Applied Machine Learning

Decision Trees

Siamak Ravanbakhsh

COMP 551 (winter 2020)

Learning objectives

decision trees:

e model
e cost function
e how it is optimized
how to grow a tree and why you should prune it!

Adaptive bases

so far we assume a fixed set of bases in f(z) = >, wada(x)

several methods can be classified as learning these bases adaptively

f(z) =>4 wipa(x;vq)

each basis has its own parameters
decision trees e

boosting
neural networks

Decision trees: motivation

You Dropped Food on the Floor
Do You Eat It?

!

Was it sticky?— No. — Did anyone see you? — YES.
| | PRV TGN

No.
YES. Was it a -
2 — No.

3
9,08 e boss/lover /parent?

|
Emavsaurus? faw steak? YES.

1
| |
j/ No. No. YES. Was it expensive? — YES,
: {
5 Dldl 1?\6‘11;6-\1 Are you No. Can you cvt off
ick it7 a pma?]‘ the part

A(3

7
Megalosaufus: YES. Ne. I N the Ploor?

[! | YES. e,
YES No. No. \ YES. No.

[| EAT || DON'T
[@ | IT. / —J —| Eq% |
— e

I f R
fAre you a b \ Zr] s 1t bacon? that touched
'.“
YES

Mo EAT IT

hcah‘_hy?

“Ifﬂrfr
YES \YOUR
U . SENE Lt
EAT
T}

image credit:https://mymodernmet.com/the-30second-rule-a-decision/

Decision trees: motivation

You Dropped Food on the Floor
Do You Eat It? pros.

Was it sticky?— No. — Did m,:{...a sec yo? —YES. decision trees are interpretable!
{ | R - .
o L 728 they are not very sensitive to outliers

b 2 — No.
9,08 e boss/lover /parent?

st & oyt vis. =228 do not need data normalization
/ rjo. }So_ Qﬁ‘ W'qs! it f_xPCnsivt'.? — YES.

{
Are you No Can you eut ofF

YES Did the cat
| a pma? \ the part

lick it?

I i
fre you & b \ Zr] B heeon? that touched
[
YES.

7
Megalosaufus: YES. Ne. I N the Floor?

[! | YES. e~
YES No. No. \ YES. No.

| \{ EAT | | DON'T Bl
Rorw IJYM . 78 T SleAT ET "’J \l EAT l
IT _——

=2 hcqh‘_hy7 l LT /
/
YES \ YOUR

ﬁ S]____/ o4
\IT J

image credit:https://mymodernmet.com/the-30second-rule-a-decision/

Decision trees: motivation

You Dropped Food on the Floor
Do You Eat It?

Was it sticky?— No. — Did anyone see you? — YES.
| |)
No.
) YES\ Was it a - E:r_l
? — No.
i S boss/lover /parent? iET }
S

I
Emausaufus? raw steak? YES.

| |
/ No. No. Yes. Was it expensive? — YES,
[
Arc you No. Can you cvt off

YES Did the cat
| a pma? \ the part

lick it?

I f R
fre you & b \ Zr] B heeon? that touched
[
YES.

7
Megalosagius: YES. No. I N the Ploor?
-

[! | YES. e~
YES No. Dl S

= \ No. YES No
’ \{ EA DON'T \ el
o Bf T / EAT IT] | EAT |
AT IT YO T i

AL IT | et L. /

pros.

decision trees are interpretable!
they are not very sensitive to outliers
do not need data normalization

cons.
they could easily overfit and they are unstable

e pruning
e random forests

image credit:https://mymodernmet.com/the-30second-rule-a-decision/

Decision trees: idea
divide the input space into regions and learn one function per region

f(z) = > wil(z € Ry)

the regions are learned adaptively
more sophisticated prediction per region is also possible (e.g., one linear model per region)

1

Decision trees: idea
divide the input space into regions and learn one function per region

flx) = 2, wil(z € Re)

the regions are learned adaptively
more sophisticated prediction per region is also possible (e.g., one linear model per region)

split regions successively based on the value of a single variable called test

1

Decision trees: idea
divide the input space into regions and learn one function per region

flx) = 2, wil(z € Re)

the regions are learned adaptively
more sophisticated prediction per region is also possible (e.g., one linear model per region)

split regions successively based on the value of a single variable called test

each region is a set of conditions Ry = {z1 <1,z < t4}

(il
MH ”u” | ”‘ H ‘ [l
LA | ”\‘

1

Prediction per region

suppose we have identified the regions IRy,
what constant Wy to use for prediction in each region?

Prediction per region

suppose we have identified the regions Ry,
what constant Wy to use for prediction in each region?

fore regression

use the mean value of training data-points in that region

wr = mean(y™ |z € Ry)

‘u‘ \\‘\i\\“\w‘w‘wu\“\\“m

Prediction per region

suppose we have identified the regions Ry,
what constant Wy to use for prediction in each region?

fore regression for classification

use the mean value of training data-points in that region ~ count the frequency of classes per region

predict the most frequent label wi = mode(y™ [z € Ry)

wy, = mean(y™ |z € Ry) -
or return probability

Prediction per region

suppose we have identified the regions Ry,
what constant Wy to use for prediction in each region?

fore regression for classification

use the mean value of training data-points in that region ~ count the frequency of classes per region
predict the most frequent label wi = mode(y™ [z € Ry)

wy, = mean(y™ |z € Ry) -
or return probability

example: predicting survival in titanic

is sex male?

is age > 9.57

; \ 0.73 36%
@ is sibsp > 2.57
0.17 61%

0.05 2% 0.89 2%

Winter 2020 | Applied Machine Learning (COMP551)

Feature types

given a feature what are the possible tests

.

Feature types

given a feature what are the possible tests

continuous features - eg, age, height, GbP

all the values that appear in the dataset can be used to split
one for each feature d

each splitis asking x4 > ?

1

Feature types

given a feature what are the possible tests

continuous features - eg, age, height, GbP
all the values that appear in the dataset can be used to split
one for each feature d

?

each splitis asking x4 >

& v % ordinal features -eg, grade, rating za € {1,...,C}
we can splitany anyvalueso S; = {s41 = 1,...,840 = C}

each splitis asking zq > s4.7

Feature types

given a feature what are the possible tests

continuous features - eg, age, height, GbP
all the values that appear in the dataset can be used to split
one for each feature d

?

each splitis asking x4 >

& v % ordinal features -eg, grade, rating za € {1,...,C}
we can splitany anyvalueso S; = {s41 = 1,...,840 = C}

each splitis asking zq > s4.7

‘} ‘ categorical features -
'Q - types, classes and categories

1

Feature types

X1 <ty
I
given a feature what are the possible tests Xo<n x<n
continuous features - eg, age, height, GbP Lol] s
all the values that appear in the dataset can be used to split !) ’ TW
one for each feature d
Ry Rs

