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Learning objectivesLearning objectives

Markov chains
the idea behind Markov Chain Monte Carlo (MCMC)
two important examples:

Gibbs sampling 
Metropolis-Hastings algorithm



Problem with Problem with likelihood weightinglikelihood weighting

use a topological ordering
sample conditioned on the parents
if observed: 

keep the observed value
update the weight

Recap



Problem with Problem with likelihood weightinglikelihood weighting

use a topological ordering
sample conditioned on the parents
if observed: 

keep the observed value
update the weight

Recap

observing the child does not affect the parent's assignment
only applies to Bayes-nets

Issues
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iteratively sample each var. condition on
its Markov blanket

 

if      is observed: keep the observed value

Idea

X  ∼i p(x  ∣i X  )MB(i)

X  i

after many Gibbs sampling iterations X ∼ P



Gibbs samplingGibbs sampling

iteratively sample each var. condition on
its Markov blanket

 

if      is observed: keep the observed value

Idea

equivalent to

X  ∼i p(x  ∣i X  )MB(i)

first simplifying the model by removing observed vars
sampling from the simplified Gibbs dist.

X  i

after many Gibbs sampling iterations X ∼ P



Example: Example: Ising modelIsing model

p(x) ∝ exp(  x  h  +∑i i i  x  x  J  )∑i,j∈E i j i,j

recall the Ising model:

x  ∈i {−1, +1}
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Example: Example: Ising modelIsing model

sample each node i:

p(x) ∝ exp(  x  h  +∑i i i  x  x  J  )∑i,j∈E i j i,j

recall the Ising model:

x  ∈i {−1, +1}

p(x  =i +1 ∣ X  ) =MB(i)

 =exp(h  +  J  X  )+exp(−h  −  J  X  )i ∑j∈Mb(i) i,j j i ∑j∈Mb(i) i,j j

exp(h  +  J  X  )i ∑
j∈Mb(i) i,j j

σ(2h  +i 2  J  X  )∑j∈Mb(i) i,j j compare with mean-field σ(2h  +i 2  J  μ  )∑j∈Mb(i) i,j j



Markov ChainMarkov Chain

a sequence of random variables with Markov property

P (X ∣X , … ,X ) =(t) (1) (t−1) P (X ∣X )(t) (t−1)

its graphical model  ...X(1) X(T )

many applications:

language modeling: X is a word or a character

physics: with correct choice of X, the world is Markov

X(2) X(T−1)



Transition modelTransition model

P (X =(t) x∣X =(t−1) x ) =′ T (x ,x)′

is called the transition model
think of this as a matrix T

notation: conditional probability

we assume a homogeneous chain: P (X ∣X ) =(t) (t−1) P (X ∣X ) ∀t(t+1) (t)

cond. probabilities remain the same across time-steps
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Transition modelTransition model

P (X =(t) x∣X =(t−1) x ) =′ T (x ,x)′

is called the transition model
state-transition diagram think of this as a matrix T

T =      ⎣⎢
⎡.25

0
.5

0
.7
.5

.75
.3
0 ⎦⎥
⎤

evolving the distribution P (X =(t+1) x) =  P (X =∑x ∈V al(X)′
(t) x )T (x ,x)′ ′

notation: conditional probability

its transition matrix

we assume a homogeneous chain: P (X ∣X ) =(t) (t−1) P (X ∣X ) ∀t(t+1) (t)

cond. probabilities remain the same across time-steps
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Markov Chain Monte Carlo (Markov Chain Monte Carlo (MCMCMCMC))

Example state-transition diagram for grasshopper random walk

P (X =(0) 0) = 1initial distribution

after t=50 steps, the distribution is almost uniform P (x) ≈t
 ∀x9

1

use the chain to sample from the uniform distribution P (X) ≈t
 9

1

MCMC generalize this idea beyond uniform dist.

we want to sample from
pick the transition model such that  P (X) =∞ P (X)∗

P ∗

why is it uniform?

