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Learning objectives

e the form of likelihood for undirected models
= why is it difficult to optimize?
e conditional likelihood in undirected models
e different approximations for parameter learning

® MAP inference and regularization
® pseudo likelihood
B pseudo moment-matching

B contrastive learning
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.
o

A

because of the partition function

the likelihood does not decompose
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Likelihood in l[inear exponential family gogiinear modets)

probability distribution (z;8) = 5 exp((6,¢(z)))

sufficient statistics

log-likelihood of D 4D,0) =1logp(D;0) = 3_,cp (0, é(z)) — [D|log Z(6)
{(D,0) = |D| ((6, Ep[()]) — log Z(0))

example expected sufficient statistics MWD
T expected sufficient statistics

Ep[l(X1 =0,X: =0)] = P(X1 =0,X2=0) #1200

Ep[l(X: =1,X =0) =P(X1=1,X=0) 61219

Ep[l(X1 =0,X2=1)] =P(X1 =0,X:=1) 61201

Ep[(X1=1,X2=1)]=P(Xi=1,X>=1) 61211

image: Michael Jordan's draft
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Likelihood in l[inear exponential family gogiinear modets)

probability distribution p(z;6) = 4 exp((6,@(=)))

sufficient statistics
log-likelihood of D 4D,6) =logp(D;6) = 3..cp (6, ¢(x)) — |D|log Z(6)
{(D,0) = |D| ((0, Epl@(@)]) — log Z(0))

expected sufficient statistics MWD

log Z(f) has interesting properties

S 10g 2(6) = ESPONN) _ 15 () exp((6, 6(2))) = Bylgi(z)] SO Vslog Z(6) = Eglg(x)

sivar 0g Z(0) = E[$i(z)¢; (2)] — Elei(2)|El@; (2)] = Cov(gs, ¢5)

so the Hessian matrix is positive definite = logZ(6) is convex
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Likelihood in linear exponential family goginear modets)

probability distribution (z;8) = 53 exp((6, ¢(=)))

log-likelihood of D ¢(D,6) = |D| ({6, Epé(2)]) — log Z(9))

linear in @ convex

concave

should be easy to maximize (?)

® estimating Z(0) is a difficult inference problem
® how about just using the gradient info?

® involves inference as well Vylog Z(6) = Eg[¢(z)] X X

O any combination of inference-gradient based optimization for learning undirected models
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find the parameter 6

that results in the same expected sufficient statistics as the data
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Learning needs inferenceinaninnerioop

maximizing the likelihood: argmax,logp(D|6)

® gradient o Ep[¢(z)] — Ep, [¢(2)]

® optimality condition Ep|é(z)] = Ep, [¢(z))]

easy to calculate inference in the graphical model

example: in discrete pairwise MRF  pp(Zi, ;) = p(zi, z;;0) Vi,j €&

\J 2

empirical marginals ~ marginals in our current model

what if exact inference is infeasible?

® |earning with approx. inference often = exact optimization of approx. objective

B use sampling, variational inference ...



Conditional training

FEEIR generative vs. discriminative training

Hidden Markov Model (HMM) trained generatively Conditional random fields (CRF)

/(D. o) = log ol e trained discriminatively
(,9) Z(m’y)ep gp(@,y) e maximizing conditional log-likelihood

e easy to train the Bayes-net (assuming full observation) / D.O) = lo T
* the likelihood decomposes vix(D,9) Z(m’y)ep gr(yle)

e how to maximize this?
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Conditional training

objective: argmaxy ly x (D, 0) = argmaxs Y, ,\cp log p(y[z) OO ®

again consider the gradient

Vol x(D,60) = Y y1ep 9@, y') — Eyiag) (B, ) OROa0OR0R0

e conditional expectation of sufficient statistics
e itis conditioned on the observed x'

to obtain the gradient:

® for each instance (z,y) € D @ & ® S,

B runinference conditioned on x

compared to generative training in undirected models

(P v ) —7.)
pro: conditioning could simplify inference @ 5% @
con: have to run inference for each datapoint inference on the reduced MRF

is easy in this case
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Local priors & regularization

max-likelihood can lead to over-fitting
Bayesian approach:

