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Learning objectives

e different types of missing data
e learning with missing data and hidden vars:

m directed models
m undirected models

e develop an intuition for expectation maximization
= variational interpretation
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B eachinstance in P is missing some values
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Two settings for partial observations

e missing data

original causes

B eachinstance in P is missing some values
e hidden variables
m variables that are never observed — mediatingcause

latent variable models effect

® observations have common cause
® widely used in machine learning
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image credit: Murphy's book
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Learning with MCAR

missing completely at random (MCAR) P(X,0) = P(X)P(0)

heads

A

tails

heads

A

tails

p(z) = 6%(1 — 6)'® throw to generate

p(o) = ¥°(1 — §)~° throw to decide show/hide
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Learning with MCAR

missing completely at random (MCAR) P(X,0) = P(X)P(0)

| z 0
heads tails ] o
K ‘ _nT - 1—x e
p(xz) =0%(1—0) throw to generate
heads tails @
K | p(o) = ¥°(1 — 0)1—0 throw to decide show/hide

. . M
objective: learn a model for X, from the data D ={z{’,..., 5"}
each £, may include values for a different subset of vars.



Learning with MCAR

SR SN C e U IO (X, O) = P(X)P(0)

| (o @
heads tails
K ‘ Y 1-x e
p(xz) =0%(1—0) throw to generate
heads tails @
K | p(o) = ¥°(1 — 0)1*0 throw to decide show/hide

objective: learn a model for X, from the data D ={z{’,..., 5"}
each £, may include values for a different subset of vars.

since P(x,0)=P(X)P(0), we can ignore the obs. patterns

optimize: 4(D,0) =3, cplogd ., p(zs,zs)
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A more general criteria
Ox L XX,

if there is information about the obs. pattern Oxin Xj
thenitisalsoin x,

if X2 =1 hide X3

¥ throw the thumb-tack twice X = [X1, X5] I missing at random O
otherwise show Xi

exampl

missing completely at random e

no "extra" information in the obs. pattern > ignore it

UD,0) = 3, cplog Xy, P(20, 21)
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marginal Likelihood function
for partial observations

e fully observed data:

@

©®

= directed: likelihood decomposes
= undirected: does not decompose, but it is concave

partially observed:
= does not decompose likelihood for a single assignment
to the latent .
= Not convex anymore A

L(O|D)

(D,0) =>, cplogd .. p(zo,h)

\ 4




marginal Likelihood function: example
for a directed model

fully observed case decomposes:
E(D7 0) - Z.’I;,y,zeD logp(a:’ Y, Z)

— ¥, logp(@) + ¥, , logp(y|z) + 3, , log p(2|) @



marginal Likelihood function: example
for a directed model

fully observed case decomposes:

E(D7 0) - Z.’I;,y,zeD logp(a:’ Y, Z)

— ¥, logp(@) + ¥, , logp(y|z) + 3, , log p(2|) @

X IS always missing (e.g.,in a latent variable model)

{D,0) =3, .cplogd, p(z)p(ylz)p(z|z)

cannot decompose it!
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Parameter learning with missing data

Directed models:

option 1: obtain the gradient of marginal likelihood
option 2: expectation maximization (EM)

® variational interpretation
all of these options

need inference for each step of
learning

undirected models:

obtain the gradient of marginal likelihood

e EMis not a good option here
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example

log marginal likelihood:
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take the derivative:
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Gradient of the marginal likelihood

example

log marginal likelihood:

U(D) = > (aaep 108 D . P(a)p(b)p(c|a, b)p(d]c)
take the derivative:

0
5t (D) = 3@ Liaaen P45 a,d)

need inference for this

what happens to this expression if every variable is observed?

