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Learning objectives

e Markov chains
e the idea behind Markov Chain Monte Carlo (MCMC)
e two important examples:

m Gibbs sampling

= Metropolis-Hastings algorithm
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Problem with likelihood weighting

Recap - dn& I

e use a topological ordering
e sample conditioned on the parents P e
e if observed:

= keep the observed value e
= ypdate the weight &[0 Los
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e observing the child does not affect the parent's assignment
e only applies to Bayes-nets

%1095 | 0.05
i' {02 |08

RIS
R
= T




Gibbs sampling
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e iteratively sample each var. condition on

its Markov blanket oo
Xi ~p(xi | Xup(i)) ioe s
e if X;is observed: keep the observed value

e after many Gibbs sampling iterations X ~ P



Gibbs sampling

06 | 0.4 K .
ntelligence

e iteratively sample each var. condition on

its Markov blanket T oy
X’L ~ p(wl | XMB(’L)) i::d‘]’ 0.9 0:08 |

i%[0.95 | 0.05
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e if X;is observed: keep the observed value ot o
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e first simplifying the model by removing observed vars
e sampling from the simplified Gibbs dist.

e after many Gibbs sampling iterations X ~ P



Example: Ising model
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Example: Ising model

recall the Ising model: Q—O—0—0—0—0—0
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Example: Ising model

recall the Ising model: Q—O—0—0—0—0—0
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Example: Ising model

recall the Ising model:

p(z) o exp(d_; zihi + D, jce TiTj i)
z; € {—1,+1}
sample each node i;

p(zi = +1 | Xypw)) =

exp(hi—'_zjeMb(i) Ji,ij) o
exp(hi+3 e JiiX5)Texp(—hi—> e any JiX;)

O'(th -+ 2 ZjEMb(i) Ji, Xj) compare with mean-field
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Markov Chain

a sequence of random variables with Markov property

P(X®|xM . xt1) = px®|xt-1)

its graphical model @—>@

many applications:

i Ianguage modeling: Xis a word or a character
d phySiCSZ with correct choice of X, the world is Markov



Transition model

we assume a homogeneous chain: p(x®|x¢-1) = p(x®D|x®) v

cond. probabilities remain the same across time-steps

notation: conditional probability P(X® = z|X*Y = ') = T(a/, z)

is called the transition model
think of this as a matrix T
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Transition model

we assume a homogeneous chain: p(x®|x¢-1) = p(x®D|x®) v

cond. probabilities remain the same across time-steps

notation: conditional probability P(X® = z| XtV = ') = T(a/, z)

is called the transition model

think of this as a matrix T
0.25 0.7
25 0 .75
T=10 .7 .3
DS 5 0

evolving the distribution P(X® = z) = Y ey P(XY = 2/)T(/, z)



Markov Chain Monte Carlo (MCMC(C)

Example state-transition diagram for grasshopper random walk
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Markov Chain Monte Carlo (MCMC()

Example state-transition diagram for grasshopper random walk

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

@ 0.5 0.5 0.5 !
@ () (@ (==

initial distribution P?(X =0)=1

after t=50 steps, the distribution is almost uniform P'(z) ~ § Vz



Markov Chain Monte Carlo (MCMC(C)

Example state-transition diagram for grasshopper random walk
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Markov Chain Monte Carlo (MCMC(C)

Example state-transition diagram for grasshopper random walk ,,m,mg I |
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(mixing image: Murphy's book)



Markov Chain Monte Carlo (MCMC(C)

Example state-transition diagram for grasshopper random walk ,,m,mg l |
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VI@\[68 ceneralize this idea beyond uniform dist.

e we want to sample from P~

why is it uniform?

e pick the transition model such that P*(X) = P*(X)

(mixing image: Murphy's book)



Stationary distribution

given a transition model T(:C, CL”) if the chain converges:

PY(z) ~ P (z) =3, PY(a')T (2, z)
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Stationary distribution

given a transition model T(QZ, CL”) if the chain converges:
PY(z) ~ P (z) = 3, PY (2")T (', )
this condition defines the stationary distribution: 7T
(X =2) =3 pevax) (X =2)T(2, z)

