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Learning objectives

Probability distribution and density functions
Random variable

Bayes' rule

Conditional independence

Expectation and Variance



Sample space ()

() = {w}: the set of all possible outcomes (a.k.a. outcome space)

Example1: three tosses of a coin €2 = {hhh, hht, hth, ...ttt}
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image: http://web.mnstate.edu/peil/MDEV102/U3/S25/Cartesian3.PNG




Sample space ()

(2 = {w} : the set of all possible outcomes (a.k.a. outcome space)

Example 2: two dice

0 ={(1,1),...,(6,6)}

Image source: http://www.stat.ualberta.ca/people/schmu/preprints/article/Article.ntm



Event space X

An event E C Q is a set of outcomes

event space ¥ C 2 is a set of events



Event space X

An event E C Q is a set of outcomes

event space ¥ C 2% is a set of events

Example:
Event: at least two heads X = {hht,thh, hth, hhh}

Event. draw a pair of aces from a deck

|E| =6 i\‘%@?



Event space X

Requirements for event space (o — algebra)

° Qe X
e The complement of an eventis also anevent Ac€¥ -0 —-Ack
e (Countable) intersection of events is also an event

Example: A BeX > ANBeX

at least one head, at least one tail € ¥ — at least one head and one tail € X

at least one head € ¥ — noheads € X

Extends to uncountable sets (Real numbers)



Probability distribution

Assigns a real value to eachevent P: ¥ 5 R

Probability axioms (Ko/mogorov axioms)

other axiomatizations of probability?
* Probability is non-negative p(4) > ¢
e The probability of disjoint events is (countably) additive

ANB=0(0— P(AUB)=P(A) + P(B)

¢ P(Q) =1

The triple (€2, %, P) is a probability space

measure



Probability distribution

Probability axioms (Ko/mogorov axioms)

e Probability is non-negative P(4) >0
e disjoint events are additive: AnB=0— P(AUB) = P(A) + P(B)

e P(Q)=1

Derivatives:
e P(0)=0 e P(O\A) =1— P(4)
e P(AUB)=P(A)+ P(B)— P(ANB) e P(AN B) <min{P(A), P(B)}
® union bound: P(AU B) < P(A) + P(B)



Probability distribution: examples
0 ={1,2,3,4,5,6}
¥ =1{0,9} (a minimal choice of event space)

P®)=0,P(2) =1



Probability distribution: examples

Q=1{1,2,3,4,5,6}

> ={0,9} (aminimal choice of event space) K, |/ i

P(0) =0,P(Q2) =1

> = 2% (a maximal choice of event space) 0N >
0

P(A) =

@‘E

thatis P({1,3}) =2 (any other consistent assignment is acceptable)






. Q
Can't we always use 2
even for uncountable outcome spaces?
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Can't we always use 25
even for uncountable outcome spaces?

It turns out some events are not measurable

L e X

Banach-Tarski paradox
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. Q
Can't we always use 2
even for uncountable outcome spaces?

It turns out some events are not measurable

L el X

Banach-Tarski paradox

NECESSAR =] ceneratornet HAVING @ event space and probability measure avoids this




Conditional probability

Probability of an event A after observing the event B

A
P(A| B) = Z4D)



Conditional probability

Probability of an event A after observing the event B

__ P(ANB)
P(A| B) = P(B) < P(B) > 0




Conditional probability

Probability of an event A after observing the event B

__ P(ANB)
P(A’B)_W< P(B) >0

Example: three coin tosses

P(at least one head and one tail)
P(at least one tail)

P(at least one head | at least one tail) =



Chain rule

P(ANB
P(A|B) =222




Chain rule

P(ANB
P(A|B) = T
\

Chainrule: P(ANB)= P(B)P(A|B)



Chain rule

P(ANB
P(A| B) = PloE)
}

Chainrule: P(ANB)=P(B)P(A|B) and B=CnD



Chain rule

P(ANB
P(A|B) = T
'
Chainrule: P(ANB)=P(B)P(A|B) and B=CnD

'

P(ANCND)=P(CND)P(A|CnND)



Chain rule

P(A | B) P(ANB)

j P(B)
Chainrule: P(ANB)=P(B)P(A|B) and B=CnD
'
P(ANnCND)=P(CND)P(A|CND)
.

P(ANCN D)= P(D)P(C | D)P(A|C N D)



Chain rule

P(A | B) P(ANB)

j P(B)
Chainrule: P(ANB)=P(B)P(A|B) and B=CnD
'
P(ANnCND)=P(CND)P(A|CND)
.

