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Learning Objective

e conditional random fields
e |ocal probability models:

m deterministic CPDs
= noisy-OR model
m generalized linear model



Conditional Random Fields: Motivation

structu rEd prEdiCtion: output labels are structured X

X is always observed
Y is structured

Y
Examples:
image segmentation ) ) & @ ®
part of speech tagging

optical character recognition Oa0202020



Conditional Random Fields (CRF)

e a conditional graphical model P(Y | X) X

e first attempt: p(y|x)=2&Y

= for prediction, no need to model P(X)

© may not have enough data

o X could be high-dim and P(X) may be complex




Conditional Random Fields (CRF)

second attempt:

P(Y | X) = 7z P(X,Y) = 5y [1; 6+(Dx)




Conditional Random Fields (CRF)

X

second attempt:

P(Y | X) = 7 P(X,Y) = 7% [, 9+ (Dr)

e differs from MRF in the partition function
» jnput-dependent Z(X)=73, P(Y,X)




Conditional Random Fields: arunning @example

P(Y | X) = 5 TI0 66(X0, ¥3) Ty (%3, Vi) ®OOO®G
OaO02020

Z(X) — ZY H?:1 bi (Xz'a Yi) H?;l 1/%’(1@, Yz’—I—l)




Conditional Random Fields: arunning @example

P(Y | X) = 5 TI0 66(X0, ¥3) Ty (%3, Vi) ®OOO®G
OaO02020

5 4
Z(X) — ZY Hi:1 bi (Xz'a Yi) Hi:1 1/Jz'(Yz', Yz’+1)
. ORONORORD
practically the same as
® e.g, in speech recognition (what do potentials encode?) e @ @ @ @

for each X=x, we have a different MRF ® (9~

A\ 4



Conditional Random Fields: another benefit

P(Y | X) = ﬁﬂfl ¢i(X¢,Yz')H?:1¢i(E,Yi+1) ORONORORO
Z(X) = Yy [T i (X, Yo) [Ty % (¥, Vi) -B-)-()—®)

what if ¢;(X,Y;) instead of ¢;(X;,Y;) ?

e nottrue for the corresponding MRF



Conditional Random Fields: input structure
P(Y | X) = i [Ty 66X, Y0) Ty (Y3, Vi) ©®OOO®G
Z(X) = Yoy [Ty ¢ (X, Yi) TTiy (Y, Vi) DD~

How about the structure of the input ? ) —()—-(—~x)
P(Y | X) = %X) H?:l ¢i(Xi,Yi) H?:l Yi (Y3, Yig1 )i (X, Xiq) = e @ e e e
ﬁ H?:l Cbi(Xia YZ) H3:1 @bi(Yia Y§+1)

le., input structure can be ignored
(already accounted for in the observations)



Conditional Random Fields: parametrization
P(Y | X) = ﬁﬂ?ﬂ $i(Xi, Y:) [Ti—y ¥i(Y3, Yiga) DOOOS
Z(X)= >y H?:1 ¢i(Xi>Yi)H?:1 Vi (Yi, Yii1) OROa0R0R0

e |n practice we need to learn the potentials

e parameterize them and learn the parameters (eg., a neural network)
m traditionally: a log-linear model: ¢:(X;,Yi;w) 2 exp(X, wir fir (X, ¥i))

o E.g., for binary input/output:

¢i(Xi, Yi;wi) = exp(wil(X; = 1,Y; = 1)) = exp(w; X;Y;)



Local probabilistic models



Local probabilistic models

e conditional probability distributions (CPDs)

= in prediction P(Y | X4,...,X,)

g(x.
" in Bayes-nets P(X | Payx) Pa(X:)

o discrete variables (CPTs)
o exponential in |Pay,|

e how to represent these efficiently? exploit some sort of structure



Deterministic CPDs

P(X | Pax) = 1(X; = f(Pax,))

determinism produces additional independencies:

© @ without determinism: (D LE|AB)¢Z(G)

. < - with determinsim: (D LE|AB)cI(G)



Deterministic CPDs

P(X | Pax) = 1(X; = f(Pax,))

determinism produces additional independencies:

© @ without determinism: (D LE|AB)¢Z(G)

o < ® with determinsim: (D LE|AB)cI(G)

deterministic d-separation: (X,Y | Z)?

e add all the variables that deterministically follow Z to defineZ™
e run d-separation for (X,Y | Z™)



Noisy-OR model

for binary variables only

number of parameters is linear in |Pa% |

each parent ( x; =1) is an independent cause

each cause is observed with prob p(x! =1) :@Xj

noise parameter



Noisy-OR model

for binary variables only

number of parameters is linear in |Pa% |

each parent ( x; =1) is an independent cause

each cause is observed with prob p(x! =1) :@Xj PaS

noise parameter

p(Xi =0 Pax,) = (1 —(\) [Ix,cpay, (1 — Ai X))

leak parameter (role of a bias term)




