Probabilistic Graphical Models

 Review of probability theory
Learning objectives

- Probability distribution and density functions
- Random variable
- Bayes' rule
- Conditional independence
- Expectation and Variance

Sample space Ω

$\Omega=\{\omega\}$: the set of all possible outcomes (a.k.a. outcome space)

Example1: three tosses of a coin
$\Omega=\{h h h, h h t, h t h, \ldots, t t t\}$

Sample space Ω

$\Omega=\{\omega\}$: the set of all possible outcomes (a.k.a. outcome space)
Example 2: two dice
$\Omega=\{(1,1), \ldots,(6,6)\}$

Event space Σ

An event $E \subseteq \Omega$ is a set of outcomes
event space $\Sigma \subseteq 2^{\Omega}$ is a set of events

Event space Σ

An event $E \subseteq \Omega$ is a set of outcomes
event space $\Sigma \subseteq 2^{\Omega}$ is a set of events

Example:

Event: at least two heads $\quad \Sigma=\{h h t, t h h, h t h, h h h\}$

Event: draw a pair of aces from a deck

$$
|E|=6
$$

Event space Σ

Requirements for event space ($\sigma-$ algebra)

- $\Omega \in \Sigma$
- The complement of an event is also an event $A \in \Sigma \rightarrow \Omega-A \in \Sigma$
- (Countable) intersection of events is also an event

Example:

$$
A, B \in \Sigma \rightarrow A \cap B \in \Sigma
$$

at least one head, at least one tail $\in \Sigma \rightarrow$ at least one head and one tail $\in \Sigma$ at least one head $\in \Sigma \rightarrow$ no heads $\in \Sigma$

Extends to uncountable sets (Real numbers)

Probability distribution

Assigns a real value to each event $P: \Sigma \rightarrow \mathbb{R}$

Probability axioms (Kolmogorov axioms)
other axiomatizations of probability?

- Probability is non-negative $P(A) \geq 0$
- The probability of disjoint events is (countably) additive

$$
A \cap B=\emptyset \rightarrow P(A \cup B)=P(A)+P(B)
$$

- $P(\Omega)=1$

The triple (Ω, Σ, P) is a probability space

Probability distribution

Probability axioms (Kolmogorov axioms)

- Probability is non-negative $P(A) \geq 0$
- disjoint events are additive: $A \cap B=\emptyset \rightarrow P(A \cup B)=P(A)+P(B)$
- $P(\Omega)=1$

Derivatives:

- $P(\emptyset)=0$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- $P(\Omega \backslash A)=1-P(A)$
- $P(A \cap B) \leq \min \{P(A), P(B)\}$
- union bound: $P(A \cup B) \leq P(A)+P(B)$

Probability distribution: examples

$$
\begin{aligned}
& \Omega=\{1,2,3,4,5,6\} \\
& \Sigma=\{\emptyset, \Omega\} \quad \text { (a minimal choice of event space) } \\
& P(\emptyset)=0, P(\Omega)=1
\end{aligned}
$$

Probability distribution: examples

$$
\begin{aligned}
& \Omega=\{1,2,3,4,5,6\} \\
& \Sigma=\{\emptyset, \Omega\} \quad \text { (a minimal choice of event space) } \\
& P(\emptyset)=0, P(\Omega)=1
\end{aligned}
$$

$\Sigma=2^{\Omega}$ (a maximal choice of event space)
$P(A)=\frac{|A|}{6} \quad$ that is $\quad P(\{1,3\})=\frac{2}{6} \quad$ (any other consistent assignment is acceptable)

Can't we always use 2^{Ω}
even for uncountable outcome spaces?

