Applied Machine Learning

Decision Trees

Siamak Ravanbakhsh

COMP 551 (winter 2020)



Learning objectives

decision trees:

e model
e cost function
e how it is optimized
how to grow a tree and why you should prune it!



Adaptive bases

so far we assume a fixed set of bases in  f(z) = >, wada(x)

several methods can be classified as learning these bases adaptively

f(z) =>4 wipa(x;vq)

each basis has its own parameters
decision trees e

boosting
neural networks
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decision trees are interpretable!
they are not very sensitive to outliers
do not need data normalization

cons.
they could easily overfit and they are unstable

e pruning
e random forests
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Decision trees: idea
divide the input space into regions and learn one function per region

flx) = 2, wil(z € Re)

the regions are learned adaptively
more sophisticated prediction per region is also possible (e.g., one linear model per region)

split regions successively based on the value of a single variable called test

each region is a set of conditions Ry = {z1 <1,z < t4}
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Prediction per region

suppose we have identified the regions Ry,
what constant Wy to use for prediction in each region?

fore regression

use the mean value of training data-points in that region

wr = mean(y™ |z € Ry)
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wy, = mean(y™ |z € Ry) -
or return probability




Prediction per region

suppose we have identified the regions Ry,
what constant Wy to use for prediction in each region?

fore regression for classification

use the mean value of training data-points in that region ~ count the frequency of classes per region
predict the most frequent label wi = mode(y™ [z € Ry)

wy, = mean(y™ |z € Ry) -
or return probability

example: predicting survival in titanic

is sex male?

is age > 9.57

; \ 0.73 36%
@ is sibsp > 2.57
0.17 61%

0.05 2% 0.89 2%
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Feature types

given a feature what are the possible tests

continuous features - eg, age, height, GbP
all the values that appear in the dataset can be used to split
one for each feature d

?

each splitis asking x4 >

& v % ordinal features -eg, grade, rating  za € {1,...,C}
we can splitany anyvalueso  S; = {s41 = 1,...,840 = C}

each splitis asking zq > s4.7

‘} ‘ categorical features -
'Q - types, classes and categories
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Feature types

X1 <ty
I
given a feature what are the possible tests Xo<n  x<n
continuous features - eg, age, height, GbP Lol ] s
all the values that appear in the dataset can be used to split ! ) ’ TW
one for each feature d
Ry Rs

¢
Ve

each splitis asking x4 > ?
ordinal features -eg, grade, rating 4 € {1,...,C}
we can splitany anyvalueso  S; = {sg; =1,...,s4¢c = C}

each splitis asking zq > s4.7

categorical features - multi-way split Ty =

- types, classes and categories problem:
it could lead to sparse subsets
data fragmentation: some splits may have few/no datapoints
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Feature types

X1 <ty
I
given a feature what are the possible tests a<n o oxi<u
continuous features - eg, age, height GDP L Xo <ty
all the values that appear in the dataset can be used to split o (
one for each feature d
R4
each splitis asking x4 > ?
w = ordinal features -eg, grade, rating i € {1,...,C}
we can splitany anyvalueso  S; = {sg; =1,...,84¢c = C}
each splitis asking zq > s4.7
¢?
; P
*¢ categorical features- multi-way split Ty = ; 5
'Q - types, classes and categories problem: Q ;?

it could lead to sparse subsets
data fragmentation: some splits may have few/no datapoints

binary split
assume C binary features (one-hot coding)
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Feature types

X1 <ty
I
given a feature what are the possible tests a<n o oxi<u
continuous features - eg, age, height GDP L Xo <ty
all the values that appear in the dataset can be used to split o (
one for each feature d
R4
each splitis asking x4 > ?
@ = ordinal features -eg, grade, rating s € {1,...,C}
we can splitany anyvalueso  S; = {sg; =1,...,84¢c = C}
each splitis asking zq > s4.7
¢?
; P
*¢ categorical features- multi-way split Ty = ; 5
'Q - types, classes and categories problem: Q _:?

it could lead to sparse subsets
data fragmentation: some splits may have few/no datapoints

binary split
assume C binary features (one-hot coding)

instead of z4 € {1,...,C} we have | za1 € {0,1} * .20
Ti2 € {0,1} ve .
’ wd72 = 1
z4c € {0,1} alternative: binary splits that produce balanced subsets
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Cost function

objective: find a decision tree minimizing the cost function

. classification cost
regression cost

for predicting constant Wk € R for predicting constant class Wg € {1, ceey C}
cost per region (mean squared error - MSE) cost per region (misclassification rate)
_ 1 2 _ 1 n
cost(Ry, D) = == 3 o e, (Y™ — wi) cost(Ry, D) = 7= D omeny, I(y™ # wy)
mean(y™ |z(") € Ry) mode(y™ |z € Ry,)

total cost in both cases is the normalized sum Zk %COSt(Rk, D)

it is sometimes possible to build a tree with zero cost:
build a large tree with each instance having its own region (overfitting!)
new objective: find a decision tree with K tests minimizing the cost function



Search space

K+1 regions
objective: find a decision tree with K tests minimizing the cost function
alternatively, find the smallest tree (K) that classifies all examples correctly

.3



Search space

K+1 regions
objective: find a decision tree with K tests minimizing the cost function
alternatively, find the smallest tree (K) that classifies all examples correctly

Ry

Rs

not produced by a decision tree

.3



Search space

K+1 regions
objective: find a decision tree with K tests minimizing the cost function
alternatively, find the smallest tree (K) that classifies all examples correctly

assuming D features how many different partitions of size K+1?