¢
Ve

each splitis asking x4 > ?
ordinal features -eg, grade, rating 4 € {1,...,C}
we can splitany anyvalueso S; = {sg; =1,...,s4¢c = C}

each splitis asking zq > s4.7

categorical features - multi-way split Ty =

- types, classes and categories problem:
it could lead to sparse subsets
data fragmentation: some splits may have few/no datapoints

e g
e ~0e~D *~0

Feature types

X1 <ty
I
given a feature what are the possible tests a<n o oxi<u
continuous features - eg, age, height GDP L Xo <ty
all the values that appear in the dataset can be used to split o (
one for each feature d
R4
each splitis asking x4 > ?
w = ordinal features -eg, grade, rating i € {1,...,C}
we can splitany anyvalueso S; = {sg; =1,...,84¢c = C}
each splitis asking zq > s4.7
¢?
; P
*¢ categorical features- multi-way split Ty = ; 5
'Q - types, classes and categories problem: Q ;?

it could lead to sparse subsets
data fragmentation: some splits may have few/no datapoints

binary split
assume C binary features (one-hot coding)

instead of z4 € {1,...,C} we have | za1 € {0,1} * .20
x40 € {0,1} ve .
¢ Typ =
T40 € {0, 1}

1

Feature types

X1 <ty
I
given a feature what are the possible tests a<n o oxi<u
continuous features - eg, age, height GDP L Xo <ty
all the values that appear in the dataset can be used to split o (
one for each feature d
R4
each splitis asking x4 > ?
@ = ordinal features -eg, grade, rating s € {1,...,C}
we can splitany anyvalueso S; = {sg; =1,...,84¢c = C}
each splitis asking zq > s4.7
¢?
; P
*¢ categorical features- multi-way split Ty = ; 5
'Q - types, classes and categories problem: Q _:?

it could lead to sparse subsets
data fragmentation: some splits may have few/no datapoints

binary split
assume C binary features (one-hot coding)

instead of z4 € {1,...,C} we have | za1 € {0,1} * .20
Ti2 € {0,1} ve .
’ wd72 = 1
z4c € {0,1} alternative: binary splits that produce balanced subsets

Cost function

objective: find a decision tree minimizing the cost function

.2

Cost function

objective: find a decision tree minimizing the cost function

regression cost

for predicting constant wx € R

cost per region (mean squared error - MSE)

COSt(Rk, D) =L Zm(")ERk (y(”) — wk)Z

Cost function

objective: find a decision tree minimizing the cost function

regression cost

for predicting constant wx € R

cost per region (mean squared error - MSE)

COSt(Rk, D) =L Zm(")ERk (y(”) — wk)Z

mean(y™|z™ € Ry)

Cost function

objective: find a decision tree minimizing the cost function

. classification cost
regression cost

for predicting constant Wg € R for predicting constant class Wx € {1, ceey C}

cost per region (mean squared error - MSE) cost per region (misclassification rate)

cost(Ry, D) = == 3 o e, (Y™ — wi)? cost(Rg, D) = = D ameDy, I(y™ # wy)

mean(y™ |z™ € Ry)

Cost function

objective: find a decision tree minimizing the cost function

. classification cost
regression cost

for predicting constant Wg € R for predicting constant class Wx € {1, ceey C}

cost per region (mean squared error - MSE) cost per region (misclassification rate)

cost(Ry, D) = = 3 o e, (Y™ — wi)? cost(Rg, D) = = D ameDy, I(y™ # wy)

mean(y(n) ‘ZE(H) c Rk) mode(y(n) ‘ZE(”) c Rk)

Cost function

objective: find a decision tree minimizing the cost function

. classification cost
regression cost

for predicting constant Wk € R for predicting constant class Wx € {1, ceey C}

cost per region (mean squared error - MSE) cost per region (misclassification rate)

cost(Ry, D) = = 3 o e, (Y™ — wi)? cost(Rg, D) = = D ameDy, I(y™ # wy)

mean(y(n) {ZE(H) c Rk) mode(y(n) ‘ZE(”) c Rk)

total cost in both cases is the normalized sum Zk %COSt(Rk, D)

Cost function

objective: find a decision tree minimizing the cost function

. classification cost
regression cost

for predicting constant Wk € R for predicting constant class Wg € {1, ceey C}
cost per region (mean squared error - MSE) cost per region (misclassification rate)
_ 1 n 2 _ 1 n
cost(Ry, D) = == 3 o e, (Y™ — wi) cost(Ry, D) = 7= X omeny, I(y™ # wy)

mean(y™ |z™ € Ry)

total cost in both cases is the normalized sum Zk %COSt(Rk, D)

it is sometimes possible to build a tree with zero cost:
build a large tree with each instance having its own region (overfitting!)

mode(y™|z™ € Ry,)

Cost function

objective: find a decision tree minimizing the cost function

. classification cost
regression cost

for predicting constant Wk € R for predicting constant class Wg € {1, ceey C}
cost per region (mean squared error - MSE) cost per region (misclassification rate)
_ 1 2 _ 1 n
cost(Ry, D) = == 3 o e, (Y™ — wi) cost(Ry, D) = 7= D omeny, I(y™ # wy)
mean(y™ |z(") € Ry) mode(y™ |z € Ry,)

total cost in both cases is the normalized sum Zk %COSt(Rk, D)

it is sometimes possible to build a tree with zero cost:
build a large tree with each instance having its own region (overfitting!)
new objective: find a decision tree with K tests minimizing the cost function

Search space

K+1 regions
objective: find a decision tree with K tests minimizing the cost function
alternatively, find the smallest tree (K) that classifies all examples correctly

.3

Search space

K+1 regions
objective: find a decision tree with K tests minimizing the cost function
alternatively, find the smallest tree (K) that classifies all examples correctly

Ry

Rs

not produced by a decision tree

.3

Search space

K+1 regions
objective: find a decision tree with K tests minimizing the cost function
alternatively, find the smallest tree (K) that classifies all examples correctly

assuming D features how many different partitions of size K+1?

Ry

not produced by a decision tree

.3

Search space

K+1 regions
objective: find a decision tree with K tests minimizing the cost function
alternatively, find the smallest tree (K) that classifies all examples correctly O

Ry

assuming D features how many different partitions of size K+1?

the number of full binary trees with K+1 leaves (regions Ry) is the Catalan number 1 (2K)
K+1\ K

exponential in K

not produced by a decision tree

.3

Search space

K+1 regions

objective: find a decision tree with K tests minimizing the cost function

Ry

alternatively, find the smallest tree (K) that classifies all examples correctly O
assuming D features how many different partitions of size K+1?

the number of full binary trees with K+1 leaves (regions Ry) is the Catalan number 1 (2K)
K+1\ K

exponential in K

2 SN o

not produced by a decision tree

.3

Search space

K+1 regions

objective: find a decision tree with K tests minimizing the cost function

Ry

alternatively, find the smallest tree (K) that classifies all examples correctly O
assuming D features how many different partitions of size K+1?

the number of full binary trees with K+1 leaves (regions Ry) is the Catalan number 1 (2K)
K+1\ K

exponential in K

2 SN o

we also have a choice of feature 4 for each of K internal node DX

not produced by a decision tree

.3

Search space

K+1 regions

objective: find a decision tree with K tests minimizing the cost function
alternatively, find the smallest tree (K) that classifies all examples correctly O

Ry

assuming D features how many different partitions of size K+1?

the number of full binary trees with K+1 leaves (regions Ry) is the Catalan number 1 (2K)
K+1\ K

exponential in K

2 SN o

we also have a choice of feature 4 for each of K internal node DX

not produced by a decision tree

moreover, for each feature different choices of splitting s;,, € S,

.3

Search space

K+1 regions

objective: find a decision tree with K tests minimizing the cost function

Ry

alternatively, find the smallest tree (K) that classifies all examples correctly O
assuming D features how many different partitions of size K+1?