Is ins tuis mitaiv Nebessante
egenerator.net

Can't we always use 2^{Ω}
even for uncountable outcome spaces?
It turns out some events are not measurable

เsystuis mativ Negessanie

Can't we always use 2^{Ω}
even for uncountable outcome spaces?
It turns out some events are not measurable

Iswis tilis beativ megrssiave

Having a event space and probability measure avoids this

Conditional probability

Probability of an event A after observing the event B

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Conditional probability

Probability of an event A after observing the event B

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \longleftarrow P(B)>0
$$

Conditional probability

Probability of an event A after observing the event B

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \longleftarrow P(B)>0
$$

Example: three coin tosses
$P($ at least one head \mid at least one tail $)=\frac{P(\text { at least one head and one tail })}{P(\text { at least one tail })}$

Chain rule

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Chain rule

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Chain rule: $\quad P(A \cap B)=P(B) P(A \mid B)$

Chain rule

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& \downarrow
\end{aligned}
$$

Chain rule: $\quad P(A \cap B)=P(B) P(A \mid B) \quad$ and $\quad B=C \cap D$

Chain rule

$$
\begin{gathered}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
\downarrow
\end{gathered}
$$

Chain rule: $\quad P(A \cap B)=P(B) P(A \mid B) \quad$ and $\quad B=C \cap D$

$$
P(A \cap C \cap D)=P(C \cap D) P(A \mid C \cap D)
$$

Chain rule

$$
\begin{gathered}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
\downarrow
\end{gathered}
$$

Chain rule: $\quad P(A \cap B)=P(B) P(A \mid B) \quad$ and $\quad B=C \cap D$

$$
\begin{aligned}
& P(A \cap C \cap D)=P(C \cap D) P(A \mid C \cap D) \\
& \left.\quad \begin{array}{l}
\downarrow \\
\\
P(A \cap C \cap D)
\end{array}\right)=P(D) P(C \mid D) P(A \mid C \cap D)
\end{aligned}
$$

Chain rule

$$
\begin{gathered}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
\downarrow
\end{gathered}
$$

Chain rule: $\quad P(A \cap B)=P(B) P(A \mid B) \quad$ and $\quad B=C \cap D$

$$
\begin{gathered}
\quad \begin{array}{c}
\downarrow \\
P(A \cap C \cap D)
\end{array}=P(C \cap D) P(A \mid C \cap D) \\
\downarrow(A \cap C \cap D)=P(D) P(C \mid D) P(A \mid C \cap D)
\end{gathered}
$$

More generally: $\quad P\left(A_{1} \cap \ldots \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) \ldots P\left(A_{n} \mid A_{1} \cap \ldots \cap A_{n-1}\right)$

Bayes' rule

Reasoning about event A :
likelihood of the event B if A were to happen
our posterior belief about A after
our prior belief about A observing B

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Bayes' rule: example

- 1% of the population has cancer
- cancer test
- False positive 10%
posterior likelihood prior
$P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$
- False negative 5\%
- chance of having cancer given a positive test result?

Bayes' rule: example

- 1% of the population has cancer
- cancer test
- False positive 10%
posterior likelihood prior

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- False negative 5\%
- chance of having cancer given a positive test result?
- sample space?
- events A, B?
- prior? likelihood?

$$
\begin{array}{ll}
\rightarrow & \bullet\{T P, T N, F P, F N\} \\
\rightarrow & \bullet A=\{T P, F N\}, B=\{T P, F P\} \\
\rightarrow & \bullet P(A)=.01, P(B \mid A)=.9
\end{array}
$$

- $P(B)$ is not trivial

Bayes' rule: example

- 1% of the population has cancer
- cancer test
- False positive 10\%
posterior likelihood prior

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- False negative 5\%
- chance of having cancer given a positive test result?
- sample space?
$\begin{array}{ll}\rightarrow & \bullet\{T P, T N, F P, F N\} \\ \rightarrow & \bullet A=\{T P, F N\}, B=\{T P, F P\} \\ \rightarrow & \bullet P(A)=.01, P(B \mid A)=.9\end{array}$
- prior? likelihood?
- $P(B)$ is not trivial

$$
\begin{aligned}
& P(\text { cancer } \mid+) \propto P(+\mid \text { cancer }) P(\text { cancer })=.009 \\
& P(\neg \text { cancer } \mid+) \propto P(+\mid \neg \text { cancer }) P(\neg \text { cancer })=.99 \times .1=.099
\end{aligned} P(\text { cancer } \mid+)=\frac{.009}{.009+.099} \approx .08
$$