® in Bayes-nets: decomposed prior p(0) —>» decomposed posterior p(0 | D)

o | n M a I’kOV netS. pOSte I’IO r d oesn Ot d ecom pOSE (because of the the likelihood doesn't decomposed due to the partition function.)

alternative [eE full-Bayesian approach

MAP inference: maximize the log-posterior arg maxy log p(D|0) + log p(0)
) e serves as a regularization
® does not model uncertainty « does not have to be conjugate

® sensitive to parametrization
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MAP inference: find the maximum of the posterior arg maxg log p(D|6) + log p(6)
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Gaussian & Laplace priors

MAP inference: find the maximum of the posterior arg maxg log p(D|0) + log p(6)

0.5
0 ® the product of univariate Laplacian (L1 reg.)
04r -
® the product of univariate Gaussian (L2 reg.) ---------------1 et Y I
0.3 Yt
2
p(8;0) o TT; exp(—pz) = | Gaussionprior [
logp(6;0) = —2%2 > 022 +c L2 regularization penalty term ol
O --"' I \‘~.. |
p(6;8) =TI, 2 exp(— %) = _oacepio TR ’ : 0
T
1ogp(9; /3) = —% ZZ |01| L1 regularization penalty term sparsity-inducing

® both of these penalize large parameter values
B hoth reduce fluctuations in the density log ﬁ((ﬁ?) = 07 (¢p(x) — p('))
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Pseudo-moment matching

we want to set the parameters @ such that
if/when loopy BP converges:

pD(A> B) — ﬁ(AaB;g),pD(B,D) = ﬁ(B,D,Q) .

empirical marginals marginals using BP

idea: use the reparametrization in BP

«%e p(A,B)...p(C,A)——>  product of clique marginals
‘ p(4,B,C, D, E, F) o p(4)...p(F) ————  cancel the double-counts

set the factors using empirical marginals
* eg.  ¢(A,B) < pp(4,B)/pp(4)
® each term in the numerator & denominator of.:é:.should be used exactly once

® if we run BP on the resulting model we will have  pp (A, B) = p(A, B;60),pp (B, D) = p(B,D;0) ...
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Pseudo-likelihood

log-likelihood: logp(D;0) = > . .p D ;logp(zilz1,...,xi-1;6) using the chain rule

pseudo log-likelihood is an approximation

logp(D;0) ~ ) ,cp D _;logp(zi|z—i;0)

p(z;0)  _ p(x0) n o
Zz‘ p(a:;G) — Zm ﬁ(m;e) eliminates the normalization constant
it simplifies the gradient:
® instead of calculating Y zep Ox(x) — |D|Ey, [¢r(x)] expensivel

® use erD Pr(z) — Zz ]Ep(.\:vfi) [¢k(33;7 ;)] can be further simplified using Markov blanket for each node...

® upshot: only conditional expectations are used (tractable!)

at the I|m|t Of Iar (S data (assuming we have the right model), thIS |S exaCt!
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Contrastive methods

log-likelihood:  logp(D;0) = >_,.p log p(a; 6) — log Z(0)

L

keep the total sum of unnormalized
increase the unnormalize prob. of the data o .
probabilities small log >, p(x;0)

o i+ : 0 .
it's easy to evaluate: e.g, (6;(2)) e sum over exponentially many terms

contrastive methods: replace log Z () with a tractable alternative

® contrastive divergence minimization: only look at a small "neighborhood" of the data

® margin-based training: consider log max, ., p(z';0)

u only for conditional training
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Structure Learning

Conditional independence test X-Y=X1Y|MB(Y)VX LY | MB(X)

e similar to finding the undirected skeleton of a Bayes Net
e bound on the size of Markov Blanket (versus #parents in the BN)

Maximizing a score:

e likelihood score
e Bayesian score (approx. BIC)
e these scores do not decompose

m |learn models with low-tree width
e MAP score (L1 regularized log-likelihood)

= convex problem
= introduce features 1-by-1 until convergence
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Summary

e parameter learning in MRFs is difficult
= normalization constant ties the parameters together

o likelihood does not decompose
o Bayesian inference is also difficult

e (conditional) log-likelihood is convex

m gradient steps: need inference on the current model
m global optima satisfies moment-matching condition
= combine inference methods + gradient descent for learning

e alternative approaches:

m pseudo moment matching, pseudo likelihood, contrastive divergence,
margin-based training



