gradient of the marginal likelihood

for a Bayesian Network with CPT

$$
\frac{\partial}{\partial p\left(x_{i} \mid p a_{x_{i}}\right)} \ell(\mathcal{D})=\frac{1}{p\left(x_{i} \mid p a_{x_{i}}\right)} \sum_{\mathbf{x}_{o} \in \mathcal{D}} p\left(x_{i}\left|p a_{x_{i}}\right| \mathbf{x}_{o}\right)
$$

Gradient of the marginal likelihood

for a Bayesian Network with CPT

$$
\frac{\partial}{\partial p\left(x_{i} \mid p a_{x_{i}}\right)} \ell(\mathcal{D})=\frac{1}{p\left(x_{i} \mid p a_{x_{i}}\right)} \sum_{\mathbf{x}_{o} \in \mathcal{D}} p\left(x_{i}\left|p a_{x_{i}}\right| \mathbf{x}_{o}\right)
$$

some specific assignment
run inference for each observation
a technical issue:

- gradient is always non-negative
- no constraint of the form $\sum_{x} p\left(x \mid p a_{x}\right)=1$
- reparametrize (e.g., using softmax)
- or use Lagrange multipliers

Gradient of the marginal likelihood

$$
\frac{\partial}{\partial p\left(x_{i} \mid p a_{x_{i}}\right)} \ell(\mathcal{D})=\frac{1}{p\left(x_{i} \mid p a_{x_{i}}\right)} \sum_{\mathbf{x}_{o} \in \mathcal{D}} p\left(x_{i}\left|p a_{x_{i}}\right| \mathbf{x}_{o}\right)
$$

some specific assignment
run inference for each observation

a technical issue:

- gradient is always non-negative
- no constraint of the form $\sum_{x} p\left(x \mid p a_{x}\right)=1$
- reparametrize (e.g., using softmax)
- or use Lagrange multipliers
for other parametrizations (beyond simple CPTs) use the chain rule:

$$
\frac{\partial}{\partial \theta} \ell(\mathcal{D} ; \theta)=\sum_{\left(c^{\prime}, d^{\prime}\right) \in \mathcal{D}} \frac{\partial \ell(\mathcal{D})}{\partial p\left(d^{\prime} \mid c^{\prime}\right)} \frac{\partial p\left(d^{\prime} \mid c^{\prime}\right)}{\partial \theta}
$$

Expectation Maximization

example

E-step:

for each $a, d \in \mathcal{D}$
use the current parameters θ to get the marginals more generally: expected sufficient statistics

Expectation Maximization

example
(directed models)
E-step:
for each $a, d \in \mathcal{D}$
use the current parameters θ to get the marginals
$p_{\theta, \mathcal{D}}(B), p_{\theta, \mathcal{D}}(A), p_{\theta, \mathcal{D}}(C), p_{\theta, \mathcal{D}}(A, B, C), p_{\theta, \mathcal{D}}(D, C)$

Expectation Maximization

example

E-step:
for each $a, d \in \mathcal{D}$
use the current parameters θ to get the marginals

(directed models)
hidden

$$
p_{\theta, \mathcal{D}}\left(C=c^{\prime}, D=d^{\prime}\right)=\frac{1}{N} \sum_{(a, d) \in \mathcal{D}} p_{\theta}\left(c^{\prime}, d^{\prime} \mid a, d\right)
$$

Expectation Maximization

example

E-step:
for each $a, d \in \mathcal{D}$
use the current parameters θ to get the marginals
(directed models)
hidden

$$
\text { nonzero for } d^{\prime \prime}=d
$$

in general we need inference to estimate this sufficient statistics

M-step:

use the marginals (similar to completely observed data) to learn θ
expected sufficient statistics

Expectation Maximization

example

E-step:

for each $a, d \in \mathcal{D}$
use the current parameters θ to get the marginals

