Probabilistic Graphical Models

parameter learning in undirected models

Siamak Ravanbakhsh

Fall 2019

Learning objectives

- the form of likelihood for undirected models
 - why is it difficult to optimize?
- conditional likelihood in undirected models
- different approximations for parameter learning
 - MAP inference and regularization
 - pseudo likelihood
 - pseudo moment-matching
 - contrastive learning

probability dist.

 $p(A, B, C; heta) = rac{1}{Z} \exp(heta_1 \mathbb{I}(A = 1, B = 1) + heta_2 \mathbb{I}(B = 1, C = 1))$

probability dist.

 $p(A,B,C; heta)=rac{1}{Z}\exp(heta_1\mathbb{I}(A=1,B=1)+ heta_2\mathbb{I}(B=1,C=1))$

observations $|\mathcal{D}| = 100$

•
$$\mathbb{E}_{\mathcal{D}}[\mathbb{I}(A=1, B=1)] = .4, \mathbb{E}_{\mathcal{D}}[\mathbb{I}(B=1, C=1)] = .4$$

example
$$A$$

 $\mathbb{I}(A = 1, B = 1)$
 \mathbb{B}
 $\mathbb{I}(B = 1, C = 1)$
 C

probability dist.

 $p(A,B,C; heta)=rac{1}{Z}\exp(heta_1\mathbb{I}(A=1,B=1)+ heta_2\mathbb{I}(B=1,C=1))$

observations $|\mathcal{D}| = 100$

•
$$\mathbb{E}_{\mathcal{D}}[\mathbb{I}(A=1, B=1)] = .4, \mathbb{E}_{\mathcal{D}}[\mathbb{I}(B=1, C=1)] = .4$$

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{a,b,c \in \mathcal{D}} \theta_1 \mathbb{I}(a = 1, b = 1) + \theta_2 \mathbb{I}(b = 1, c = 1) - 100 \log Z(\theta)$

 $z = 40 heta_1 + 40 heta_2 - 100 \log Z(heta)$

example A $\mathbb{I}(A = 1, B = 1)$ B $\mathbb{I}(B = 1, C = 1)$ C

probability dist. $p(A, B, C; \theta) = \frac{1}{Z} \exp(\theta_1 \mathbb{I}(A = 1, B = 1) + \theta_2 \mathbb{I}(B = 1, C = 1))$

observations $|\mathcal{D}| = 100$

• $\mathbb{E}_{\mathcal{D}}[\mathbb{I}(A=1, B=1)] = .4, \mathbb{E}_{\mathcal{D}}[\mathbb{I}(B=1, C=1)] = .4$

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{a,b,c \in \mathcal{D}} \theta_1 \mathbb{I}(a = 1, b = 1) + \theta_2 \mathbb{I}(b = 1, c = 1) - 100 \log Z(\theta)$

 $=40 heta_1+40 heta_2-100\log Z(heta)$

because of the partition function

the likelihood does not decompose

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$ sufficient statistics

probability distribution $p(x;\theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$ sufficient statistics log-likelihood of \mathcal{D} $\ell(\mathcal{D},\theta) = \log p(\mathcal{D};\theta) = \sum_{x \in \mathcal{D}} \langle \theta, \phi(x) \rangle - |\mathcal{D}| \log Z(\theta)$

probability distribution $p(x;\theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$ sufficient statistics log-likelihood of \mathcal{D} $\ell(\mathcal{D},\theta) = \log p(\mathcal{D};\theta) = \sum_{x \in \mathcal{D}} \langle \theta, \phi(x) \rangle - |\mathcal{D}| \log Z(\theta)$ $\ell(\mathcal{D},\theta) = |\mathcal{D}| (\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \log Z(\theta))$ expected sufficient statistics $\mu \mathcal{D}$

