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Learning objectives

e MAP inference and its complexity
e exact & approximate MAP inference

= max-product and max-sum message passing
= relationship to LP relaxation
= graph-cuts for MAP inference
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r* = arg max; f(x)
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Optimization

r* = arg max, f(x)

ge(x) >0 Ve
hi(x) =0 Vd

may or may not have constraints

continuous or discrete (combinatorial)...

local search heuristics

= hil-climbing what if f(x) is structured? f(z) =3; fi(=r)

B pbeam search

® tabu search MAP inference in a graphical model

simulated annealing
integer program
genetic algorithm
branch and bound: when you can efficiently upper-bound partial assignments




Definition & complexity

Y\l argmax, p(x)
given Bayes-net, deciding whether

p(z) > ¢ for some z is NP-complete! @\
) $>

side-chain prediction as MAP inference
(Yanover & Weiss)

decision
problem




Definition & complexity

Y\l argmax, p(x)
given Bayes-net, deciding whether

p(z) > ¢ for some z is NP-complete! @\
) {;(g

WVE rgl nal MAP arg max, Zy p(w’ y) side-chain prediction as I\(/\Igri)\i/:rfzrve\:lzzs

secision 81VEN Bayes-net for p(x,y), deciding whether p(x) > ¢ for
problem — some x is complete for NPPlP

decision
problem

® s NP-hard even for trees a non-deterministic Turing machine that accepts if the
majority of paths accept

a non-deterministic Turing machine that accepts if a single path
accepts (with access to a PP oracle)
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Problem & terminology

MAP inference:  argmax, p(z) = argmax, + [[; ¢1(z1)

= arg max; p(x) = argmax; | [; ¢1(z1)
ignore the normalization constant

with evidence:
arg max, p(z | e) = arg max, % = arg max, p(z, e)

log domain:

arg max, p(x) = argmax, » ; In¢;(x;) = argmin, — In p(z)
aka min-sum inference (energy minimization)




Max-marginals

marginal 2 ceva@) ¢(2,¥) used in sum-product inference

is replaced with max-marginal max;cva(z) ¢(=,y)
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distributive law for MAP inference

max(ab, ac) = amaX(b, C) max-product inference
max(a +b,a + C) =a-+ max(b, C) max-sum inference
max(min(a,b), min(a, c)) = max(a, min(b,c))  min-max inference

sum-product inference

ﬁﬁ

3 operations 2 operations



distributive law for MAP inference

max(ab, CLC) = amaX(b, C) max-product inference
max(a + b,a + ¢) = a + max(b, c) max-sum inference

min-max inference

save computation by factoring the operations
in disguise max,, f(z,y)g(y, 2) = max, g(y, z) max, f(z,y)

® assuMInNg |vai(X)| = |Val(Y)| = [Val(Z)| = d
. from o(d®) to o(d?)



Max-product variable elimination

the procedure is similar to VE for sum-product inference
eliminate all the variables

e input: @ = {¢1,...,6x} a set of factors

output: max, p(x) = max, [[; ér(zr)

* goover z;,...,x; in some order:

» collect all the relevant factors: ¥ = {¢ € &' | z; € Scope[¢]}
= calculate their product: ¢; = [[cq ¢

= max-marginalize out z;,: ¢, = v, Yt

= update the set of factors: t — $t-1 _ gt + {y!}

e return the scalarin t=m as 2+ P(x)
Z =%, p(z)



Decoding the max-value

we need to recover the maximizing assignment z*
keep {%i=1,...,%=n}, produced during inference

input: " ={¢1,...,¢x}a set of factors

output: 2 P(x) = maxg [ [ ¢1(wr)

e goover m;,...,z; insome order:

= collect all the relevant factors: gt — 14 &t | 2, € Scope[g]}
= calculate their product: , = | P

" max-marginalize out g, : ¢, = v, Yt

= update the set of factors: gt _ gt-1 _ yt | (9}

return the scalar in &t=m as = ()



Decoding the max-value

start from the last eliminated variable

¥+=n should have been a function of x; alone: z;,* < argmax1,

= max-marginalize out x;,: ¥; = max,, ¥



Decoding the max-value

at this point we have z;
Yi=n-1can only have i, ,,;, initsdomainz;, ,* < argmax;, = Yn-1(zi,_,,Ti:)

and so on...

