Probabilistic Graphical Models

Review of probability theory

Siamak Ravanbakhsh

Fall 2019

Learning objectives

- Probability distribution and density functions
- Random variable
- Bayes' rule
- Conditional independence
- Expectation and Variance

Sample space $\ \Omega$

 $\Omega = \{\omega\}$: the **set** of all possible **outcomes** (*a.k.a.* outcome space)

Example1: three tosses of a coin $\Omega = \{hhh, hht, hth, \dots, ttt\}$

image: http://web.mnstate.edu/peil/MDEV102/U3/S25/Cartesian3.PNG

Sample space $\,\Omega\,$

 $\Omega = \{\omega\}$: the **set** of all possible **outcomes** (*a.k.a.* outcome space)

Image source: http://www.stat.ualberta.ca/people/schmu/preprints/article/Article.htm

Event space Σ

An event $E \subseteq \Omega$ is a set of outcomes event space $\Sigma \subseteq 2^{\Omega}$ is a set of events

Event space Σ

An event $E \subseteq \Omega$ is a set of outcomes event space $\Sigma \subseteq 2^{\Omega}$ is a set of events

Example:

Event: at least two heads $\Sigma = \{hht, thh, hth, hhh\}$

Event: draw a pair of aces from a deck

$$|E|=6$$

Event space Σ

Requirements for event space $(\sigma - \text{algebra})$

- $\Omega\in\Sigma$
- The complement of an event is also an event $A\in \Sigma o \Omega A\in \Sigma$
- (Countable) intersection of events is also an event

Example:

 $A,B\in\Sigma o A\cap B\in\Sigma$

at least one head, at least one tail $\in \Sigma o$ at least one head and one tail $\in \Sigma$

 $\text{at least one head} \in \Sigma \to \text{no heads} \in \Sigma$

Extends to uncountable sets (Real numbers)

Probability distribution

Assigns a real value to each event $P: \Sigma \to \mathbb{R}$

Probability axioms (Kolmogorov axioms) other axiomatizations of probability?

- Probability is non-negative $P(A) \ge 0$
- The probability of disjoint events is (countably) additive

 $A\cap B=\emptyset o P(A\cup B)=P(A)+P(B)$

measure

• $P(\Omega) = 1$

The triple (Ω, Σ, P) is a probability space

Probability distribution

Probability axioms (Kolmogorov axioms)

- Probability is non-negative $P(A) \ge 0$
- disjoint events are additive: $A \cap B = \emptyset \rightarrow P(A \cup B) = P(A) + P(B)$
- $P(\Omega) = 1$

Derivatives:

- $P(\emptyset) = 0$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ $P(A \cap B) \le \min\{P(A), P(B)\}$
- union bound: $P(A \cup B) < P(A) + P(B)$

- $P(\Omega \setminus A) = 1 P(A)$

Probability distribution: examples

 $\Omega = \{1, 2, 3, 4, 5, 6\}$

 $\Sigma = \{\emptyset, \Omega\}$ (a minimal choice of event space)

 $P(\emptyset)=0, P(\Omega)=1$

Probability distribution: examples

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

 $\Sigma = \{\emptyset, \Omega\}$ (a minimal choice of event space)
 $P(\emptyset) = 0, P(\Omega) = 1$

 $\Sigma=2^{\Omega}$ (a maximal choice of event space) $P(A)=rac{|A|}{6}$ that is $P(\{1,3\})=rac{2}{6}$ (any other *consistent* assignment is acceptable)

Can't we always use 2^{Ω} even for uncountable outcome spaces?

Can't we always use 2^{Ω} even for uncountable outcome spaces?

It turns out some events are not measurable

Banach-Tarski paradox

Can't we always use 2^{Ω} even for uncountable outcome spaces?