Example finding the stationary dist.

n(z') = .257(zt) + .5 (x?) m(z!) = .2
m(z?) = .Tn(2?) + 5 (x®) m(x?) = .5
n(z®) = . 757 (zt) + .37 (x?) n(z®) = .3
m(z!) + w(z?) + w(z3) =1




Stationary distribution as an eigenvector
finding the stationary dist.

n(z') = .25m(zt) + .5 (x?) n(z') = .2
n(x?) = .Tn(x?) + 5w (z?) n(z®) = .5
m(x?) = .75m(z") + .37 (z?) n(z®) =.3
m(z!) + m(2?) + m(2°) =1




Stationary distribution as an eigenvector
finding the stationary dist.

0.7 n(z') = .25m(zt) + .5 (x?) n(z') = .2
n(x?) = .Tn(x?) + 5r(z?) n(z®) = .5

- m(x?) = .75m(z") + .37 (z?) n(z®) = .3
n(zh) + m(z?) +n(z?) =1

viewing T(.,.) as a matrixand P'(z) as a vector

25 0 .5|].2
® cvolution of dist P'(z) : P+ = 7T plt) o 7 5lls
® multiple steps: pt+tm — (7T)m p®) 3 0][3
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Stationary distribution as an eigenvector
finding the stationary dist.

0.7 n(z') = .25m(zh) + .5 (x?) m(z') = .2
n(z?) = .Tr(x?) + .5 (z?) n(z®) = .5

. m(x) = .75m(z") + .37 (z?) n(z®) =.3
m(zl) + w(z?) + n(z3) = 1

viewing T(.,.) as a matrixand P'(z) as a vector
25 0 5.2

® cvolution of dist P'(z) : P+ = 7T p) 0 .7 5{[.5
® multiple steps: p(t+m) — (7T)m p(®) 3 0][3
7

® for stationary dist: T =T"'m



Stationary distribution as an eigenvector

finding the stationary dist.

viewing T(.,.) as a matrixand P'(z) as a vector

® cvolution of dist P'(z) : P+ = 7T p()
® multiple steps: pt+tm — (7T)m p®)
® for stationary dist: m=T"m

® T isan eigenvector of TT with eigenvalue 1

0.7 n(z') = .25m(zt) + .5 (x?) n(z') = .2
n(z?) = .Tr(x?) + .5 (z?) n(z®) = .5

. n(z®) = . 757 (") + .37 (x?) n(z®) =.3
m(zl) + w(z?) + n(z3) = 1

(produce it by running the chain = power iteration)



Stationary distribution: existance & uniquness

irreducible

® we should be able to reach any x' from any x

1
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® otherwise, 7T is not unique 0
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® otherwise, the chain does not converge (it oscillates)
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Stationary distribution: existance & uniquness

1 1
O
® we should be able to reach any x' from any x ()
® otherwise, 7T is not unique 0 05 0

1
® the chain should not have a fixed cyclic behavior ( 0

® otherwise, the chain does not converge (it oscillates) 0.5

every aperiodic and irreducible chain (with a finite domain) has a unique limiting distribution 71

suchthat m(X =) =3, cyux) 7(X = 2")T(2', z)

a sufficient condition: there exists a K, such that the probability of reaching

any destination from any source in K steps is positive wppies o discrete & continuous domains)
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distinguishing the "graphical models" involved

P'(X) m(X)

@—)@ ) 1: the Markov chain



MCMC in graphical models

distinguishing the "graphical models" involved

P'(X) m(X)

@—)@ ) 1: the Markov chain

2: state-transition diagram (not shown)

that has exponentially many nodes
#nodes = |Val(X)|



MCMC in graphical models

distinguishing the "graphical models" involved

P(X) m(X)

@—)@ ) 1: the Markov chain

2: state-transition diagram (not shown)
that has exponentially many nodes

3: the graphical model, from which we #nodes = |Val(X)|
want to sample P*(X)