= max-marginalize out x;,: ¥; = max,, ¥



Marginal-MAP variable elimination
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e max and sum do not commute

max, Zy ¢($, y) ?é Zy maxyg ¢($1 y)



Marginal-MAP variable elimination

e the procedure remains similar for maxy, ... 4 Zwl T, HI I( I)
¢1(x
e max and sum do not commute

max, Zy ¢($, y) ?é Zy maxyg ¢($1 y)

e cannot use arbitrary elimination order



Marginal-MAP variable elimination

the procedure remains similar for maxy, 4. > . . 1]; é1(z1)
max and sum do not commute

max, Zy ¢($, y) ?é Zy maxyg ¢($1 y)

cannot use arbitrary elimination order

first, eliminate {zi,..., s} (sum-prod VE)



Marginal-MAP variable elimination

the procedure remains similar for maxy,
max and sum do not commute

max, Zy ¢($, y) ?é Zy maxyg ¢(ma y)

cannot use arbitrary elimination order
first, eliminate {zi,..., %} (sum-prod VE)
then eliminate {y,...,ym} (max-prod VE)

= decode the maximizing value

<o oYm Zwl,. RN HI ¢I(w1)



Marginal-MAP variable elimination

the procedure remains similar for maxy,
max and sum do not commute

max, Zy ¢($, y) ?é Zy maxyg ¢(ma y)

cannot use arbitrary elimination order
first, eliminate {zi,..., s} (sum-prod VE)
then eliminate {y,...,ym} (max-prod VE)

= decode the maximizing value

<o oYm Zwl,. RN HI ¢I(w1)

X)) - (&)

example: exponential complexity despite
low tree-width




Max-product BP

In clique-trees, cluster-graphs, factor-graph

building the chordal graph
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Max-product BP

In clique-trees, cluster-graphs, factor-graph

building the chordal graph
building the clique-tree el

tree-width (complexity of inference) |\ hmn o |- Gmm |

remains the same!

main differences:

I replacing sum with max

decoding the maximizing assignment
variational interpretation



Max-product BP

Ve, Wi
factor-graph .24} {3,5}

x) = 1 . ) \~\
p(x) 2H1¢I( 7) @ @ @ @
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Max-product BP

(7 2.4 Y ,
factor-graph .24} {3,5}

x) = L 1, % (e )‘ \N\
p(x) ZHI¢() @ @ @

variable-to-factor message: (@) o< T sjics.ger 07i(2:)

factor-to-variable message: 6r-i(wi) o< maxa,, Yr(@r) [Ijer—i 95 (@)

approx. max-marginals: B(z:) o< [1 ey 07—i(2:)

use damping for convergence in loopy graphs
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Decoding exact max-marginals

clique-trees &factor-graphs without any loops

Single MAP assignment

MAP assignment is unique max-marginals are unambiguous

z* = arg max, p(x) @ z; = arg max,, 8(z;)

Multiple MAP assignments :> a join assignment z* exists
that is locally optimal

) p(z1,22) = 31(z1 = 22) 8(z) B ()i

= o B x}) = maxg, B(x;)Vi

S Blz1 =0) = f(z1 =1) B(z}) = max,, B(zr)VI
Blxz =0) = f(z2 = 1)

easy to find (how?)



Decoding pseudo max-marginals

cluster-graphs, loopy factor-graphs

best local assignments may be incompatible

b=0 b=1 b=0 b=1 a=0 a=1
[}
E. @ a=0 12 =0 1 2 =0 12
© A a=1 2 1 c=1 2 1 c=1 2 1
x
(]
@ Q B(a,b) B(b,c) B(a,c)



Decoding pseudo max-marginals

cluster-graphs, loopy factor-graphs

best local assignments may be incompatible

b=0 b=1 b=0 b= a=0 a=1
()
E. 0 a=0 102 =0 1 2 =0 102
© ‘ a=1 2 1 c=1 2 1 c=1 2 1
x
()]

@ Q B(a,b) B(b,c) B(a,c)
... or compatible
k) b=0 b=1 b=0 b=1 a=0 a=1
g_ Q a=0 3 2 =0 3 2 c=0 3 2
g @AQ a=1 2 3 c=1 2 3 c=1 2 3
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Decoding pseudo max-marginals

cluster-graphs, loopy factor-graphs

best local assignments may be incompatible

@ b=0 b=1 b=0 b= a=0 a=1
a=0 1 2 c=0 1 2 c=0 1T 2
@AQ a=1 2 1 =1 2 1 c=1 2 1
) (b, ¢c)

pla,c)

example

... or compatible

@ b=0 b=1 b=0 b=1 a=0 a=1
g_ Q a=0 3 2 c=0 3 2 c=0 3 2
g @AQ a=1 2 3 c=1 2 3 c=1 z 3

B(a,b) B(b,c) pla,c)