Noisy-OR model: visualization

p(Xi =0 Pax,) = (1 —(A9) [1x,cpay, (1 — A X;)

leak parameter (role of a bias term)

1
prob. of no cause observed



Noisy-OR model: example

Medical diagnosis (8N20 network)

various deseases/conditions

symptoms/test results

CPDs: p(F; = 0| Par) = (1 — Xio) I1p,cpay, (1 — XigD;)



Logistic CPD

for binary output variables

eXP(Zj w; X;)

logistic aggregation function
generally, the input can be discrete or continuous

’E.g-, ijz or Xj,...,Xj_|_n:0,].,...,0

one-hot coding




Logistic CPD

for binary output variables

eXP(Zj w; X;)

logistic aggregation function
generally, the input can be discrete or continuous

‘E.g-, ijz or Xj,...,Xj_|_n:0,].,...,O

one-hot coding

binary input: each cause has a multiplicative effect on the ratio igjg




Softmax CPD

extension for categorical outputs
softmax function for aggregation:

_ eXP(Ze)
F(20) = 5= exn(en)
functional form of the CPD;

exp(d_; wieXj)
Zel eXP(Zj w; o Xj)

P(X; =1



Independence of causal influence
Commutative and associative aggregation

Logistic CPD Noisy-OR

transformation JER.CEXIP.¢
sl ielal  logistic function

(o=}
A
>
A
—_

P(X;=1) = A X;

OR /Max/...




Linear Gaussian CPD

for continuous input/output variables

P(X:) = N3, wiXj;0%)

J




Linear Gaussian CPD

for continuous input/output variables

P(X:) = N3, wjXj;0%)

J

alternatively, a discrete input selects among

continuous coefficients (produces a Gaussian mixture): o
Pax

P(Xi) =N, wix, Xj50%,) %

conditional linear Gaussian CPD:

one Gaussian mixture for each discrete assignment



Generalized linear models

E[X] = f(w" Pax,)

|
mean function

Logistic CPD: f is the logistic function
Gaussian CPD: f is the identity function




Generalized linear models

E[Xi] = f(w" Pax,)

|
mean function

Logistic CPD: f is the logistic function x=ux;Q O
Gaussian CPD: f is the identity function N

conditional dist. is a member of the exponential family

p(z; | Pax,) = h(x;) exp(w' Pax, — F(w' Pay,))

base measure integral of f

(will come back to this in exp. family lecture)



Conditional Bayesian networks
Pa%
use an entire Bayes-net to represent a CPD

P(XZ|PaXz):ZZP(X27Z‘PaX

3
—
¥



Conditional Bayesian networks: example

can be used for encapsulation in complex models

Power Source
X

Computer

O
Power Supply
X

O O—CH

O
Q

Status

Motor

Data Access @
Mechanism

Status




Neural networks defining CPDs

e this idea is extensively used in deep generative
models
e alternative strategies:




Neural networks defining CPDs

e this idea is extensively used in deep generative
models
e alternative strategies:

= fis a deterministic CPD

O in Generative Adversarial Networks (GANSs)

O in Normalizing Flows (special family of functions f)




Neural networks defining CPDs

o . . | Pax
e this idea is extensively used in deep generative
models A Do
e alternative strategies: TN

= fis a deterministic CPD

O in Generative Adversarial Networks (GANSs)

O in Normalizing Flows (special family of functions f) 0
= fdefines parameters in a parametric distcipption =)

O In Variational Auto Encoders (VAEs) and Auto-Regressive models



Neural networks defining CPDs

o . . | Pax
e this idea is extensively used in deep generative
models A Do
e alternative strategies: TN

= fis a deterministic CPD

O in Generative Adversarial Networks (GANSs)

O in Normalizing Flows (special family of functions f) .
= fdefines parameters in a parametric distcipption =) Vi
O In Variational Auto Encoders (VAEs) and Auto-Regressive models X

= fis a stochastic function itself
O In energy-based models or VAEs with stocHsit ﬁ?i@ﬁ@)ﬁal/ers



Summary

the conditioned version of directed & undirected models:

e Conditional Random Fields
e Conditional Bayes-nets



Summary

the conditioned version of directed & undirected models:

e Conditional Random Fields
e Conditional Bayes-nets

representing conditional probabilities:
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e |inear Gaussian CPD I part Of a bIsger family



Summary

the conditioned version of directed & undirected models:

e Conditional Random Fields
e Conditional Bayes-nets

representing conditional probabilities:

e deterministic CPD
e noisy-OR model
e |ogistic CPD

t of a bi family of GLMs
e |inear Gaussian CPD I Part Of a bIsgEr family

neural networks define expressive CPDs