P(ANCN D)= P(D)P(C | D)P(A|C N D)

More generally: P(4in...N4,) =P(A)P(As | A1)...P(Ay | A1N...N A1)



Bayes' rule

Reasoning about event A:

likelihood of the event B if A were to happen

our prior belief about A

our posterior belief about A after T

observing B P(B|A)P(A
* P(A| B) = "G




Bayes' rule: example

e 1% of the population has cancer

® cancer test
P(B|A)P(A
= False positive 10% P(A | B) = 2EBAPA)

P(B)
= False negative 5%
e chance of having cancer given a positive test result?

posterior likelihood prior




Bayes' rule: example

1% of the population has cancer
cancer test

= False positive 10% P(A|B) = P(BJL%I)D(A)
= False negative 5%

chance of having cancer given a positive test result?

sample space? - e {TP, TN, FP, FN}

events A, B? S e A={TP, FN}, B = {TP, FP}

prior? likelihood? S e P(A)=.01,P(B|A)=.9

P(B) is not trivial

posterior likelihood prior




Bayes' rule: example

e 1% of the population has cancer
e cancer test

= False positive 10% P(A|B) = P(BJL%])D(A)
= False negative 5%

e chance of having cancer given a positive test result?

e sample space? - e {TP, TN, FP, FN}

e events A, B? S e A={TP, FN}, B = {TP, FP}

e prior? likelihood? S e P(A)=.01,P(B|A)=.9

e P(B)is not trivial

posterior likelihood prior

P(cancer | +) o< P(+ | cancer)P(cancer) = .009

= P(cancer | +) = 29 __ ~ 08
P(—cancer | +) o< P(+ | ~cancer)P(—cancer) = .99 x .1 = .099 ( | ) -009-+.099



Independence P = (A@f)

Events A and B are independent iff J_|_

P(AN B) = P(A)P(B)

Observing A does not change P(B)



Independence P = (A@f)

Events A and B are independent iff J_|_

P(AN B) = P(A)P(B)

Observing A does not change P(B)
using P(ANB)=P(A)P(B|A)

Equivalent definition: P(B) — P(B ‘ A) or P(A)=0



Independence: example

Are A and B independent?

Q



Independence: example

Example 1: P(hhh) = P(hht)... = P(ttt) = g

equivalently: P(ht*)=P(*t*)P(h*¥)

N[ =

>~



Independence: example

Example 1: P(hhh) = P(hht)... = P(ttt) = g
P(h** ‘ *t*) :P(h**):

equivalently: P(ht*)=P(*t*)P(h**) =

Example 2: are these two events independent?

P({ht,hh}) = .3, P({th}) = .1

N[

>~



Conditional independence Pk (AL B|C)

a more common phenomenon: P(ANB|C)=PA|C)P(B|C)



Conditional independence Pk (AL B|C)

a more common phenomenon;: P(ANB|C)=PA|C)P(B|C)

using PANB|C)=PA|C)P(B|ANC)



Conditional independence Pk (AL B|C)

a more common phenomenon;: P(ANB|C)=PA|C)P(B|C)

using PANB|C)=PA|C)P(B|ANC)

Equivalent definition: P(B|C)=P(B|ANC) or P(ANC)=0



Conditional independence: example

Generalization of independence: P(ANB|C)=P(A|C)P(B|C)

Y/

P=(RLB)

from: wikipedia



Summary

e Outcome space: a set

e Event: a subset of outcomes

e Event space: a set of events

e Probability dist. is associated with events

e Conditional probability: based on intersection of events

Chain rule follows from conditional probability

(Conditional) independence: relevance of some events to others



Random Variable

is an attribute associated with each outcome X : Q — Val(X)

¢ intensity of a pixel
e head/tail value of the first coin in multiple coin tosses
e first draw from a deck is larger than the second

a formalism to define events P(X =z) £ P{w e Q| X(w) = z})



Random Variable

is an attribute associated with each outcome X : Q — Val(X)

¢ intensity of a pixel
e head/tail value of the first coin in multiple coin tosses
e first draw from a deck is larger than the second

a formalism to define events P(X =z) =2 P{w € Q| X(w) = z})

Example: three tosses of coin

e number of heads X1 :Q — {0,1,2,3}
e number of heads in the first two trials X, : Q — {0,1,2}
e atleast one head X; : Q0 — {True, False}



Random Variable (RV)

is an attribute associated with each outcome x : Q — Val(X)

a formalism to define events P(X =z) 2 P{w € Q| X(w) = z})

Multiple RVs: X,,..., X,

e outcomes that we care about: X; =x1,...,X, = x»
* cannonical outcome space: Q, 2 Val(X1) x ... x Val(X,)



Random Variable (RV)

is an attribute associated with each outcome x . Q — Val(X)

a formalism to define events P(X =z) 2 P{w € Q| X(w) = z})

