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Learning objectives

e the relationship between sampling and inference
e sampling from univariate distributions
e Monte Carlo sampling in graphical models



Mote Carlo inference

e calculating marginals p(z1 =21) =>_,, . . p(Z1,22,...,%n)



Mote Carlo inference

e calculating marginals p(z1 =Z1) =3,

e approximate it by sampling x® ~ p(z)

_ l _
plzr = 3) ~ + Y, 1(X{Y = 5)

I p(il, T2, ...



Mote Carlo inference
e calculating marginals p(z1 =2Z1) =>_,, . p(Z1,%2,...,Ty)
e approximate it by sampling x® ~ p(z)
plar = &) = 1 31X = 2)

e inference in exponential family ps(z) = exp((6, ) — A(6))

® s about finding the mean parameters u = E,, [¢(z)]
= using L samples (particles) p=~ 13, %(X")



Sampling from categorical dist.

e access to pseudo random number generator for X ~ U(0,1)

e given p(X =d)=ps V1<d<D

e generate X ~U(0,1) and see where it falls

use binary search O(log(D))



Transforming probability densities

e given a random variable X ~ px

e what is the prob. density of ¥ = ¢(X) ?

Y ~ py(y) = px (¢ ()| *% 2,

!

corresponding x
A 4

how ¢ changes the volume around each point Y

¢ A 4

— in multivariate case:

e determinant of the Jacobian matrix

image: wikipedia



Inverse transform sampling

e let X be uniform px =U(0,1)

e given a density py

images: work.thaslwanter.at, Murphy's book



Inverse transform sampling

e let X be uniform px =U(0,1)

PDF(x)
CDF(x)

e given a density py
e let Fy beits CDF Fy(y) = P(Y <y)

CDF(x)

images: work.thaslwanter.at, Murphy's book



Inverse transform sampling

let X be uniform px =U(0,1)
given a density py

let Fy be its CDF Fy(y) = P(Y <y)
transform X using ¢(X) = ' (X)
what is the density of ¥ = ¢(X) ?

CDF(x)

images: work.thaslwanter.at, Murphy's book



Inverse transform sampling

let X be uniform px =U(0,1)

e given a density py

let Fy be its CDF Fy(y) = P(Y <y)
transform X using ¢(X) = ' (X)
what is the density of ¥ = ¢(X) ?

Y ~ px(¢7 @) %2 | = px(F(y)) [T

constant: py(y)
bx = U(Oa 1)

X

CDF(x)

Y

images: work.thaslwanter.at, Murphy's book



Inverse transform sampling: example

/AN - . ocnential distribution
1.2} — A=l
N A=15 | _
N | =2 :
0.6 R -
: , - 14
0'47 | FY (y) =1-—e AY o
2:00 ¥ 4 5 0.75 % /‘FY

calculate the inverse CDF;

F/'(z) = —5sIn(1 — z)

image:wikipedia



Sampling in graphical models

RS IR [l for Bayes-nets

0.99
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Sampling in graphical models

ancestral sampling RIJEENEERES

e find a topological ordering

® eg,DIGSLorlSDG,L

e sample by conditioning on parents

G~PlolLD) e




Introducing evidence

what if we have an evidence

e E.g., how to sample from the posterior?

p(D,I,8,L |G =g¢") Talo
l'(),dl
i“,d(’ X
i%d" | o.




Introducing evidence

what if we have an evidence

e E.g., how to sample from the posterior?
p(D,I,S,L|G=g¢") Talo

l'(),dl

i%4° | o.
i%d" | o.

rejection sampling
gllor |09

o 21099 | 0.01

L
e only keep samples compatible with evidence (G = ¢°)

B wasteful if evidence has a low probability



Rejection sampling

to sample from p(z) = 5(z)
use a proposal distribution g¢(x)
such that Mq(z) > 5(z) everywhere
sample X ~ g(z)
accept the sample with probability -

(z)
q(z)

image: Murphy's book



Rejection sampling

to sample from p(z) = 5(z)

A

use a proposal distribution g¢(x)
such that Mq(z) > 5(z) everywhere
sample X ~ g(z)

accept the sample with probability ]5

(z)
q(z)

what is the probability of acceptance? [, q(=) ]\ﬁ(j@) de = &

for high-dimensional dists. % becomes small!

® rejection sampling becomes wasteful

image: Murphy's book



Likelihood weighting

what if we have an evidence?

e E.g., how to sample from the posterior?
p(D,I,S,L’G:gl)

find a topological ordering

e assign a weight to each particle w® « 1
e sample by conditioning on parents 5 Fym
e when sampling an observed variable e
= set it to its observed value ¢ =g

= update the sample's weight w® « w® x p(G=g'| D =d",I=i0)
current assignments to parents




Likelihood weighting

what if we have an evidence?

e e.g., how to sample from the posterior?
p(D,I,S8,L |G = g°)

now, we have weighted particles

answering inference queries: g [0 oo

w I(SH =4°
p(S = | G = g) = Zomlis=)




Likelihood weighting

what if we have an evidence?

e e.g., how to sample from the posterior?