Independence

Events \mathbf{A} and \mathbf{B} are independent iff

$$
P \models(A \perp B)
$$

$$
P(A \cap B)=P(A) P(B)
$$

Observing A does not change $P(B)$

Independence

Events \mathbf{A} and \mathbf{B} are independent iff

$$
P(A \cap B)=P(A) P(B)
$$

Observing A does not change $\mathrm{P}(\mathrm{B})$

$$
\text { using } \quad P(A \cap B)=P(A) P(B \mid A)
$$

Equivalent definition: $P(B)=P(B \mid A)$ or $\quad P(A)=0$

Independence: example

Are A and B independent?

Independence: example

Example 1: $P(\mathrm{hhh})=P(\mathrm{hht}) \ldots=P(\mathrm{ttt})=\frac{1}{8}$

$$
\begin{aligned}
& P(\mathrm{~h} * * \mid * \mathrm{t} *)=P(\mathrm{~h} * *)=\frac{1}{2} \\
\text { equivalently: } & P\left(\mathrm{ht}^{*}\right)=P(* \mathrm{t} *) P(\mathrm{~h} * *)=\frac{1}{4}
\end{aligned}
$$

Independence: example

Example 1: $P(\mathrm{hhh})=P(\mathrm{hht}) \ldots=P(\mathrm{ttt})=\frac{1}{8}$

$$
\begin{aligned}
& P\left(\mathrm{~h}^{* *} \mid * \mathrm{t}^{*}\right)=P\left(\mathrm{~h}^{* *}\right)=\frac{1}{2} \\
\text { equivalently: } & P\left(\mathrm{ht}^{*}\right)=P\left(* \mathrm{t}^{*}\right) P\left(\mathrm{~h}^{* *}\right)=\frac{1}{4}
\end{aligned}
$$

Example 2: are these two events independent?

$$
P(\{h t, h h\})=.3, P(\{t h\})=.1
$$

Conditional independence $P \models(A \perp B \mid C)$

a more common phenomenon: $\quad P(A \cap B \mid C)=P(A \mid C) P(B \mid C)$

Conditional independence $P \models(A \perp B \mid C)$

a more common phenomenon: $\quad P(A \cap B \mid C)=P(A \mid C) P(B \mid C)$

$$
\text { using } \quad P(A \cap B \mid C)=P(A \mid C) P(B \mid A \cap C)
$$

Conditional independence $P \models(A \perp B \mid C)$

a more common phenomenon: $\quad P(A \cap B \mid C)=P(A \mid C) P(B \mid C)$

$$
\text { using } \quad P(A \cap B \mid C)=P(A \mid C) P(B \mid A \cap C)
$$

Equivalent definition: $P(B \mid C)=P(B \mid A \cap C)$ or $P(A \cap C)=0$

Conditional independence: example

Generalization of independence: $P(A \cap B \mid C)=P(A \mid C) P(B \mid C)$

$$
P \models(R \perp B \mid
$$

[^0]
Summary

Basics of probability

- Outcome space: a set
- Event: a subset of outcomes
- Event space: a set of events
- Probability dist. is associated with events
- Conditional probability: based on intersection of events
- Chain rule follows from conditional probability
- (Conditional) independence: relevance of some events to others

Random Variable

is an attribute associated with each outcome $X: \Omega \rightarrow \operatorname{Val}(X)$

- intensity of a pixel
- head/tail value of the first coin in multiple coin tosses
- first draw from a deck is larger than the second
a formalism to define events $P(X=x) \triangleq P(\{\omega \in \Omega \mid X(\omega)=x\})$

Random Variable

is an attribute associated with each outcome $\quad X: \Omega \rightarrow \operatorname{Val}(X)$