It turns out some events are not measurable

Banach-Tarski paradox

Having a event space and probability measure avoids this

Conditional probability

Probability of an event A after observing the event B

$$P(A \mid B) = rac{P(A \cap B)}{P(B)}$$

Conditional probability

Probability of an event A after observing the event B

$$P(A \mid B) = rac{P(A \cap B)}{P(B)}$$
 (B) $(B) > 0$

Conditional probability

Probability of an event A after observing the event B

$$P(A \mid B) = rac{P(A \cap B)}{P(B)}$$
 (B)

Example: three coin tosses

 $P(ext{at least one head} \mid ext{at least one tail}) = rac{P(ext{at least one head and one tail})}{P(ext{at least one tail})}$

$$P(A \mid B) = rac{P(A \cap B)}{P(B)}$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$\downarrow$$
Chain rule: $P(A \cap B) = P(B)P(A \mid B)$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$\downarrow$$
Chain rule: $P(A \cap B) = P(B)P(A \mid B)$ and $B = C \cap D$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$\downarrow$$
Chain rule: $P(A \cap B) = P(B)P(A \mid B)$ and $B = C \cap D$

$$\downarrow$$
 $P(A \cap C \cap D) = P(C \cap D)P(A \mid C \cap D)$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$\downarrow$$
Chain rule: $P(A \cap B) = P(B)P(A \mid B)$ and $B = C \cap D$

$$\downarrow$$
 $P(A \cap C \cap D) = P(C \cap D)P(A \mid C \cap D)$

$$\downarrow$$
 $P(A \cap C \cap D) = P(D)P(C \mid D)P(A \mid C \cap D)$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$(Chain rule: P(A \cap B) = P(B)P(A \mid B) \quad \text{and} \quad B = C \cap D$$

$$P(A \cap C \cap D) = P(C \cap D)P(A \mid C \cap D)$$

$$P(A \cap C \cap D) = P(D)P(C \mid D)P(A \mid C \cap D)$$

More generally: $P(A_1 \cap \ldots \cap A_n) = P(A_1)P(A_2 \mid A_1) \ldots P(A_n \mid A_1 \cap \ldots \cap A_{n-1})$

Bayes' rule

Reasoning about event A:

likelihood of the event B if A were to happen

Bayes' rule: example

- 1% of the population has cancer
- cancer test
 - False positive 10%
 - False negative 5%
- chance of **having cancer** given a **positive test** result?

Bayes' rule: example

- 1% of the population has cancer
- cancer test
 - False positive 10%
 - False negative 5%
- chance of **having cancer** given a **positive test** result?
- sample space?
- events A, B?
- prior? likelihood?
- P(B) is not trivial

likelihood prior posterior $P(A \mid B) = \frac{P(B|A)P(A)}{P(B)}$

- {TP, TN, FP, FN}
- \rightarrow \rightarrow \rightarrow • A = {TP, FN}, B = {TP, FP}
 - P(A) = .01, P(B|A) = .9

Bayes' rule: example

- 1% of the population has cancer
- cancer test
 - False positive 10%
 - False negative 5%
- chance of having cancer given a positive test result?

 \rightarrow \rightarrow \rightarrow

- sample space?
- events A, B?
- prior? likelihood?
- P(B) is not trivial

- A = {TP, FN}, B = {TP, FP}
- P(A) = .01, P(B|A) = .9

$$\begin{array}{c} P(cancer \mid +) \propto P(+ \mid cancer)P(cancer) = .009 \\ P(\neg cancer \mid +) \propto P(+ \mid \neg cancer)P(\neg cancer) = .99 \times .1 = .099 \end{array} \xrightarrow{P(cancer \mid +)} P(cancer \mid +) = \frac{.009}{.009 + .099} \approx .08 \end{array}$$

posteriorlikelihood prior
$$P(A \mid B) = \frac{P(B|A)P(A)}{P(B)}$$

Events **A** and **B** are independent *iff*

$$P(A\cap B)=P(A)P(B)$$

Observing A does not change P(B)

Independence

$$P \models (A \perp B)$$

Events **A** and **B** are independent *iff*

 $P(A \cap B) = P(A)P(B)$

Observing A does not change P(B)

using $P(A \cap B) = P(A)P(B \mid A)$

Equivalent definition: $P(B) = P(B \mid A)$ or P(A) = 0

Independence: example

Are A and B independent?

