Probabilistic Graphical Models

Conditional & Local Probability Models

Siamak Ravanbakhsh

Fall 2019

Learning Objective

- conditional random fields
- local probability models:
 - deterministic CPDs
 - noisy-OR model
 - generalized linear model

Conditional Random Fields: Motivation

structured prediction: output labels are structured

X is always observedY is structured

Examples:

image segmentation part of speech tagging optical character recognition

Conditional Random Fields (CRF)

- a conditional graphical model P(Y | X)
- first attempt: $P(\mathbf{Y} \mid \mathbf{X}) = \frac{P(\mathbf{X}, \mathbf{Y})}{P(\mathbf{X})}$
 - for prediction, no need to model P(X)
 - may not have enough data

• **X** could be high-dim and P(**X**) may be complex

Conditional Random Fields (CRF)

second attempt:

$$P(\mathbf{Y} \mid \mathbf{X}) = rac{1}{Z(\mathbf{X})} ilde{P}(\mathbf{X}, \mathbf{Y}) = rac{1}{Z(\mathbf{X})} \prod_k \phi_k(\mathbf{D}_k)$$

Conditional Random Fields (CRF)

second attempt:

$$P(\mathbf{Y} \mid \mathbf{X}) = rac{1}{Z(\mathbf{X})} ilde{P}(\mathbf{X}, \mathbf{Y}) = rac{1}{Z(\mathbf{X})} \prod_k \phi_k(\mathbf{D}_k)$$

- differs from MRF in the partition function
 - input-dependent $Z(\mathbf{X}) = \sum_{\mathbf{Y}} \tilde{P}(\mathbf{Y}, \mathbf{X})$

Conditional Random Fields: a running **example**

$$egin{aligned} P(\mathbf{Y} \mid \mathbf{X}) &= rac{1}{Z(\mathbf{X})} \prod_{i=1}^5 \phi_i(X_i, Y_i) \prod_{i=1}^4 \psi_i(Y_i, Y_{i+1}) \ &Z(\mathbf{X}) &= \sum_{\mathbf{Y}} \prod_{i=1}^5 \phi_i(X_i, Y_i) \prod_{i=1}^4 \psi_i(Y_i, Y_{i+1}) \end{aligned}$$

Conditional Random Fields: a running **example**

$$P(\mathbf{Y} \mid \mathbf{X}) = rac{1}{Z(\mathbf{X})} \prod_{i=1}^5 \phi_i(X_i, Y_i) \prod_{i=1}^4 \psi_i(Y_i, Y_{i+1})$$

 $Z(\mathbf{X}) = \sum_{\mathbf{Y}} \prod_{i=1}^{5} \phi_i(X_i, Y_i) \prod_{i=1}^{4} \psi_i(Y_i, Y_{i+1})$

practically the same as

• e.g., in speech recognition (what do potentials encode?)

for each **X=x**, we have a different **MRF**

Conditional Random Fields: another benefit

 $egin{aligned} P(\mathbf{Y} \mid \mathbf{X}) &= rac{1}{Z(\mathbf{X})} \prod_{i=1}^5 \phi_i(X_i, Y_i) \prod_{i=1}^4 \psi_i(Y_i, Y_{i+1}) \ Z(\mathbf{X}) &= \sum_{\mathbf{Y}} \prod_{i=1}^5 \phi_i(X_i, Y_i) \prod_{i=1}^4 \psi_i(Y_i, Y_{i+1}) \end{aligned}$

what if $\phi_i(\mathbf{X}, Y_i)$ instead of $\phi_i(X_i, Y_i)$?

sparse structure after conditioning on X=x

- learning needs inference on this structure (discussed later)
- *not true for the corresponding MRF*

Conditional Random Fields: input structure

$$egin{aligned} P(\mathbf{Y} \mid \mathbf{X}) &= rac{1}{Z(\mathbf{X})} \prod_{i=1}^5 \phi_i(X_i, Y_i) \prod_{i=1}^4 \psi_i(Y_i, Y_{i+1}) \ Z(\mathbf{X}) &= \sum_{\mathbf{Y}} \prod_{i=1}^5 \phi_i(X_i, Y_i) \prod_{i=1}^4 \psi_i(Y_i, Y_{i+1}) \end{aligned}$$

How about the **structure of the input**?

$$P(\mathbf{Y} \mid \mathbf{X}) = \frac{1}{Z(\mathbf{X})} \prod_{i=1}^{5} \phi_i(X_i, Y_i) \prod_{i=1}^{4} \psi_i(Y_i, Y_{i+1}) \boldsymbol{\gamma}_i(X_i, X_{i+1}) = \frac{1}{Z'(\mathbf{X})} \prod_{i=1}^{5} \phi_i(X_i, Y_i) \prod_{i=1}^{4} \psi_i(Y_i, Y_{i+1})$$