- intensity of a pixel
- head/tail value of the first coin in multiple coin tosses
- first draw from a deck is larger than the second
a formalism to define events $P(X=x) \triangleq P(\{\omega \in \Omega \mid X(\omega)=x\})$
Example: three tosses of coin
- number of heads $X_{1}: \Omega \rightarrow\{0,1,2,3\}$
- number of heads in the first two trials $X_{2}: \Omega \rightarrow\{0,1,2\}$
- at least one head $X_{3}: \Omega \rightarrow\{$ True, False $\}$

Random Variable (RV)

is an attribute associated with each outcome $X: \Omega \rightarrow \operatorname{Val}(X)$
a formalism to define events $P(X=x) \triangleq P(\{\omega \in \Omega \mid X(\omega)=x\})$

Multiple RVs: X_{1}, \ldots, X_{n}

- outcomes that we care about: $\quad X_{1}=x_{1}, \ldots, X_{n}=x_{n}$
- cannonical outcome space: $\Omega_{c} \triangleq \operatorname{Val}\left(X_{1}\right) \times \ldots \times \operatorname{Val}\left(X_{n}\right)$

Random Variable (RV)

is an attribute associated with each outcome $X: \Omega \rightarrow \operatorname{Val}(X)$
a formalism to define events $P(X=x) \triangleq P(\{\omega \in \Omega \mid X(\omega)=x\})$

Multiple RVs: X_{1}, \ldots, X_{n}

- outcomes that we care about: $\quad X_{1}=x_{1}, \ldots, X_{n}=x_{n}$
- cannonical outcome space: $\Omega_{c} \triangleq \operatorname{Val}\left(X_{1}\right) \times \ldots \times \operatorname{Val}\left(X_{n}\right)$
- joint probability: $P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \triangleq P\left(X_{1}=x_{1} \cap \ldots \cap X_{n}=x_{n}\right)$

Random Variable (RV)

is an attribute associated with each outcome $X: \Omega \rightarrow \operatorname{Val}(X)$
a formalism to define events $P(X=x) \triangleq P(\{\omega \in \Omega \mid X(\omega)=x\})$

Multiple RVs: X_{1}, \ldots, X_{n}

- outcomes that we care about: $\quad X_{1}=x_{1}, \ldots, X_{n}=x_{n}$
- cannonical outcome space: $\Omega_{c} \triangleq \operatorname{Val}\left(X_{1}\right) \times \ldots \times \operatorname{Val}\left(X_{n}\right)$
- joint probability: $P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \triangleq P\left(X_{1}=x_{1} \cap \ldots \cap X_{n}=x_{n}\right)$
- marginal probability: $P\left(X_{1}=x_{1}\right)=\sum_{x_{2}, \ldots, x_{n}} P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$

Random Variable: example

three tosses of coin

$$
\begin{array}{ll}
\text { number of heads } & X_{1}: \Omega \rightarrow\{0,1,2,3\} \\
\text { first trial is a head } & X_{2}: \Omega \rightarrow\{\text { True, False }\}
\end{array}
$$

cannonical outcome space: $\quad \Omega_{c}=\{(0$, True $), \ldots,(\underline{3, F a l s e})\}$
atomic outcome
a joint probability
marginal probability

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{P}(\mathbf{X 2})$
True	.1	.1	.4	.05	.65
False	.2	.01	.09	.05	.35
$\mathbf{P (X 1)}$.3	.11	.49	.1	

Conditional independence for RVs

Given random variables $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \quad P \models(X \perp Y \mid Z)$ iff

$$
P \models(X=x \perp Y=y \mid Z=z) \quad \forall x, y, z
$$

Therefore $P \vDash(X \perp Y \mid Z)$ iff $\quad P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$

$$
\begin{gathered}
\text { OR } \\
P(X \mid Y, Z)=P(X \mid Z)
\end{gathered}
$$

Marginal independence: $P \vDash(X \perp Y \mid \emptyset)$

Continuous domain

probability density function (pdf) $p: \operatorname{Val}(X) \rightarrow[0,+\infty) \underset{p(x)}{\text { s.t. }} \quad \int_{\operatorname{Val(X)}} p(x) \mathrm{d} x=1$

$$
P(X \leq a) \triangleq \int_{-\infty}^{a} p(x) \mathrm{d} x
$$

$F(a)$: the cumulative distribution function (cdf)