(directed models)
hidden

$$
p_{\theta, \mathcal{D}}\left(C=c^{\prime}, D=d^{\prime}\right)=\frac{1}{N} \sum_{(a, d) \in \mathcal{D}} p_{\theta}\left(c^{\prime}, d^{\prime} \mid a, d\right)
$$

in general we need inference to estimate this sufficient statistics

M-step:

use the marginals (similar to completely observed data) to learn θ
expected sufficient statistics
E.g., update $\theta_{C \mid D}$ using $p_{\theta, \mathcal{D}}(C, D)$ and $p_{\theta, \mathcal{D}}(C) \longrightarrow \theta_{D \mid C}^{n e w}=\frac{p_{\theta, \mathcal{D}}(C, D)}{p_{\theta, \mathcal{D}}(C)}$

Expectation Maximization

for a Bayesian Network with CPT

E-step:
for each $\mathbf{x}_{o} \in \mathcal{D}$ use the current parameters θ to get the marginals

$$
\left\{p_{\theta, \mathcal{D}}\left(X_{i}\right), p_{\theta, \mathcal{D}}\left(X_{i}, P a_{X_{i}}\right)\right\}
$$

Expectation Maximization

for a Bayesian Network with CPT

E-step:
for each $\mathbf{x}_{o} \in \mathcal{D}$
use the current parameters θ to get the marginals

M-step:

$$
\left\{p_{\theta, \mathcal{D}}\left(X_{i}\right), p_{\theta, \mathcal{D}}\left(X_{i}, P a_{X_{i}}\right)\right\}
$$

use the marginals (similar to completely observed data) to learn $\theta^{\text {new }}$

$$
\theta_{X_{i} \mid P a_{X_{i}}}^{\text {new }}=\frac{p_{\theta, \mathcal{D}}\left(X_{i}, P a_{X_{i}}\right)}{p_{\theta, \mathcal{D}}\left(P a_{X_{i}}\right)}
$$

Expectation Maximization

for a Bayesian Network with CPT

E-step:
for each $\mathbf{x}_{o} \in \mathcal{D}$
use the current parameters θ to get the marginals

M-step:

$$
\left\{p_{\theta, \mathcal{D}}\left(X_{i}\right), p_{\theta, \mathcal{D}}\left(X_{i}, P a_{X_{i}}\right)\right\}
$$

use the marginals (similar to completely observed data) to learn $\theta^{\text {new }}$

$$
\theta_{X_{i} \mid P a_{X_{i}}}^{\text {new }}=\frac{p_{\theta, \mathcal{D}}\left(X_{i}, P a_{X_{i}}\right)}{p_{\theta, \mathcal{D}}\left(P a_{X_{i}}\right)}
$$

for undirected models: M -step is the expensive part

- perform E-step within each iteration of M-step: equivalent to gradient descent

Expectation Maximization: example

- 1000 training instances
- 50% of variables are observed (in each instance)

Expectation Maximization: example

- 1000 training instances
- 50% of variables are observed (in each instance)
change in different parameter values

Expectation Maximization: example

```
local optima in EM:
```


alarm network
number of local maxima

effect of multiple restarts

Expected log-likelihood

```
(directed models)
```

Original objective:

$$
\ell(\mathcal{D}, \theta)=\sum_{\mathbf{x}_{o} \in \mathcal{D}} \log \sum_{\mathbf{x}_{h}} p_{\theta}\left(\mathbf{x}_{o}, \mathbf{x}_{h}\right)
$$

Expected log-likelihood

Original objective:

$$
\begin{array}{r}
\ell(\mathcal{D}, \theta)=\sum_{\mathbf{x}_{o} \in \mathcal{D}} \log \sum_{\mathbf{x}_{h}} p_{\theta}\left(\mathbf{x}_{o}, \mathbf{x}_{h}\right) \\
p_{\theta}\left(\mathbf{x}_{o}\right)
\end{array}
$$