p(D,1,8,L| G =g¢°)

now, we have weighted particles
answering inference queries:

w I(SH =4°
p(S = | G = g) = Zomlis=)

special case of importance sampling

0.99




inormalized importance sampling

Objective: Monte Carlo estimate E,[f(z)] p(m/\ q() i@

/\
e difficult to sample from p J M \\

e use a proposal distribution g :p(z) > 0= g(z) >0 z

image: Bishop's book



inormalized importance sampling

Objective: Monte Carlo estimate E,[f(z)] p(m/\ a(z) i@
/\

e difficult to sample from p -] W NS

e use a proposal distribution g :p(z) > 0= g(z) >0 z

—

since Ey[f(x)] = [, p()f(z)de = [, q(x) 53 f(2)dz = Bg[55) f(2)

~—

image: Bishop's book



rormalized importance sampling

Objective: Monte Carlo estimate E,[f(z)] p(mﬁ q(z) ﬂ(a;)
/‘\
e difficult to sample from p j W \
e use a proposal distribution g :p(z) > 0= g(z) >0 E
since By[f(z)] = [, p(z)f(z)de = [, a(@) i} f(2)de = B, 55 £(2)]

sample X' ~ q(z)

assign an importance sampling weight w(X®) = zém)

image: Bishop's book



ormalized importance sampling

Objective: Monte Carlo estimate E,[f(z)] p(mﬁ q(z) ﬂ(a;)
/‘\
e difficult to sample from p j W \
e use a proposal distribution g :p(z) > 0= g(z) >0 E
since By[f(z)] = [, p(z)f(z)de = [, a(x) i} f(2)de = By 5 £ (2)]

sample X' ~ q()

. ’ : . U]
assign an importance sampling weight w(X®) = zgmg

Eylf(z)] =~ + >, w(XW)F(XW) isan unbiased estimator

can be more efficient than sampling from p itself! (why?)
image: Bishop's book



What if we can evaluate p, up to a constant? p(z)

(%)
o
%
S
T
=
L

ed importance sampling

posterior in directed models p(z | E =€) = Iﬁp(m,e)

prior in undirected models  p(z) = + [[; ¢1(z1)



ed importance sampling

What if we can evaluate p, up to a constant? p(z) = ;5(z)

posterior in directed models p(z | E =€) = %p(m,e)

prior in undirected models  p(z) =  [[; ¢1(z1)
define w(z) =22 then E,[w(z)] = [ p(z)dz=2

since  Eolf(2)] = [, ple)f(2)de = & [, q@) 29 f(2)de = LE,fw(z)f(z)] = LDb)




ed importance sampling

What if we can evaluate p, up to a constant? p(z) = zp(x)

posterior in directed models p(z | E =€) = Iﬁp(m,e)

prior in undirected models  p(z) =  [[; ¢1(z1)

define w(@)=Z5 then E = [, b(z
since  Eplf(z)] = [, p(z)f(z)dz = %fx q(w)%f (2)de = FEfw(@)f(2)] = Sl

sample x® ~ ¢(z)

. 9 . . ~~~(1)
assign an importance sampling weight w(X®) = 58(((1);

E,[f(z)] = 2 Z( o (X ) ())((l)) is a biased estimator (e.g., consider L=1)
l




Revisiting likelihood weighting

Pl I
likelihood weighting: el ke
p(S =5 |G =g T =i) = Do) A
%d° 03 o4 |
: : o oo s, [
equivalent to: O [
T
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Revisiting likelihood weighting

likelihood weighting: el

. wI(SH =5°
P(S:80|G292,I:zl):—Zl lz(lwl ) g

st

equivalent to:
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\ i'102 |08

X I() [1
mutilated Bayes-net as proposal q 2 |01 09
22|04 |06

d° 22| 099 001

0.6

g

L] G
%1095 | 0.05
i[o2 |08

AL

g']o1 |09

g2| 04 |06

231099 | 0.01




Revisiting likelihood weighting

likelihood weighting: el

. wI(SH =5°
P(S:80|G292,I:zl):—Zl lz(lwl ) g

st

equivalent to:

%1095 0.05
\ i'102 |08

. I() [1
mutilated Bayes-net as proposal q 2 |01 09
22|04 |06

d° 22099 001

0.6

w =2 =p(G=¢*|1=i",D=dV) x P(I =)

similar to initial algorithm for likelihood weighting

g

L] G
%1095 | 0.05
i'o2 |08

AL

g']o1 |09

g2| 04 |06

231099 | 0.01




Revisiting likelihood weighting

likelihood weighting: el

. wI(SH =5°
p(S:80|G:gz,I:ZI):% g

equivalent to:

st

i’ [0.95 | 0.05
\ i' [02 |08
. I() [1
mutilated Bayes-net as proposal q Tor Tos
22|04 |06
d° 22099 001
0.6
_ X)) _ _ 27— _ 40 _ 1
w =25 =p(G=g¢"|1=i",D=dV) x P(I=4")
J similar to initial algorithm for likelihood weighting
: : | @ 91095 | 0.05 . .
i o2 os ® evidence only affects sampling for the descendants
|7
i ® what if all evidence appears at leaf nodes?
231099 | 0.01




Summary

Monte-carlo sampling for approximate inference:

e sampling from univariates:

B categorical distribution

B inverse transform sampling
e marginals in directed models:
® ancestral sampling
e more sophisticated: (ncorporating evidence)

® rejection sampling

® importance sampling (likelihood weighting)