Continuous domain

probability density function (pdf) $p: \operatorname{Val}(X) \rightarrow[0,+\infty) \underset{p(x)}{s . t} \quad \int_{\operatorname{Val(X)}} p(x) \mathrm{d} x=1$

$$
P(X \leq a) \triangleq \int_{-\infty}^{a} p(x) \mathrm{d} x
$$

$F(a)$: the cumulative distribution function (cdf)

- note that often $P(X=x)=0$

- $p(x)$ can be larger than 1
- it is not a probability distribution
- $P(a \leq X \leq b)=F(b)-F(a)$
- may only consider measurable subsets A

Continuous domain

probability density function (pdf) $p: \operatorname{Val}(X) \rightarrow[0,+\infty) \quad$ s.t. $\quad \int_{\operatorname{Val}(X)} p(x) \mathrm{d} x=1$
for discrete domains:
probability mass function (pmf)

$$
p(x) \triangleq P(X=x) \quad \text { s.t. } \quad \sum_{V a l(X)} p(x)=1
$$

Continuous domain: multivariate case

Joint density of multipe RVs: (same conditions)

$$
P\left(X_{1} \leq a_{1}, \ldots, X_{n} \leq a_{n}\right) \triangleq \int_{-\infty}^{\int_{-\infty}^{a_{1}} \ldots \int_{-\infty}^{a_{n}} p\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{n} \ldots \mathrm{~d} x_{1}}
$$

Continuous domain: multivariate case

Joint density of multipe RVs: (same conditions)

$$
P\left(X_{1} \leq a_{1}, \ldots, X_{n} \leq a_{n}\right) \triangleq \frac{\int_{-\infty}^{a_{1}} \ldots \int_{-\infty}^{a_{n}} p\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{n} \ldots \mathrm{~d} x_{1}}{F\left(a_{1}, \ldots, a_{n}\right): \text { joint CDF }}
$$

Marginal density: $p\left(x_{1}\right)=\int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} p\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{n} \ldots \mathrm{~d} x_{2}$

- marginal CDF $F\left(x_{1}\right)=\lim _{x_{2}, \ldots, x_{n} \rightarrow \infty} F\left(x_{1}, \ldots, x_{n}\right)$

Continuous domain: conditional density

Conditional distribution: $\quad P(X \mid Y=y)=\frac{P(X, Y=y)}{P(Y=y)}$ zero measure!
Take the limit $\epsilon \rightarrow 0$ in: $\quad P(X \leq a \mid y-\epsilon \leq Y \leq y+\epsilon)=\frac{\int_{-\infty}^{a} \int_{e-\epsilon}^{\epsilon} p(x, y+e) \mathrm{d} d x}{\int_{e=-\epsilon}^{e} p(y+e) \mathrm{d} e}$

Continuous domain: conditional density

Conditional distribution: $\quad P(X \mid Y=y)=\frac{P(X, Y=y)}{P(Y=y)}$ zero measure!
Take the limit $\epsilon \rightarrow 0$ in: $\quad P(X \leq a \mid y-\epsilon \leq Y \leq y+\epsilon)=\frac{\int_{-\infty}^{a} \int_{e=-\epsilon}^{\epsilon} p(x, y+e) \mathrm{d} d x}{\int_{e=-\epsilon}^{e} p(y+e) \mathrm{d} e}$

$$
\begin{array}{r}
\text { using } \int_{e=-\epsilon}^{\epsilon} f(y+e) \mathrm{d} e=2 \epsilon f(y)+\mathcal{O}\left(\epsilon^{2}\right) \\
P(X \leq a \mid y-\epsilon \leq Y \leq y+\epsilon) \approx \frac{\int_{-\infty}^{a} p(x, y) \mathrm{d} x}{p(y)}
\end{array}
$$