the number of full binary trees with K+1 leaves (regions Ry) is the Catalan number 1 (2K)

2 SN

K+1
we also have a choice of feature 4 for each of K internal node DX

exponential in K

not produced by a decision tree

moreover, for each feature different choices of splitting s;,, € S,

bottom line: finding optimal decision tree is an NP-hard combinatorial optimization problem

Winter 2020 | Applied Machine Learning (COMP551)

Greedy heuristic

recursively split the regions based on a greedy choice of the next test

end the recursion if not worth-splitting

1

Greedy heuristic

recursively split the regions based on a greedy choice of the next test

end the recursion if not worth-splitting

function fit-tree(Rpode » D ,depth)

RleftaRright = greedy-test (Rpode,D)

if not worth-splitting (depth, Egbﬁ,ﬂgﬁyn)
return Rpode

else
left-set = fit—tree(]&hﬁ,l), depth+1)
right-set = fit—tree(]Rﬁgm + D, depth+l)
return {left-set, right-set}

1

Greedy heuristic

recursively split the regions based on a greedy choice of the next test

end the recursion if not worth-splitting

X<ty X1 <ty
function fit-tree(Rpode » D ,depth)
Ry Ry R3 e
Rieft, Reight = greedy-test (Rnode, D) (W
if not worth—splitting(depth,IREH,E&Eht) fuo A
return Ryode {{R1,Ro}, {Rs, {Ry, R5}}

else
left-set = fit—tree(]&hﬁ,l), depth+1)
right-set = fit—tree(]Rﬁgm ' Dr depth+1)
return {left-set, right-set}

final decision tree in the form of nested list of regions

Choosing tests

the split is greedy because it looks one step ahead
this may not lead to the the lowest overall cost

Choosing tests

the split is greedy because it looks one step ahead
this may not lead to the the lowest overall cost

function greedy-test (Rnode » D)
best-cost = -inf

for de {1,...,D}, san € Sa

Rieft = Rpode U {Za < San}
Rright — IRnode U {xd 2 Sd,n}
split-cost = %ﬁ";ﬁ:cost(&eft,'l)) + %:f:—:cost(Rr;ght, D)

if split-cost < best-cost:

best-cost
*
ngft = Rleft

&3 — a
right — Rnght

split-cost

* *
return Rleft? right

Choosing tests

the split is greedy because it looks one step ahead
this may not lead to the the lowest overall cost

function greedy-test (Rnode , D)
best-cost = -inf

for de {1,...,D},84n € Sa

Rieft = Rpode U {xd < Sd,n}
Rright — IRnode U {xd 2 Sd,n}
split-cost = %ﬁ'ﬁﬁ:cost(&eft,'l)) + %:f:—:cost(Rr;ght, D)

if split-cost < best-cost:

best-cost
*
ngft = RIeFt

&3 — a
right — Rnght

split-cost

* *
return Rleft? right

Choosing tests

the split is greedy because it looks one step ahead
this may not lead to the the lowest overall cost

function greedy-test (Rnode , D)
best-cost = -inf

for de {1,...,D}, s4n € Sa

Rieft = Rpode U {xd < Sd,n}
Rright — IRnode U {xd > Sd,n}
split-cost = %ﬁfﬁ:cost(ﬂ%hft,'l)) + %:f:—:cost(Rr;ght, D)

if split-cost < best-cost:

best-cost
*
ngft = RIeFt

&3 — a
right — Rnght

split-cost

* *
return Rleft? right

Choosing tests

the split is greedy because it looks one step ahead
this may not lead to the the lowest overall cost

function greedy-test (Rnode » D)
best-cost = -inf

for de {1,...,D}, s4n € Sa

Rieft = Rpode U {xd < Sd,n}
Rright — IRnode U {xd > Sd,n}
split-cost = %ﬁfﬁ:cost(ﬂ%hft,'l)) + %:f:—:cost(Rr;ght, D)

if split-cost < best-cost:

best-cost
*
ngft = Rleft

&3 — a
right — Rnght

split-cost

* *
return Rleft? right

Stopping the recursion

worth-splitting subroutine

if we stop when Rnode has zero cost, we may overfit — s —
o e ©o o o
o) []
1snpflit ® 2nd split ® L
o © ° ° N "y;"‘ o
o © o o) g o (¢]
[J st @ | o ~ s
¢) 5(h!p[it./7 © k‘ill’llt ® [} o
st dplit © Znd split o ®
o o o o o Me "}“’"‘. °
o ® o A ° o

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

Stopping the recursion

worth-splitting subroutine

if we stop when Rnede has zero cost, we may overfit .
heuristics for stopping the splitting: g e ° °

® s5ing
plit
& []

[e]
° ® | O |« Hhwit O
@ Sthepit— Y ®

o 2nd split ~
3rd split
o o Me ™ o

st split

[e) O
o ® o o o °

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

Stopping the recursion

worth-splitting subroutine

if we stop when Rnode has zero cost, we may overfit P
. . . e e [] ®@ O
heuristics for stopping the splitting: - o ° .' _
) o 2nd split
. Ll o ~ N @ it []
e reached a desired depth ° R
o ° o o o °
.sm{uc ® e ~ A
¢ ® s«hspln./Y © 4"1"’"’ ¢ [] o
st it o 2nd split L L
o ° o . ° Ny P srypm. o
o © 6 o %o o

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

Stopping the recursion

worth-splitting subroutine

if we stop when Rnode has zero cost, we may overfit D
. . . e e L] ®@ O
heuristics for stopping the splitting: - e ° .' _
) (€] 2nd split
' . st split o ® o \ @ imit e}
e reached a desired depth ° o[o
o ° o o o S
e number of examples in Rig OF Ry gy iS too small
.sm{uc e e e oo
e @ 6th :p[it./7 ° k‘i"’"’ ¢ [] []
o 2nd split L °
Tt it \ 3rd split O
® o o o © ® jo o
o ° o o %lo °

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

Stopping the recursion

worth-splitting subroutine

if we stop when Rnode has zero cost, we may overfit - P
. L . . o e o ®
heuristics for stopping the splitting: 2 e ° .' _
o 2nd split
Ist split ° \ ° Srd plt Y
. o o © J
e reached a desired depth ° o[o
o ° o o o S
e number of examples in Rig OF Ry gy iS too small
J is a good approximation, the cost is small enough Sry ele e e
e) s«hspln./Y e '.'P ' [) O
Ist split e 2nd it ¢ <
o o > o © Ne "}:'o °
o ° o o “lo ®

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

Stopping the recursion

worth-splitting subroutine

if we stop when Ryode has zero cost, we may overfit R
. . . e e [] ® O
heuristics for stopping the splitting: - e ° .' _
) (€] 2nd split
. Lt o ~ N @ init o
e reached a desired depth ° ° o[
o ® o o o °
e number of examples in Rig OF Ry gy iS too small
H 1 H H [e
* wy, is a good approximation, the cost is small enough e FrE
@ 6thsplit—7|)
st it o 2nd split ® L4
° o - o © e "}:'o °
o ® o o %o o