EM iteration:

maximizes the expected log-likelihood

maximize the full likelihood

Expected log-likelihood

Original objective:

$$
\begin{array}{r}
\ell(\mathcal{D}, \theta)=\sum_{\mathbf{x}_{o} \in \mathcal{D}} \log \sum_{\mathbf{x}_{h}} p_{\theta}\left(\mathbf{x}_{o}, \mathbf{x}_{h}\right) \\
p_{\theta}\left(\mathbf{x}_{o}\right)
\end{array}
$$

EM iteration:

- how guarantees for EM?
- variational interpretation relates these two

Variational interpretation of EM

Recall: variational inference

$$
\left.\min _{q} \mathbb{D}_{K L}(q(\mathbf{x}) \mid p(\mathbf{x}))=-\mathbb{H}(q)-\mathbb{E}_{q}[\log p(\mathbf{x})]\right)
$$

Variational interpretation of EM

Recall: variational inference

$$
\begin{aligned}
\min _{q} \mathbb{D}_{K L}(q(\mathbf{x}) \mid p(\mathbf{x}))=-\mathbb{H}(q)-\mathbb{E}_{q}[& \log p(\mathbf{x})]) \\
& p(\mathbf{x})=\frac{\tilde{p}(\mathbf{x})}{Z}
\end{aligned}
$$

Variational interpretation of EM

Recall: variational inference

$$
\begin{gathered}
\left.\min _{q} \mathbb{D}_{K L}(q(\mathbf{x}) \mid p(\mathbf{x}))=-\mathbb{H}(q)-\mathbb{E}_{q}[\log p(\mathbf{x})]\right)=\frac{- \text { variational free energy }}{\left.-\mathbb{H}(q)-\mathbb{E}_{q}[\log \tilde{p}(\mathbf{x})]\right)}+\log Z \\
p(\mathbf{x})=\frac{\tilde{p}(\mathbf{x})}{Z}
\end{gathered}
$$

Variational interpretation of EM

Recall: variational inference
$\left.\min _{q} \mathbb{D}_{K L}(q(\mathbf{x}) \mid p(\mathbf{x}))=-\mathbb{H}(q)-\mathbb{E}_{q}[\log p(\mathbf{x})]\right)=\frac{- \text { - variational free energy }}{\left.-\mathbb{H}(q)-\mathbb{E}_{q}[\log \tilde{p}(\mathbf{x})]\right)}+\log Z$

$$
p(\mathbf{x})=\frac{\tilde{p}(\mathbf{x})}{Z}
$$

for a latent variable model

$$
\downarrow_{p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)=\frac{p\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)}{p\left(\mathbf{x}_{o}\right)}}^{\downarrow}
$$

Variational interpretation of EM

Recall: variational inference
$\left.\min _{q} \mathbb{D}_{K L}(q(\mathbf{x}) \mid p(\mathbf{x}))=-\mathbb{H}(q)-\mathbb{E}_{q}[\log p(\mathbf{x})]\right)=\frac{- \text { - variational free energy }}{\left.-\mathbb{H}(q)-\mathbb{E}_{q}[\log \tilde{p}(\mathbf{x})]\right)}+\log Z$

$$
p(\mathbf{x})=\frac{\tilde{p}(\mathbf{x})}{Z}
$$

for a latent variable model

$$
\downarrow_{p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)=\frac{p\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)}{p\left(\mathbf{x}_{o}\right)}}^{\downarrow}
$$

$\min _{q} \mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)=-\mathbb{H}(q)-\mathbb{E}_{q}\left[\log p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right]$