MCMC in graphical models

distinguishing the "graphical models" involved

P'(X) m(X)

@—)@ ) 1: the Markov chain

2: state-transition diagram (not shown)
that has exponentially many nodes

3: the graphical model, from which we #nodes = |Val(X)|
want to sample P*(X)

objective: design the Markov chain transition so that =(X) = P*(X)



Multiple transition models

__idea 2 = (21,2)

aka, kernels
have multiple transition models T;(z,z'), To(z, z'), . .., Th(z, z")

each making local changesto «

ya AN
N 4

T onlyupdates T

using a single kernel we may not be able to visit
all the states while their combination is "ergodic"



Multiple transition models

__idea 2 = (21,22)

aka, kernels
have multiple transition models T (z,z'), To(z, z'), . .., Th(z, z")

each making local changesto «

ya AN
N 4

. . . o /
if m(X=z)= Zw’eVal(X) m(X =2)Ti(a',z) VK T onlyupdates T

using a single kernel we may not be able to visit

then we can combine the kernels: all the states while their combination is "ergodic"

® mixingthem T(2',z) =Y, p(k)T:(z',x)
® cyclingthem T(z',2) = [y 0 o Ti(e,a)To(2l, 2), .. T (alnY, 2)dzldz? . . . Azl

EOHO-O-COr(xe) -



Revisiting Gibbs sampling
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Revisiting Gibbs sampling
o>
one kernel for each variable Coifient>  Celtigence)

perform local, conditional updates

Corte > Csur >
Ti(a, 2 ) = Pay Vel DiE = ) s
? P (e V]a") = P (2 Va}] ) G

MB(7)
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cycle the local kernels



Revisiting Gibbs sampling

one kernel for each variable
perform local, conditional updates

T, (z®, 2¢D) = P& 12Dz = 29)

1 =4 —1 —1
4

p* (x(t+1)|m(t)) — p* (m(t+1)|x(t) )

i —i i MB(i)

‘_'_‘ “ {}@

cycle the local kernels



Revisiting Gibbs sampling

one kernel for each variable
perform local, conditional updates

Tife®,2D) = Pa Vel = 25

=4 —1 —1
4

P*(w(t+1)| (t)) P*(z (t+1)|$§\t4)B )

- ) - ()

cycle the local kernels

= P*(X) is the stationary dist. for this Markov chain



Revisiting Gibbs sampling

one kernel for each variable
perform local, conditional updates

Tife®,2D) = Pa Vel = 25

=4 —1 —1
4

p* (x(t+1)| (t)) P*( (t+1) |x(t) )

MB(7)

- ) - ()

cycle the local kernels

= P*(X) is the stationary dist. for this Markov chain

if P*(z) >0 vz then this chainis regular

i.e., converges to its unique stationary dist.



Some variations

block Gibbs sampling

local moves can get stuck in modes of P*(X)

updates using P(z; | x2), P(za|z1) will have problem 1

exploring these modes

N
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Some variations

block Gibbs sampling

local moves can get stuck in modes of P*(X)

updates using P(z; | x2), P(za|z1) will have problem 1

exploring these modes

idea: each kernel updates a block of variables

collapsed Gibbs sampling

marginalize out some variables

ordinary case: p(X |Y,Z),P(Y |X,Z),P(Z|X,Y)
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Some variations

block Gibbs sampling A

local moves can get stuck in modes of P*(X)

updates using P(z; | x2), P(za|z1) will have problem 1

exploring these modes

A\ 4

N

idea: each kernel updates a block of variables

collapsed Gibbs sampling

marginalize out some variables

ordinary case: p(X |Y,Z),P(Y |X,Z),P(Z|X,Y)
marginalize overY: P(X|Z),P(Z|X,Y) or PX|Z2),P(Z]|X)

involves analytical derivation of collapsed updates

L2



Detailed balance

A Markov chain is reversible if for a unique 7T

EEEERE ()T (¢, «') = n(¢) T (¢, 2) Va2’

same frequency in both directions
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A Markov chain is reversible if for a unique 7T