If m(a),m(b), m(c) have unique max., a unique locally optimal belief exists



Decoding pseudo max-marginals

cluster-graphs, loopy factor-graphs

given a set of cluster max-marginals {mi(zr)}r how to find
locally optimal £* (optimal in all mr) if it exists

e reduce to a constraint satisfaction problem
e use decimation:

= run inference
= fix a subset of variables 2} = arg max,, my(zy)
= repeat until all vars are fixed



Optimality of max-product loopy BP

a locally optimal assignment £*is a strong local maxima of p(z)

m(Z}) = max,, m(z;)Vi
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Optimality of max-product loopy BP

a locally optimal assignment £*is a strong local maxima of p(z)

m(&}) = max,, m(x;)Vi

m(Z}) = max,, m(xy)VI

no better assignment exists in a large neighborhood of z*

example

® pick any subset of variables T C {1,... ,n};

® build a subgraph Gr with all factors that have a variable in T

® if this subgraph does not have more than one loop then

>
°

® p(Z*) cannot be improved by changing thevarsin T

hd
e

from: Weiss & Freeman
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Using integer and linear programming

Inp(z) =3, ; Ingi;(zi, z;)

looking for an assignment x* to maximize this sum

integer-programming formulation:

AIGMAX(q} D ; jeg Doy, , Ui (Tis Tj) In ¢ij (@i, ;)
qi,j (wia $j) S {07 1} VZ,J S S, Li, Tj picks a single assignment for vars in each factor

in qi (wl) =1 Vi ensure that assignments to different factors are

consistent
>z @ (Tis i) = gi(x5) Vi,j € E, x5

solution to this NP-hard program is the MAP assignment



Using integer and linear programming

linear programming has a polynomial-time solution
AT MAX(q} D ; jeg Doy, , B (Tis Tj) In dij (2, ;)

qi,j (x%xj) S {07 1}

ensure that assignments to different factors are
in qi.j (mi, :l?j) = qj (mj) Vz,] & g, X consistent



Using integer and linear programming

linear programming has a polynomial-time solution
AT MAX(q} D ; jeg Doy, , B (Tis Tj) In dij (2, ;)

qi.j (xi7xj) c {O, ]_} relax this constraintto @ ; (xi,.’l?‘j) >0 Vz,] c 5’ Ti, Tj

ensure that assignments to different factors are
in qi.j (CUi, :l?j) = qj (mj) Vz,] & g, X consistent



Using integer and linear programming

linear programming has a polynomial-time solution

arg MaxX(q} > ; jee Dua,, B (T, Tj) In @i j (i, ;)

" Qi (xi,x;) € {0,1} relaxthisconstraintto @ j(xi, ;) >0 Vi, j € &, xi,x;
Y.a@)=1 vi

: ensure that assignments to different factors are

sz Qz,] (x’l,’ ij) — QJ (‘/BJ) Vi,j [ g, xj consistent

v

local consistency constraints that we saw earlier

e outer-bound to marginal polytope for globally consistent {4}



Using integer and linear programming

A

Marginal polytope / \

[qz,j (w’i7 Lj )]z’,jeé’,xi,xj

Jq(z)s.t. max, ,; q(z) = g ; (i, azj)( /

v
alternative form

the convex hull of sufficient statistics for all assignments to x

L(G)

conv{[I[X; = i, Xj = zj]]ijecwz; | X}



Using integer and linear programming

A

Marginal polytope / \ Local consistency polytope
|

96,5 (@is T5)]ijee 22, i, (T3, ;)i jet i m;

Jq(z)s.t. max, ; ¢(z) = qz,a(flfu%)( / gj(zi,x;) >0 Vi,j €&, xi,x;
2Y] ty<)) — ) )y My ]

L(G)

D, 9 (@i 25) = qj(z5) Vi, j € €,z

the convex hull of sufficient statistics for all assignments to x

conv{[l[X; = i, Xj = zj]]ijecwz; | X}
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Using integer and linear programming

why is this important?

LP solutions are at corners of the polytope (why?)
. . "
LP using T, is an upper-bound
to the MAP value using v / \

LP solution found USING T, - \ /
T——

L(G)



Using integer and linear programming

why is this important?
LP solutions are at corners of the polytope (why?)