Variational interpretation of EM

Recall: variational inference
$\left.\min _{q} \mathbb{D}_{K L}(q(\mathbf{x}) \mid p(\mathbf{x}))=-\mathbb{H}(q)-\mathbb{E}_{q}[\log p(\mathbf{x})]\right)=\frac{- \text { variational free energy }}{\left.-\mathbb{H}(q)-\mathbb{E}_{q}[\log \tilde{p}(\mathbf{x})]\right)}+\log Z$

$$
p(\mathbf{x})=\frac{\tilde{p}(\mathbf{x})}{Z}
$$

for a latent variable model

$$
\downarrow_{p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)=\frac{p\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)}{p\left(\mathbf{x}_{o}\right)}}^{\downarrow}
$$

$$
\begin{aligned}
\min _{q} \mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)=-\mathbb{H}(q)- & \mathbb{E}_{q}\left[\log p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right] \\
& \mathbb{E}_{q}\left[\log p\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]-\log p\left(\mathbf{x}_{o}\right)
\end{aligned}
$$

Variational interpretation of EM

for a latent variable model

$$
\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)=-\mathbb{H}(q)-\mathbb{E}_{q}\left[\log p\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]-\log p\left(\mathbf{x}_{o}\right)
$$

Variational interpretation of EM

for a latent variable model

$$
\begin{aligned}
& \qquad \mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)=-\mathbb{H}(q)-\mathbb{E}_{q}\left[\log p\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]-\log p\left(\mathbf{x}_{o}\right) \\
& \text { re-arrange } \boldsymbol{\downarrow} \\
& \\
& \log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]
\end{aligned}
$$

Variational interpretation of EM

for a latent variable model

$$
\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)=-\mathbb{H}(q)-\mathbb{E}_{q}\left[\log p\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]-\log p\left(\mathbf{x}_{o}\right)
$$

re-arrange

$$
\log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]
$$

original objective

Variational interpretation of EM

for a latent variable model

$$
\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)=-\mathbb{H}(q)-\mathbb{E}_{q}\left[\log p\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]-\log p\left(\mathbf{x}_{o}\right)
$$

re-arrange

$$
\log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]
$$

original objective

Variational interpretation of EM

for a latent variable model

$$
\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)=-\mathbb{H}(q)-\mathbb{E}_{q}\left[\log p\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]-\log p\left(\mathbf{x}_{o}\right)
$$

re-arrange

$$
\log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]
$$

original objective

Variational interpretation of EM

for a latent variable model

$$
\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)=-\mathbb{H}(q)-\mathbb{E}_{q}\left[\log p\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]-\log p\left(\mathbf{x}_{o}\right)
$$

re-arrange

$$
\log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]
$$ original objective

expected log-likelihood wrt q ignored by EM

Variational interpretation of EM

for a latent variable model

$$
\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)=-\mathbb{H}(q)-\mathbb{E}_{q}\left[\log p\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]-\log p\left(\mathbf{x}_{o}\right)
$$

re-arrange

$$
\log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]
$$ original objective

expected log-likelihood wrt q ignored by EM

Coordinate ascent:

- E-step: optimize q for a fixed θ (variational inference)
- M-step: optimize θ for a fixed q

EM as coordinate ascent

Coordinate ascent:

- E-step: optimize q for a fixed θ
- M-step: optimize θ for a fixed q

guaranteed improvement of $\log p_{\theta}\left(\mathbf{x}_{o}\right)$

EM as coordinate ascent

Coordinate ascent:

- E-step: optimize q for a fixed θ
- M-step: optimize θ for a fixed q

guaranteed improvement of $\log p_{\theta}\left(\mathbf{x}_{o}\right)$

EM as coordinate ascent

Coordinate ascent:

- E-step: optimize q for a fixed θ
- M-step: optimize θ for a fixed q

guaranteed improvement of $\log p_{\theta}\left(\mathbf{x}_{o}\right)$ converges to a local optimum

Amortized inference in latent variable models

$$
\log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]
$$

Amortized inference in latent variable models

$$
\log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]
$$

evidence lower bound (ELBO) is a lower-bound on the likelihood

Amortized inference in latent variable models

$$
\begin{array}{r}
\log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right] \\
\text { evidence lower bound (ELBO) is a lower-bound on the likelihood }
\end{array}
$$

$q_{\psi}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)$ instead of $q\left(\mathbf{x}_{h}\right)$
amortization: make q a function of observations