(mixing image: Murphy's book)



Stationary distributionStationary distribution

given a transition model                         if the chain converges:T (x,x )′

P (x) ≈(t) P (x)(t+1) =  P (x )T (x ,x)∑x′
(t) ′ ′global balance equation
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Stationary distributionStationary distribution

given a transition model                         if the chain converges:T (x,x )′

P (x) ≈(t) P (x)(t+1) =  P (x )T (x ,x)∑x′
(t) ′ ′

this condition defines the stationary distribution:
π(X = x) =  π(X =∑x ∈V al(X)′ x )T (x ,x)′ ′

π

Example finding the stationary dist.

π(x ) =1 .25π(x ) +1 .5π(x )3

π(x ) =2 .7π(x ) +2 .5π(x )3

π(x ) =3 .75π(x ) +1 .3π(x )2
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global balance equation
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Stationary distribution Stationary distribution as an eigenvectoras an eigenvector

viewing              as a matrix and              as a vector

evolution of dist             :

multiple steps:

T (., .) P (x)t

Example finding the stationary dist.

π(x ) =1 .25π(x ) +1 .5π(x )3

π(x ) =2 .7π(x ) +2 .5π(x )3

π(x ) =3 .75π(x ) +1 .3π(x )2
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Stationary distribution Stationary distribution as an eigenvectoras an eigenvector

viewing              as a matrix and              as a vector

evolution of dist             :

multiple steps:

T (., .) P (x)t

Example finding the stationary dist.

π(x ) =1 .25π(x ) +1 .5π(x )3

π(x ) =2 .7π(x ) +2 .5π(x )3

π(x ) =3 .75π(x ) +1 .3π(x )2

π(x ) +1 π(x ) +2 π(x ) =3 1

π(x ) =1 .2

π(x ) =2 .5

π(x ) =3 .3

P (x)t P =(t+1) T PT (t)

P =(t+m) (T ) PT m (t)

for stationary dist: π = T πT
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    is an eigenvector of         with eigenvalue 1

Stationary distribution Stationary distribution as an eigenvectoras an eigenvector

viewing              as a matrix and              as a vector

evolution of dist             :

multiple steps:

T (., .) P (x)t

Example finding the stationary dist.

π(x ) =1 .25π(x ) +1 .5π(x )3

π(x ) =2 .7π(x ) +2 .5π(x )3

π(x ) =3 .75π(x ) +1 .3π(x )2

π(x ) +1 π(x ) +2 π(x ) =3 1

π(x ) =1 .2

π(x ) =2 .5

π(x ) =3 .3

P (x)t P =(t+1) T PT (t)

P =(t+m) (T ) PT m (t)

for stationary dist: π = T πT
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π

TTπ (produce it by running the chain = power iteration)
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Stationary distribution: Stationary distribution: existance & uniqunessexistance & uniquness

we should be able to reach any x' from any x

otherwise,        is not unique 0

1

0

1

π

irreducible

aperiodic

the chain should not have a fixed cyclic behavior

otherwise, the chain does not converge (it oscillates) 1

00

1 0
0

1

every aperiodic and irreducible chain (with a finite domain) has a unique limiting distribution

such that

π
π(X = x) =  π(X =∑x ∈V al(X)′ x )T (x ,x)′ ′

                               a sufficient condition: there exists a K, such that the probability of reaching

any destination from any source in K steps is positive (applies to discrete & continuous domains)

regular chain
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MCMC in graphical modelsMCMC in graphical models

distinguishing the "graphical models" involved

1: the Markov chain

3: the graphical model, from which we

want to sample

X = [C,D, I,G,S,L,J ,H]
2: state-transition diagram (not shown)

that has exponentially many nodes

#nodes = ∣V al(X)∣

objective: design the Markov chain transition so that π(X) = P (X)∗

P (X)∗
P (X)∗

P (X)0 π(X)

...X(1) X(T )
X(2) X(T−1)



Multiple transition modelsMultiple transition models

idea

have multiple transition models

each making local changes to

T  (x,x ),T  (x,x ), … ,T  (x,x )1
′

2
′

n
′

x

T  1

T  2

x = (x  ,x  )1 2

only updates  x  1

aka, kernels

using a single kernel we may not be able to visit
all the states while their combination is "ergodic"