Multiple RVs: Xi,..., X,

e outcomes that we care about: X; =x1,...,X, = x»
* cannonical outcome space: Q, 2 Val(X1) x ... x Val(X,)

e joint probability: p(X; =zy,...,Xn =zn) 2 P(X1 =21 N ... N Xn = zn)



Random Variable (RV)

is an attribute associated with each outcome x : Q — Val(X)

a formalism to define events P(X =z) 2 P{w € Q| X(w) = z})

Multiple RVs: X,,..., X,

e outcomes that we care about: X; =x1,...,X, = x»

* cannonical outcome space: Q, 2 Val(X1) x ... x Val(X,)

e joint probability: p(x; =z1,..., X, =z2) 2 P(X1 =210 ... N Xn = )
* marginal probability: p(x, = z;) =Y P(X1=a1,...,Xn = z)

TL2ye o o9y



Random Variable: example

three tosses of coin
number of heads X::Q—{0,1,2,3}
first trial is a head Xy : Q — {True, False}

cannonical outcome space: Q. = {(0,True),..., (3, False)}
atomic outcome

2 joint probability 0o 1 2 3 P(X2)

True J J A4 .05 .65

False 2 .09 .05 .35

marginal probability PX)| 3 11 49 1




Conditional independence for RVs

Given random variablesX,Y,Z PE(X LY |2) iff

PE(X=x1lY=y|Z=2) Vz,y,z
Therefore P (X LY | 2)iff P(X,Y|Z)=P(X|Z)P(Y | 2Z2)

OR
P(X|Y,Z)=P(X | 2)

Marginal independence: P = (X LY |0)



Continuous domain

probability density function (pdf) p:Val(X) - [0,400) st. [y p(z)de =1

p(z)

Random Variable X

A a
P(X <a)= [[__p(z)dz
F(a) : the cumulative distribution function (cdf)

P(X<a)

flx)

F(a) = P(X<a)




Continuous domain

probability density function (pdf) p:Val(X) - [0,400) st. [y p(z)de =1

p(z)
P(X <a)= [° p(z)dz C
F(a) - the cumulative distribution function (cdf)
e note that often P(X =z) =0 —-
e p(z) can be larger than 1 -
= jtis not a probability distribution
® Pla< X <b)=F()— F(a) Fla) = PlX<a)
e may only consider measurable subsets A




Continuous domain

probability density function (pdf) p:val(X) — [0,+)

for discrete domains:

probability mass function (pmf)  p(z) £ P(X =z) s.t.

s.t.

fVal(X) p(z)dz =



Continuous domain: multivariate case

Joint density of multipe RVs: (same conditions)

P(Xi <ai,...,Xn <ap) éfal ...ffgop(ml,...,:cn)da:n...dzcl

—0o0

F(ai,...,a,): joint CDF



Continuous domain: multivariate case

Joint density of multipe RVs: (same conditions)

P(Xi <ai,...,Xn <ap) éfal ...ffgop(:cl,...,xn)da:n...dzcl

—0o0

F(ai,...,a,): joint CDF

Marginal density: p(z,) = ["° ... [ p(z),...,2,)dz, ...dz,

— 00

¢ marginal CDF F(wl) — 1imx2,...,xn—>oo F(wla seey wn)



Continuous domain: conditional density

P(X,Y:y)
P(Y=y) zero measure!

Conditional distribution: P(X |Y =y) =

ffoo fe“3:76 p($,y+€)d€d1§
f;,é p(y+e)de

Take the limit € — 0 in: PX<al|ly—e<Y <y+e) =



Continuous domain: conditional density

Conditional distribution: P(X |Y = y) = &=

P(Y=y) zero measure!

. P(z,y-+e)dedz
p(y+e)de

Take the limit e = 0in: P(X<a|y—e<Y <y+4e) ==

Jo
S
using J.__ f(y +e)de = 2¢f(y) + O() l

P(X<a|y—e<Y<y+€) I gg)y)dm




Continuous domain: conditional density

Conditional distribution: P(X |Y =y) = 5550 0 e
Take the limit e > 0in: P(X<a|y—e<Y <y+te) == f: Lo
using  J© . f(y+ e)de = 2f(y) + O() l
P X<a|ly—e<Y <y+e= S oo gg)ydm

Conditional density of P(X |Y =y)is p(z|y) = p]():(l;;)J)

» extends Bayes' rule and chain rule and conditional independence to densities



Functions of random variables

* RVis a function of the outcome x . 0 — val(X)
e therefore g¢(X)=g(X(w))isan RV itself

u Eg, Y =X; +X



Expectation & Variance

Expectation: E[X]= > zevax) ZP(z) OR  E[X] = Joevax) zp(z)dz

e linearity: E[X + aY] = E[X] + aE[Y]
B X:# heads, Y:#heads in the first trial (X&Y are not independent)

e forindependent X &Y

EXY] =2, sevax)«vae) P& Y)(@Y) = D s yevan«vae) P(@)P(Y) (zy)

