Graphical Models

Clique trees \& Belief Propagation

Learning objectives

- message passing on clique trees
- its relation to variable elimination
- two different forms of belief propagation

Recap: variable elimination (VE)

- marginalize over a subset - e.g., $\quad P(J)=$
- expensive to calculate (why?) $\sum_{C, D, I, G, S, L, H} P(C, D, I, G, S, L, J, H)$
- use the factorized form of P

$$
\sum_{C, D, I, G, S, L, H} P(D \mid C) P(G \mid D, I) P(S \mid I) P(L \mid G) P(J \mid L, S) P(H \mid G, J)
$$

Recap: variable elimination (VE)

- marginalize over a subset - e.g., $\quad P(J)=$
- expensive to calculate (why?) $\quad \sum_{C, D, I, G, S, L, H} P(J, H, C, D, I, G, S, L)$
- use the factorized form of P

Recap: variable elimination (VE)

- marginalize over a subset - e.g., $\quad P(J)=$
- expensive to calculate (why?) $\quad \sum_{C, D, I, G, S, L, H} P(J, H, C, D, I, G, S, L)$
- use the factorized form of P
$\sum_{C, D, I, G, S, L} \phi_{1}(D, C) \phi_{2}(G, D, I) \phi_{3}(S, I) \phi_{4}(L, G) \phi_{5}(J, L, S) \phi_{6}(H, G, J)$

$$
=\ldots . \sum_{I} \phi_{3}(S \mid I) \sum_{D} \phi_{2}(G, D, I) \sum_{C} \phi_{1}(D, C)
$$

- repeat this

$$
=\ldots . \sum_{I} \phi_{3}(S, I) \sum_{D} \phi_{2}(G, D, I) \psi_{1}^{\prime}(D)
$$

Recap: variable elimination (VE)

- marginalize over a subset-e.g., $\quad P(J)=$
- expensive to calculate (why?) $\quad \sum_{C, D, I, G, S, L, H} P(C, D, I, G, S, L, J, H)$
- eliminate variables in some order (order of factors in the summation)

Recap: variable elimination (VE)

- eliminate variables in some order
- creates a chordal graph
- maximal cliques are factors created during VE $\left(\psi_{t}\right)$

Clique-tree

- summarize the VE computation using a clique-tree

- clusters are maximal cliques (scope of factors created during VE) $C_{i}=S c o p e\left[\psi_{i}\right]$

Clique-tree

- summarize the VE computation using a clique-tree

- clusters are maximal cliques (factors that are marginalized)

$$
C_{i}=\operatorname{Scope}\left[\psi_{i}\right]
$$

- sepsets are the result of marginalization over cliques

$$
\begin{aligned}
& S_{i, j}=S c o p e\left[\psi_{i}^{\prime}\right] \\
& S_{i, j}=C_{i} \cap C_{j}
\end{aligned}
$$

Clique-tree: properties

- family-preserving property: $\alpha(\phi)=j$
- each factor ϕ is associated with a cluster C_{j} s.t. $S c o p e[\phi] \subseteq C_{j}$

Clique-tree: properties

- family-preserving property: $\alpha(\phi)=j$
- each factor ϕ is associated with a cluster C_{j} s.t. $\operatorname{Scope}[\phi] \subseteq C_{j}$
- running intersection property:
- if $X \in C_{i}, C_{j}$ then $X \in C_{k}$ for C_{k} in the path $C_{i} \rightarrow \ldots \rightarrow C_{j}$

VE as message passing

VE as message passing

calculate the product of factors in each clique $\quad \psi_{i}\left(C_{i}\right) \triangleq \prod_{\phi: \bar{\alpha}(\phi)=i} \phi$ send messages from the leaves towards a root:

$$
\delta_{i \rightarrow j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \psi_{i}\left(C_{i}\right) \prod_{\substack{k \in N b_{i}-j \\ \text { neighbours }}} \delta_{k \rightarrow i}\left(S_{i, k}\right)
$$

message passing

- think of VE as sending messages

- send messages from the leaves towards a root:

$$
\begin{aligned}
& \delta_{i \rightarrow j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(S_{i, k}\right) \\
&=\sum_{\mathcal{V}\langle(i \rightarrow j)} \prod_{\phi \in \mathcal{F}\langle(i \rightarrow j)} \phi \\
& \text { all variable on iside of the tree } \\
& \text { all the factors on iside of the tree }
\end{aligned}
$$

- the message is the marginal from one side of the tree

message passing

- think of VE as sending messages

- send messages from the leaves towards a root:

$$
\delta_{i \rightarrow j}\left(S_{i, j}\right) \triangleq \sum_{C_{i}-S_{i, j}} \psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(S_{i, k}\right)
$$

- the belief at the root clique is $\beta_{r}\left(C_{r}\right) \triangleq \psi_{r}\left(C_{r}\right) \prod_{k \in N b_{r}} \delta_{k \rightarrow r}\left(S_{r, k}\right)$ proportional to the marginal $\beta_{r}\left(C_{r}\right) \propto \sum_{\mathbf{x}-C_{i}} P(\mathbf{X})$

message passing: root-to-leaves

- what if we continue sending messages?