(directed models

«

)

| hidden
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Gradient of the marginal likelihood

for a Bayesian Network with CPT

5 B 1
3p(-)€(D) ~ p(ilpas;) ZXOED_

some specific assignment run inference for each observation

a technical issue:

e gradient is always non-negative

®  no constraint of the form Zw p(w|pam) =1

O reparametrize (e.g., using softmax)

O or use Lagrange multipliers

for other parametrizations (beyond simple cPTs) Use the chain rule:

9 .0 — 0(D) op(d'|c)
@Z(D’ 0) - Z(c’,d’)ED dp(d'|c) p80
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Expectation Maximization

example (directed models)

hidden
E-step:
for each a,d €D e
use the current parameters @ to get the marginals
r.r'wnc;fé'é.éﬁ'é}glil'y: expected sufficient statistics
C
po,0(B),ps,p(A), po,0(C),ps,p(A, B,C), psp (D, C)
|
1
p9,D(C =d,D=4d)= N Z(a,d)eD po(c',d'|a,d)
nonzero for d' =d
in general we need inference to estimate this sufficient statistics
M-step:

use the marginals (similar to completely observed data) to learn g

expected sufficient statistics

9,0 (C)

new C,D
E.g., update O¢p using pe,p(C,D) and pop(C 9 0D|C—p‘”’( )
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(directed models)

for a Bayesian Network with CPT

E-step:
foreach x, ¢ p
use the current parameters @ to get the marginals

{po.p(Xi),po.0(Xi, Pax,)}
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(directed models)

for a Bayesian Network with CPT

E-step:
foreach x, ¢ p
use the current parameters @ to get the marginals

{po,p(Xi), 9,0 (X, Pax;)}
M-step:

use the marginals (similar to completely observed data) to learn @gnew
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Expectation Maximization

(directed models)

for a Bayesian Network with CPT

E-step:
foreach x, ¢ p
use the current parameters @ to get the marginals

{po.p(Xi),po.0(Xi, Pax,)}

M-step:

use the marginals (similar to completely observed data) to learn gnew
new __ pop(Xi,Pax;)
Xz|PaX2 T pO,D(PaXZ-)

for undirected models: M-step is the expensive part

® perform E-step within each iteration of M-step: equivalent to gradient descent



Expectation Maximization:

® 1000 training instances
® 50% of variables are observed (in each instance)

LL / Instance

fast initial improvement ......
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Expectation Maximization: example

® 1000 training instances

Parameter value

50% of variables are observed (in each instance)
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0

change in different parameter values

Iteration

fast initial improvement
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test log-likelihood

-10

=20}
=30
40|

Test LL / Instance
2

0 5 10 15 20 25 30 35 40 45 50
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Expectation Maximization: example

local optima in EM:

number of local maxima effect of multiple restarts
25 I. - - - - r T J’ T T T T T T T T T
—143}
= o
— Q
| § —14.35
g z
g 5 -l44)
b7 -
s £
s £ 14451
I+ s| | 25% missing
% - 50% Missing
--o-- Hidden variable -14.5¢
O L L L 1 L L L L L Il 1 1 1 L L
0 500 1000 1500 2000 2500 3000 3500 4000 10 20 30 40 50 60 70 80 90 100
alarm network Sample size Precentage of runs

a single hidden variable
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maximize the full likelihood



Expected log-likelihood
(directed models)
Original objective:

E(D7 9) — ZXOGD 10g th pe(x07 Xh)

po (o)
EM iteration: D v o0 Epg(xn|x,) 108 Do (X0, X1)]
maximizes the expected log-likelihood l
E-step:
soft-complete the data
e how are these objectives related? v
M-step:

e any guarantees for EM?

e variational interpretation relates these two maximize the full likelihood
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D r(g(x)|p(x)) = —H(q) — Eq[log p(x)])
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Variational interpretation of EM

Recall: variational inference
- variational free energy

Drr(g(x)|p(x)) = —Hl(q) — Eqllogp(x)]) = —H(q) — Eq[log p(x)]) +log Z

_ (x)
p(x) =5
for a latent variable model \l/
p(xh ‘ xo) - p(px&,jo)