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$
sufficient statisticslog-likelihood of \mathcal{D} $\ell(\mathcal{D}, \theta) = \log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \langle \theta, \phi(x) \rangle - |\mathcal{D}| \log Z(\theta)$
 $\ell(\mathcal{D}, \theta) = |\mathcal{D}| (\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \log Z(\theta))$
expected sufficient statisticsexample

expected sufficient statistics	params.
$\mathbb{E}_{\mathcal{D}}[\mathbb{I}(X_1=0,X_2=0)]=P(X_1=0,X_2=0)$	$ heta_{1,2,0,0}$
$\mathbb{E}_{\mathcal{D}}[\mathbb{I}(X_1=1,X_2=0)]=P(X_1=1,X_2=0)$	$ heta_{1,2,1,0}$
$\mathbb{E}_{\mathcal{D}}[\mathbb{I}(X_1=0,X_2=1)]=P(X_1=0,X_2=1)$	$ heta_{1,2,0,1}$
$\mathbb{E}_{\mathcal{D}}[\mathbb{I}(X_1=1,X_2=1)] = P(X_1=1,X_2=1)$	$ heta_{1,2,1,1}$

image: Michael Jordan's draft

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$ sufficient statistics log-likelihood of \mathcal{D} $\ell(\mathcal{D}, \theta) = \log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \langle \theta, \phi(x) \rangle - |\mathcal{D}| \log Z(\theta)$ $\ell(\mathcal{D}, \theta) = |\mathcal{D}| (\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \log Z(\theta))$ expected sufficient statistics $\mu \mathcal{D}$

 $\log Z(\theta)$ has interesting properties

 $rac{\partial}{\partial heta_i} \log Z(heta) = rac{rac{\partial}{\partial heta_i} \sum_x \exp(\langle heta, \phi(x)
angle)}{Z(heta)} = rac{1}{Z(heta)} \sum_x \phi_i(x) \exp(\langle heta, \phi(x)
angle) = \mathbb{E}_p[\phi_i(x)] \quad ext{SO} \quad
abla_ heta \log Z(heta) = \mathbb{E}_ heta[\phi(x)]$

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$ sufficient statistics log-likelihood of \mathcal{D} $\ell(\mathcal{D}, \theta) = \log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \langle \theta, \phi(x) \rangle - |\mathcal{D}| \log Z(\theta)$ $\ell(\mathcal{D}, \theta) = |\mathcal{D}| (\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \log Z(\theta))$ expected sufficient statistics $\mu \mathcal{D}$

 $\log Z(\theta)$ has interesting properties

 $rac{\partial}{\partial heta_i} \log Z(heta) = rac{rac{\partial}{\partial heta_i} \sum_x \exp(\langle heta, \phi(x)
angle)}{Z(heta)} = rac{1}{Z(heta)} \sum_x \phi_i(x) \exp(\langle heta, \phi(x)
angle) = \mathbb{E}_p[\phi_i(x)] \quad \mathsf{SO} \quad
abla_ heta \log Z(heta) = \mathbb{E}_ heta[\phi(x)] \ rac{\partial^2}{\partial heta_i \partial heta_j} \log Z(heta) = \mathbb{E}[\phi_i(x)\phi_j(x)] - \mathbb{E}[\phi_i(x)]\mathbb{E}[\phi_j(x)] = rac{Cov}(\phi_i, \phi_j)$

so the Hessian matrix is positive definite $\rightarrow \log Z(\theta)$ is convex

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$

 $\mathsf{log-likelihood of} \ \mathcal{D} \qquad \ell(\mathcal{D}, \theta) = |\mathcal{D}| \left(\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \log Z(\theta) \right)$ linear in hetaconvex

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$

log-likelihood of \mathcal{D}

$$\ell(\mathcal{D}, \theta) = |\mathcal{D}| \underbrace{(\langle heta, \mathbb{E}_{\mathcal{D}}[\phi(x)]
angle - \log Z(heta))}_{ ext{linear in } eta} - rac{\log Z(heta))}{ ext{convex}}$$

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$

log-likelihood of \mathcal{D} $\ell(\mathcal{D}, \theta) = |\mathcal{D}| \underbrace{(\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \log Z(\theta))}_{\text{linear in } \theta} \underbrace{-\log Z(\theta)}_{\text{convex}}$ should be easy to maximize (?)

