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Learning objectivesLearning objectives

Probability distribution and density functions
Random variable
Bayes' rule
Conditional independence
Expectation and Variance



Sample spaceSample space

: the set of all possible outcomes (a.k.a. outcome space)Ω = {ω}

Ω = {hhh,hht,hth, … , ttt}Example1: three tosses of a coin

Ω

image: http://web.mnstate.edu/peil/MDEV102/U3/S25/Cartesian3.PNG



Ω = {(1, 1), … , (6, 6)}

Example 2: two dice

Image source: http://www.stat.ualberta.ca/people/schmu/preprints/article/Article.htm

: the set of all possible outcomes (a.k.a. outcome space)Ω = {ω}

Sample spaceSample space Ω



EventEvent space space

event space                 is a set of eventsΣ ⊆ 2Ω

Σ

E ⊆ ΩAn event             is a set of outcomes



EventEvent space space

event space                 is a set of eventsΣ ⊆ 2Ω

Example:
Event: at least two heads
 
Event: draw a pair of aces from a deck

Σ = {hht, thh,hth,hhh}

∣E∣ = 6

Σ

E ⊆ ΩAn event             is a set of outcomes



A ∈ Σ → Ω − A ∈ Σ

A,B ∈ Σ → A ∩ B ∈ Σ

Requirements for event space

 

The complement of an event is also an event

(Countable) intersection of events is also an event

Example:

 
at least one head ∈ Σ → no heads ∈ Σ

at least one head, at least one tail ∈ Σ → at least one head and one tail ∈ Σ

EventEvent space space Σ
(σ − algebra)

Ω ∈ Σ

Extends to uncountable sets (Real numbers)



Probability distributionProbability distribution

Assigns a real value to each event

Probability axioms (Kolmogorov axioms)

Probability is non-negative

The probability of disjoint events is (countably) additive

 

 

P : Σ → R

P (A) ≥ 0

A ∩ B = ∅ → P (A ∪ B) = P (A) + P (B)

P (Ω) = 1

The triple                     is a probability space(Ω, Σ,P )

m
ea

su
re

other axiomatizations of probability?



Probability distributionProbability distribution

Probability axioms (Kolmogorov axioms)

Probability is non-negative

disjoint events are additive:

 

P (A) ≥ 0

A ∩ B = ∅ → P (A ∪ B) = P (A) + P (B)

P (Ω) = 1

Derivatives:

 
 
union bound:

P (∅) = 0
P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

P (A ∪ B) ≤ P (A) + P (B)

 
 .
P (Ω\A) = 1 − P (A)
P (A ∩ B) ≤ min{P (A),P (B)}



Probability distribution: Probability distribution: examplesexamples

Σ = {∅, Ω}

Ω = {1, 2, 3, 4, 5, 6}

P (∅) = 0,P (Ω) = 1

(a minimal choice of event space)



Probability distribution: Probability distribution: examplesexamples

Σ = {∅, Ω}

Ω = {1, 2, 3, 4, 5, 6}

P (∅) = 0,P (Ω) = 1

Σ = 2Ω

P (A) =  6
∣A∣

(a maximal choice of event space)

P ({1, 3}) =  6
2that is

(a minimal choice of event space)

(any other consistent assignment is acceptable)





Can't we always use    
even for uncountable outcome spaces?

2Ω



Can't we always use    
even for uncountable outcome spaces?

It turns out some events are not measurable

Banach­Tarski paradox

2Ω



Can't we always use    
even for uncountable outcome spaces?

