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Learning ObjectiveLearning Objective

conditional random fields
local probability models:

deterministic CPDs
noisy-OR model
generalized linear model



Conditional Random Fields: Conditional Random Fields: MotivationMotivation

structured prediction:

Examples:
image segmentation
part of speech tagging
optical character recognition

X

Y

X is always observed
Y is structured

output labels are structured



Conditional Random Fields (Conditional Random Fields (CRFCRF))

a conditional graphical model P(Y | X)

first attempt:

for prediction, no need to model P(X)

may not have enough data

X could be high-dim and  P(X) may be complex

P (Y ∣ X) =  P (X)
P (X,Y)

X

Y



Conditional Random Fields (Conditional Random Fields (CRFCRF))

second attempt:

P (Y ∣ X) =  (X,Y) =Z(X)
1 P

~
  ϕ  (D  )Z(X)

1 ∏k k k

 

X

Y



Conditional Random Fields (Conditional Random Fields (CRFCRF))

second attempt:

P (Y ∣ X) =  (X,Y) =Z(X)
1 P

~
  ϕ  (D  )Z(X)

1 ∏k k k

differs from MRF in the partition function
input-dependent

 

Z(X) =  (Y,X)∑Y P
~

X

Y



Conditional Random Fields: Conditional Random Fields: a runninga running example example

P (Y ∣ X) =   ϕ  (X  ,Y  ) ψ  (Y  ,Y  )Z(X)
1 ∏i=1

5
i i i ∏i=1

4
i i i+1

Z(X) =   ϕ  (X  ,Y  )  ψ (Y  ,Y  )∑Y∏i=1
5

i i i ∏i=1
4

i i i+1



Conditional Random Fields: Conditional Random Fields: a runninga running example example

P (Y ∣ X) =   ϕ  (X  ,Y  ) ψ  (Y  ,Y  )Z(X)
1 ∏i=1

5
i i i ∏i=1

4
i i i+1

Z(X) =   ϕ  (X  ,Y  )  ψ (Y  ,Y  )∑Y∏i=1
5

i i i ∏i=1
4

i i i+1

practically the same as

e.g., in speech recognition (what do potentials encode?)

for each X=x, we have a different MRF



Conditional Random Fields: Conditional Random Fields: another benefitanother benefit

P (Y ∣ X) =   ϕ  (X  ,Y  ) ψ  (Y  ,Y  )Z(X)
1 ∏i=1

5
i i i ∏i=1

4
i i i+1

Z(X) =   ϕ  (X  ,Y  )  ψ (Y  ,Y  )∑Y∏i=1
5

i i i ∏i=1
4

i i i+1

what if                   instead of                    ?ϕ  (X,Y  )i i ϕ  (X  ,Y  )i i i

sparse structure after conditioning on X=x

learning needs inference on this structure (discussed later)

not true for the corresponding MRF



Conditional Random Fields:Conditional Random Fields: input structure input structure

How about the structure of the input ?

P (Y ∣ X) =   ϕ  (X  ,Y  )  ψ  (Y  ,Y  )γ  (X  ,X  ) =Z(X)
1 ∏i=1

5
i i i ∏i=1

4
i i i+1 i i i+1

  ϕ  (X  ,Y  )  ψ  (Y  ,Y  )Z (X)′
1 ∏i=1

5
i i i ∏i=1

4
i i i+1

I.e., input structure can be ignored
(already accounted for in the observations)

P (Y ∣ X) =   ϕ  (X  ,Y  ) ψ  (Y  ,Y  )Z(X)
1 ∏i=1

5
i i i ∏i=1

4
i i i+1

Z(X) =   ϕ  (X  ,Y  )  ψ (Y  ,Y  )∑Y∏i=1
5

i i i ∏i=1
4

i i i+1



Conditional Random Fields:Conditional Random Fields: parametrization parametrization

In practice we need to learn the potentials

parameterize them and learn the parameters (e.g., a neural network)

traditionally: a log-linear model:

E.g., for binary input/output:

ϕ  (X  ,Y  ;w  ) ≜i i i i exp(  w  f  (X  ,Y  ))∑k i,k i,k i i

ϕ  (X  ,Y  ;w  ) =i i i i exp(w  I(X  =i i 1,Y  =i 1)) = exp(w  X  Y  )i i i

P (Y ∣ X) =   ϕ  (X  ,Y  ) ψ  (Y  ,Y  )Z(X)
1 ∏i=1

5
i i i ∏i=1

4
i i i+1

Z(X) =   ϕ  (X  ,Y  )  ψ (Y  ,Y  )∑Y∏i=1
5

i i i ∏i=1
4

i i i+1



Local probabilistic modelsLocal probabilistic models



LocalLocal probabilistic models probabilistic models

conditional probability distributions (CPDs)       

in prediction

in Bayes-nets   

discrete variables (CPTs)

exponential in              

how to represent these efficiently? exploit some sort of structure

P (Y ∣ X  , … ,X  )1 n

P (X ∣ Pa  )X

X  i

Pa (X  )G
i

∣Pa  ∣X  i



DeterministicDeterministic CPDs CPDs

P (X ∣ Pa  ) ≜X I(X  =i f(Pa  ))X  i

X  i

Pa  X  i

G

determinism produces additional independencies:

without determinism:

with determinsim:

(D ⊥ E ∣ A,B) ∈  / I(G)

(D ⊥ E ∣ A,B) ∈ I(G)



DeterministicDeterministic CPDs CPDs

P (X ∣ Pa  ) ≜X I(X  =i f(Pa  ))X  i

X  i

Pa  X  i

G

determinism produces additional independencies:

without determinism:

with determinsim:

(D ⊥ E ∣ A,B) ∈  / I(G)

(D ⊥ E ∣ A,B) ∈ I(G)

deterministic d-separation:

add all the variables that deterministically follow       to define
run d-separation for

(X,Y ∣ Z)?

Z Z+

(X,Y ∣ Z )+



  Noisy-ORNoisy-OR model model

X  i

Pa  X  i

Gfor binary variables only

number of parameters is linear in

each parent (           ) is an independent cause

each cause is observed with prob

X  =j 1

∣Pa  ∣Xi

G

P (X  =j
′ 1) = λ  X  j j

noise parameter



  Noisy-ORNoisy-OR model model

X  i

Pa  X  i

Gfor binary variables only

number of parameters is linear in

each parent (           ) is an independent cause

each cause is observed with prob

X  =j 1

Pa  X  i

G

X  i

p(X  =i 0 ∣ Pa ) =X  i (1 − λ  )  (1 −0 ∏X  ∈Pa  j X  i
λ  X  )j j

leak parameter (role of a bias term)

∣Pa  ∣Xi

G

P (X  =j
′ 1) = λ  X  j j

X  j

X  j
′

noise parameter

prob. of no cause observed



 Noisy-OR model:  Noisy-OR model: visualizationvisualization

p(X  =i 0 ∣ Pa ) =X  i (1 − λ  )  (1 −0 ∏X  ∈Pa  j X  i
λ  X  )j j

leak parameter (role of a bias term)

λ  =0 0 λ  =0 .5

#active parents

#active parents

P
(X

 
=

i
1)

P
(X

 
=

i
1)

prob. of no cause observed



 Noisy-OR model:  Noisy-OR model: exampleexample

p(F  =i 0 ∣ Pa  ) =F  i (1 − λ  )  (1 −i,0 ∏D  ∈Pa  j F  i
λ  D  )i,j j

Medical diagnosis (BN2O network)

various deseases/conditions

symptoms/test results

CPDs:



LogisticLogistic CPD CPD

for binary output variables
 
 
 
logistic aggregation function
generally, the input can be discrete or continuous

E.g.,

Pa  X  i

G

X  i

X  j

X  =j
′ w  X  j j

P (X  =i 1) = 1+exp(  w  X  )∑
j j j

exp(  w  X  )∑j j j

X  =j 2 or X  , … ,X  =j j+n 0, 1, … , 0

one-hot coding



LogisticLogistic CPD CPD

for binary output variables
 
 
 
logistic aggregation function
generally, the input can be discrete or continuous

E.g.,

Pa  X  i

G

X  i

X  j

X  =j
′ w  X  j j

P (X  =i 1) = 1+exp(  w  X  )∑
j j j

exp(  w  X  )∑j j j

X  =j 2 or X  , … ,X  =j j+n 0, 1, … , 0

one-hot coding
binary input: each cause has a multiplicative effect on the ratio  

P (X  =0)i

P (X  =1)i



SoftmaxSoftmax CPD CPD

extension for categorical outputs
softmax  function for aggregation:
 
 
 
functional form of the CPD:
 
 
 
 