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$

probability distribution $p(x; heta) = rac{1}{Z(heta)} \exp(\langle heta, \phi(x)
angle)$

 X_3

 X_5

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$

- how about just using the gradient info? \bullet
 - involves inference as well $\nabla_{\theta} \log Z(\theta) = \mathbb{E}_{\theta}[\phi(x)]$

 X_5 X_3

any combination of inference-gradient based optimization for learning undirected models Ο

Moment matching for linear exponential family

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$

log-likelihood of \mathcal{D} $\ell(\mathcal{D}, \theta) = |\mathcal{D}| \left(\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \log Z(\theta) \right)$ Inear in θ convexconcave

set its derivative to zero $\nabla_{\theta}\ell(\theta,\mathcal{D}) = |\mathcal{D}|(\mathbb{E}_{\mathcal{D}}[\phi(x)] - \mathbb{E}_{p_{\theta}}[\phi(x)]) = 0$

 $\Rightarrow \mathbb{E}_{p_{ heta}}[\phi(x)] = \mathbb{E}_{\mathcal{D}}[\phi(x)]$

find the parameter θ

that results in the same expected sufficient statistics as the data

Moment matching for linear exponential family

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$

Iog-likelihood of \mathcal{D} $\ell(\mathcal{D}, \theta) = |\mathcal{D}| \left(\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \log Z(\theta) \right)$ $\underbrace{|\text{linear in } \theta}_{\text{convex}}$ set its derivative to zero $\nabla_{\theta} \ell(\theta, \mathcal{D}) = |\mathcal{D}| (\mathbb{E}_{\mathcal{D}}[\phi(x)] - \mathbb{E}_{p_{\theta}}[\phi(x)]) : \qquad X_{2}$ $\Rightarrow \mathbb{E}_{p_{\theta}}[\phi(x)] = \mathbb{E}_{\mathcal{D}}[\phi(x)]$ $\stackrel{X_{1}}{\Rightarrow} \mathbb{E}_{p_{\theta}}[\phi(x)] = \mathbb{E}_{\mathcal{D}}[\phi(x)]$ find the parameter θ

that results in the same expected sufficient statistics as the data

Learning needs inference in an inner loop

maximizing the likelihood: $\arg \max_{\theta} \log p(\mathcal{D}|\theta)$

- gradient $\propto \mathbb{E}_{\mathcal{D}}[\phi(x)] \frac{\mathbb{E}_{p_{\theta}}[\phi(x)]}{\mathbb{E}_{p_{\theta}}[\phi(x)]}$

Learning needs inference in an inner loop

maximizing the likelihood: $\arg \max_{\theta} \log p(\mathcal{D}|\theta)$

- gradient $\propto \mathbb{E}_{\mathcal{D}}[\phi(x)] \frac{\mathbb{E}_{p_{\theta}}[\phi(x)]}{\mathbb{E}_{p_{\theta}}[\phi(x)]}$
- optimality condition $\mathbb{E}_{\mathcal{D}}[\phi(x)] = \mathbb{E}_{p_{\theta}}[\phi(x)]$ $\downarrow \qquad \qquad \downarrow$ easy to calculate inference in the graphical model

example: in discrete pairwise MRF $p_{\mathcal{D}}(x_i, x_j) = \begin{array}{c} p(x_i, x_j; \theta) \\ \downarrow \\ \text{empirical marginals} \end{array} \quad \forall i, j \in \mathcal{E} \\ \text{marginals in our current model} \end{array}$

Learning needs inference in an inner loop

maximizing the likelihood: $\arg \max_{\theta} \log p(\mathcal{D}|\theta)$

- gradient $\propto \mathbb{E}_{\mathcal{D}}[\phi(x)] \frac{\mathbb{E}_{p_{\theta}}[\phi(x)]}{\mathbb{E}_{p_{\theta}}[\phi(x)]}$
- optimality condition $\mathbb{E}_{\mathcal{D}}[\phi(x)] = \mathbb{E}_{p_{\theta}}[\phi(x)]$ $\downarrow \qquad \qquad \downarrow$ easy to calculate inference in the graphical model

example: in discrete pairwise MRF $p_{\mathcal{D}}(x_i, x_j) = \frac{p(x_i, x_j; \theta)}{\downarrow}$ $\forall i, j \in \mathcal{E}$ empirical marginals marginals in our current model

what if exact inference is infeasible?