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

Stopping the recursion

worth-splitting subroutine

if we stop when Rnede has zero cost, we may overfit R
. . . e e L] ®@ O
heuristics for stopping the splitting: 2 e ° .' .
) (€] 2nd split
) ke 1) ~ | @ friwit [¢)
e reached a desired depth ° ° o[
o ° o o o S
e number of examples in Rig OF Ry gy iS too small
H H H H @ sihgiit
® w;, is a good approximation, the cost is small enough . LN S, o
. @ 6thsplit—7| ()
e reduction in cost by splitting is small A] o e
o ~ 1o ~ Ny P h?W(. o
o o =
IVﬁght S ° © e v °

cost(Rnode, D) — (Il\y'e“ cost(Ryeft, D) + mcost(Rr;ght, ’D))

node

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

Winter 2020 | Applied Machine Learning (COMP551)

revisiting the ClA@sSification cost

ideally we want to optimize the 0-1 10SS (misclassification rate)

cost(Rg, D) = le Zm(n)eRk H(y(n) # W)

this may not be the optimal cost for each step of greedy heuristic

.

revisiting the ClA@sSification cost

ideally we want to optimize the 0-1 10SS (misclassification rate)

cost(Rg, D) = Nik > 2 cR, T(y™ # wy)

this may not be the optimal cost for each step of greedy heuristic

example

(.5 100%) @@ @
oo o o Rnode

1

revisiting the ClA@SSification cost

ideally we want to optimize the 0-1 10SS (misclassification rate)
1
cost(Ry, D) = 7~ D ster, T(y™ # wy)
this may not be the optimal cost for each step of greedy heuristic

example

(5 100%) @OO® R

9222 Roce (.5, 100%)

Rt 38 (.25, 50%) (75, 50%) D% Reight 388 (33, 75%)

-1
0000

(1,25%) ©©

1

revisiting the ClA@SSification cost

ideally we want to optimize the 0-1 10SS (misclassification rate)

cost(Rg, D) = Nik > 2 cR, T(y™ # wy)

this may not be the optimal cost for each step of greedy heuristic
both splits have the same misclassification rate (2/8)

(.5 100%) @@ @
oo O o Rnode

Rt 38 (.25, 50%) (75, 50%) D% Reight 388 (33, 75%)

(.5, 100%)

-1
0000

(1,25%) ©©

1

revisiting the ClA@SSification cost

ideally we want to optimize the 0-1 10SS (misclassification rate)

cost(Rg, D) = Nik > 2 cR, T(y™ # wy)

this may not be the optimal cost for each step of greedy heuristic

both splits have the same misclassification rate (2/8)

(5100 0908 .., 51000 9998
Rieft 38 (.25, 50%) (.75, 50%) gg Rright 388 (33, 75%) 0 25%) ©©

however the second Sp|it may be preferable because one region does not need further splitting

revisiting the ClA@sSification cost

ideally we want to optimize the 0-1 10SS (misclassification rate)

cost(Rg, D) = Nik > 2 cR, T(y™ # wy)

this may not be the optimal cost for each step of greedy heuristic

both splits have the same misclassification rate (2/8)

(5100 0908 .., 51000 9998
Rieft 38 (.25, 50%) (.75, 50%) gg Rright 388 (33, 75%) 0 25%) ©©

however the second Sp|it may be preferable because one region does not need further splitting

use a measure for homogeneity of labels in regions

Entropy

entropy is the expected amount of information in observing a random variable Y
note that it is common to use capital letters for

random variables (here for consistency we use lower-case)

H(y) = - p(y = c)logp(y = c)

Entropy

entropy is the expected amount of information in observing a random variable Y

note that it is common to use capital letters for
random variables (here for consistency we use lower-case)

H(y) = -5 p(y = c)logp(y =)

—log p(y = ¢) is the amount of information in observing ¢

Entropy

entropy is the expected amount of information in observing a random variable Y

note that it is common to use capital letters for
random variables (here for consistency we use lower-case)

H(y) = -5 p(y = c)logp(y =)

—log p(y = ¢) is the amount of information in observing ¢

zero information of p(c)=1
less probable events are more informative p(c) < p(c') = —logp(c) > —logp(c’)
information from two independent events is additive —log(p(c)q(d)) = —log p(c) — log q(d)

Entropy

entropy is the expected amount of information in observing a random variable Y

note that it is common to use capital letters for
random variables (here for consistency we use lower-case)

H(y) = -5 p(y = c)logp(y = c)

—log p(y = ¢) is the amount of information in observing ¢

zero information of p(c)=1
less probable events are more informative p(c) < p(c') = —logp(c) > —logp(c’)
information from two independent events is additive —log(p(c)q(d)) = —log p(c) — log q(d)

a uniform distribution has the highest entropy H(y) = - >, & log & =logC

Entropy

entropy is the expected amount of information in observing a random variable Y

note that it is common to use capital letters for
random variables (here for consistency we use lower-case)

H(y) = -5 p(y = c)logp(y = c)

—log p(y = ¢) is the amount of information in observing ¢

zero information of p(c)=1
less probable events are more informative p(c) < p(c') = —logp(c) > —logp(c’)
information from two independent events is additive —log(p(c)q(d)) = —log p(c) — log q(d)

a uniform distribution has the highest entropy H(y) = - >, & log & =logC

a deterministic random variable has the lowest entropy H(y) = —1log(1) =0

Mutual information

for two random variables ¢,y

.3

Mutual information

for two random variables ¢,y

mutual information is the amount of information t conveys abouty
change in the entropy of y after observing the value of t

.3

Mutual information

for two random variables ¢,y

mutual information is the amount of information t conveys abouty
change in the entropy of y after observing the value of t

I(t7y) — _H(y’t)

.3

Mutual information

for two random variables ¢,y

mutual information is the amount of information t conveys abouty
change in the entropy of y after observing the value of t

I(t7y) — _H(y’t)

.3

Mutual information

for two random variables ¢,y

mutual information is the amount of information t conveys abouty
change in the entropy of y after observing the value of t

I(t7y) — _H(y’t)

.3

Mutual information

for two random variables ¢,y

mutual information is the amount of information t conveys abouty
change in the entropy of y after observing the value of t

I(t7y) — _H(y’t)

.3

Mutual information

for two random variables ¢,y

mutual information is the amount of information t conveys abouty
change in the entropy of y after observing the value of t

I(t7y) — _H(y’t)

= H(t) - = I(y,1)

it is always positive and zero only if y and t are independent

try to prove these properties

.3

Entropy for classification cost

we care about the distribution of labels px(y = ¢) = — N,

Entropy for classification cost

we care about the distribution of labels px(y = ¢) = N

misclassification cost cost(Ry, D) = 5~ > mep, 1™ # wi) = 1 — pi(wy)

Entropy for classification cost

. . . Ez(”) €Ry, H(y(n) :C)
we care about the distribution of labels px(y = ¢) = N

misclassification cost cost(Ry, D) = 5~ > mep, 1™ # wi) = 1 — pi(wy)

the most probable class wy = arg max. px(c)