- clique \mathbf{i} sends a message to clique \mathbf{j} when received messages from all the other neighbors \mathbf{k}

message passing: root-to-leaves

- what if we continue sending messages? (from the root to leaves)

- sum-product belief propagation (BP)

$$
\begin{aligned}
& \delta_{i \rightarrow j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(S_{i, k}\right) \\
& \mu_{i, j}\left(S_{i, j}\right) \triangleq \delta_{i \rightarrow j}\left(S_{i, j}\right) \delta_{j \rightarrow i}\left(S_{i, j}\right) \\
& \beta_{i}\left(C_{i}\right) \triangleq \psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}} \delta_{k \rightarrow i}\left(S_{i, k}\right)
\end{aligned}
$$

marginals

for any clique (not only root)

Summery so far...

- VE creates a chordal induced graph
- maximum cliques in this graph: clusters
- message passing view of VE:
- send messages between clusters towards a root
- going beyond VE:
- send messages back from the root
- produce marginal over all clusters

Clique-tree: calibration

represent P using marginals: $\frac{\prod_{i} \beta_{i}}{\prod_{i, j \in \mathcal{E}} \mu_{i, j}}=\frac{\prod_{i} \psi_{i} \prod_{k \rightarrow i} \delta_{k \rightarrow i}}{\prod_{i, j \in \mathcal{E}} \delta_{i \rightarrow j} \delta_{j \rightarrow i}}=\prod_{i} \psi_{i}=\tilde{P}$

Clique-tree: calibration

represent P using marginals: $\frac{\prod_{i} \beta_{i}}{\prod_{i, j \in \mathcal{E}} \mu_{i, j}}=\frac{\prod_{i} \psi_{i} \prod_{k \rightarrow i \rightarrow} \delta_{k \rightarrow i}}{\prod_{i, j \in \mathcal{E}} \delta_{i \rightarrow j} \delta_{j \rightarrow i}}=\prod_{i} \psi_{i}=\tilde{P}$
an arbitrary assignment to all $\beta_{i}, \mu_{i, j}$ is calibrated iff

BP produces calibrated beliefs

$$
\mu_{i, j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \beta_{i}\left(C_{i}\right)=\sum_{C_{j}-S_{i, j}} \beta_{j}\left(C_{j}\right)
$$

Clique-tree: calibration

represent P using marginals: $\frac{\prod_{i} \beta_{i}}{\prod_{i, j \in \mathcal{E}} \mu_{i, j}}=\frac{\prod_{1} \psi_{i} \prod_{k \rightarrow i \rightarrow} \delta_{k \rightarrow i}}{\prod_{i, j \in \mathcal{E}} \delta_{i \rightarrow j} \delta_{j \rightarrow i}}=\prod_{i} \psi_{i}=\tilde{P}$
an arbitrary assignment to all $\beta_{i}, \mu_{i, j}$ is calibrated iff
BP produces calibrated beliefs

$$
\mu_{i, j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \beta_{i}\left(C_{i}\right)=\sum_{C_{j}-S_{i, j}} \beta_{j}\left(C_{j}\right)
$$

being calibrated and
means that all $\beta_{i}, \mu_{i, j}$ are marginals

$$
\tilde{P}(\mathbf{X}) \propto \frac{\prod \beta_{i} i\left(C_{i}\right)}{\prod_{i, j \in \varepsilon} \mu_{i, j}\left(S_{i, j}\right)} \Leftrightarrow \beta_{i}\left(C_{i}\right) \propto P\left(C_{i}\right)
$$

BP: an alternative update

appracach 1. message update
$\delta_{i \rightarrow j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i j}} \psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(S_{i, k}\right)$

calculate the beliefs in the end $\beta_{i}\left(C_{i}\right)=\psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}} \delta_{k \rightarrow i}\left(S_{i, k}\right)$

Update the beliefs so that:

- they are calibrated
- they satisfy

BP: an alternative update

apprach 1. message update

$$
\delta_{i \rightarrow j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(S_{i, k}\right)
$$

calculate the beliefs in the end $\beta_{i}\left(C_{i}\right)=\psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}} \delta_{k \rightarrow i}\left(S_{i, k}\right)$
approach 2 . belief update idea
Update the beliefs so that:

$$
\begin{aligned}
& \text { they are calibrated } \mu_{i, j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i j}} \beta_{i}\left(C_{i}\right)=\sum_{C_{j}-S_{i j}} \beta_{j}\left(C_{j}\right) \\
& \text { they satisfy } \frac{\Pi_{i}, \beta_{i}}{\prod_{i, j e} \mu_{i, j}}=\prod_{i} \psi_{i}
\end{aligned}
$$