- learning with approx. inference often \equiv exact optimization of approx. objective
 - use sampling, variational inference ...

Recall generative vs. discriminative training

Hidden Markov Model (HMM) trained generatively

 $\ell(\mathcal{D}, heta) = \sum_{(x,y) \in \mathcal{D}} \log p(x,y)$

- easy to train the Bayes-net (assuming full observation)
- the likelihood decomposes

Conditional random fields (CRF)

- trained discriminatively
- maximizing conditional log-likelihood

 $\ell_{Y|X}(\mathcal{D}, heta) = \sum_{(x,y)\in\mathcal{D}}\log p(y|x)$

• how to maximize this?

objective: $rg \max_{ heta} \ell_{Y|X}(\mathcal{D}, heta) = rg \max_{ heta} \sum_{(x,y) \in \mathcal{D}} \log p(y|x)$

objective: $rg \max_{ heta} \ell_{Y|X}(\mathcal{D}, heta) = rg \max_{ heta} \sum_{(x,y) \in \mathcal{D}} \log p(y|x)$

again consider the gradient

 $abla_ heta\ell_{Y|X}(\mathcal{D}, heta) = \sum_{(x',y')\in\mathcal{D}}\phi(x',y') - \mathbb{E}_{p(.|x; heta)}[\phi(x',y)]$

- conditional expectation of sufficient statistics
- it is conditioned on the observed x'

objective: $rg\max_{ heta} \ell_{Y|X}(\mathcal{D}, heta) = rg\max_{ heta} \sum_{(x,y) \in \mathcal{D}} \log p(y|x)$

again consider the gradient

 $abla_ heta \ell_{Y|X}(\mathcal{D}, heta) = \sum_{(x',y')\in\mathcal{D}} \phi(x',y') - \mathbb{E}_{p(.|x; heta)}[\phi(x',y)]$

- conditional expectation of sufficient statistics
- it is conditioned on the observed x'

to obtain the gradient:

- for each instance $(x,y)\in \mathcal{D}$
 - run inference conditioned on x

objective: $rg\max_{ heta} \ell_{Y|X}(\mathcal{D}, heta) = rg\max_{ heta} \sum_{(x,y) \in \mathcal{D}} \log p(y|x)$

again consider the gradient

$$abla_ heta\ell_{Y|X}(\mathcal{D}, heta) = \sum_{(x',y')\in\mathcal{D}} \phi(x',y') - \mathbb{E}_{p(.|x; heta)}[\phi(x',y)]$$

- conditional expectation of sufficient statistics
- it is conditioned on the observed x'

to obtain the gradient:

- for each instance $(x,y)\in \mathcal{D}$
 - run inference conditioned on x

compared to generative training in undirected models

pro: conditioning could simplify inference **con:** have to run inference for each datapoint

inference on the reduced MRF is easy in this case

Local priors & regularization

max-likelihood can lead to over-fitting Bayesian approach:

- in Bayes-nets: decomposed prior $p(\theta) \rightarrow$ decomposed posterior $p(\theta \mid D)$
- in Markov nets: posterior does not decompose (because of the the likelihood doesn't decomposed due to the partition function.)

Local priors & regularization

max-likelihood can lead to over-fitting Bayesian approach:

- in Bayes-nets: decomposed prior $p(\theta) \rightarrow$ decomposed posterior $p(\theta \mid D)$
- in Markov nets: posterior does not decompose (because of the the likelihood doesn't decomposed due to the partition function.)