It turns out some events are not measurable

Banach­Tarski paradox

Having a event space and probability measure avoids this

2Ω



ConditionalConditional probability probability

Probability of an event A after observing the event B

P (A ∣ B) =  

P (B)
P (A∩B)



ConditionalConditional probability probability

Probability of an event A after observing the event B
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P (B) > 0



ConditionalConditional probability probability

Probability of an event A after observing the event B

P (A ∣ B) =  

P (B)
P (A∩B)

Example: three coin tosses

P (at least one head ∣ at least one tail) =  

P (at least one tail)
P (at least one head and one tail)

P (B) > 0



ChainChain rule rule

P (A ∣ B) =  

P (B)
P (A∩B)



ChainChain rule rule

P (A ∣ B) =  

P (B)
P (A∩B)

Chain rule: P (A ∩ B) = P (B)P (A ∣ B)



ChainChain rule rule

P (A ∣ B) =  

P (B)
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Chain rule: P (A ∩ B) = P (B)P (A ∣ B) B = C ∩ Dand



ChainChain rule rule

P (A ∣ B) =  

P (B)
P (A∩B)

Chain rule: P (A ∩ B) = P (B)P (A ∣ B) B = C ∩ Dand

P (A ∩ C ∩ D) = P (C ∩ D)P (A ∣ C ∩ D)



ChainChain rule rule

P (A ∣ B) =  

P (B)
P (A∩B)

Chain rule: P (A ∩ B) = P (B)P (A ∣ B) B = C ∩ Dand

P (A ∩ C ∩ D) = P (C ∩ D)P (A ∣ C ∩ D)

P (A ∩ C ∩ D) = P (D)P (C ∣ D)P (A ∣ C ∩ D)



ChainChain rule rule

P (A ∣ B) =  

P (B)
P (A∩B)

Chain rule: P (A ∩ B) = P (B)P (A ∣ B) B = C ∩ Dand

P (A ∩ C ∩ D) = P (C ∩ D)P (A ∣ C ∩ D)

P (A ∩ C ∩ D) = P (D)P (C ∣ D)P (A ∣ C ∩ D)

More generally: P (A  ∩ … ∩ A  ) =1 n P (A  )P (A  ∣1 2 A  ) …P (A  ∣1 n A  ∩1 … ∩ A  )n−1



BayesBayes' rule' rule

P (A ∣ B) =  

P (B)
P (B∣A)P (A)

Reasoning about event A:

our prior belief about A

likelihood of the event B if A were to happen

our posterior belief about A after
observing B



Bayes' rule: Bayes' rule: exampleexample

P (A ∣ B) =  

P (B)
P (B∣A)P (A)

priorlikelihoodposterior1% of the population has cancer
 cancer test

False positive 10%
False negative 5%

chance of having cancer given a positive test result?



Bayes' rule: Bayes' rule: exampleexample

P (A ∣ B) =  

P (B)
P (B∣A)P (A)

priorlikelihoodposterior1% of the population has cancer
 cancer test

False positive 10%
False negative 5%

chance of having cancer given a positive test result?
sample space?
events A, B?
prior? likelihood?

{TP, TN, FP, FN}
A = {TP, FN}, B = {TP, FP}
P(A) = .01, P(B|A) = .9

P(B) is not trivial



Bayes' rule: Bayes' rule: exampleexample

P (A ∣ B) =  

P (B)
P (B∣A)P (A)

priorlikelihoodposterior1% of the population has cancer
 cancer test

False positive 10%
False negative 5%

chance of having cancer given a positive test result?
sample space?
events A, B?
prior? likelihood?

{TP, TN, FP, FN}
A = {TP, FN}, B = {TP, FP}
P(A) = .01, P(B|A) = .9

P(B) is not trivial

P (cancer ∣ +) ∝ P (+ ∣ cancer)P (cancer) = .009

P (¬cancer ∣ +) ∝ P (+ ∣ ¬cancer)P (¬cancer) = .99 × .1 = .099
P (cancer ∣ +) =  ≈.009+.099

.009 .08



IndependenceIndependence

Observing A does not change P(B)

P (A ∩ B) = P (A)P (B)

Events A and B are independent iff

P ⊨ (A ⊥ B)



IndependenceIndependence

Observing A does not change P(B)

P (A ∩ B) = P (A)P (B)

Events A and B are independent iff

P (A ∩ B) = P (A)P (B ∣ A)using

Equivalent definition:                                             orP (B) = P (B ∣ A) P (A) = 0

P ⊨ (A ⊥ B)



Independence:Independence: example example

Are A and B independent?