Dxr(g(xn)|p(xn|%0)) = —H(q) — Eq[log p(xs | %o)]
E,[log p(xhr, %0)] — log p(x,)



Variational interpretation of EM

for a latent variable model

Dk (g(xn)|p(xn|%,)) = —H(q) — Eq[log p(x1,%,)] — log p(xo)



Variational interpretation of EM

for a latent variable model

Drr(g(xn)|p(xn[x0)) = —H(g) — Eq[log p(xn, %,)| — log p(xo)

re-arrange ¢

log ps(x0) = Drr(q(xn)|pe(xn|%0)) + H(q) + Eq[log pe(xp,%,)]



Variational interpretation of EM

for a latent variable model
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re-arrange ¢
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Variational interpretation of EM

for a latent variable model

Dk (g(xn)|p(xn(%,)) = —H(q) — Eq[log p(x1,%,)] — log p(xo)

re-arrange ¢

g po(30) = D (a1 o (1 ,) + Fi(a) + Eq flog i (1, )]

original objective expected log-likelihood wrt q



Variational interpretation of EM

for a latent variable model

Dz (q(xn)[p(xn|%0)) = —Hl(q) — Eq[log p(xh, %,)] — log p(x,)

re-arrange ¢

- = Dx1(q(x1)|ps(xn|%0)) + H(q) + E, [log po(xh, %o)]

original objective expected log-likelihood wrt q

ignored by EM



Variational interpretation of EM

for a latent variable model

Dk (g(xn)|p(xn|%,)) = —H(q) — Eq[log p(x1,%,)] — log p(xo)

re-arrange ¢

- = Dk (q(xn)|po(xn|x0)) + H(q) + Eq[log po(xn, %,)]

original objective expected log-likelihood wrt q

ignored by EM

Coordinate ascent:

* E-step: optimize q for a fixed @ (variational inference)
e M-step: optimize g for afixed q
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Coordinate ascent:

e E-step: optimize q for a fixed 6
* M-step: optimize @ for a fixed q

A
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g

guaranteed improvement of log py(x,)
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EM as coordinate ascent

Coordinate ascent:

e E-step: optimize q for a fixed 0
* M-step: optimize @ for a fixed q

A

L(61D)

) >
guaranteed improvement of log py(x,)
converges to a local optimum



AmortiZEd inference in latent variable models

log po (%) = Dxr(q(xn)|pe(xn|%0)) + H(q) + Eq[log ps(xp,%,)]



AmortiZEd inference in latent variable models

log po(x,) = Dir(q(xp)|pe(xn|x,)) + H(g) + Eq[log pe(xs, %X,)]

evidence lower bound (ELBO) is a lower-bound on the likelihood
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log po(x,) = Dk (q(xn)|pe(xn|x%,)) + H(q) + Eq[log ps(xn, %))
evidence lower bound (ELBO) is a lower-bound on the likelihood
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AmortiZEd inference in latent variable models

log po(x,) = Dk (q(xn)|pe(xn|x%,)) + H(q) + Eq[log ps(xn, %))
evidence lower bound (ELBO) is a lower-bound on the likelihood
qy(Xn | Xo) instead of q(xr)

amortization: make q a function of observations
Po(Xn,Xo) = Po(Xn)po(Xo|xn)

A 4

po(x8) @ —Drr(qy (Xn | X0)|po(%n)) + Eq, [log po(x,|x4)]
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maximize ELBO by jointly optimizing 1, 6



AmortiZEd inference in latent variable models

log po(x,) = Dk (q(xn)|pe(xn|x%,)) + H(q) + Eq[log ps(xn, %))
evidence lower bound (ELBO) is a lower-bound on the likelihood
qy(Xn | Xo) instead of q(xr)

amortization: make q a function of observations
Po(Xn,Xo) = Po(Xn)po(Xo|xn)

A 4

po () @ 4y (x4 %) ~Drcr(gy (xn | %0)|po (%)) + By, [log po (%o |%n)

maximize ELBO by jointly optimizing 1, 6

use neural networks to represent cond. distributions
use back propagation for optimization