EEEEEE ()T (¢, «') = n(¢')T (', 2) Va2’

same frequency in both directions

[, m(@)T(z,2')dz’ = n(z) [, T(z,2')ds’ = 7(z) = [, 7(@")T(a',z)dz’
left-hand side L0 right-hand side
1.0 0.5 —
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global balance O
05 detailed balance €

if Markov chain is regular and 7T satisfies detailed balance,
then 7T is the unique stationary distribution

(example: Murphy's book)



Detailed balance

A Markov chain is reversible if for a unique 7T

EEEEEE ()T (¢, «') = n(¢')T (', 2) Va2’

same frequency in both directions

[, m(@)T(z,2")da’ = n(z) [, T(x,2')dz’ =7w(x) = [, m(z")T (', z)da’
right-hand side

left-hand side L
1.0 0.5 =
detailed balance is a stronger condition @:ﬁ/\ T =[.4,.4,.2]
global balance O
0.5 detailed balance Q

if Markov chain is regular and 7T satisfies detailed balance,
then 7T is the unique stationary distribution

® analogous to the theorem for global balance
® checking for detailed balance is sometimes easier
(example: Murphy's book)



Detailed balance

A Markov chain is reversible if for a unique 7T

EEEEEE ()T (¢, «') = n(¢')T (', 2) Va2’

same frequency in both directions

[, m(@)T(z,2")da’ = n(z) [, T(x,2')dz’ =7w(x) = [, m(z")T (', z)da’
right-hand side

left-hand side L
1.0 0.5 =
detailed balance is a stronger condition @:ﬁ/\ T =[.4,.4,.2]
global balance O
0.5 detailed balance Q

if Markov chain is regular and 7T satisfies detailed balance,
then 77 is the unique stationary distribution
v
® analogous to the theorem for global balance L _
, , , , , what happens if T is symmetric?
® checking for detailed balance is sometimes easier
(example: Murphy's book)
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Given p* design a chain to sample from p*



Using a proposal for the chain

Given p* design a chain to sample from p*

e use a proposal transition T%(z,z’)
e we can sample from 79(z, )
® Tq(x,l'/) iS d regUIar Chain (reaching every state in K steps has a non-zero probability)



Using a proposal for the chain

Given p* design a chain to sample from p*

e use a proposal transition T%z,z’)

e we can sample from 79(z, )

o T9z,2') is aregular chain (eachingevery state in k steps has a non-zero probability)
e accept the proposed move with probability A(z,z’)

m to achieve detailed balance for a desirable p*



Metropolis algorithm

use a proposal transition T9(z,z')
we can sample from 7%z, -)

T9(z,2') is a regular chain (eaching every state in k steps has a non-zero probabilty)
accept the proposed move with probability A(z, z')

m to achieve detailed balance
proposal is symmetric T(z,z') = T(z', x)
A(z,z') £ min(1, 2;((—2,)))
accepts the move if it increases P*

may accept it otherwise

(image: Wikipedia)



Metropolis-Hastings algorithm

if the proposal is NOT symmetric, then A(z,z') £ min(1, 28) 1))



Metropolis-Hastings algorithm

if the proposal is NOT symmetric, then A(z,z') £ min(1, %
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why does it sample from P*?



Metropolis-Hastings algorithm

if the proposal is NOT symmetric, then A(z,z') £ min(1, 28) 1))
why does it sample from P*?

derive the transition kernel:

. T(z,z') =Tz,z")A(z,x') Vz #2' I move to a different state is accepted

¢



Metropolis-Hastings algorithm

. ) . . )T (z'
if the proposal is NOT symmetric, then A(z,z') £ min(1, ’W)
why does it sample from P*?
derive the transition kernel:
. T(a:, m’) = TQ(:,;, m’)A(m, ac’) Vx # 2’ I move to a different state is accepted

roposal to stay is always accepted
L I(z,z) =T",2) + Zw#w’ (1 - A(z,2))T(z,2) EnO\E)e to a newztate is r)c/ejectedIO



Metropolis-Hastings algorithm

. ) . . )T (z'
if the proposal is NOT symmetric, then A(z,z') £ min(1, ’W)
why does it sample from P*?
derive the transition kernel:
. T(a:, m’) = TQ(:,;, m’)A(m, ac’) Vx # 2’ I move to a different state is accepted

roposal to stay is always accepted
L I(z,z) =T",2) + Zw#w’ (1 - A(z,2))T(z,2) EnO\E)e to a newztate is r)c/ejectedIO

substitute this into detailed balance (does it hold?)