Ω

A B



Independence: Independence: exampleexample

Example 1:

P (h * * ∣ * t *) = P (h * *) =  2
1

P (hhh) = P (hht) … = P (ttt) =  8
1

equivalently: P (h t *) = P (* t *)P (h * *) =  4
1



Independence: Independence: exampleexample

Example 1:

P (h * * ∣ * t *) = P (h * *) =  2
1

Example 2: are these two events independent?

P (hhh) = P (hht) … = P (ttt) =  8
1

P ({ht,hh}) = .3,P ({th}) = .1

equivalently: P (h t *) = P (* t *)P (h * *) =  4
1



ConditionalConditional independence independence

P (A ∩ B ∣ C) = P (A ∣ C)P (B ∣ C)

P ⊨ (A ⊥ B ∣ C)

a more common phenomenon:



ConditionalConditional independence independence

P (A ∩ B ∣ C) = P (A ∣ C)P (B ∣ C)

P (A ∩ B ∣ C) = P (A ∣ C)P (B ∣ A ∩ C)using

P ⊨ (A ⊥ B ∣ C)

a more common phenomenon:



ConditionalConditional independence independence

P (A ∩ B ∣ C) = P (A ∣ C)P (B ∣ C)

P (A ∩ B ∣ C) = P (A ∣ C)P (B ∣ A ∩ C)using

Equivalent definition: P (A ∩ C) = 0P (B ∣ C) = P (B ∣ A ∩ C) or

P ⊨ (A ⊥ B ∣ C)

a more common phenomenon:



Conditional independence: Conditional independence: exampleexample

P (A ∩ B ∣ C) = P (A ∣ C)P (B ∣ C)Generalization of independence:

P ⊨ (R ⊥ B ∣ Y )
Ω

from: wikipedia



SummarySummary

Outcome space: a set

Event: a subset of outcomes

Event space: a set of events

Probability dist. is associated with events

Conditional probability: based on intersection of events

Chain rule follows from conditional probability

(Conditional) independence: relevance of some events to others

Basics of probability



Random VariableRandom Variable

is an attribute associated with each outcome X : Ω → V al(X)

a formalism to define events P (X = x) ≜ P ({ω ∈ Ω ∣ X(ω) = x})

intensity of a pixel
head/tail value of the first coin in multiple coin tosses
first draw from a deck is larger than the second

 



Random VariableRandom Variable

is an attribute associated with each outcome X : Ω → V al(X)

a formalism to define events P (X = x) ≜ P ({ω ∈ Ω ∣ X(ω) = x})

intensity of a pixel
head/tail value of the first coin in multiple coin tosses
first draw from a deck is larger than the second

 

Example: three tosses of coin

number of heads
number of heads in the first two trials
at least one head

X  :1 Ω → {0, 1, 2, 3}

X  :2 Ω → {0, 1, 2}

X  :3 Ω → {True,False}



Random Variable (Random Variable (RVRV))

is an attribute associated with each outcome

a formalism to define events P (X = x) ≜ P ({ω ∈ Ω ∣ X(ω) = x})

Multiple RVs:

outcomes that we care about:
cannonical outcome space:

X  =1 x  , … ,X  =1 n x  n

X  , … ,X  1 n

X : Ω → V al(X)

Ω  ≜c V al(X  ) ×1 … × V al(X  )n



Random Variable (Random Variable (RVRV))

is an attribute associated with each outcome

a formalism to define events P (X = x) ≜ P ({ω ∈ Ω ∣ X(ω) = x})

Multiple RVs:

outcomes that we care about:
cannonical outcome space:
joint probability:

X  =1 x  , … ,X  =1 n x  n

X  , … ,X  1 n

P (X  =1 x  , … ,X  =1 n x  ) ≜n P (X  =1 x  ∩1 … ∩ X  =n x  )n

X : Ω → V al(X)

Ω  ≜c V al(X  ) ×1 … × V al(X  )n



Random Variable (Random Variable (RVRV))

is an attribute associated with each outcome

a formalism to define events P (X = x) ≜ P ({ω ∈ Ω ∣ X(ω) = x})

Multiple RVs:

outcomes that we care about:
cannonical outcome space:
joint probability:
marginal probability:

X  =1 x  , … ,X  =1 n x  n

X  , … ,X  1 n

P (X  =1 x  , … ,X  =1 n x  ) ≜n P (X  =1 x  ∩1 … ∩ X  =n x  )n

P (X  =1 x  ) =1  P (X  =∑x  ,…,x  2 n 1 x  , … ,X  =1 n x  )n

X : Ω → V al(X)

Ω  ≜c V al(X  ) ×1 … × V al(X  )n



Random Variable: Random Variable: exampleexample

 a joint probability

three tosses of coin

0 1 2 3 P(X2)

True .1 .1 .4 .05 .65

False .2 .01 .09 .05 .35

P(X1) .3 .11 .49 .1

number of heads
first trial is a head

X  :1 Ω → {0, 1, 2, 3}

X  :2 Ω → {True,False}

cannonical outcome space: Ω  =c {(0,True), … , (3,False)}
atomic outcome

marginal probability



Conditional independence Conditional independence for RVsfor RVs

Given random variables X, Y, Z                                 iffP ⊨ (X ⊥ Y ∣ Z)

P ⊨ (X = x ⊥ Y = y ∣ Z = z) ∀x, y, z

Therefore                             iffP ⊨ (X ⊥ Y ∣ Z) P (X,Y ∣ Z) = P (X ∣ Z)P (Y ∣ Z)

P (X ∣ Y ,Z) = P (X ∣ Z)
OR

Marginal independence: P ⊨ (X ⊥ Y ∣ ∅)



Continuous Continuous domaindomain

probability density function (pdf) p : V al(X) → [0, +∞) s.t.  p(x)dx =∫
V al(X) 1

P (X ≤ a) ≜  p(x)dx∫−∞
a

the cumulative distribution function (cdf)F (a) :

p(x)



Continuous Continuous domaindomain

probability density function (pdf) p : V al(X) → [0, +∞) s.t.  p(x)dx =∫
V al(X) 1

note that often                            
         can be larger than 1

it is not a probability distribution
 
may only consider measurable subsets A

P (X ≤ a) ≜  p(x)dx∫−∞
a

the cumulative distribution function (cdf)F (a) :

P (X = x) = 0

p(x)

P (a ≤ X ≤ b) = F (b) − F (a)

p(x)



Continuous Continuous domaindomain

probability density function (pdf) p : V al(X) → [0, +∞) s.t.  p(x)dx =∫
V al(X) 1

for discrete domains:
probability mass function (pmf) p(x) ≜ P (X = x) s.t.  p(x) =∑V al(X) 1



ContinuousContinuous  domain: domain: multivariatemultivariate  casecase

Joint density of multipe RVs: (same conditions)

P (X  ≤1 a  , … ,X  ≤1 n a  ) ≜n  …  p(x  , … ,x  )dx  … dx  ∫−∞
a  1 ∫−∞

a  n

1 n n 1

joint CDFF (a  , … , a  ) :1 n



ContinuousContinuous  domain: domain: multivariatemultivariate  casecase

Joint density of multipe RVs: (same conditions)

