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Learning objectivesLearning objectives

different goals of learning a graphical model
effect of goals on the learning setup
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learning from data:
fixed structure:

easy for directed models
unknown structure
fully or partially observed data, hidden variables
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Goals of learning: Goals of learning: density estimationdensity estimation

assumption: data is IID sample from a P ∗

D = {X , … ,X } X ∼(1) (M) (m) P ∗

objective: learn a             close to P ∗∈P̂ P

=P̂ arg min  D  (P ∥P )P KL
∗ = E  [log P ] −P ∗

∗ E  [log P ]P ∗

negative Entropy of P* (does not depend on P)

substitute        with       :P ∗

empirical distribution: P  (x) =D  I(x ∈∣D∣
1 D)

P  D =P̂ arg max   log P (x)P ∑x∈D
log-likelihood

how to compare two log-likelihood values?
its negative is called the log loss
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Goals of learning: Goals of learning: predictionprediction

given D = {(X ,Y )}(m) (m)

the output in our prediction is structured

interested in learning (X ∣P̂ Y )

e.g. in image segmentation

error measures:
0/1 loss (unforgiving):

Hamming loss:

conditional log-likelihood:

  takes prediction uncertainty into account

making prediction: (Y ) =X̂ arg max  (x ∣x P̂ Y )

E  I(X =(X,Y )∼P ∗ (Y ))X̂

E   I(X  =(X,Y )∼P ∗ ∑i i (Y )  )X̂ i

E  log (X ∣(X,Y )∼P ∗ P̂ Y )
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finding conditional independencies or causal relationships

interested in learning G or H

E.g. in gene regulatory network
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Goals of learning: Goals of learning: knowledge discoveryknowledge discovery

given D = {(X )}(m)

finding conditional independencies or causal relationships

same undirected skeleton
same immoralities

interested in learning G or H

not always uniquely identifiable
two DAGs are I-equivalent if I(G) = I(G )′ E.g. in gene regulatory network

image credit: Chen et al., 2014

Recall
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a solution: penalize model complexity regularization
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if the goal is prediction:

Generative: learn             and condition on Y   (e.g., MRF)

Discriminative: directly learn                             (e.g., CRF)

(X ∣P̂ Y )

(X,Y )P̂

(X ∣P̂ Y )

Example

training

X

X

Y

Y

naive Bayes vs logistic regression

Naive Bayes  

logistic regression P (X = 1∣Y ) = σ(W Y +T b)

P (X ∣ Y ) ∝ P (X)P (Y ∣ X)

trained generatively (log-likelihood)
works better on small datasets (higher bias)
unnecessary cond. ind. assumptions about Y
can deal with missing values & learn from unlabeled data

trained discriminatively (cond. log-likelihood)
works better on large datasets
no assumptions about cond. ind. in Y



Discreminative vs generative Discreminative vs generative 

Example

training

naive Bayes vs logistic regression on UCI dataset naive Bayes

logistic regression

from: Ng & Jordan 2001



summarysummary

learning can have different objectives:
density estimation

calculating P(x)

sampling from P (generative modeling)

prediction (conditional density estimation)
discriminative and generative modeling

knowledge discovery
expressed as empirical risk minimization

bias-variance trade-off

regularize the model