= (Xeevax) 20(2)) (Lyevay) ¥P(y)) = EX]E[Y]



Expectation & Variance

Variance: var[X]2 E[(X — E[X])?]
= E[X? + E[X]? - 2XE[X]] = E[X?] + E[X]* — 2E[X|E[X] = E[X?] — E[X]?
e forindependentXandyY Var[X+Y]=Var[X]+ Var[Y]
= if notindependent Var[X +Y] =Var[X]+ Var[Y]+2Cov[X,Y]
e Covariance: cow[X,Y]2E[X - E[X]|E[Y — E[Y]] = E[XY] — E[X|E[Y]
= generalizes variance CovlX, X] = Var[X]
= symmetric & bilinear CovlaX,bY] = abCov|Y, X]



Examples of probability dists.

Classical members of exponential family of distribution

® Gaussian more on this later

® Bernoulli
® Binomial

® Multinomial
® Gamma

® Exponential
® Poisson

® Beta

® Dirichlet



Examples of probability dists.

Bernoulli: P(X =L;p)=p 0<pu<1 OR pz;p)=p"(1-p)'

e discrete distribution with Val(X) = {0,1}

Binomial: p(x =k;u,n) = (M) k(1 — p)n
e dist. over the number of onesinn mdependent Bernoulli trials

e number of heads in n coin toss

Val(X) = {0,...,n}




Examples of probability dists.

Categorical (aka. multinulli): p(x =t;4) =1 where S, =1

e fully parameterized discrete distribution with  vai(Xx)={0...,L}

Multinomial distribution: P(X; =xi,...,Xr = zp;u,n) =13, 2 = n) o 1L 147

e dist. over the number of different outcomes in n
independent categorial trials



Examples of probability dists.

Uniform:

— fora<z<b, 45 - .
® CONTINUOUS Val(X) = [a,b] p(x) =

0 forz <aorx>0b
® DISCRETE Val(X) = {a,a+1,...,b} 0 a b
= max-entropy discrete distribution

=R
I



Examples of probability dists.

° E—H2
Gaussian: p(x;u,a):\/;r?e_ﬁﬁ)_

e motivated by central limit theorem
e max-entropy dist. with a fixed variance

10




Summary

Adding random variables

e Random variable: assigns a value to each outcome

= Event (using RV): set of outcomes with a particular attribute

= Prob. dist., cond. prob., chain rule, indep. ... are all extended to RVs
e Continuous domains: same definition of probability, event, RV etc.

m Specifying the prob. dist. using density function



Summary

random variable Xx)v,Zz X =[X1,...,X,]

variable z,y,z

PDF, PMF  p(z),p(x),p(,y)

probability distribution P(X), P(z) £ P(X
domainofan RV  val(X),Val(X,Y, 2)

use interchangeably



bonus slides



Properties of conditional independence

e Symmetry: (X1Y|2)= (Y LX]2)

Decomposition

e Decomposition: (X L1Y,W|2)= (X 1Y |2Z) G@

Weak Union

A\
v/

e Weak union: (x LY,W |2)= (X LY | W, 2) N L (Y
\B WS

e Contraction:

Ny \] ¥ 3
Z & Z - Z\"w
(XLY\W,Z)&(XLW]Y,Z):>(XLY,W|Z)@@ @D \

Intersection

tio
N ¢ Ny \’\‘Y

image: Pearl's book

e |ntersection: if P is positive
(X 1LWI|Y,2)&X LY |Z2)= (X LY,W|Z)



Examples of probability dists.

Poisson: p(z;)\) = Awa‘j,_ " where A >0 isthe mean frequency
' (rate parameter)

e frequency of rare events
e events are assumed independent
e similar to binomial with large number of trials (A = nu)

0.40

o-Q
0.35} |

0.30f | ]

Val(X) =7Z* —o2sf | © A=10 ]
x 020 |ea :

“o1s| o

0.10F \ "-.ycf u\j
0.05} / Q__ e o,
J -

0.00a-aael




Examples of probability dists.

1.6

1.4f

Exponential: p(z;\) = Ae ™ where >0 12t

e time between events in Poisson dist. EEIE\

0.4}

Val(X) =R+

e memoryless property

0.0

A=0.5 ]

A=L15 |

1.0f =0 ]
Geometric: p(z,k;p) = (1 — p)*tu where 0<pu<1 o . . boos]
— o p=O.8A
e number of Bernoulli trials until success 1
e memoryless property 02l ot
Val(X)=N o - ¥3333s4
2 4 . 6 8 10