P (X  ≤1 a  , … ,X  ≤1 n a  ) ≜n  …  p(x  , … ,x  )dx  … dx  ∫−∞
a  1 ∫−∞

a  n

1 n n 1

joint CDFF (a  , … , a  ) :1 n

Marginal density:

marginal CDF

p(x  ) =1  …  p(x  , … ,x  )dx  … dx  
∫−∞

+∞ ∫−∞
+∞

1 n n 2

F (x  ) =1 lim  F (x  , … ,x  )x  ,…,x  →∞2 n 1 n



Continuous domain:Continuous domain:  conditional densityconditional density

Conditional distribution: zero measure!P (X ∣ Y = y) =  P (Y =y)
P (X,Y =y)

Take the limit             in: P (X ≤ a ∣ y − ϵ ≤ Y ≤ y + ϵ) =  

 p(y+e)de∫
e=−ϵ
ϵ

  p(x,y+e)dedx∫−∞
a ∫e=−ϵ

ϵ

ϵ → 0



Continuous domain:Continuous domain:  conditional densityconditional density

Conditional distribution: zero measure!P (X ∣ Y = y) =  P (Y =y)
P (X,Y =y)

Take the limit             in: P (X ≤ a ∣ y − ϵ ≤ Y ≤ y + ϵ) =  

 p(y+e)de∫
e=−ϵ
ϵ

  p(x,y+e)dedx∫−∞
a ∫e=−ϵ

ϵ

ϵ → 0

using  f(y +∫
e=−ϵ

ϵ
e)de = 2ϵf(y) + O(ϵ )2

P (X ≤ a ∣ y − ϵ ≤ Y ≤ y + ϵ) ≈  p(y)
 p(x,y)dx∫−∞

a



Continuous domain:Continuous domain:  conditional densityconditional density

Conditional distribution: zero measure!P (X ∣ Y = y) =  P (Y =y)
P (X,Y =y)

Conditional density of                           is p(x ∣ y) =  

p(y)
p(x,y)

Take the limit             in: P (X ≤ a ∣ y − ϵ ≤ Y ≤ y + ϵ) =  

 p(y+e)de∫
e=−ϵ
ϵ

  p(x,y+e)dedx∫−∞
a ∫e=−ϵ

ϵ

ϵ → 0

using  f(y +∫
e=−ϵ

ϵ
e)de = 2ϵf(y) + O(ϵ )2

P (X ≤ a ∣ y − ϵ ≤ Y ≤ y + ϵ) ≈  p(y)
 p(x,y)dx∫−∞

a

P (X ∣ Y = y)

extends Bayes' rule and chain rule and conditional independence to densities



FunctionsFunctions of random variables of random variables

 

RV is a function of the outcome
therefore                          is an RV itself

E.g.,

X : Ω → V al(X)
g(X) = g(X(ω))

Y = X  +1 X2



ExpectationExpectation & Variance & Variance

Expectation:

linearity:

X:# heads, Y:#heads in the first trial (X&Y are not independent)

for independent X & Y

E[X] ≜  xp(x)∑x∈V al(X) E[X] ≜  xp(x)dx∫
x∈V al(X)OR

E[X + aY ] = E[X] + aE[Y ]

E[XY ] =  p(x, y)(xy) =∑x,y∈V al(X)×V al(Y )  p(x)p(y)(xy)∑x,y∈V al(X)×V al(Y )

= (  xp(x))(  yp(y)) =∑x∈V al(X) ∑y∈V al(Y ) E[X]E[Y ]



Expectation & Expectation & VarianceVariance

Variance: V ar[X] ≜ E[(X − E[X]) ]2

= E[X +2 E[X] −2 2XE[X]] = E[X ] +2 E[X] −2 2E[X]E[X] = E[X ] −2 E[X]2

for independent X and Y

if not independent

Covariance:

generalizes variance
symmetric & bilinear

V ar[X + Y ] = V ar[X] + V ar[Y ]

V ar[X + Y ] = V ar[X] + V ar[Y ] + 2Cov[X,Y ]

Cov[X,Y ] ≜ E[X − E[X]]E[Y − E[Y ]] = E[XY ] − E[X]E[Y ]

Cov[X,X] = V ar[X]