I.e., input structure can be ignored (already accounted for in the observations)

Conditional Random Fields: parametrization

 $egin{aligned} P(\mathbf{Y} \mid \mathbf{X}) &= rac{1}{Z(\mathbf{X})} \prod_{i=1}^5 \phi_i(X_i,Y_i) \prod_{i=1}^4 \psi_i(Y_i,Y_{i+1}) \ Z(\mathbf{X}) &= \sum_{\mathbf{Y}} \prod_{i=1}^5 \phi_i(X_i,Y_i) \prod_{i=1}^4 \psi_i(Y_i,Y_{i+1}) \end{aligned}$

- In practice we need to learn the potentials
- parameterize them and learn the parameters (e.g., a neural network)
 - traditionally: a log-linear model: $\phi_i(X_i, Y_i; w_i) \triangleq \exp(\sum_k w_{i,k} f_{i,k}(X_i, Y_i))$

• *E.g.,* for binary input/output:

 $\phi_i(X_i,Y_i;w_i)=\exp(w_i\mathbb{I}(X_i=1,Y_i=1))=\exp(w_iX_iY_i)$

Local probabilistic models

Local probabilistic models

- conditional probability distributions (CPDs)
 - in prediction $P(Y | X_1, ..., X_n)$
 - in Bayes-nets $P(X | Pa_X)$

• discrete variables (CPTs)

 \circ exponential in $|Pa_{X_i}|$

 $Pa^{\mathcal{G}}(X_i)$

• how to **represent** these efficiently? exploit some sort of structure

Deterministic CPDs

 $P(X \mid Pa_X) riangleq \mathbb{I}(X_i = f(Pa_{X_i}))$

determinism produces additional independencies:

without determinism: $(D \perp E \mid A, B) \notin \mathcal{I}(\mathcal{G})$ with determinism: $(D \perp E \mid A, B) \in \mathcal{I}(\mathcal{G})$

Deterministic CPDs

 $P(X \mid Pa_X) riangleq \mathbb{I}(X_i = f(Pa_{X_i}))$

determinism produces **additional independencies**:

without determinism: $(D \perp E \mid A, B) \notin \mathcal{I}(\mathcal{G})$ with determinism: $(D \perp E \mid A, B) \in \mathcal{I}(\mathcal{G})$

deterministic d-separation: $(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z})$?

- add all the variables that deterministically follow ${f Z}$ to define ${f Z}^+$
- run d-separation for $(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z}^+)$

Noisy-OR model

noise parameter

- for **binary** variables only
- number of parameters is linear in $|Pa_{X_i}^{\mathcal{G}}|$
- each parent ($X_j = 1$) is an **independent cause**
- each cause is observed with prob $P(X'_j = 1) = \lambda_j X_j$

Noisy-OR model

- for **binary** variables only
- number of parameters is linear in $|Pa_{X_i}^{\mathcal{G}}|$
- each parent ($X_j = 1$) is an **independent cause**
- each cause is observed with prob $P(X'_j = 1) = \lambda_j X_j$ noise parameter

$$p(X_i=0 \mid Pa_{X_i}) = (1-\lambda_0) \prod_{X_j \in Pa_{X_i}} (1-\lambda_j X_j)$$

leak parameter (role of a bias term)

prob. of no cause observed

Noisy-OR model: visualization

$$p(X_i=0 \mid Pa_{X_i}) = (1-\lambda_0) \prod_{X_j \in Pa_{X_i}} (1-\lambda_j X_j)$$

leak parameter (role of a bias term)

prob. of no cause observed

Noisy-OR model: example

Medical diagnosis (BN20 network)

CPDs: $p(F_i = 0 \mid Pa_{F_i}) = (1 - \lambda_{i,0}) \prod_{D_j \in Pa_{F_i}} (1 - \lambda_{i,j}D_j)$

Logistic CPD

for **binary output** variables

$$P(X_i=1) = rac{\exp(\sum_j w_j X_j)}{1+\exp(\sum_j w_j X_j)}$$

logistic aggregation function generally, the input can be **discrete** or **continuous**