Entropy for classification cost

. . . Ez(”) €Ry, H(y(n) :C)
we care about the distribution of labels px(y = ¢) = N

misclassification cost cost(Ri, D) = 7~ >, cp, I(y™ # wy) = 1 — pp(wy)

the most probable class wy, = arg max. px(c)

m cost(Rg, D) = H(y) choose the split with the lowest entropy

Entropy for classification cost

we care about the distribution of labels px(y = ¢) = N

misclassification cost cost(Ri, D) = 7~ >, cp, I(y™ # wy) = 1 — pp(wy)

the most probable class wy = arg max. pi(c)

m cost(Rg, D) = H(y) choose the split with the lowest entropy

change in the cost becomes the mutual information between the test and labels

Entropy for classification cost

we care about the distribution of labels px(y = ¢) = N

misclassification cost cost(Ri, D) = 7~ >, cp, I(y™ # wy) = 1 — pp(wy)

the most probable class wy = arg max. pi(c)

m cost(Rg, D) = H(y) choose the split with the lowest entropy

change in the cost becomes the mutual information between the test and labels

|
n nod

COSt(Rnode, D) - (ﬁl—iCOSt(Rlefta D) +]J\]V—efteCOSt(Rrighta D))

Entropy for classification cost

we care about the distribution of labels px(y = ¢) = N

misclassification cost cost(Ri, D) = 7~ >, cp, I(y™ # wy) = 1 — pp(wy)

the most probable class wy = arg max. pi(c)

m cost(Rg, D) = H(y) choose the split with the lowest entropy

change in the cost becomes the mutual information between the test and labels

|
n nod

COSt(Rnode, D) - (ﬁl—iCOSt(Rlefta D) +]J\]V—efteCOSt(Rrighta D))

— H(y) - (pm > sam)H(p(ylza > s40)) + plaa < sux) H(plylea < sd,n»)

Entropy for classification cost

. . . Ez(”) €Ry, H(y(n) :C)
we care about the distribution of labels px(y = ¢) = N

misclassification cost cost(Ri, D) = 7~ >, cp, I(y™ # wy) = 1 — pp(wy)

the most probable class wy = arg max. px(c)

m cost(Rg, D) = H(y) choose the split with the lowest entropy

change in the cost becomes the mutual information between the test and labels

|
n nod

COSt(Rnode, D) — (jjvvl—zf;eCOSt(Rlefta D) +]J\]V—efteCOSt(Rrighta D))

— H(y) - (p(md > sam)H(p(ylza > s40)) + plaa < sux) H(plylea < sd,n») ~ I(y,z > san)

Entropy for classification cost

. . . Ez(”) €Ry, H(y(n) :C)
we care about the distribution of labels px(y = ¢) = N

misclassification cost cost(Ry, D) = 5~ > mep, 1™ # wi) = 1 — pi(wy)

the most probable class wy = arg max. px(c)

m cost(Rg, D) = H(y) choose the split with the lowest entropy

change in the cost becomes the mutual information between the test and labels

|
n nod

cost(Rpode, D) — (fvv'—zlcost(Rhft, D) +]J\,V—eftecost(Rright, D))

= H(y) - (p(md 2 Sd,n)H(p(y|xd Z sd,n)) +p(=’13d < Sd,n)H(p(y|wd < 3d,n))> - I(y,ﬂﬁ > Sd,n)

choosing the test which is maximally informative about labels

Entropy for classification cost

(.5, 100%) °°°° R (.5, 100%) 0038

0000 node o0

N N

e -1+ (—Y-1-)
R (.25, 50% 7 -
eft © @) (.75, 50%) & @ Rright 500 (:33,75%) (1,25%) ©©

Entropy for classification cost

(.5, 100%) °°°° R (.5, 100%) 0038

0000 node o0

N N

Rieft 38 (:25, 50%) (.75, 50%) 33 Rright 338 (.33, 75%) (1,25%) ©©

misclassification cost

4 1 4 1 _ 1
s'ats 171

Entropy for classification cost

(.5, 100%) °°°° R (.5, 100%) 0038

0000 node o0

N N

Rieft 38 (:25, 50%) (.75, 50%) 33 Rright 338 (.33, 75%) (1,25%) ©©

misclassification cost

4 1 4 1 _ 1
s'ats 171

ool
Wl
|
ool
N
I
=

Entropy for classification cost

(.5, 100%) °°°° R (.5, 100%) 0038

0000 node o0

N N

Rieft 38 (:25, 50%) (.75, 50%) 33 Rright 338 (.33, 75%) (1,25%) ©©

misclassification cost

4 1 4 1 _ 1
s'ats 171

o]f=
W=
|
ool
N
I
=

Entropy for classification cost

5,100%) @@ @ 11X
(/\O)oooo Raode ;@oooo
Rieft 38 (:25, 50%) (.75, 50%) 33 Rright 338 (.33, 75%) (1,25%) ©©
misclassification cost
4 1 4 1 1 6 1 2 0 1
R I 8378 271

e ntrO py COSt (using base 2 logarithm)

Entropy for classification cost

(5, 100%) @OOO® R,
Q000 M

N

Rieft gg (.25, 50%)

misclassification cost

4 1 4 1 _ 1
s'ats 171

e ntrO py COSt (using base 2 logarithm)

(- d1oa(h) ~ H1ou(h)) + £~ d1o8h) - F1o8(h)) ~ 51

(.75, 50%) 33 Rright

(.5, 100%) 9938

(+]+
ggg (.33, 75%) (1,25%) ©©

[ole]f=>}
Wl
|
ool
N
I
=

Entropy for classification cost

(5, 100%) @OOO® R,
Q000 M

N

Rieft gg (.25, 50%)

misclassification cost

4 1 4 1 _ 1
s'ats 171

e ntrO py COSt (using base 2 logarithm)

(- d1oa(h) ~ H1ou(h)) + £~ d1o8h) - F1o8(h)) ~ 51

(.75, 50%) 33 Rright

(.5, 100%) 9938

(+]+
ggg (.33, 75%) (1,25%) ©©

[ole]f=>}
Wl
|
ool
N
I
=

e [=>}
W=

<—%bd

) — glog(g)) +2.0~.68

[] [] o
Gini index
another cost for selecting the test in classification

misclassification (error) rate cost(Ri, D) = §- 3 ocp, 1y™ # wi) = 1 — p(wy)

entropy cost(R;, D) = H(y)

Gini index

another cost for selecting the test in classification

misclassification (error) rate cost(Ri, D) = §- 3 ocp, 1y™ # wi) = 1 — p(wy)

entropy cost(R;, D) = H(y)

m it is the expected error rate

[] [] o
Gini index
another cost for selecting the test in classification

misclassification (error) rate cost(Ri, D) = §- 3 ocp, 1y™ # wi) = 1 — p(wy)

entropy cost(R;, D) = H(y)

m it is the expected error rate

cost(Rg, D) = chzl (1—p(c))

probability of class ¢

[] [] o
Gini index
another cost for selecting the test in classification

misclassification (error) rate cost(Ri, D) = §- 3 ocp, 1y™ # wi) = 1 — p(wy)

entropy cost(R;, D) = H(y)

m it is the expected error rate

cost(Rg, D) = chzl (1—p(c))

probability of class ¢

=30 p(e) = S p(e)? =130 p(c)?

Gini index
another cost for selecting the test in classification
misclassification (error) rate cost(Ri, D) = §- 3 ocp, 1y™ # wi) = 1 — p(wy)

entropy cost(Ry, D) = H(y)

comparison of costs of a node when we have 2 classes

m it is the expected error rate

cost(Rg, D) = chzl (1—p(c))

probability of class c 3 4

=30 p(e) = S p(e)? =130 p(c)?