Cov[aX, bY ] = abCov[Y ,X]



Classical members of exponential family of distribution

Gaussian

Bernoulli

Binomial

Multinomial

Gamma

Exponential

Poisson

Beta

Dirichlet

ExamplesExamples of probability dists. of probability dists.

more on this later



Bernoulli:

discrete distribution with

P (X = 1;μ) = μ 0 ≤ μ ≤ 1

V al(X) = {0, 1}

p(x;μ) = μ (1 −x μ)1−x

Binomial:

dist. over the number of ones in n independent Bernoulli trials
number of heads in n coin toss

V al(X) = {0, … ,n}

P (X = k;μ,n) =  μ (1 −(
k
n) k μ)n−k

OR

ExamplesExamples of probability dists. of probability dists.



Categorical (aka. multinulli) :

fully parameterized  discrete distribution with V al(X) = {0 … ,L}

P (X = l;μ) = μ  where  μ  =l ∑l l 1

Multinomial distribution:

dist. over the number of different outcomes in n
independent categorial trials

P (X  =1 x  , … ,X  =1 L x  ;μ,n) =L I(  x  =∑l l n)   μ  

 x  !∏l l

n! ∏l l
x  l

ExamplesExamples of probability dists. of probability dists.



Uniform:

CONTINUOUS p(x)

DISCRETE

max-entropy discrete distribution

P (X = j) =  

n
1

V al(X) = [a, b]

V al(X) = {a, a + 1, … , b}

ExamplesExamples of probability dists. of probability dists.



Gaussian:

motivated by central limit theorem
max-entropy dist. with a fixed variance

p(x;μ,σ) =  e
 2πσ2

1 −  

2σ2
(x−μ)2

ExamplesExamples of probability dists. of probability dists.



SummarySummary

Random variable: assigns a value to each outcome

Event (using RV): set of outcomes with a particular attribute

Prob. dist., cond. prob., chain rule, indep. ... are all extended to RVs

Continuous domains: same definition of probability, event, RV etc.

Specifying the prob. dist. using density function

 Adding random variables



SummarySummary

random variable

variable

PDF, PMF

probability distribution

domain of an RV

Notation

X,Y ,Z X = [X  , … ,X  ]1 n

p(x), p(x), p(x, y)

x, y, z

P (X),P (x) ≜ P (X = x)

V al(X),V al(X,Y ,Z)

use interchangeably



bonus slides



PropertiesProperties of conditional independence of conditional independence

Symmetry:

Decomposition:

Weak union:

Contraction:

 

Intersection: if P is positive

(X ⊥ Y ∣ Z) ⇒ (Y ⊥ X ∣ Z)

image: Pearl's book

(X ⊥ Y ,W ∣ Z) ⇒ (X ⊥ Y ∣ Z)

(X ⊥ Y ,W ∣ Z) ⇒ (X ⊥ Y ∣ W ,Z)

(X ⊥ W ∣ Y ,Z)&(X ⊥ Y ∣ Z) ⇒ (X ⊥ Y ,W ∣ Z)

(X ⊥ Y ∣ W ,Z)&(X ⊥ W ∣ Y ,Z) ⇒ (X ⊥ Y ,W ∣ Z)



Poisson:

frequency of rare events
events are assumed independent

p(x;λ) =  where  λ >
x!

λ ex −λ

0 is the mean frequency
(rate parameter)

V al(X) = Z+

similar to binomial with large number of trials (λ ≈ nμ)

ExamplesExamples of probability dists. of probability dists.



Exponential:

time between events in Poisson dist.
memoryless property

p(x;λ) = λe where λ >−λx 0

V al(X) = R+

Geometric:

number of Bernoulli trials until success
memoryless property

V al(X) = N

p(x, k;μ) = (1 − μ) μ where 0 <k−1 μ < 1

(1 − μ) ≡ e−λ

ExamplesExamples of probability dists. of probability dists.