Multiple transition modelsMultiple transition models

if

T (x ,x) =′
 T  (x ,x )T  (x ,x ), …T  (x ,x)dx dx … dx∫x ,x ,…,x[1] [2] [n] 1

′ [1]
2

[1] [2]
n

[n−1] [1] [2] [n]

idea

have multiple transition models

each making local changes to

T  (x,x ),T  (x,x ), … ,T  (x,x )1
′

2
′

n
′

x

T  1

T  2

x = (x  ,x  )1 2

only updates  x  1

aka, kernels

using a single kernel we may not be able to visit
all the states while their combination is "ergodic"

π(X = x) =  π(X =∑x ∈V al(X)′ x )T  (x ,x) ∀k′
k

′

then we can combine the kernels:

mixing them

cycling them

T (x ,x) =′
 p(k)T  (x ,x)∑k k

′

...X(1) X(T )
X(2) X(T−1)



Revisiting Gibbs samplingRevisiting Gibbs sampling

one kernel for each variable

...X(1) X(T )
X(2) X(T−1)

T  (x ,x ) =i
(t) (t+1) P (x  ∣x  )I(x  =∗

i
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x )−i
(t)

perform local, conditional updates

...
cycle the local kernels
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Revisiting Gibbs samplingRevisiting Gibbs sampling

one kernel for each variable

...X(1) X(T )
X(2) X(T−1)

T  (x ,x ) =i
(t) (t+1) P (x  ∣x  )I(x  =∗

i
(t+1)

−i
(t)

−i
(t+1)

x )−i
(t)

perform local, conditional updates

...

P (x  ∣x  ) =∗
i

(t+1)
−i

(t)
P (x  ∣x  )∗

i

(t+1)
MB(i)
(t)

π(X) = P (X)∗ is the stationary dist. for this Markov chain
cycle the local kernels

if                         then this chain is regularP (x) >∗ 0 ∀x
i.e., converges to its unique stationary dist.
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local moves can get stuck in modes of P (X)∗

x  1

x  2

updates using                                       will have problem

exploring these modes

P (x  ∣1 x  ),P (x  ∣x  )2 2 1

block Gibbs sampling
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Some variationsSome variations

local moves can get stuck in modes of P (X)∗

x  1

x  2

updates using                                       will have problem

exploring these modes

P (x  ∣1 x  ),P (x  ∣x  )2 2 1

idea: each kernel updates a block of variables 

block Gibbs sampling

collapsed Gibbs sampling

marginalize out some variables

p(X ∣ Y ,Z),P (Y ∣ X,Z),P (Z ∣ X,Y )ordinary case:

marginalize over Y: P (X ∣ Z),P (Z ∣ X,Y ) or P (X ∣ Z),P (Z ∣ X)

involves analytical derivation of collapsed updates
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Detailed balanceDetailed balance

A Markov chain is reversible if for a unique π

π(x)T (x,x ) =′ π(x )T (x ,x) ∀x,x′ ′ ′

same frequency in both directions

 π(x )T (x ,x)dx∫
x′

′ ′ ′

left-hand side

 π(x)T (x,x )dx =∫
x′

′ ′ π(x)  T (x,x )dx =∫
x′

′ ′ π(x)
right-hand side

=

detailed balance

global balance

detailed balance is a stronger condition π = [.4, .4, .2]
global balance
detailed balance

if Markov chain is regular and        satisfies detailed balance,
then       is the unique stationary distribution

π
π

analogous to the theorem for global balance
checking for detailed balance is sometimes easier

(example: Murphy's book)

what happens if T is symmetric?
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Using a proposal for the chainUsing a proposal for the chain

Given        design a chain to sample from P ∗ P ∗

idea
use a proposal transition
we can sample from 
               is a regular chain  (reaching every state in K steps has a non-zero probability)

accept the proposed move with probability

to achieve detailed balance for a desirable

T (x,x )q ′

T (x, ⋅)q

T (x,x )q ′

A(x,x )′

P ∗



Metropolis algorithmMetropolis algorithm

use a proposal transition
we can sample from
               is a regular chain  (reaching every state in K steps has a non-zero probability)

accept the proposed move with probability

to achieve detailed balance

T (x,x )q ′

T (x, ⋅)q

T (x,x )q ′

A(x,x )′

proposal is symmetric T (x,x ) =′ T (x ,x)′

A(x,x ) ≜′ min(1,  )
p(x)
p(x )′

accepts the move if it increases  P ∗

may accept it otherwise 
(image: Wikipedia)
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why does it sample from      ?