alternative to a full-Bayesian approach

MAP inference: maximize the log-posterior

- does not model uncertainty
- sensitive to parametrization

$$rg\max_{ heta}\log p(\mathcal{D}| heta) + \overline{\log p(heta)}$$

- serves as a regularization
- does not have to be conjugate

- both of these penalize large parameter values
 - both reduce fluctuations in the density

$$\log rac{p(x; heta)}{p(x', heta)} = heta^T(\phi(x) - \phi(x'))$$

Pseudo-moment matching

we want to set the parameters θ such that if/when loopy BP converges:

$$p_{\mathcal{D}}(A,B) = \hat{p}(A,B;\theta), p_{\mathcal{D}}(B,D) = \hat{p}(B,D;\theta) \dots$$

empirical marginals

marginals using BP

Pseudo-moment matching

we want to set the parameters θ such that if/when loopy BP converges:

$$p_{\mathcal{D}}(A,B) = \frac{\hat{p}(A,B;\theta)}{p_{\mathcal{D}}(B,D)}, p_{\mathcal{D}}(B,D) = \hat{p}(B,D;\theta) \dots$$

empirical marginais

idea: use the reparametrization in BP

p

$$(A, B, C, D, E, F) \propto \frac{\hat{p}(A, B) \dots \hat{p}(C, A)}{\hat{p}(A) \dots \hat{p}(F)} \longrightarrow$$

product of clique marginals cancel the double-counts

Pseudo-moment matching

we want to set the parameters θ such that if/when loopy BP converges:

$$p_{\mathcal{D}}(A,B) = \frac{\hat{p}(A,B;\theta)}{\max_{\text{marginals}}}, p_{\mathcal{D}}(B,D) = \hat{p}(B,D;\theta) \dots$$

empi ı gi

idea: use the reparametrization in BP

•
$$p(A, B, C, D, E, F) \propto \frac{\hat{p}(A, B) \dots \hat{p}(C, A)}{\hat{p}(A) \dots \hat{p}(F)}$$

product of clique marginals cancel the double-counts

set the factors using empirical marginals

- $\phi(A,B) \leftarrow p_\mathcal{D}(A,B)/p_\mathcal{D}(A)$ • e.g.,
- each term in the numerator & denominator of ••• should be used exactly once
- if we run BP on the resulting model we will have $p_{\mathcal{D}}(A, B) = \hat{p}(A, B; \theta), p_{\mathcal{D}}(B, D) = \hat{p}(B, D; \theta) \dots$

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | x_1, \dots, x_{i-1}; \theta)$ using the chain rule

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_{i} \log p(x_i | x_1, \dots, x_{i-1}; \theta)$ using the chain rule pseudo log-likelihood is an approximation $[x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n]$ $\log p(\mathcal{D}; \theta) \approx \sum_{x \in \mathcal{D}} \sum_{i} \log p(x_i | x_{-i}; \theta)$

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | x_1, \dots, x_{i-1}; \theta)$ using the chain rule

pseudo log-likelihood is an approximation

$$\begin{split} & [x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n] \\ & \log p(\mathcal{D}; \theta) \approx \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | x_{-i}; \theta) \\ & \overline{\frac{p(x; \theta)}{\sum_{x_i} p(x; \theta)}} = \frac{\tilde{p}(x; \theta)}{\sum_{x_i} \tilde{p}(x; \theta)} \quad \text{eliminates the normalization constant} \end{split}$$

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | x_1, \dots, x_{i-1}; \theta)$ using the chain rule

pseudo log-likelihood is an approximation

$$\begin{split} & [x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n] \\ & \log p(\mathcal{D}; \theta) \approx \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | x_{-i}; \theta) \\ & \overline{\frac{p(x; \theta)}{\sum_{x_i} p(x; \theta)}} = \frac{\tilde{p}(x; \theta)}{\sum_{x_i} \tilde{p}(x; \theta)} \quad \text{eliminates the normalization constant} \end{split}$$

it simplifies the gradient:

- instead of calculating $\sum_{x \in D} \phi_k(x) |\mathcal{D}| \mathbb{E}_{p_{\theta}}[\phi_k(x)]$ expensive!
- use $\sum_{x \in D} \phi_k(x) \sum_i \mathbb{E}_{p(\cdot|x_{-i})}[\phi_k(x'_i, x_{-i})]$ can be further simplified using Markov blanket for each node...
- **upshot:** only conditional expectations are used (tractable!)