LP using T, is an upper-bound
to the MAP value using g

LP solution found using M *

e isintegral (by definition)
e gives the correct MAP assignment
e M is difficult to specify
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Recall: variational derivation of BP

argmax{gy >_; ;ce H(ai;) — 2 ([Nbi| = 1)H(a:) + X jee Doa,, @5 (®i, T5) In @i j (i, ;)

S @i (T, x5) = gi(z;) Vi, j € €,z locally consistent
marginal distributions
gij(zi, ;) >0 Vi, j €&, zi,x;

Zmi gi(z;) =1 Vi



Recall: variational derivation of BP

argmaxig} > ;e H(qig) — 2 (INbi| = DH(qi) + X5 jeg Dy, @i (%is T5) In @i j (i, )

S, @i (T, x5) = gi(z;) Vi, j € €,z locally consistent
marginal distributions
gij(zi, ;) >0 Vi, j €&, zi,x;

in gi(z;) =1 Vi

BP update is derived as "fixed-points" of the Lagrangian

® pp messages are the (exponential form of the) Lagrange multipliers



Relationship between LP & BP

arg max{q} Zi,jeg ij gi,j (i, ;) In @i (i, z;) +
gij(zi,z;) >0 Vi,je& x,z;

> e G (Tis i) = qj(z5) Vi, j €&, x;
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Relationship between LP & BP

sum-product BP objective
LP objective

AT MAX(q} D ; jce D g, Ui (Tis Tj) Indij(@i, T5) +

1

replace p(z)7 o [1; e ¢i4(2i,z;)T in the equation above

arg maxi,} %Zi,jeg Z% qij(Tiszj) In i j(wi, z5) + H(Q)
= argmax{g} > ; ics 2 g, ; %.i(Ti ) In @i j (i, z5) + T H(q)



Relationship between LP & BP

sum-product BP objective
LP objective

AT MAX(q} D ; jeg g, Ui (Tis Tj) Indij(@i, T5) +

1

replace p(z)7 o [1; e ¢i4(2i,z;)T in the equation above

arg maxi,} %Zi,jeg Z% Gij(Tiyzj) In i j(zi, z5) + H(Q)

= AIGMAX(q} ) ; icg D gy, Ui (%, T5) In i (@i, ;) + T H(q)
T—0
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at the zero-temperature limit limzrop(z)?
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Relationship between LP & BP

sum-product BP for marginalization
at the zero-temperature limit limzrop(z)?
is similar to LP relaxation of MAP inference
they are equivalent for concave entropy approximations
sum-product BP

at the zero-temperature limit limr_o p(z)

Sl=

is similar to max-product BP

they are equivalent for concave entropy approximations

In practice, max-product BP can be much more efficient than LP
® it uses the graph structure



using graph cuts

reduce MAP inference to min-cut problem
use efficient & optimal min-cut solvers

12 s=0

t=5

20 graph-cut problem: partition the nodes into two
sets that include source and target at min cost

O(VE) algorithms exist

only for a family of factors
arbitra ry graph (i.e., large tree width poses no problem)

image: https://www.geeksforgeeks.org



using graph cuts

reduce MAP inference to min-cut problem
use efficient & optimal min-cut solvers

¢®‘1\
H ° \f&x
setting: P
Krm\/ %
® binary pairwise MRF e
p(z) x exp(—E(zx)) -
>

E(z) =) €(z:i) + 32, jeg € (Ti) Tj)

® sub-modular €i,j

€ij(1,1) +€,7(0,0) < €;(1,0) + €;(0,1)

image: https://www.geeksforgeeks.org
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reduction to graph-cuts: example

source node's partition = assignment of O
target node's partition = assignment of 1

_ r&x\ =z {Sﬂ)
P 10’ y 6&\’&&
- Z
e&m\ @,“L\ ~ z fo’)

~
e & @,‘,("D min. energy <— max. cut

oY

non-optimal extensions to variables with higher cardinality



Other methods for MAP inference

e variable elimination

e max-product belief propagation
e |P and LP relaxation

e graph-cuts

e dual decomposition

e branch and bound methods

e |ocal search
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e MAP and marginal MAP are NP-hard
e distributive law extends to MAP inference

B variable elimination
B clique-tree an additional challenge of decoding
® |oopy BP



Summary

e MAP and marginal MAP are NP-hard
e distributive law extends to MAP inference

B variable elimination
B clique-tree an additional challenge of decoding
® |oopy BP

e variational perspective, connects three approaches:

u max—product LBP (can find strong local optima!)
u sum-product LBP (theoretical zero temperature limit)
m P relaxations



Summary

MAP and marginal MAP are NP-hard
distributive law extends to MAP inference

B variable elimination
B clique-tree an additional challenge of decoding
® |oopy BP

variational perspective, connects three approaches:

u max—product LBP (can find strong local optima!)
u sum-product LBP (theoretical zero temperature limit)
m P relaxations

for some family of loopy graphs, exact polynomial-time
inference is possible (graph-cuts)