Independence: example

Example 1: $P(hhh) = P(hht) \dots = P(ttt) = \frac{1}{8}$

$$P(h * * | * t *) = P(h * *) = \frac{1}{2}$$

equivalently:
$$P(h t^*) = P(* t^*)P(h^* *) = \frac{1}{4}$$

Independence: example

Example 1: $P(hhh) = P(hht) \dots = P(ttt) = \frac{1}{8}$

$$P(h * * | * t *) = P(h * *) = \frac{1}{2}$$

equivalently:
$$P(h t^*) = P(*t^*)P(h^{**}) = \frac{1}{4}$$

Example 2: are these two events independent?

 $P(\{ht, hh\}) = .3, P(\{th\}) = .1$

Conditional independence $P \models (A \perp B \mid C)$

a more common phenomenon: $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$

Conditional independence $P \models (A \perp B \mid C)$

a more common phenomenon: $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$

using $P(A \cap B \mid C) = P(A \mid C)P(B \mid A \cap C)$

Conditional independence $P \models (A \perp B \mid C)$

a more common phenomenon: $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$

using $P(A \cap B \mid C) = P(A \mid C)P(B \mid A \cap C)$

Equivalent definition: $P(B \mid C) = P(B \mid A \cap C)$ or $P(A \cap C) = 0$

Conditional independence: example

Generalization of independence: $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$

from: wikipedia

Summary

Basics of probability

- Outcome space: a set
- Event: a subset of outcomes
- Event space: a set of events
- **Probability dist.** is associated with events
- **Conditional probability:** based on intersection of events
- **Chain rule** follows from conditional probability
- (Conditional) independence: relevance of some events to others

Random Variable

is an **attribute** associated with each outcome $X: \Omega \rightarrow Val(X)$

- intensity of a pixel
- head/tail value of the first coin in multiple coin tosses
- first draw from a deck is larger than the second

a formalism to define **events** $P(X = x) \triangleq P(\{\omega \in \Omega \mid X(\omega) = x\})$

Random Variable

is an **attribute** associated with each outcome $X: \Omega \rightarrow Val(X)$

- intensity of a pixel
- head/tail value of the first coin in multiple coin tosses
- first draw from a deck is larger than the second

a formalism to define **events** $P(X = x) \triangleq P(\{\omega \in \Omega \mid X(\omega) = x\})$

Example: three tosses of coin

- number of heads $X_1: \Omega \rightarrow \{0, 1, 2, 3\}$
- number of heads in the first two trials $X_2: \Omega \rightarrow \{0, 1, 2\}$
- at least one head $X_3 : \Omega \rightarrow \{True, False\}$

Random Variable (RV)

is an **attribute** associated with each outcome $X : \Omega \to Val(X)$ a formalism to define **events** $P(X = x) \triangleq P(\{\omega \in \Omega \mid X(\omega) = x\})$

Multiple RVs: X_1, \ldots, X_n

- outcomes that we care about: $X_1 = x_1, \dots, X_n = x_n$
- cannonical outcome space: $\Omega_c \triangleq Val(X_1) \times \ldots \times Val(X_n)$

Random Variable (RV)

is an **attribute** associated with each outcome $X : \Omega \to Val(X)$ a formalism to define **events** $P(X = x) \triangleq P(\{\omega \in \Omega \mid X(\omega) = x\})$

Multiple RVs: X_1, \ldots, X_n

- outcomes that we care about: $X_1 = x_1, \dots, X_n = x_n$
- cannonical outcome space: $\Omega_c \triangleq Val(X_1) \times \ldots \times Val(X_n)$
- joint probability: $P(X_1 = x_1, \ldots, X_n = x_n) \triangleq P(X_1 = x_1 \cap \ldots \cap X_n = x_n)$

Random Variable (RV)

is an **attribute** associated with each outcome $X : \Omega \to Val(X)$ a formalism to define **events** $P(X = x) \triangleq P(\{\omega \in \Omega \mid X(\omega) = x\})$