Amortized inference in latent variable models

$$
\log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]
$$

evidence lower bound (ELBO) is a lower-bound on the likelihood
$q_{\psi}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)$ instead of $q\left(\mathbf{x}_{h}\right)$
amortization: make q a function of observations

Amortized inference in latent variable models

$$
\log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]
$$

evidence lower bound (ELBO) is a lower-bound on the likelihood
$q_{\psi}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)$ instead of $q\left(\mathbf{x}_{h}\right)$ amortization: make q a function of observations

$$
\downarrow p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)=p_{\theta}\left(\mathbf{x}_{h}\right) p_{\theta}\left(\mathbf{x}_{o} \mid \mathbf{x}_{h}\right)
$$

$$
-\mathbb{D}_{K L}\left(q_{\psi}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right) \mid p_{\theta}\left(\mathbf{x}_{h}\right)\right)+\mathbb{E}_{q_{\psi}}\left[\log p_{\theta}\left(\mathbf{x}_{o} \mid \mathbf{x}_{h}\right)\right]
$$

Amortized inference in latent variable models

$$
\log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]
$$

evidence lower bound (ELBO) is a lower-bound on the likelihood

maximize ELBO by jointly optimizing ψ, θ

Amortized inference in latent variable models

$$
\log p_{\theta}\left(\mathbf{x}_{o}\right)=\mathbb{D}_{K L}\left(q\left(\mathbf{x}_{h}\right) \mid p_{\theta}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right)\right)+\mathbb{H}(q)+\mathbb{E}_{q}\left[\log p_{\theta}\left(\mathbf{x}_{h}, \mathbf{x}_{o}\right)\right]
$$

evidence lower bound (ELBO) is a lower-bound on the likelihood

$$
-\mathbb{D}_{K L}\left(q_{\psi}\left(\mathbf{x}_{h} \mid \mathbf{x}_{o}\right) \mid p_{\theta}\left(\mathbf{x}_{h}\right)\right)+\mathbb{E}_{q_{\psi}}\left[\log p_{\theta}\left(\mathbf{x}_{o} \mid \mathbf{x}_{h}\right)\right]
$$

Variational Auto-Encoder (VAE)
maximize ELBO by jointly optimizing ψ, θ
use neural networks to represent cond. distributions use back propagation for optimization

Undirected models with latent variables

E
linear exponential family
gradient in the fully observed setting

$$
\begin{aligned}
p(x ; \theta) & =\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle) \\
\nabla_{\theta} \ell(\theta, \mathcal{D}) & =|\mathcal{D}|\left(\mathbb{E}_{\mathcal{D}}[\phi(x)]-\mathbb{E}_{p_{\theta}}[\phi(x)]\right) \\
& \downarrow
\end{aligned}
$$

Undirected models with latent variables

partial observation: $\mathbf{x}=\left(\mathbf{x}_{o}, \mathbf{x}_{h}\right)$

Undirected models with latent variables

$\begin{array}{ll}\text { linear exponential family } & p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle) \\ \text { gradient in the fully observed setting } & \nabla_{\theta} \ell(\theta, \mathcal{D})=|\mathcal{D}|\left(\mathbb{E}_{\mathcal{D}}[\phi(x)]-\mathbb{E}_{p_{\theta}}[\phi(x)]\right) \\ & \downarrow \\ & \downarrow\end{array}$
partial observation: $\mathbf{x}=\left(\mathbf{x}_{o}, \mathbf{x}_{h}\right)$
not observed
marginal likelihood: $\quad p\left(\mathbf{x}_{o} ; \theta\right)=\sum_{\mathbf{x}_{h}} \frac{1}{Z(\theta)} \exp (\langle\theta, \phi(\mathbf{x})\rangle)$