Pa  X  i

G

X  i

X  j

X  =j,ℓ
′ w  X  j,ℓ j

f(z  ) =ℓ  

 exp(z  )∑ℓ′ ℓ′

exp(z  )ℓ

P (X  =i ℓ) =  

 exp(  w  X  )∑ℓ′ ∑j j,ℓ′ j

exp(  w  X  )∑j j,ℓ j



Logistic CPD
Pa  X  i

G

X  i

X  j

X  j
′

NoisyOR
X  =j

′ w  X  j j P (X  =j
′ 1) = λ  X  0 ≤j j λ ≤ 1transformation

logistic function OR /Max/...aggregation

#active parents

P
(X

 
=

i
1)

P
(X

 
=

i
1)

P
(X

 
=

i
1)

#active parents

#active parents

10 × w

Independence Independence of causal influenceof causal influence
Commutative and associative aggregation



Linear GaussianLinear Gaussian CPD CPD  

for continuous input/output variables
 
 
  X  i

P (X  ) =i N (  w  X  ;σ )∑j j j
2

Pa  X  i

G

X  d



Linear GaussianLinear Gaussian CPD CPD  

for continuous input/output variables
 
 
  X  i

P (X  ) =i N (  w  X  ;σ )∑j j j
2

Pa  X  i

G

P (X  ) =i N (  w  X  ;σ  )∑j j,X  d j X  d

2

X  i

X  j X  d

Pa  X  i

G

conditional linear Gaussian CPD:
one Gaussian mixture for each discrete assignment

alternatively, a discrete input selects among
continuous coefficients (produces a Gaussian mixture):



Generalized linear modelsGeneralized linear models

Logistic CPD: f is the logistic function
Gaussian CPD: f is the identity function

Pa  X  i

G

X  i

X  j

X  =j
′ w  X  j j

E[X  ] =i f(w Pa  )T
X  i

mean function



Generalized linear modelsGeneralized linear models

Logistic CPD: f is the logistic function
Gaussian CPD: f is the identity function

Pa  X  i

G

X  i

X  j

X  =j
′ w  X  j j

E[X  ] =i f(w Pa  )T
X  i

mean function

p(x  ∣i Pa  ) =X  i
h(x  ) exp(w Pa  −i

T
X  i

F (w Pa  ))T
X  i

base measure integral of f

conditional dist. is a member of the exponential family

(will come back to this in exp. family lecture)



ConditionalConditional Bayesian networks Bayesian networks

Pa  X  i

G

X  i

Z  k

use an entire Bayes-net to represent a CPD
 
 
 
 
 
 

P (X  ∣i Pa  ) =X  i
 P (X  ,Z ∣∑Z i Pa  )X  i



Conditional Bayesian networks: Conditional Bayesian networks: exampleexample
can be used for encapsulation in complex models



this idea is extensively used in deep generative
models
alternative strategies:

Neural networksNeural networks defining CPDs defining CPDs
Pa  X

X

f  θ



this idea is extensively used in deep generative
models
alternative strategies:

f is a deterministic CPD
in Generative Adversarial Networks (GANs)

in Normalizing Flows (special family of functions f)

Neural networksNeural networks defining CPDs defining CPDs
Pa  X

X

f  θ



this idea is extensively used in deep generative
models
alternative strategies:

f is a deterministic CPD
in Generative Adversarial Networks (GANs)

in Normalizing Flows (special family of functions f)

f defines parameters in a parametric distribution
In Variational Auto Encoders (VAEs) and Auto-Regressive models

Neural networksNeural networks defining CPDs defining CPDs
Pa  X

X

f  θ

X ∼ p  (x)f  (Pa  )θ X



this idea is extensively used in deep generative
models
alternative strategies:

f is a deterministic CPD
in Generative Adversarial Networks (GANs)

in Normalizing Flows (special family of functions f)

f defines parameters in a parametric distribution
In Variational Auto Encoders (VAEs) and Auto-Regressive models

 f is a stochastic function itself
In energy-based models or VAEs with stochastic middle layers

Neural networksNeural networks defining CPDs defining CPDs
Pa  X

X

f  θ

X ∼ p  (x)f  (Pa  )θ X

X ∼ f  (Pa  )θ X



SummarySummary

the conditioned version of directed & undirected models:

Conditional Random Fields
Conditional Bayes-nets



SummarySummary

the conditioned version of directed & undirected models:

Conditional Random Fields
Conditional Bayes-nets

representing conditional probabilities:

deterministic CPD
noisy-OR model
logistic CPD
linear Gaussian CPD

part of a bigger family of GLMs



SummarySummary

the conditioned version of directed & undirected models:

Conditional Random Fields
Conditional Bayes-nets

representing conditional probabilities:

deterministic CPD
noisy-OR model
logistic CPD
linear Gaussian CPD

part of a bigger family of GLMs

neural networks define expressive CPDs