Continuous domain: conditional density

Conditional distribution: $\quad P(X \mid Y=y)=\frac{P(X, Y=y)}{P(Y=y)}$ zero measure!
Take the limit $\epsilon \rightarrow 0$ in: $\quad P(X \leq a \mid y-\epsilon \leq Y \leq y+\epsilon)=\frac{\int_{-\infty}^{a} \int_{e_{e-\epsilon}}^{e} p(x, y+e) \mathrm{d} d x}{\int_{e=-\epsilon}^{e} p(y+e) \mathrm{d} e}$

$$
\begin{array}{r}
\text { using } \int_{e=-\epsilon}^{\epsilon} f(y+e) \mathrm{d} e=2 \epsilon f(y)+\mathcal{O}\left(\epsilon^{2}\right) \\
P(X \leq a \mid y-\epsilon \leq Y \leq y+\epsilon) \approx \frac{\int_{-\infty}^{a} p(x, y) \mathrm{d} x}{p(y)}
\end{array}
$$

Conditional density of $P(X \mid Y=y)$ is $p(x \mid y)=\frac{p(x, y)}{p(y)}$

- extends Bayes' rule and chain rule and conditional independence to densities

Functions of random variables

- RV is a function of the outcome $X: \Omega \rightarrow \operatorname{Val}(X)$
- therefore $g(X)=g(X(\omega))$ is an RV itself
- E.g., $Y=X_{1}+X_{2}$

Expectation \& Variance

Expectation: $\mathbb{E}[X] \triangleq \sum_{x \in \operatorname{Val}(X)} x p(x) \quad$ OR $\quad \mathbb{E}[X] \triangleq \int_{x \in \operatorname{Val}(X)} x p(x) \mathrm{d} x$

- linearity: $\mathbb{E}[X+a Y]=\mathbb{E}[X]+a \mathbb{E}[Y]$
- X:\# heads, Y :\#heads in the first trial (X\&Y are not independent)
- for independent X \& Y

$$
\begin{array}{r}
\mathbb{E}[X Y]=\sum_{x, y \in \operatorname{Val}(X) \times \operatorname{Val}(Y)} p(x, y)(x y)=\sum_{x, y \in \operatorname{Val}(X) \times \operatorname{Val}(Y)} p(x) p(y)(x y) \\
=\left(\sum_{x \in \operatorname{Val}(X)} x p(x)\right)\left(\sum_{y \in \operatorname{Val}(Y)} y p(y)\right)=\mathbb{E}[X] \mathbb{E}[Y]
\end{array}
$$

Expectation \& Variance

Variance: $\operatorname{Var}[X] \triangleq \mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$

$$
=\mathbb{E}\left[X^{2}+\mathbb{E}[X]^{2}-2 X \mathbb{E}[X]\right]=\mathbb{E}\left[X^{2}\right]+\mathbb{E}[X]^{2}-2 \mathbb{E}[X] \mathbb{E}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

- for independent X and $Y \operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$
- if not independent $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]$
- Covariance: $\quad \operatorname{Cov}[X, Y] \triangleq \mathbb{\triangleq}[X-\mathbb{E}[X] \mathbb{E}[Y-\mathbb{E}[Y]]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$
- generalizes variance $\operatorname{Cov}[X, X]=\operatorname{Var}[X]$
- symmetric \& bilinear $\operatorname{Cov}[a X, b Y]=a b \operatorname{Cov}[Y, X]$

Examples of probability dists.

Classical members of exponential family of distribution

- Gaussian

```
more on this later
```

- Bernoulli
- Binomial
- Multinomial
- Gamma
- Exponential
- Poisson
- Beta
- Dirichlet

Examples of probability dists.

Bernoulli: $P(X=1 ; \mu)=\mu \quad 0 \leq \mu \leq 1 \quad$ OR $\quad p(x ; \mu)=\mu^{x}(1-\mu)^{1-x}$

- discrete distribution with $\operatorname{Val}(X)=\{0,1\}$

Binomial: $\quad P(X=k ; \mu, n)=\binom{n}{k} \mu^{k}(1-\mu)^{n-k}$

- dist. over the number of ones in n independent Bernoulli trials
- number of heads in n coin toss

$$
\operatorname{Val}(X)=\{0, \ldots, n\}
$$

Examples of probability dists.

