Probabilistic Graphical Models

Relationship between the directed & undirected models

Siamak Ravanbakhsh

Fall 2019

Learning Objective

understand the relationship between CIs in directed and undirected models.

convertMarkov network⇒ Bayes-netMarkov network⇐ Bayes-net

build an I-map for the following

Moralize $\mathcal{G} \to \mathcal{M}(\mathcal{G})$:connect parents keep the skeleton

moralize & keep the skeleton

for moral \mathcal{G} , we get a perfect map $\mathcal{I}(\mathcal{M}[\mathcal{G}]) = \mathcal{I}(\mathcal{G})$

• *directed and undirected CI tests are equivalent*

alternative approach

• in both directed and undirected models

 $X_i \perp$ every other var. $\mid MB(X_i)$

• connect each node to its Markov blanket

alternative approach

• in both directed and undirected models

 $X_i \perp$ every other var. $\mid MB(X_i)$

• connect each node to its Markov blanket

• gives the same moralized graph

minimal examples 1.

$$\mathcal{I}(\mathcal{G}_{\scriptscriptstyle 1}) = \mathcal{I}(\mathcal{G}_{\scriptscriptstyle 2}) = \mathcal{I}(\mathcal{H})$$

minimal examples 1.

$$\mathcal{I}(\mathcal{G}_{\scriptscriptstyle 1}) = \mathcal{I}(\mathcal{G}_{\scriptscriptstyle 2}) = \mathcal{I}(\mathcal{H})$$

minimal examples 2.

$$\mathcal{I}(\mathcal{G}) = \mathcal{I}(\mathcal{H})$$

minimal examples 3.

minimal examples 3.

minimal examples 3.

examples 4.

examples 4.

build a **minimal** I-map from CIs in $\mathcal H$:

- pick an ordering e.g., A,B,C,D,E,F
- select a minimal parent set s.t.
 - IOCal CI (CI from non-descendents given parents)

examples 4.

build a **minimal** I-map from CIs in ${\mathcal H}$:

- pick an ordering e.g., A,B,C,D,E,F
- select a minimal parent set s.t.
 - IOCAI CI (CI from non-descendents given parents)

- any non-triangulated loop > 3 has immorality
- have to triangulate the loops

examples 4.

build a minimal I-map from CIs in $\, \mathcal{H} \, : \,$

- pick an ordering e.g., A,B,C,D,E,F
- select a minimal parent set s.t.
 - IOCAI CI (CI from non-descendents given parents)

- any non-triangulated loop > 3 has immorality
- have to triangulate the loops

chordal *G* loops of size >3 have *chords*

Chordal = Markov \cap **Bayesian networks**

 \mathcal{H} is not chordal, then $\mathcal{I}(\mathcal{G}) \neq \mathcal{I}(\mathcal{H})$ for **every** \mathcal{G}

• no *perfect MAP* in the form of Bayes-net

Chordal = Markov \cap **Bayesian** networks

 \mathcal{H} is not chordal, then $\mathcal{I}(\mathcal{G}) \neq \mathcal{I}(\mathcal{H})$ for **every** \mathcal{G}

• no *perfect MAP* in the form of Bayes-net

• has a Bayes-net perfect map

Chordal = Markov \cap **Bayesian** networks

 \mathcal{H} is not chordal, then $\mathcal{I}(\mathcal{G}) \neq \mathcal{I}(\mathcal{H})$ for **every** \mathcal{G}

• no *perfect MAP* in the form of Bayes-net

 \mathcal{H} is chordal, then $\mathcal{I}(\mathcal{G}) = \mathcal{I}(\mathcal{H})$ for some \mathcal{G}

• has a Bayes-net perfect map

directed

• parameter-estimation is easy

- can represent causal relations
- better for encoding expert

domain knowledge

undirected

- simpler CI semantics
- less interpretable form for local factors
- less restrictive in structural form (loops)

Summary

- directed to undirected:
 - moralize
- undirected to directed:
 - triangulate
- Chordal graphs = Markov \bigcap Bayesian networks
 - p-maps in both directions