Probabilistic Graphical Models

Relationship between the directed \& undirected models

Learning Objective

understand the relationship between Cls in directed and undirected models.

1. From Bayesian to Markov networks

build an I-map for the following

1. From Bayesian to Markov networks

build an I-map for the following

1. From Bayesian to Markov networks

build an I-map for the following

1. From Bayesian to Markov networks

build an I-map for the following

$\mathcal{I}\left(\mathcal{M}\left[\mathcal{G}_{1}\right]\right)=\mathcal{I}\left(\mathcal{G}_{1}\right) \quad \mathcal{I}\left(\mathcal{M}\left[\mathcal{G}_{3}\right]\right) \subseteq \mathcal{I}\left(\mathcal{G}_{3}\right)$

Moralize $\mathcal{G} \rightarrow \mathcal{M}(\mathcal{G})$:connect parents keep the skeleton

From Bayesian to Markov networks

moralize \& keep the skeleton

for moral \mathcal{G}, we get a perfect map $\mathcal{I}(\mathcal{M}[\mathcal{G}])=\mathcal{I}(\mathcal{G})$

- directed and undirected CI tests are equivalent

From Bayesian to Markov networks

alternative approach

- in both directed and undirected models $X_{i} \perp$ every other var. $\mid M B\left(X_{i}\right)$
- connect each node to its Markov blanket

From Bayesian to Markov networks

alternative approach

- in both directed and undirected models

$$
X_{i} \perp \text { every other var. } \mid M B\left(X_{i}\right)
$$

- connect each node to its Markov blanket

- gives the same moralized graph

2. From Markov to Bayesian networks

minimal examples 1.

$$
\mathcal{I}\left(\mathcal{G}_{1}\right)=\mathcal{I}\left(\mathcal{G}_{2}\right)=\mathcal{I}(\mathcal{H})
$$

2. From Markov to Bayesian networks

minimal examples 1.

$$
\mathcal{I}\left(\mathcal{G}_{1}\right)=\mathcal{I}\left(\mathcal{G}_{2}\right)=\mathcal{I}(\mathcal{H})
$$

minimal examples 2.

$$
\mathcal{I}(\mathcal{G})=\mathcal{I}(\mathcal{H})
$$

From Markov to Bayesian networks

```
minimal examples 3.
```


$$
\text { இ } B \perp C \mid A \quad \mathcal{I}(\mathcal{G}) \subset \mathcal{I}(\mathcal{H})
$$

From Markov to Bayesian networks

minimal examples 3.

$\oslash B \perp C \mid A$

$$
\mathcal{I}(\mathcal{G}) \subset \mathcal{I}(\mathcal{H})
$$

examples 4.

From Markov to Bayesian networks

minimal examples 3.

$\oslash B \perp C \mid A$

$$
\mathcal{I}(\mathcal{G}) \subset \mathcal{I}(\mathcal{H})
$$

examples 4.

From Markov to Bayesian networks

examples 4.

From Markov to Bayesian networks

examples 4.

build a minimal l-map from Cl in \mathcal{H} :

- pick an ordering - e.g., A, B, C, D, E, F
- select a minimal parent set s.t.
- local Cl (cl from non-descendents siven parents)

From Markov to Bayesian networks

```
examples 4.
```


build a minimal I-map from Cls in \mathcal{H}

- pick an ordering - e.g., A, B, C, D, E, F
- select a minimal parent set s.t.
- local $\mathrm{Cl}_{\text {(cl from non-descendents given parents) }}$
- any non-triangulated loop > 3 has immorality

- have to triangulate the loops

From Markov to Bayesian networks

```
examples 4.
```


build a minimal I-map from Cls in \mathcal{H}

- pick an ordering - e.g., A,B,C,D,E,F
- select a minimal parent set s.t.
- local $\mathrm{Cl}_{\text {(cl from non-descendents given parents) }}$
- any non-triangulated loop > 3 has immorality

- have to triangulate the loops

Chordal = Markov \cap Bayesian networks

\mathcal{H} is not chordal, then $\mathcal{I}(\mathcal{G}) \neq \mathcal{I}(\mathcal{H})$ for every \mathcal{G}

- no perfect MAP in the form of Bayes-net

Chordal = Markov \cap Bayesian networks

\mathcal{H} is not chordal, then $\mathcal{I}(\mathcal{G}) \neq \mathcal{I}(\mathcal{H})$ for every \mathcal{G}

- no perfect MAP in the form of Bayes-net

\mathcal{H} is chordal, then $\mathcal{I}(\mathcal{G})=\mathcal{I}(\mathcal{H})$ for some \mathcal{G}
- has a Bayes-net perfect map

Chordal = Markov \cap Bayesian networks

\mathcal{H} is not chordal, then $\mathcal{I}(\mathcal{G}) \neq \mathcal{I}(\mathcal{H})$ for every \mathcal{G}

- no perfect MAP in the form of Bayes-net

\mathcal{H} is chordal, then $\mathcal{I}(\mathcal{G})=\mathcal{I}(\mathcal{H})$ for some \mathcal{G}
- has a Bayes-net perfect map

directed
 undirected

- parameter-estimation is easy
- can represent causal relations
- better for encoding expert
domain knowledge
- simpler Cl semantics
- less interpretable form for local factors
- less restrictive in structural form (loops)

Summary

- directed to undirected:
- moralize
- undirected to directed:
- triangulate
- Chordal graphs = Markov \bigcap Bayesian networks
- p-maps in both directions