• E.g.,
$$X_j = 2$$
 or $X_j, \ldots, X_{j+n} = 0, 1, \ldots, 0$
one-hot coding

Logistic CPD

for **binary output** variables

$$P(X_i=1) = rac{\exp(\sum_j w_j X_j)}{1+\exp(\sum_j w_j X_j)}$$

logistic aggregation function

generally, the input can be **discrete** or **continuous**

• E.g.,
$$X_j = 2$$
 or $X_j, \ldots, X_{j+n} = 0, 1, \ldots, 0$
one-hot coding

binary input: each cause has a multiplicative effect on the ratio $\frac{P(X_i=1)}{P(X_i=0)}$

Softmax CPD

extension for categorical outputs softmax function for aggregation:

 $f(z_\ell) = rac{\exp(z_\ell)}{\sum_{\ell'} \exp(z_{\ell'})}$

functional form of the CPD:

$$P(X_i=\ell)=rac{\exp(\sum_j w_{j,\ell}X_j)}{\sum_{\ell'}\exp(\sum_j w_{j,\ell'}X_j)}$$

Independence of causal influence

Commutative and associative aggregation

Linear Gaussian CPD

for **continuous** input/output variables

$$P(X_i) = \mathcal{N}(\sum_j w_j X_j; \sigma^2)$$

 X_d

Linear Gaussian CPD

for **continuous** input/output variables

$$P(X_i) = \mathcal{N}(\sum_j w_j X_j; \sigma^2)$$
 .

alternatively, a **discrete** input selects among **continuous** coefficients (produces a Gaussian mixture):

$$P(X_i) = \mathcal{N}(\sum_j w_{j, {m X_d}} X_j; \sigma^2_{{m X_d}})$$

conditional linear Gaussian CPD:

one Gaussian mixture for each discrete assignment

Generalized linear models

$$\mathbb{E}[X_i] = f(\mathbf{w}^\mathsf{T} P a_{X_i})$$

mean function

Logistic CPD: **f** is the logistic function Gaussian CPD: **f** is the identity function

Generalized linear models

 $Pa_{X_i}^{\mathcal{G}}$

 X_i

 X_{i}

 $X'_i = w_i X_i$

$$\mathbb{E}[X_i] = f(\mathbf{w}^\mathsf{T} P a_{X_i})$$

mean function

Logistic CPD: f is the logistic function *Gaussian CPD: f* is the identity function

conditional dist. is a member of the exponential family

$$p(x_i \mid Pa_{X_i}) = h(x_i) \exp(\mathbf{w}^{\mathsf{T}} Pa_{X_i} - F(\mathbf{w}^{\mathsf{T}} Pa_{X_i}))$$
base measure

(will come back to this in exp. family lecture)

Conditional Bayesian networks

use an entire Bayes-net to represent a CPD

$$P(X_i \mid Pa_{X_i}) = \sum_{\mathbf{Z}} P(X_i, \mathbf{Z} \mid Pa_{X_i})$$

Conditional Bayesian networks: example

can be used for encapsulation in complex models

- this idea is extensively used in *deep generative* models
- alternative strategies:

- this idea is extensively used in *deep generative* models
- alternative strategies:
 - **f** is a deterministic CPD
 - in Generative Adversarial Networks (GANs)
 - in Normalizing Flows (special family of functions f)

- this idea is extensively used in *deep generative* models
- alternative strategies:
 - **f** is a deterministic CPD
 - in Generative Adversarial Networks (GANs)
 - in Normalizing Flows (special family of functions f)
 - **f** defines parameters in a parametric distribution(x)
 - $\circ~$ In Variational Auto Encoders (VAEs) and Auto-Regressive models

- this idea is extensively used in *deep generative* models
- alternative strategies:
 - **f** is a deterministic CPD
 - in Generative Adversarial Networks (GANs)
 - in Normalizing Flows (special family of functions f)
 - **f** defines parameters in a parametric distribution (x)
 - $\circ~$ In Variational Auto Encoders (VAEs) and Auto-Regressive models
 - *f* is a stochastic function itself
 - \circ In energy-based models or VAEs with stochastic friddle tayers

Summary

the conditioned version of directed & undirected models:

- Conditional Random Fields
- Conditional Bayes-nets

Summary

the conditioned version of directed & undirected models:

- Conditional Random Fields
- Conditional Bayes-nets

representing conditional probabilities:

- deterministic CPD
- noisy-OR model
- logistic CPD

part of a bigger family of GLMs

• linear Gaussian CPD

Summary

the conditioned version of directed & undirected models:

- Conditional Random Fields
- Conditional Bayes-nets

representing conditional probabilities:

- deterministic CPD
- noisy-OR model
- logistic CPD

part of a bigger family of GLMs

• linear Gaussian CPD

neural networks define expressive CPDs