Undirected models with latent variables

linear exponential family p(z;60) = 55 exp((0, ¢(2)))

gradient in the fully observed setting ~ Vs£(6, D) = |D|(Ep[d(z)] — Ep, [$(z)])
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expectation wrt the data expectation wrt the model
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Undirected models with latent variables

linear exponential family p(z;60) = 55 exp((0, ¢(2)))

gradient in the fully observed setting ~ Vs£(6, D) = |D|(Ep[d(z)] — Ey, [$(z)])

L

expectation wrt the data expectation wrt the model

partial observation: x = (x,,x)

1

marginal likelihood: p(x.;8) =3, 7 exp((6, #(x)))



Undirected models with latent variables

linear exponential family p(z;60) = 55 exp((0, ¢(2)))

gradient in the fully observed setting ~ Vs£(6, D) = |D|(Ep[d(z)] — Ey, [$(z)])

L

expectation wrt the data expectation wrt the model

partial observation: x = (x,,x)
marginal likelihood: p(x.;68) = X, 7 exp((6, 6(x)))

gradient in the partially obs. case Vol(0,D) = |D|(Epg[p(x)] — Eyp [(z)])

!

wrt both data and model: we need to do inference to calculate expected sufficient statistics (similar to E-step in EM)
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omary RBM: p(R, ) = 7357 exp(X, ; 05,5vih;)

data: D= {v™}, for vi,hj € {0,1}
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Example: Restricted Boltzmann Machine (RBM)

omary RBM: p(B,0) = 7357 exp(X, ; 0i,5vih;)

data: D= {v™}, for vi,hj € {0,1}

sufficient statistics:  é(vi, hj) = vih;
we want to optimize: 4(D;0) = X ,cp log 32, g exp (3, ; 0:5vih;)
gradient: 3 4(D;0) < Epglvih;] — By, [vih;]

= (3 Luep Ui [hj [vi]) — Ep, [vihs])

sampling-based inference: sample h | v use Gibbs sampling:
sample both h,v using current parameters



summary

learning with partial observations:
* missing data
B optimize the likelihood when missing at random

e |atent variables

® can produce expressive probabilistic models

problem is not convex
how to learn the model?

® directly estimate the gradient (directed and undirected)

® use EM (directed models)

B variational interpretation + relation to ELBO
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Example: Gaussian mixture model

I(z=k
p(x; g) = L, 7"

modél parameters () — [71‘, {,uk, Ek}]

@ p(yle; {1, 5 }) = s P35 (U — )22 (¥ — )

E-step: calculate p(z|y) foreach y € D
p(zly) o< p(z; m)p(ylz; 1, B) = meN (y; p, Zie)

e now we have "probabilistically completed" instances
e update the parameters (easy in a Bayes-net)



Example: Gaussian mixture model

(z=k
P(x;,g\) = Hk Wk( :

model parameters

@ p(y|e; it ) = \/J? exp(—3 (Y — pe) 'S (Y — pha))

M-step: estimate 7, fx, 2 VEk

new_ Z p(z=k|y
— N yeD > . p(z=K'|y)

>y P(x=k|y)y , _
wr = > op P@—RIY) mean of a weighted set of instances

> yep Pl@=kly) (y—pm) (y—p)"
= covariance of a weighted set of instances
2k S P=FTY) g



Example: Gaussian mixture model

I(z=k
p(x; g) = L, 7"

model parameters

@ p(yle; {1, 5 }) = s P35 (U — )22 (¥ — )

M-step: estimate 7, fx, 2 VEk

new_ Z p(z=k|y
— N yeD > . p(z=FK'|y)

>y P(x=k|y)y , _
Me = > op P@—RIY) mean of a weighted set of instances

5, — > yep Ple=kly) (y—pe) (y—m)"

covariance of a weighted set of instances
>0 Pa=Fy) 8
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