? .
m(x)TY(z, 2 )A(z,2") = =(2")T(z',z)A(z', ) this is for <@ only

7(z)T! (z,2") )

mln( L (2" )T (' ,x)



Metropolis-Hastings algorithm

. ) . . )T (z'
if the proposal is NOT symmetric, then A(z,z') £ min(1, ’W)
why does it sample from P*?
derive the transition kernel:
. T(a:, m’) = TQ(;,;, :c’)A(a:, :E/) Vx # 2’ I move to a different state is accepted

roposal to stay is always accepted
L I(z,z) =T"2,2) + Zw#w’ (1 - A(z,2))T(z,2) EnO\E)e to a newﬁtate is rﬁc/ejectedIO

substitute this into detailed balance (does it hold?)

? .
m(x)TY(z, 2 )A(z,2') = =(2")T(z',z)A(z', ) this is for <@ only

7(z)T! (z,2") )

mln( L m(z")T9(z )

Gibbs sampling is a special case, with A(z,z) =1 all the time!



Sampling from the chain

atthelimit T — oo, p>* = 5 = p*

how long should we wait for D(PT,r) < €?
0(1—1>_\2 log(%))

v
#states (exponential)

v
2nd largest eigenvalue of T



Sampling from the chain

atthelimit T — oo, p>* = g = p*

how long should we wait for D(PT,r) < €?
0(1—1>_\2 log(%))

® collect samples (few more steps) v
: #states (exponential)

® run the chain for a burn-in period (T steps)

® multiple restarts can ensure a better coverage an*largest eigenvalue of T



Sampling from the chain

atthelimit T — oo, p> =5 = p*

how long should we wait for D(PT,r) < €?
0(1—1)_\2 log(%})

® run the chain for a burn-in period (T steps)
® collect samples (few more steps) v
#states (exponential)

® multiple restarts can ensure a better coverage an*largest eigenvalue of T

Potts model

® model p(z) o< exp(d; h(w:i) + >, jeg -661(zi = z5))
® |Val(X)| =5 different colors

® 128x128 grid

. . . - «" 4 - ¢ ‘n
Gibbs Samp“ng 200 iterations 10,000 iterations
image : Murphy's book



Diagnosing convergence

heuristics for diagnosing non-convergence
difficult problem

run muItipIe chains (compare sample statistics)
auto-correlation within each chain



Diagnosing convergence

heuristics for diagnosing non-convergence
difficult problem

run muItipIe chains (compare sample statistics)
auto-correlation within each chain

example sampling from a mixture of two 1D Gaussians (3 chains: colors)

metropolis-hastings (MH) with increasing step sizes for the proposal

o'=10
o'=1 6'=100

MCMC approximation

Target distribution

high auto-correlation step-size is too large (high rejection rate)
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heuristics for diagnosing non-convergence
difficult problem
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auto-correlation within each chain
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Diagnosing convergence

heuristics for diagnosing non-convergence
difficult problem

run muItipIe chains (compare sample statistics)
auto-correlation within each chain

example sampling from a mixture of two 1D Gaussians (3 chains: colors)

metropolis-hastings (MH) with increasing step sizes for the proposal
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Summary

Markov Chain:
e can model the "evolution" of an initial distribution
e converges to a stationary distribution

Markov Chain Monte Carlo:

e design a Markov chain: stationary dist. is what we want to sample
e run the chain to produce samples

Two MCMC methods:

e Gibbs sampling
e Metropolis-Hastings