Ry

not produced by a decision tree

.3



Search space

K+1 regions
objective: find a decision tree with K tests minimizing the cost function
alternatively, find the smallest tree (K) that classifies all examples correctly O

Ry

assuming D features how many different partitions of size K+1?

the number of full binary trees with K+1 leaves (regions Ry) is the Catalan number 1 (2K)
K+1\ K

exponential in K

not produced by a decision tree

.3



Search space

K+1 regions

objective: find a decision tree with K tests minimizing the cost function

Ry

alternatively, find the smallest tree (K) that classifies all examples correctly O
assuming D features how many different partitions of size K+1?

the number of full binary trees with K+1 leaves (regions Ry) is the Catalan number 1 (2K)
K+1\ K

exponential in K

2 SN o

not produced by a decision tree

.3



Search space

K+1 regions

objective: find a decision tree with K tests minimizing the cost function

Ry

alternatively, find the smallest tree (K) that classifies all examples correctly O
assuming D features how many different partitions of size K+1?

the number of full binary trees with K+1 leaves (regions Ry) is the Catalan number 1 (2K)
K+1\ K

exponential in K

2 SN o

we also have a choice of feature 4 for each of K internal node DX

not produced by a decision tree

.3



Search space

K+1 regions

objective: find a decision tree with K tests minimizing the cost function
alternatively, find the smallest tree (K) that classifies all examples correctly O

Ry

assuming D features how many different partitions of size K+1?

the number of full binary trees with K+1 leaves (regions Ry) is the Catalan number 1 (2K)
K+1\ K

exponential in K

2 SN o

we also have a choice of feature 4 for each of K internal node DX

not produced by a decision tree

moreover, for each feature different choices of splitting s;,, € S,

.3



Search space

K+1 regions

objective: find a decision tree with K tests minimizing the cost function

Ry

alternatively, find the smallest tree (K) that classifies all examples correctly O
assuming D features how many different partitions of size K+1?

the number of full binary trees with K+1 leaves (regions Ry) is the Catalan number 1 (2K)

2 SN

K+1
we also have a choice of feature 4 for each of K internal node DX

exponential in K

not produced by a decision tree

moreover, for each feature different choices of splitting s;,, € S,

bottom line: finding optimal decision tree is an NP-hard combinatorial optimization problem
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Greedy heuristic

recursively split the regions based on a greedy choice of the next test

end the recursion if not worth-splitting
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Greedy heuristic

recursively split the regions based on a greedy choice of the next test

end the recursion if not worth-splitting

function fit-tree(Rpode » D ,depth)

RleftaRright = greedy-test (Rpode,D )

if not worth-splitting (depth, Egbﬁ,ﬂgﬁyn)
return Rpode

else
left-set = fit—tree(]&hﬁ,l), depth+1)
right-set = fit—tree(]Rﬁgm + D, depth+l)
return {left-set, right-set}
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Greedy heuristic

recursively split the regions based on a greedy choice of the next test

end the recursion if not worth-splitting

X<ty X1 <ty
function fit-tree(Rpode » D ,depth)
Ry Ry R3 e
Rieft, Reight = greedy-test (Rnode, D ) (W
if not worth—splitting(depth,IREH,E&Eht) fuo A
return Ryode {{R1,Ro}, {Rs, {Ry, R5}}

else
left-set = fit—tree(]&hﬁ,l), depth+1)
right-set = fit—tree(]Rﬁgm ' Dr depth+1)
return {left-set, right-set}

final decision tree in the form of nested list of regions



Choosing tests

the split is greedy because it looks one step ahead
this may not lead to the the lowest overall cost
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Stopping the recursion

worth-splitting subroutine
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revisiting the ClA@sSification cost

ideally we want to optimize the 0-1 10SS (misclassification rate)

cost(Rg, D) = le Zm(n)eRk H(y(n) # W)

this may not be the optimal cost for each step of greedy heuristic
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ideally we want to optimize the 0-1 10SS (misclassification rate)

cost(Rg, D) = Nik > 2 cR, T(y™ # wy)

this may not be the optimal cost for each step of greedy heuristic
both splits have the same misclassification rate (2/8)
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revisiting the ClA@SSification cost

ideally we want to optimize the 0-1 10SS (misclassification rate)
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this may not be the optimal cost for each step of greedy heuristic

both splits have the same misclassification rate (2/8)
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revisiting the ClA@sSification cost

ideally we want to optimize the 0-1 10SS (misclassification rate)

cost(Rg, D) = Nik > 2 cR, T(y™ # wy)

this may not be the optimal cost for each step of greedy heuristic

both splits have the same misclassification rate (2/8)