Undirected models with latent variables

|
linear exponential family

$$
\begin{aligned}
& p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle) \\
& \nabla_{\theta} \ell(\theta, \mathcal{D})=|\mathcal{D}|\left(\mathbb{E}_{\mathcal{D}}[\phi(x)]-\mathbb{E}_{p_{\theta}}[\phi(x)]\right) \\
& \underbrace{\downarrow}_{\text {expectation wrt the data }} \\
& \text { expectation wrt the model }
\end{aligned}
$$

partial observation: $\mathbf{x}=\left(\mathbf{x}_{o}, \mathbf{x}_{h}\right)$
not observed
marginal likelihood: $\quad p\left(\mathbf{x}_{o} ; \theta\right)=\sum_{\mathbf{x}_{n}} \frac{1}{Z(\theta)} \exp (\langle\theta, \phi(\mathbf{x})\rangle)$
gradient in the partially obs. case

$$
\begin{gathered}
\nabla_{\theta} \ell(\theta, \mathcal{D})=|\mathcal{D}|\left(\mathbb{E}_{\mathcal{D}, \theta}[\phi(x)]-\mathbb{E}_{p_{\theta}}[\phi(x)]\right) \\
\downarrow
\end{gathered}
$$

Example: Restricted Boltzmann Machine (RBM)

binary RBM: $\quad p(h, v)=\frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$
data: $\mathcal{D}=\left\{v^{(m)}\right\}_{m}$
for $v_{i}, h_{j} \in\{0,1\}$

Example: Restricted Boltzmann Machine (RBM)

${ }_{\text {binary }}$ RBM: $\quad p(h, v)=\frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$
data: $\mathcal{D}=\left\{v^{(m)}\right\}_{m}$

$$
\text { for } v_{i}, h_{j} \in\{0,1\}
$$

sufficient statistics: $\quad \phi\left(v_{i}, h_{j}\right)=v_{i} h_{j}$

Example: Restricted Boltzmann Machine (RBM)

binary RBM: $\quad p(h, v)=\frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$
data: $\mathcal{D}=\left\{v^{(m)}\right\}_{m}$
for $v_{i}, h_{j} \in\{0,1\}$

sufficient statistics: $\quad \phi\left(v_{i}, h_{j}\right)=v_{i} h_{j}$
we want to optimize: $\ell(\mathcal{D} ; \theta)=\sum_{v \in \mathcal{D}} \log \sum_{h} \frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$

Example: Restricted Boltzmann Machine (RBM)

binary RBM: $\quad p(h, v)=\frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$
data: $\mathcal{D}=\left\{v^{(m)}\right\}_{m}$ for $v_{i}, h_{j} \in\{0,1\}$

sufficient statistics: $\quad \phi\left(v_{i}, h_{j}\right)=v_{i} h_{j}$
we want to optimize: $\ell(\mathcal{D} ; \theta)=\sum_{v \in \mathcal{D}} \log \sum_{h} \frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$
gradient: $\quad \frac{\partial}{\partial_{i_{i j}}} \ell(\mathcal{D} ; \theta) \propto \mathbb{E}_{\mathcal{D}, \theta}\left[v_{i} h_{j}\right]-\mathbb{E}_{p_{9}}\left[v_{i} h_{j}\right]$

$$
\left.=\left(\frac{1}{M} \sum_{v_{i}^{\prime} \in \mathcal{D}} v_{i}^{\prime} \mathbb{E}_{p_{g}}\left[h_{j} \mid v_{i}^{\prime}\right]\right)-\mathbb{E}_{p_{\theta}}\left[v_{i} h_{j}\right]\right)
$$

Example: Restricted Boltzmann Machine (RBM)