BP: an alternative update

belief update

$$
\begin{aligned}
& \text { initialize } \beta_{i} \leftarrow \psi_{i}=\prod_{\phi: \alpha(\phi)=i} \phi, \quad \mu_{i, j} \leftarrow 1 \\
& \text { until convergence: } \\
& \qquad \begin{array}{ll}
\text { pick some }(i, j) \in \mathcal{E} & \\
\qquad \begin{array}{ll}
\hat{\mu}_{i, j} \leftarrow \sum_{C_{i}-S_{i, j}} \beta_{i} & / / \hat{\mu}_{i, j}=\delta_{i \rightarrow j}^{n e w} \delta_{j \rightarrow i} \\
\beta_{j} \leftarrow \beta_{j} \frac{\hat{\mu}_{i, j}}{\mu_{i, j}} & / / \frac{\hat{\mu}_{i, j}}{\mu_{i, j}}=\frac{\delta_{i \rightarrow j}^{\text {new }} \delta_{j \rightarrow i}}{\delta_{i \rightarrow j}^{\text {old }} \delta_{j \rightarrow i}}=\frac{\delta_{i \rightarrow j}^{\text {new }}}{\delta_{i \rightarrow j}^{\text {old }}}
\end{array}
\end{array} .
\end{aligned}
$$

at convergence, beliefs are calibrated

$$
\sum_{C_{i}-S_{i, j}} \beta_{i}\left(C_{i}\right)=\sum_{C_{j}-S_{i, j}} \beta_{j}\left(C_{j}\right)
$$

and so they are \propto marginals

Clique-tree \& queries

What type of queries can we answer?

- marginals over subset of cliques $P(A) \quad A \subseteq C_{i}$

Clique-tree \& queries

What type of queries can we answer?

- marginals over subset of cliques $P(A) \quad A \subseteq C_{i}$
- updating the beliefs after new evidence $P\left(A \mid E^{(t)}=e^{(t)}\right) \quad A \subseteq C_{i}, E \subseteq C_{j}$
- multiply the (previously calibrated) beliefs $\beta\left(C_{i}\right) \mathbb{I}\left(E^{(t)}=e^{(t)}\right)$
- propagate to recalibrate (belief update procedure)

Clique-tree \& queries

What type of queries can we answer?

- marginals over subset of cliques $P(A) \quad A \subseteq C_{i}$
- updating the beliefs after new evidence $P\left(A \mid E^{(t)}=e^{(t)}\right) \quad A \subseteq C_{i}, E \subseteq C_{j}$
- multiply the (previously calibrated) beliefs $\beta\left(C_{i}\right) \mathbb{I}\left(E^{(t)}=e^{(t)}\right)$
- propagate to recalibrate (belief upade procedure)
- marginals outside cliques: $\quad P(A, B) \quad A \subseteq C_{i}, B \subseteq C_{j}$
- define a super-clique that has both A, B
- a more efficient alternative?

Clique-tree \& queries

What type of queries can we answer?

- marginals over subset of cliques $P(A) \quad A \subseteq C_{i}$
- updating the beliefs after new evidence $P\left(A \mid E^{(t)}=e^{(t)}\right) \quad A \subseteq C_{i}, E \subseteq C_{j}$
- multiply the (previously calibrated) beliefs $\beta\left(C_{i}\right) \mathbb{I}\left(E^{(t)}=e^{(t)}\right)$
- propagate to recalibrate (belief update procedure)
- marginals outside cliques: $\quad P(A, B) \quad A \subseteq C_{i}, B \subseteq C_{j}$
- define a super-clique that has both A, B
- a more efficient alternative?
- partition function $Z=\sum_{c_{i}} \beta_{i}\left(C_{i}\right)$

Building a clique-tree

how to create it for a given graphical model:

Building a clique-tree

how to create it for a given graphical model:

1. triangulation: make a chordal graph

- e.g. induced graph in VE
- finding the chordal graph with min max-clique is NP-hard (heuristics we discussed)

Building a clique-tree

how to create it for a given graphical model:

1. triangulation: make a chordal graph

- e.g. induced graph in VE
- finding the chordal graph with min max-clique is NP-hard (heuristics we discussed)

2. find maximal cliques (clusters in the clique-tree)

- in general graphs NP-hard, but easy for chordal graphs
- assign each factor to a clique

Building a clique-tree

how to create it for a given graphical model:

1. triangulation: make a chordal graph

- e.g. induced graph in VE
- finding the chordal graph with min max-clique is NP-hard (heuristics we discussed)

2. find maximal cliques (clusters in the clique-tree)

- in general graphs NP-hard, but easy for chordal graphs
- assign each factor to a clique

3. use max. spanning-tree to build a tree (edge-cost $\mid C_{i} \cap C_{j}$)

AB

Building a clique-tree: example

Building a clique-tree: example

Building a clique-tree: example

input

triangulated

clique-tree

clique-tree quiz

what clique-tree to use here?
what are the sepsets?
cost of exact inference?

Summary

- VE as message passing in a clique-tree
- clique-tree: running intersection \& family preserving
- belief propagation updates:
- message update
- belief update
- types of queries
- how to build a clique-tree for exact inference

Chordal graph and clique-tree

Chordal graph $=$ Markov \cap Bayesian networks
convert MRF to Bayes-net (the actual procedure):

- triangulate
- build a clique-tree
- within cliques: fully connected directed edges
- between cliques: from root to leaves