0.4 0.5

0.3

cost

0.1

0.0

Winter 2020 | Applied Machine Learning (COMP551)

Example

decision tree for Iris dataset

dataset (D=2)

decision tree

45
O setosa

5 versicolor

o O virginica N <28/A8W>=28

W>=315 yoreolor

Sepal width

. 6 65 7 75 8
Sepal length

4.5

3.5

25

decision boundaries

r 0000000000000 0000O0OOOHHOHOOOOLOOOOOOOOOO
0000000000000 O0OOOOOHHHOOHOO O versicolor

[elelelelele el elololelo 0o 0 eloleloleTooTo20To20TOT0XN) O setosa
0000000000000 00O000OHHHOOOHO N
0000000000000000000000HOGHOOOG]__ @ virginica

F O00000000O0OO0O0OOOOOOCOLHHHOOHOTHOOOOOOOOD

0000000000000000000000HHYIOOOIOTIOIOOOOOOOD
00000000000 000O0000000OHHOHOOOOTOOOHOOOOOO
0O00000000000000000000OHPHHHOOOOTHOOOOOOOOO
[elelelelelelolelelelelelelelololelelololelolvteTotototeTotoluteoToTotoretoToTone2d
F 00000000000 0000000000OHHOOOHOOTHOOOHOOOOO
000000000000000HHENNHIHHOHOOOOTOOOOOOOOOO
000000000000000NNNHNNNNHIGHOPOTOOOOOOOOOD
000000000000000NNNHNANINHIGHOPOTOOOOOOOOOD
O0000000000000ONHHINHIIHOOOTOOOTOOOOOOOOOO
F ©00000000000000LHHHHHHOOHOTOHOPTOOHOOOOOOO
000000000000000NNDHNNOIINOIHHOTOOOOOOOOOD
0O00000000000000nNnNnIIHOOIIDIIIHOOOOOOOOO
oooooooonoooooooonoododHOnnoaandOOOOOOOO0
0o0o000000000000000000dHOnndOOIOOOOOOOOOO
- ooooooooooooooooodonoodOOnIOOOIOOOOOOOOOO
0oo0o00000o000000oooooodHOnadHOOOOOOOOOOOO
0ooo0000000000000000000000000000dOOOOOO000
0oo00000000000000000000000000000dOOOOOOO00
poooooooooooooooooooooooooooogadHPOOOOOOOO

L L L e e e S IS e e S S e e A Zavacatavarars sl
4 4.5 5 55 6 6.5 7 7.5 8

1

Example

decision tree for Iris dataset

dataset (D=2)

decision tree

45

O setosa
versicolor

o ° O virginica N <28/A8W>=28

A -
SW<3I5ASW>=315 e

Sepal width

virginica
SW < 2,95 ASWSL=2865 ASL >= 6.65

4 45 5 55 6 65 7 75 8
Sepal length

4.5

3.5

25

decision bounderies

r OO000O0O0O0OOOOOO 000000HOOOOOOOLOOOOOOOOOO
00000000000000GOO0000OHHOOOOOO] 1 versicolor

00000000000000QOO00000PPVOVIVVl § setosa
00000000000000EHOOO00OGHHIOOOH
00000000000000Q0000000HOGHOOOG|__ @ virginica

F 0000000000000 EDOOOOOOLHHHOOHOTHOOOOOOOOD

000000000000000000000OHHOHOOOOTIGOOOOOOOOO
00000000000000ENOOO000HHHIGOOOTOOOOOOOOOH
0000000000000 00000000OHHIGHOOOTOOOOOOOOOD
0000000000000 EPOOOOOOHHOOOOOOTIOOOOOOOOOO
I 0O0000000000000O00000OHHHOOOOOTIOOOOOOOOOO
0000000000000OE 10 IOOGOOSOOOOTOOSOOOOOOD
00000000000000ONNNHNNINIOGOOOOTOOSOOOOOOO
0000000000000 1L HNNIGOOGOOOOTOOSOOOOOOO
00000000000000CHNNINONNHGOTOPOTOPOOOOOOOD

F O0O000000000000EIILHHHOOHOOTOOOTGOOOOOOOOO

00000000000000GHNDHNNOINDOIHHOTOOOOOOOOOD
0O0000000000000QUNNNNIIHOOIIDIIIGOOOOOOOOO
oooooooonoooooEoooooodOOnnnoandOOOOOOOO0
0ooo0000000000goooooooddOnadOOIOOOOOOOOO0

- oooooooooooood@hoooooodOOnIOOOTIOOOOOOOOOO

0oo0o000o0o0ooooooooooodHOnadHOOOOOOOOOOOO
oooooooooooooo@ooooooooooooooodOOOOO0000
0oo0o0000o000000000000000000000000dOOOOOOOO0
!‘H’H’\"H"!’\“\H!’H’H‘H‘H’“\.‘H’H‘H‘\!‘H’!“H"!‘H’\"\"H"H“H"()(}QOO(}(}O(}O

4 45 5 65 6 65 7V 8

1

Example

decision tree for Iris dataset

dataset (D=2)

decision tree

45

O setosa
versicolor

o O virginica N <28/A8W>=28

LeWSS
o0 vers®olse®sa SW < 3.45 A8W 5= 3.45

A -
SW<3I5ASW>=315 e

Sepal width

virginica
SW < 2,95 ASWSL=2865 ASL >= 6.65

4 45 5 55 6 65 7 75 8
Sepal length

4.5

3.5

decision bounderies

r 0000000000000 0GOOOOOOOHOOOOOOOLOOOOOOOOOO

00000000000000GOO0000OHHOOOOOO] 1 versicolor
00000000000000QOO00000PPVOVIVVl § setosa
00000000000000 oooooo<><><><><><><><>

00000000000000Q0000000HOGHOOOG]__ @ virginica

F 0000000000000 EDOOOOOOHHHHHOOOIHOOOOOOOO

000000000000000000000OHHOHOOOOTIGOOOOOOOOO
00000000000000ENOOO000HHHIGOOOTOOOOOOOOOO
0000000000000 00000000OHHIGHOOOTOOOOOOOOOO
0000000000000 EPOOOOOOHHOHOOOOTOOOOOOOOOO
I 0©O0000000000000O00000OHHHHOOOOIOOOOOOOOOO
0000000000000 10 I0OGOOSOOOOTOOSOOOOOOD
00000000000000ONNNHNNINIOGOOOOTOOSOOOOOOD
0000000000000 1L HNNIGOOGOOOOTOOSOOOOOOO
00000000000000CHNNINONNHHOTOPOTOPOOOOOOOD
- ©O000000000000GTIHOOHOOOOOTOOOTOOHOOOOOOO
0000000000000 NTNOININOIINHOTIGOSOOOOOOO

O O; (elo[alalaluluiuteotolululinINIuloTototorereTetetolod
Dﬂmmgmﬁﬁﬂﬁrmmmrﬂooomﬂrmﬂroooooooooo