${ }_{\text {binary }} \mathrm{RBM}: \quad p(h, v)=\frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$
data: $\mathcal{D}=\left\{v^{(m)}\right\}_{m}$ for $v_{i}, h_{j} \in\{0,1\}$

sufficient statistics: $\quad \phi\left(v_{i}, h_{j}\right)=v_{i} h_{j}$
we want to optimize: $\ell(\mathcal{D} ; \theta)=\sum_{v \in \mathcal{D}} \log \sum_{h} \frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$
gradient: $\quad \frac{\partial}{\partial_{i_{i j}}} \ell(\mathcal{D} ; \theta) \propto \mathbb{E}_{\mathcal{D}, \theta}\left[v_{i} h_{j}\right]-\mathbb{E}_{p_{9}}\left[v_{i} h_{j}\right]$

$$
\left.=\left(\frac{1}{M} \sum_{v_{i}^{\prime} \in \mathcal{D}} v_{i}^{\prime} \mathbb{E}_{p_{0}}\left[h_{j} \mid v_{i}^{\prime}\right]\right)-\mathbb{E}_{p_{\theta}}\left[v_{i} h_{j}\right]\right)
$$

summary

learning with partial observations:

- missing data
- optimize the likelihood when missing at random
- latent variables
- can produce expressive probabilistic models
problem is not convex
how to learn the model?
- directly estimate the gradient (directed and undirected)
- use EM (directed models)
- variational interpretation + relation to ELBO

Example: Gaussian mixture model

$$
\begin{aligned}
& \text { (x) } p(x ; \pi)=\prod_{k} \pi_{k}^{\mathbb{I}(x=k)} \\
& \text { model parameters } \theta=\left[\pi,\left\{\mu_{k}, \Sigma_{k}\right\}\right] \\
& \text { (y) } p\left(y \mid x ;\left\{\mu_{k}, \Sigma_{k}\right\}\right)=\frac{1}{\sqrt{\left|2 \pi \Sigma_{x}\right|}} \exp \left(-\frac{1}{2}\left(y-\mu_{x}\right)^{T} \Sigma_{x}^{-1}\left(y-\mu_{x}\right)\right)
\end{aligned}
$$

Example: Gaussian mixture model

E-step: calculate $p(x \mid y)$ for each $y \in \mathcal{D}$

$$
p(x \mid y) \propto p(x ; \pi) p(y \mid x ; \mu, \Sigma)=\pi_{k} \mathcal{N}\left(y ; \mu_{k}, \Sigma_{k}\right)
$$

- now we have "probabilistically completed" instances
- update the parameters (easy in a Bayes-net)

Example: Gaussian mixture model

M-step: estimate $\pi, \mu_{k}, \Sigma_{k} \forall k$
$\pi_{k}^{\text {new }}=\frac{1}{N} \sum_{y \in \mathcal{D}} \frac{p(x=k \mid y)}{\sum_{k^{\prime}} p\left(x=k^{\prime} \mid y\right)}$
$\mu_{k}=\frac{\sum_{y \in \mathcal{D}} p(x=k \mid y) y}{\sum_{y \in \mathcal{D}} p(x=k \mid y)} \quad$ mean of a weighted set of instances
$\Sigma_{k}=\frac{\sum_{y \in \mathcal{D}} p(x=k \mid y)\left(y-\mu_{k}\right)\left(y-\mu_{k}\right)^{T}}{\sum_{y \in \mathcal{D}} p(x=k \mid y)}$ covariance of a weighted set of instances

Example: Gaussian mixture model

M-step: estimate $\pi, \mu_{k}, \Sigma_{k} \forall k$
$\pi_{k}^{n e w}=\frac{1}{N} \sum_{y \in \mathcal{D}} \frac{p(x=k \mid y)}{\sum_{k^{\prime}} p\left(x=k^{\prime} \mid y\right)}$
$\mu_{k}=\frac{\sum_{y \in \mathcal{D}} p(x=k \mid y) y}{\sum_{y \in \mathcal{D}} p(x=k \mid y)} \quad$ mean of a weighted set of instances
$\Sigma_{k}=\frac{\sum_{y \in \mathcal{D}} p(x=k \mid y)\left(y-\mu_{k}\right)\left(y-\mu_{k}\right)^{T}}{\sum_{y \in \mathcal{D}} p(x=k \mid y)}$ covariance of a weighted set of instances

