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Learning Objective

understand the relationship between Cls
in directed and undirected models.

Markov network —> Bayes-net
convert

Markov network <= Bayes-net
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From Bayesian to Markov networks

moralize & keep the skeleton

G M|G]

for moral G, we get a perfect map Z(M|[G]) = Z(G)

e directed and undirected Cl tests are equivalent
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e in both directed and undirected models
X; | every other var. | M B(X;)

e connect each node to its Markov blanket
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e gives the same moralized graph
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minimal examples 2.
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From Markov to Bayesian networks

minimal examples 3.
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examples 4.

@ build a minimal I-map from Cls in H :
(5} © ® pick an ordering - e.g., A.B,C,D,E,F
® select a minimal parent set s.t.
Q e u |Oca| CI (CI from non-descendents given parents)

e any non-triangulated loop > 3 has immorality

chordal G
loops of size >3 have chords

e have to triangulate the loops
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directed

® parameter-estimation is easy
* can represent causal relations
e better for encoding expert

domain knowledge

undirected

e simpler Cl semantics
* less interpretable form for local factors

* |ess restrictive in structural form (loops)



Summary

e directed to undirected:
m moralize

e undirected to directed:
= triangulate

e Chordal graphs = Markov [ Bayesian networks
= p-maps in both directions