0ooo0000000000goooooooddOnadOOnOOOOOOOOO0
F 0oooooooo00o0oo0o0@oooooodoonIOOOIOOOOOOOOOO
0oo0o00000o0ooo0ooooooodHOnadHOOOOOOOOOOOO
nooooooooooooo@ooooooooooooooodOOOOO0000
0oo0000o000000000000000000000000dOOOOOOOO0

!‘H’H‘\"H"!’H‘\HFH’H‘H‘H’“\.‘H’H‘H‘\!‘H’!“H‘H‘H’H‘\"H"H“H"()OQO()(}(}()(}O

4 45 5 @5 6 65 7 75 8

1

Example

decision tree for Iris dataset

dataset (D=2)

decision tree

45

O setosa
versicolor|

o O virginica

o o0 vers®olsel
o oo *° o virghica
35 00 O
5 0 0 000 O 00
2 o £ -
H 000 o 00 005 0 SW<31558W>=315 yorRojor
g 0 00 3
@ 3l oo ooo 000 00060 00 00 virghica
050 o%g 0o 0 SW <2.95 ASWSL-2@B5 ASL >= 6.65
SL<6.45 ASL >3 000 W
25 o 0 o 0
° SW < 2.85 & V‘(Ig’s hqg’ Vit ic<32‘9 ASW >=29

4 45 5 55 6 65 7 75
Sepal length

virg'hiars Color versitaligihica

4.5

IN

3.5

)

25

decision bounderies @

00000000000000TOO000OCHOIOOOOOT 1 versicolor
00000000000000LO000000LOPOONVT gatosa
[elslelclelelelelelelelelelel Slelelelele} <><)<><><>O<>
[elelclelclelolololelelelele} oooooo%o@o OO O virginica
JRelclclclelelelelelelelelelel Liclelelele}

000000000000000000000OHHOHOOOOIGOOOOOOOOO
00000000000000EOOO0OAOGOGOYOTHOOOOOOOOD
0000000000000 00000000OHHIGHOOOTOOOOOOOOOO
0000000000000 EPOOOOOGHHVOVOOOOTOOOOOOOOOO
I 0O0000000000000O00000OHHHOOOOOTIOOOOOOOOOO
[elelelelelelolelelelolelelels NinluininlnlreToZoToveTotoluteToToTovetoToTote0d
000000000000000UNHNNILGHOOOOOOOTOOOOOOOOOO

r 0000000000000 0GOOOOOOQLOOOOOOOLOOOOOOOOOO

020200V O O IRt etete20 202020203

OOOO0OOOOOOOOOO

Ooooooooooooooo
r 000ooo00ooooood

Ooooooooooooooo

0000000000000 1L HHNZFOOGOOOOTOOSOOOOOOO
00000000000000UNNNNNNMROOOTOOOTOOOOOOOOOD
F O0000000000000EIILHHORLHOHTOOOTGOOOOOOPOO

000005H00000000000000O00

O O; (elo[alalaluluiutocoolulnlinINIuloToIotorereTetetolod
Dﬂmmmmﬁﬁﬂﬁmmmmm OOOOnnOIOOOOOOOOOO

e I LA A IR N LYY O ROt ee202020202020]
00000EH000HGOTOONPOOOOO

0oo0oo000o0o0ooo0ooooooodHoadHOOOOOOOOOOOO
@ ooooo@ooooooonddOOOOO000

0ooo000o0o000000000000000000000000dOOOOOOOO0
r[rmTrmmmmmmmrm‘mmmmm'mmmﬁrrﬂr<><><><><><><><><)<>

4 45 5 @5 TV 8

1

Example

decision tree for Iris dataset

dataset (D=2) decision tree

O setosa SL <5.45/ASL >=5.45

5 versicolor T
o O virginica N<28 >=28
4 ,
5 9 vors®opelsa SW <3455

o 0

00 vore oW <3TASW>=3.1_ e SL <695ASL >=6.95
o -
000 Oog o SW <295 X' SW <3.1 W>=315 @

virginica

Sepal width

4 45 5 55 6.5 7 75 8

6
Sepal length

decision boundaries suggest overfitting

confirmed using a validation set

training accuracy ~85%
(Cross) validation accuracy ~ 70%

virghica

4.5

3.5

25

decision bounderies

r 0000000000000 0GOOO00OQLOOOOOOOLOOOOOOOOOO

00000000000000TOOO00OEFHOOOOOO O versicolor
00000000000000QOO0000ONIVPINPl & cetosa
00000000000000EDOO0OOERHOOOOHO N

00000000000000Q0000000HGGHOOOG]__ @ virginica

F 0000000000000 EDOOOOOENGOOHOOOTHOOOOOOOOD

000000000000O000000000OHHOOOOOOLOOOOOOOOOO
0O00000000000OEDOOOCOEROOOOOOOTOOOOOOOOOO
000000000000 O00O0O00000OHHHHOOOOTOOOOOSOOOO
0000000000000 EPOOOOOGH YOOV OTOOOOOOOOOO
F 0000000000000 OOO000O0COHHHOOOOOTOOOOOOOOOO
0000000000000 1 LIOOFROOSOOOOTOOSOOOOOOD
0000000000000O0HNHNIHHYHGHPOOOOTOOOOOOOOOO
0000000000000 0EE! LI HFGOOOOOOTOOOOOOOOOO
0000000000000OUHNHNONNGOGOIGOOTOOOOOOOOOO
- O0O000000000000EIILHHORLHOHTOOOTIGOOOOOOPOO
000000000000OOCTHnOOINFIIOIOOHOIOOOOOOOOOO
O@P RO O@OGR O 0000 O0HOOD OO OOIGOOOOOOOOO
ooDotootofbdtoEhooooofgO0n00n0odOOOOOOO0O0
Ooooooooo0oooogooooododOOnnOOOIOOOOOOOOO0

F ooooooooooooo0@oooood)OOnaOOOIOOOOOOOOO0
0o0o000000000000000000dHO00OOOIOOOOOOOOOO
ooooooooooooo@oooot 0oooooodOOOOOOO00
0ooo000o0o000000000000000000000000dOOOOOOOO0
oooooooooooooo@ooooo@oooooogadOOOOO0000

4 4.5 5 55 6 6.5 7 7.5 8

1

Overfitting

a decision tree can fit any Boolean function (vinary classification with binary features)

image credit: https://www.wikiwand.com/en/Binary_decision_diagram

.2

Overfitting

a decision tree can fit any Boolean function (vinary classification with binary features)

example: of decision tree representation of a boolean function (D=3)

o]
@@

S aaa0000|=
—a00==200N
~oa20=20=0w
— L0000 =™

image credit: https://www.wikiwand.com/en/Binary_decision_diagram

Overfitting

a decision tree can fit any Boolean function (vinary classification with binary features)

example: of decision tree representation of a boolean function (D=3)

o]
@@

S aaa0000|=
—a00==200N
~oa20=20=0w
— L0000 =™

image credit: https://www.wikiwand.com/en/Binary_decision_diagram

D
there are 22 such functions, why?