Multiple RVs: X_1, \ldots, X_n

- outcomes that we care about: $X_1 = x_1, \dots, X_n = x_n$
- cannonical outcome space: $\Omega_c riangleq Val(X_1) imes \ldots imes Val(X_n)$
- joint probability: $P(X_1 = x_1, \dots, X_n = x_n) \triangleq P(X_1 = x_1 \cap \dots \cap X_n = x_n)$
- marginal probability: $P(X_1 = x_1) = \sum_{x_2, \dots, x_n} P(X_1 = x_1, \dots, X_n = x_n)$

Random Variable: example

three tosses of coin

number of heads $X_1:\Omega \to \{0,1,2,3\}$ first trial is a head $X_2:\Omega \to \{True,False\}$

cannonical **outcome space**: $\Omega_c = \{(0, True), \dots, (3, False)\}$ atomic outcome

a ioint probability		0	1	2	3	P(X2)	
a Jenne probability	True	.1	.1	.4	.05	.65	
	False	.2	.01	.09	.05	.35	
marginal probability	P(X1)	.3	.11	.49	.1		

Conditional independence *for RVs*

Given random variables X, Y, Z $P \models (X \perp Y \mid Z)$ *iff* $P \models (X = x \perp Y = y \mid Z = z) \quad \forall x, y, z$

Therefore $P \models (X \perp Y \mid Z)$ *iff* $P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$ OR $P(X \mid Y, Z) = P(X \mid Z)$

Marginal independence: $P \models (X \perp Y \mid \emptyset)$

Continuous domain

probability density function (pdf) $p: Val(X) \to [0, +\infty)$ s.t. $\int_{Val(X)} p(x) dx = 1$ $P(X \le a) \triangleq \int_{-\infty}^{a} p(x) dx$ F(a): the cumulative distribution function (cdf)

a

Continuous domain

probability **density** function (pdf) $p: Val(X) \to [0, +\infty)$ s.t. $\int_{Val(X)} p(x) dx = 1$

$$P(X \leq a) riangleq \int_{-\infty}^{a} p(x) \mathrm{d}x$$

F(a): the cumulative distribution function (cdf)

- note that often P(X = x) = 0
- p(x) can be larger than 1
 - it is not a probability distribution
- $P(a \leq X \leq b) = F(b) F(a)$
- may only consider *measurable* subsets A

Continuous domain

probability **density** function (pdf) $p: Val(X) \to [0, +\infty)$ s.t. $\int_{Val(X)} p(x) dx = 1$

for discrete domains: probability mass function (pmf) $p(x) \triangleq P(X = x)$ s.t. $\sum_{Val(X)} p(x) = 1$

Continuous domain: multivariate case

Joint density of multipe RVs: (same conditions)

$$P(X_1 \leq a_1, \dots, X_n \leq a_n) riangleq \int_{-\infty}^{a_1} \dots \int_{-\infty}^{a_n} p(x_1, \dots, x_n) \mathrm{d} x_n \dots \mathrm{d} x_1$$
 $F(a_1, \dots, a_n): ext{ joint CDF}$

Continuous domain: multivariate case

Joint density of multipe RVs: (same conditions)

$$P(X_1 \leq a_1, \dots, X_n \leq a_n) riangleq \int_{-\infty}^{a_1} \dots \int_{-\infty}^{a_n} p(x_1, \dots, x_n) \mathrm{d} x_n \dots \mathrm{d} x_1$$
 $F(a_1, \dots, a_n): ext{ joint CDF}$

Marginal density: $p(x_1) = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} p(x_1, \dots, x_n) \mathrm{d} x_n \dots \mathrm{d} x_2$

• marginal CDF $F(x_1) = \lim_{x_2,\ldots,x_n o \infty} F(x_1,\ldots,x_n)$

Continuous domain: conditional density

Conditional distribution: $P(X | Y = y) = \frac{P(X, Y = y)}{P(Y = y)}$ zero measure!