Categorical (aka. multinulli): $P(X=l ; \mu)=\mu_{l}$ where $\sum_{l} \mu_{l}=1$

- fully parameterized discrete distribution with $\operatorname{Val}(X)=\{0 \ldots, L\}$

Multinomial distribution: $P\left(X_{1}=x_{1}, \ldots, X_{L}=x_{L} ; \mu, n\right)=\mathbb{I}\left(\sum_{l} x_{l}=n\right) \frac{n!}{\prod_{l} x_{l}} \prod_{l} \mu_{l}^{x_{l}}$

- dist. over the number of different outcomes in n independent categorial trials

Examples of probability dists.

Uniform:

- CONTINUOUS $\operatorname{Val}(X)=[a, b] \quad p(x)= \begin{cases}\frac{1}{b-a} & \text { for } a \leq x \leq b, \\ \frac{1}{b-a} \\ 0 & \text { for } x<a \text { or } x>b\end{cases}$
- DISCRETE $\operatorname{Val}(X)=\{a, a+1, \ldots, b\}$

- max-entropy discrete distribution

$$
P(X=j)=\frac{1}{n}{\underset{0}{n}}_{\substack{\frac{1}{n} \\ 0}}^{\prod_{a} \prod_{b}}
$$

Examples of probability dists.

Gaussian: $\quad p(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

- motivated by central limit theorem
- max-entropy dist. with a fixed variance

Summary

Adding random variables

- Random variable: assigns a value to each outcome
- Event (using RV): set of outcomes with a particular attribute
- Prob. dist., cond. prob., chain rule, indep. ... are all extended to RVs
- Continuous domains: same definition of probability, event, RV etc.
- Specifying the prob. dist. using density function

Summary

Notation

- random variable $X, Y, Z \quad \mathbf{X}=\left[X_{1}, \ldots, X_{n}\right]$
- variable x, y, z
- PDF, PMF $p(x), p(\mathbf{x}), p(x, y)$
- probability distribution $P(X), P(x) \triangleq P(X=x)$
- domain of an RV $\operatorname{Val}(X), \operatorname{Val}(X, Y, Z)$
bonus slides

Properties of conditional independence

- Symmetry: $(X \perp Y \mid Z) \Rightarrow(Y \perp X \mid Z)$
- Decomposition: $(X \perp Y, W \mid Z) \Rightarrow(X \perp Y \mid Z)$
- Weak union: $(X \perp Y, W \mid Z) \Rightarrow(X \perp Y \mid W, Z)$
- Contraction:

$$
(X \perp Y \mid W, Z) \&(X \perp W \mid Y, Z) \Rightarrow(X \perp Y, W \mid Z)
$$

- Intersection: if P is positive

$$
(X \perp W \mid Y, Z) \&(X \perp Y \mid Z) \Rightarrow(X \perp Y, W \mid Z)
$$

Examples of probability dists.

Poisson: $p(x ; \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!} \quad$ where $\quad \lambda>0$ is the mean frequency (rate parameter)

- frequency of rare events
- events are assumed independent
- similar to binomial with large number of trials $(\lambda \approx n \mu)$

$$
\operatorname{Val}(X)=\mathbb{Z}^{+}
$$

Examples of probability dists.

Exponential: $p(x ; \lambda)=\lambda e^{-\lambda x}$ where $\quad \lambda>0$

- time between events in Poisson dist.
- memoryless property

$$
\operatorname{Val}(X)=\mathbb{R}^{+}
$$

Geometric: $p(x, k ; \mu)=(1-\mu)^{k-1} \mu \quad$ where $\quad 0<\mu<1$

- number of Bernoulli trials until success
- memoryless property

[^0]: from: wikipedia