Overfitting

a decision tree can fit any Boolean function (vinary classification with binary features)

example: of decision tree representation of a boolean function (D=3)

D
there are 22 such functions, why?

o

large decision trees have a high variance - low bias (low training error, high test error)

S aaa0000|=
—a00==200N
~oa20=20=0w
— L0000 =™

image credit: https://www.wikiwand.com/en/Binary_decision_diagram

Overfitting

a decision tree can fit any Boolean function (vinary classification with binary features)

example: of decision tree representation of a boolean function (D=3)

D
there are 22 such functions, why?

large decision trees have a high variance - low bias (low training error, high test error)

Aa a0 00 0=

—_-—_00==00|Nn
- O0=20=0=0|Ww
Y Yo R e Y e T

[eERMN grow a small tree

image credit: https://www.wikiwand.com/en/Binary_decision_diagram

Overfitting

a decision tree can fit any Boolean function (vinary classification with binary features)

example: of decision tree representation of a boolean function (D=3)

D
there are 22 such functions, why?

o

large decision trees have a high variance - low bias (low training error, high test error)

S aaa0000|=
—a00==200N
~oa20=20=0w
— L0000 =™

[eERMN grow a small tree

@ substantial reduction in cost may happen after a few steps

by stopping early we cannot know this

image credit: https://www.wikiwand.com/en/Binary_decision_diagram

Overfitting

a decision tree can fit any Boolean function (vinary classification with binary features)

example: of decision tree representation of a boolean function (D=3)

D
there are 22 such functions, why?

&

large decision trees have a high variance - low bias (low training error, high test error)

grow a small tree # o '6
@ substantial reduction in cost may happen after a few steps Ooo% %g

by stopping early we cannot know this

Aa a0 00 0=
—_——_OO=00 =™

—_-—_00==00|Nn
- O0=20=0=0|Ww

cost drops after the second node

image credit: https://www.wikiwand.com/en/Binary_decision_diagram

Pruning

grow a large tree and then prune it

.3

Pruning

grow a large tree and then prune it

greedily turn an internal node into a leaf node
choice is based on the lowest increase in the cost
repeat this until left with the root node

.3

Pruning

grow a large tree and then prune it

greedily turn an internal node into a leaf node
choice is based on the lowest increase in the cost
repeat this until left with the root node

pick the best among the above models using using a validation set

.3

Pruning

grow a large tree and then prune it

greedily turn an internal node into a leaf node
choice is based on the lowest increase in the cost
repeat this until left with the root node

pick the best among the above models using using a validation set

before pruning

-
we;&i\fxza

versicolseiosa

SL <5458l >=545

vorsToiW < 3. ASW >=3.1

SW <2.95 ZSW > @ 95

sL< -6.1
=345 sL< >=7.05
— T
solfsa o sw <24 ASW>=2 4 virghica
vorRaior SL<BU5ASL > 6.95

W>=315 \orsolor

..
virghica

.3

Pruning

grow a large tree and then prune it

greedily turn an internal node into a leaf node
choice is based on the lowest increase in the cost
repeat this until left with the root node

pick the best among the above models using using a validation set

before pruning after pruning
SL<545/A8L >=545

N<28 >=28

SL<5.75 =5. jﬁ\ﬁfrggésﬂ >=24 m‘ca
vor Bl <3 TASW =31, @ < L>=6.95 / \ Y N
SW <345 /(5W >= 345
W >=3.15 versboor selsa AS vighica

SW <2.95 ASW 2R3 verstolor

/N
‘ v

45
elOT SL<6.45 8L 65 A\ASW >=2.65
o selosa <6 >RSP >=
virginica versicolor
4 2% 2 <285 20SW g %S O setosa
O virgini
500 &6 virginiasicolor
35 60000000
GO000000C 35
0000000
3
0OG00000C
60000000
25 00000000+ O O
0000000 25,
00000000
2
4 45 5 55 6 65 7 75
2
4 45 5 55 6 65 75

Pruning

grow a large tree and then prune it
greedily turn an internal node into a leaf node
choice is based on the lowest increase in the cost
repeat this until left with the root node

pick the best among the above models using using a validation set

before pruning after pruning cross-validation is used to pick
the best size

SL<545ASL >=5.45
— T

N<28 >=28

SL<5.75 =5. /,E\LVVS'ZAM?Vii Tidhica 08
_ P _ / \ — Cross-validation
vor Bl <3 TASW =31, @ < L>=6.95 / Y \.
S Y W == == Training set
SW <2.95 J8SW 22838 W>=315 o Rolor 0.7 == == Min+1std. er. [

/ \ O Best choice
£, Bea

a5 5
elOT SL<6.45 8L 65 A\ASW >=2.65 5
o selosa <6 >RSP >= p
virginica versicolor S
. 00 <285 /KSW @ 85 O selosa w
0094 o virgini S
993333388 virghiaarstolor %
<
35 00000000+ 3
GO000000C 35 £
00000000 3
Q
N 939 S
60000000
25 00000000 O O O S~
< 50000 ——
0 o 000 25f e —
00000000
2 o1 5 10 15 20
4 45 5 55 6 6.5 7 75
e ERT 5 0 75 Number of terminal nodes

Pruning

grow a large tree and then prune it random forests (later!)
greedily turn an internal node into a leaf node
choice is based on the lowest increase in the cost
repeat this until left with the root node

pick the best among the above models using using a validation set

before pruning after pruning cross-validation is used to pick
. the best size

% 5458 >=545

N<28 >=28

SL<5.75 -5 | swezs Mﬁ’iﬂq Titia o8
vorsEoiW <3.TASW >=3.1, ers%;l;;""' <BU5ASL >=6.95 / N\ — Cross—validation
e weakspEuomats e, == == Training set
SW <2.95 ASW 2R W>=315 o Rolor 07f == == Min + 1 std. err. 4
/ \ O Best choice
45 L L1 <
versicolor g
o smosa SL<6.45 451 >5,080 Ml ¢ 2 65 ASW >= 265 s
virginica versicolor S
A 50 <285 /KSW @85 O selosa T
299958 O virgini S
9909090 virgthiamsRolor 2
35 OC Q B
00000 25 €
Q00 0 g
¢ [&]
GO000000C
00000000 oy
O
25 00000000 O O 02 S~
9 e —
100000000 25, e —
00000000 0.1
2 .
4 45 5 55 6 65 7 75 5 10 15 20
2
4 45 5 55 5 65 75 Number of terminal nodes

Winter 2020 | Applied Machine Learning (COMP551)

Summary

e model: divide the input into axis-aligned regions
e cost: for regression and classification

10

Summary

e model: divide the input into axis-aligned regions
e cost: for regression and classification
e optimization:

= NP-hard

= use greedy heuristic

10

Summary

model: divide the input into axis-aligned regions
cost: for regression and classification
optimization:
= NP-hard
= use greedy heuristic
adjust the cost for the heuristic
= using entropy (relation to mutual information maximization)
= using Gini index

10

Summary

model: divide the input into axis-aligned regions
cost: for regression and classification
optimization:
= NP-hard
= use greedy heuristic
adjust the cost for the heuristic
= using entropy (relation to mutual information maximization)
= using Gini index
decision trees are unstable (have high variance)
= use pruning to avoid overfitting

10

Summary

model: divide the input into axis-aligned regions
cost: for regression and classification
optimization:
= NP-hard
= use greedy heuristic
adjust the cost for the heuristic
= using entropy (relation to mutual information maximization)
= using Gini index
decision trees are unstable (have high variance)
= use pruning to avoid overfitting
there are variations on decision tree heuristics

= what we discussed in called Classification and Regression Trees (CART)

10