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | x_1, \dots, x_{i-1}; \theta)$ using the chain rule

pseudo log-likelihood is an approximation

$$\begin{split} & [x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n] \\ & \log p(\mathcal{D}; \theta) \approx \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | x_{-i}; \theta) \\ & \overline{\frac{p(x; \theta)}{\sum_{x_i} p(x; \theta)}} = \frac{\tilde{p}(x; \theta)}{\sum_{x_i} \tilde{p}(x; \theta)} \quad \text{eliminates the normalization constant} \end{split}$$

it simplifies the gradient:

- instead of calculating $\sum_{x \in D} \phi_k(x) |\mathcal{D}| \mathbb{E}_{p_{\theta}}[\phi_k(x)]$ expensive!
- use $\sum_{x \in \mathcal{D}} \phi_k(x) \sum_i \mathbb{E}_{p(.|x_{-i})}[\phi_k(x'_i, x_{-i})]$ can be further simplified using Markov blanket for each node...
- **upshot:** only conditional expectations are used (tractable!)

at the limit of large data (assuming we have the right model), this is exact!

Contrastive methods

$$\begin{array}{ll} \mathsf{log-likelihood:} & \log p(\mathcal{D};\theta) = \sum_{x \in \mathcal{D}} \frac{\log \tilde{p}(x;\theta) - \log Z(\theta)}{\bigcup} \end{array}$$

increase the unnormalize prob. of the data

• it's easy to evaluate: e.g, $\langle heta, \phi(x)
angle$

keep the total sum of unnormalized

probabilities small $\log \sum_x \tilde{p}(x; \theta)$

• sum over exponentially many terms

Contrastive methods

$$\begin{array}{ll} \mathsf{log-likelihood:} & \log p(\mathcal{D};\theta) = \sum_{x \in \mathcal{D}} \frac{\log \tilde{p}(x;\theta) - \log Z(\theta)}{\swarrow} \end{array}$$

increase the unnormalize prob. of the data

• it's easy to evaluate: e.g, $\langle heta, \phi(x)
angle$

keep the total sum of unnormalized

probabilities small $\log \sum_x \tilde{p}(x; \theta)$

• sum over exponentially many terms

contrastive methods: replace $\log Z(\theta)$ with a tractable alternative

- **contrastive divergence minimization:** only look at a small "*neighborhood*" of the data
- margin-based training: consider $\log \max_{x' \neq x} \tilde{p}(x'; \theta)$
 - only for conditional training

Structure Learning

Conditional independence test $X - Y \Rightarrow X \perp Y \mid MB(Y) \lor X \perp Y \mid MB(X)$

- similar to finding the *undirected skeleton* of a Bayes Net
- bound on the size of Markov Blanket (versus #parents in the BN)

Structure Learning

Conditional independence test $X - Y \Rightarrow X \perp Y \mid MB(Y) \lor X \perp Y \mid MB(X)$

- similar to finding the *undirected skeleton* of a Bayes Net
- bound on the *size of Markov Blanket* (versus #parents in the BN)

Maximizing a score:

- likelihood score
- Bayesian score (approx. BIC)
- these scores do not decompose
 - learn models with low-tree width
- MAP score (L1 regularized log-likelihood)
 - convex problem
 - introduce features 1-by-1 until convergence

Summary

- parameter learning in MRFs is difficult
 - normalization constant ties the parameters together
 - likelihood does not decompose
 - Bayesian inference is also difficult

Summary

- parameter learning in MRFs is difficult
 - normalization constant ties the parameters together
 - likelihood does not decompose
 - Bayesian inference is also difficult
- (conditional) log-likelihood is convex
 - gradient steps: need inference on the current model
 - global optima satisfies moment-matching condition
 - combine inference methods + gradient descent for learning

Summary

- parameter learning in MRFs is difficult
 - normalization constant ties the parameters together
 - likelihood does not decompose
 - Bayesian inference is also difficult
- (conditional) log-likelihood is convex
 - gradient steps: need inference on the current model
 - global optima satisfies moment-matching condition
 - combine inference methods + gradient descent for learning
- alternative approaches:
 - pseudo moment matching, pseudo likelihood, contrastive divergence, margin-based training