MetropolisMetropolis-Hastings-Hastings algorithm algorithm

T (x,x ) =′ T (x,x )A(x,x ) ∀x  =q ′ ′  x′

if the proposal is NOT symmetric, then A(x,x ) ≜′ min(1,  )p(x)T (x,x )q ′
p(x )T (x ,x)′ q ′

substitute this into detailed balance (does it hold?)

P ∗

T (x,x) = T (x,x) +q
 (1 −∑x =x ′ A(x,x ))T (x,x )′ ′

move to a different state is accepted

proposal to stay is always accepted
move to a new state is rejected

π(x)T (x,x )A(x,x ) =q ′ ′ π(x )T (x ,x)A(x ,x)′ q ′ ′

min(1,  )π(x)T (x,x )q ′
π(x )T (x ,x)′ q ′

min(1,  )π(x )T (x ,x)′ q ′
π(x)T (x,x )q ′

?

derive the transition kernel:

this is for          only



why does it sample from      ?

MetropolisMetropolis-Hastings-Hastings algorithm algorithm

T (x,x ) =′ T (x,x )A(x,x ) ∀x  =q ′ ′  x′

if the proposal is NOT symmetric, then A(x,x ) ≜′ min(1,  )p(x)T (x,x )q ′
p(x )T (x ,x)′ q ′

substitute this into detailed balance (does it hold?)

P ∗

T (x,x) = T (x,x) +q
 (1 −∑x =x ′ A(x,x ))T (x,x )′ ′

move to a different state is accepted

proposal to stay is always accepted
move to a new state is rejected

π(x)T (x,x )A(x,x ) =q ′ ′ π(x )T (x ,x)A(x ,x)′ q ′ ′

min(1,  )π(x)T (x,x )q ′
π(x )T (x ,x)′ q ′

min(1,  )π(x )T (x ,x)′ q ′
π(x)T (x,x )q ′

?

Gibbs sampling is a special case, with                  all the time!A(x,x ) =′ 1

derive the transition kernel:

this is for          only



Sampling from the chainSampling from the chain
at the limit             , 

 how long should we wait for 

T → ∞ P =∞ π = P ∗

D(P ,π) <T ϵ? mixing time
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Sampling from the chainSampling from the chain
at the limit             , 

 how long should we wait for 

T → ∞ P =∞ π = P ∗

D(P ,π) <T ϵ?

run the chain for a burn-in period (T steps)

collect samples (few more steps)

multiple restarts can ensure a better coverage

mixing time

O(  log(  ))1−λ  2

1
ϵ
N

#states (exponential)

2nd largest eigenvalue of T



model

                          different colors  

128x128 grid

Gibbs sampling

Sampling from the chainSampling from the chain
at the limit             , 

 how long should we wait for 

T → ∞ P =∞ π = P ∗

D(P ,π) <T ϵ?

run the chain for a burn-in period (T steps)

collect samples (few more steps)

multiple restarts can ensure a better coverage

mixing time

Potts model

p(x) ∝ exp(  h(x  ) +∑i i  .66I(x  =∑i,j∈E i x  ))j

Example

∣V al(X)∣ = 5

200 iterations 10,000 iterations

image : Murphy's book

O(  log(  ))1−λ  2

1
ϵ
N

#states (exponential)

2nd largest eigenvalue of T
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SummarySummary

Markov Chain:
can model the "evolution" of an initial distribution
converges to a stationary distribution

Markov Chain Monte Carlo:

design a Markov chain: stationary dist. is what we want to sample
run the chain to produce samples

Two MCMC methods:

Gibbs sampling 
Metropolis-Hastings