(5100 0908 .., 51000 9998
Rieft 38 (.25, 50%) (.75, 50%) gg Rright 388 (33, 75%) 0 25%) ©©

however the second Sp|it may be preferable because one region does not need further splitting

use a measure for homogeneity of labels in regions
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Entropy

entropy is the expected amount of information in observing a random variable Y

note that it is common to use capital letters for
random variables (here for consistency we use lower-case)

H(y) = -5 p(y = c)logp(y = c)

—log p(y = ¢) is the amount of information in observing ¢

zero information of p(c)=1
less probable events are more informative  p(c) < p(c') = —logp(c) > —logp(c’)
information from two independent events is additive  —log(p(c)q(d)) = —log p(c) — log q(d)

a uniform distribution has the highest entropy H(y) = - >, & log & =logC

a deterministic random variable has the lowest entropy H(y) = —1log(1) =0
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Mutual information

for two random variables ¢,y

mutual information is the amount of information t conveys abouty
change in the entropy of y after observing the value of t

I(t7y) — _H(y’t)

= H(t) - = I(y,1)

it is always positive and zero only if y and t are independent

try to prove these properties

.3
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we care about the distribution of labels px(y = ¢) = N

misclassification cost cost(Ri, D) = 7~ >, cp, I(y™ # wy) = 1 — pp(wy)
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Entropy for classification cost

. . . Ez(”) €Ry, H(y(n) :C)
we care about the distribution of labels px(y = ¢) = N

misclassification cost cost(Ry, D) = 5~ > mep, 1™ # wi) = 1 — pi(wy)

the most probable class wy = arg max. px(c)

m cost(Rg, D) = H(y) choose the split with the lowest entropy

change in the cost becomes the mutual information between the test and labels

|
n nod

cost(Rpode, D) — (fvv'—zlcost(Rhft, D) + ]J\,V—eftecost(Rright, D))

= H(y) - (p(md 2 Sd,n)H(p(y|xd Z sd,n)) +p(=’13d < Sd,n)H(p(y|wd < 3d,n))> - I(y,ﬂﬁ > Sd,n)

choosing the test which is maximally informative about labels
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e ntrO py COSt (using base 2 logarithm)
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Gini index
another cost for selecting the test in classification
misclassification (error) rate cost(Ri, D) = §- 3 ocp, 1y™ # wi) = 1 — p(wy)

entropy cost(Ry, D) = H(y)

comparison of costs of a node when we have 2 classes

m it is the expected error rate

cost(Rg, D) = chzl (1—p(c))

probability of class c 3 4

=30 p(e) = S p(e)? =130 p(c)?

0.4 0.5

0.3

cost

0.1

0.0
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decision tree for Iris dataset
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Example

decision tree for Iris dataset

dataset (D=2)

decision tree

45

O setosa
versicolor
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Example

decision tree for Iris dataset

dataset (D=2)

decision tree

45

O setosa
versicolor

o O virginica N <28/A8W>=28
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o0 vers®olse®sa SW < 3.45 A8W 5= 3.45

A -
SW<3I5ASW>=315 e

Sepal width

virginica
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Example

decision tree for Iris dataset

dataset (D=2)

decision tree
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Example

decision tree for Iris dataset

dataset (D=2) decision tree
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Sepal length

decision boundaries suggest overfitting

confirmed using a validation set

training accuracy ~85%
(Cross) validation accuracy ~ 70%
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Overfitting

a decision tree can fit any Boolean function (vinary classification with binary features)

example: of decision tree representation of a boolean function (D=3)

D
there are 22 such functions, why?

&

large decision trees have a high variance - low bias (low training error, high test error)

grow a small tree # o '6
@ substantial reduction in cost may happen after a few steps Ooo% %g

by stopping early we cannot know this

Aa a0 00 0=
—_——_OO=00 =™

—_-—_00==00|Nn
- O0=20=0=0|Ww

cost drops after the second node

image credit: https://www.wikiwand.com/en/Binary_decision_diagram
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Pruning

grow a large tree and then prune it

greedily turn an internal node into a leaf node
choice is based on the lowest increase in the cost
repeat this until left with the root node

pick the best among the above models using using a validation set
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Pruning

grow a large tree and then prune it
greedily turn an internal node into a leaf node
choice is based on the lowest increase in the cost
repeat this until left with the root node

pick the best among the above models using using a validation set

before pruning after pruning cross-validation is used to pick
the best size
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Pruning

grow a large tree and then prune it random forests (later!)
greedily turn an internal node into a leaf node
choice is based on the lowest increase in the cost
repeat this until left with the root node

pick the best among the above models using using a validation set

before pruning after pruning cross-validation is used to pick
. the best size
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Summary

model: divide the input into axis-aligned regions
cost: for regression and classification
optimization:
= NP-hard
= use greedy heuristic
adjust the cost for the heuristic
= using entropy (relation to mutual information maximization)
= using Gini index
decision trees are unstable (have high variance)
= use pruning to avoid overfitting
there are variations on decision tree heuristics

= what we discussed in called Classification and Regression Trees (CART)
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