Take the limit $\epsilon \to 0$ in: $P(X \le a \mid y - \epsilon \le Y \le y + \epsilon) = \frac{\int_{-\infty}^a \int_{e=-\epsilon}^{\epsilon} p(x,y+e) dedx}{\int_{e=-\epsilon}^{\epsilon} p(y+e) de}$

Continuous domain: conditional density

Conditional distribution: $P(X \mid Y = y) = \frac{P(X, Y = y)}{P(Y = y)}$ zero measure!

Take the limit $\epsilon \to 0$ in: $P(X \le a \mid y - \epsilon \le Y \le y + \epsilon) = \frac{\int_{-\infty}^{a} \int_{e=-\epsilon}^{\epsilon} p(x,y+e) de dx}{\int_{e=-\epsilon}^{\epsilon} p(y+e) de}$ using $\int_{e=-\epsilon}^{\epsilon} f(y+e) de = 2\epsilon f(y) + \mathcal{O}(\epsilon^{2})$ $P(X \le a \mid y - \epsilon \le Y \le y + \epsilon) \approx \frac{\int_{-\infty}^{a} p(x,y) dx}{p(y)}$

Continuous domain: conditional density

Conditional distribution: $P(X | Y = y) = \frac{P(X, Y = y)}{P(Y = y)}$ zero measure!

Take the limit $\epsilon \to 0$ in: $P(X \le a \mid y - \epsilon \le Y \le y + \epsilon) = \frac{\int_{-\infty}^{a} \int_{e=-\epsilon}^{\epsilon} p(x,y+e) de dx}{\int_{e=-\epsilon}^{\epsilon} p(y+e) de}$ using $\int_{e=-\epsilon}^{\epsilon} f(y+e) de = 2\epsilon f(y) + \mathcal{O}(\epsilon^{2})$ $P(X \le a \mid y - \epsilon \le Y \le y + \epsilon) \approx \frac{\int_{-\infty}^{a} p(x,y) dx}{p(y)}$

Conditional density of $P(X \mid Y = y)$ is $p(x \mid y) = rac{p(x,y)}{p(y)}$

• extends Bayes' rule and chain rule and conditional independence to densities

Functions of random variables

- RV is a function of the outcome $X: \Omega \rightarrow Val(X)$
- therefore $g(X) = g(X(\omega))$ is an RV itself

• *E.g.*,
$$Y = X_1 + X_2$$

Expectation & Variance

Expectation: $\mathbb{E}[X] \triangleq \sum_{x \in Val(X)} xp(x)$ OR $\mathbb{E}[X] \triangleq \int_{x \in Val(X)} xp(x) \mathrm{d}x$

• linearity: $\mathbb{E}[X + aY] = \mathbb{E}[X] + a\mathbb{E}[Y]$

X:# heads, Y:#heads in the first trial (X&Y are not independent)

• for independent X & Y

$$egin{aligned} \mathbb{E}[XY] &= \sum_{x,y \in Val(X) imes Val(Y)} p(x,y)(xy) = \sum_{x,y \in Val(X) imes Val(Y)} p(x)p(y)(xy) \ &= (\sum_{x \in Val(X)} xp(x))(\sum_{y \in Val(Y)} yp(y)) = \mathbb{E}[X]\mathbb{E}[Y] \end{aligned}$$

Expectation & Variance

Variance: $Var[X] \triangleq \mathbb{E}[(X - \mathbb{E}[X])^2]$ = $\mathbb{E}[X^2 + \mathbb{E}[X]^2 - 2X\mathbb{E}[X]] = \mathbb{E}[X^2] + \mathbb{E}[X]^2 - 2\mathbb{E}[X]\mathbb{E}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

- for independent X and Y Var[X+Y] = Var[X] + Var[Y]
 - if not independent Var[X+Y] = Var[X] + Var[Y] + 2Cov[X,Y]
- Covariance: $Cov[X,Y] \triangleq \mathbb{E}[X \mathbb{E}[X]]\mathbb{E}[Y \mathbb{E}[Y]] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
 - generalizes variance Cov[X, X] = Var[X]
 - symmetric & bilinear Cov[aX, bY] = abCov[Y, X]

Classical members of exponential family of distribution

• Gaussian

more on this later

- Bernoulli
- Binomial
- Multinomial
- Gamma
- Exponential
- Poisson
- Beta
- Dirichlet

Bernoulli: $P(X = 1; \mu) = \mu$ $0 \le \mu \le 1$ OR $p(x; \mu) = \mu^x (1 - \mu)^{1 - x}$

• discrete distribution with $Val(X) = \{0, 1\}$

Binomial: $P(X = k; \mu, n) = \binom{n}{k} \mu^k (1 - \mu)^{n-k}$

- dist. over the number of ones in *n* independent Bernoulli trials
- number of heads in n coin toss

$$Val(X) = \{0, \dots, n\}$$

Categorical (*aka.* multinulli): $P(X = l; \mu) = \mu_l$ where $\sum_l \mu_l = 1$

• *fully parameterized* discrete distribution with $Val(X) = \{0..., L\}$

Multinomial distribution: $P(X_1 = x_1, \dots, X_L = x_L; \mu, n) = \mathbb{I}(\sum_l x_l = n) \frac{n!}{\prod_l x_l!} \prod_l \mu_l^{x_l}$

• dist. over the number of different outcomes in *n* independent categorial trials

Uniform:

• CONTINUOUS
$$Val(X) = [a,b]$$
 $p(x) = \begin{cases} rac{1}{b-a} & ext{for } a \leq x \leq b, & rac{1}{b-a} \\ 0 & ext{for } x < a ext{ or } x > b \end{cases}$

• DISCRETE
$$Val(X) = \{a, a+1, \dots, b\}$$

0

а

x

b

Gaussian:
$$p(x;\mu,\sigma)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

- motivated by central limit theorem
- max-entropy dist. with a fixed variance

Summary

Adding random variables

- **Random variable:** assigns a value to each outcome
 - Event (using RV): set of outcomes with a particular attribute
 - Prob. dist., cond. prob., chain rule, indep. ... are all extended to RVs
- **Continuous** domains: same definition of probability, event, RV etc.
 - Specifying the prob. dist. using density function

Summary

Notation

- random variable X, Y, Z $\mathbf{X} = [X_1, \dots, X_n]$
- variable x, y, z
- PDF, PMF $p(x), p(\mathbf{x}), p(x, y)$
- PDF, PMF p(x), p(x), p(x, y)• probability distribution $P(X), P(x) \triangleq P(X = x)$

use interchangeably

• domain of an RV Val(X), Val(X, Y, Z)

bonus slides

Properties of conditional independence

- Symmetry: $(X \perp Y \mid Z) \Rightarrow (Y \perp X \mid Z)$
- Decomposition: $(X \perp Y, W \mid Z) \Rightarrow (X \perp Y \mid Z)$
- Weak union: $(X \perp Y, W \mid Z) \Rightarrow (X \perp Y \mid W, Z)$
- Contraction:

 $(X \perp Y \mid W, Z) \& (X \perp W \mid Y, Z) \Rightarrow (X \perp Y, W \mid Z) \searrow$

Contraction

• Intersection: *if P is positive*

 $(X \perp W \mid Y, Z) \& (X \perp Y \mid Z) \Rightarrow (X \perp Y, W \mid Z)$

image: Pearl's book

Poisson: $p(x;\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$ where $\lambda > 0$ is the mean frequency (rate parameter)

- frequency of rare events
- events are assumed independent
- similar to binomial with large number of trials $(\lambda \approx n\mu)$

Exponential: $p(x;\lambda) = \lambda e^{-\lambda x}$ where $\lambda > 0$

- time between events in Poisson dist.
- memoryless property

 $\lambda > 0$ $\sum_{\alpha = 0.5}^{1.6} \lambda = 0.5$ $\sum_{\alpha = 0.5}^{1.4} \lambda = 0.5$ $\lambda = 1.5$ $\lambda = 1.5$

Geometric: $p(x,k;\mu) = (1-\mu)^{k-1}\mu$ where $0 < \mu < 1$

- number of Bernoulli trials until success
- memoryless property

