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decision trees:

model
cost function
how it is optimized

how to grow a tree and why you should prune it!

Learning objectivesLearning objectives
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Adaptive basesAdaptive bases   

so far we assume a fixed set of bases in f(x) =  w  ϕ  (x)∑d d d

several methods can be classified as learning these bases adaptively

decision trees
generalized additive models
boosting
neural networks

f(x) =  w  ϕ  (x; v  )∑d d d d

each basis has its own parameters
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Decision trees: Decision trees: motivationmotivation
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pros.
decision trees are interpretable!
they are not very sensitive to outliers
do not need data normalization
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cons.
they could easily overfit and they are unstable

pruning
random forests
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Decision trees: Decision trees: ideaidea

divide the input space into regions and learn one function per region

f(x) =  w  I(x ∈∑k k R  )k

the regions are learned adaptively
more sophisticated prediction per region is also possible (e.g., one linear model per region)
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Decision trees: Decision trees: ideaidea

divide the input space into regions and learn one function per region

f(x) =  w  I(x ∈∑k k R  )k

the regions are learned adaptively
more sophisticated prediction per region is also possible (e.g., one linear model per region)

x  1
x  2

w  1

w  3

w  5

each region is a set of conditions R  =2 {x  ≤1 t  ,x  ≤1 2 t  }4
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what constant           to use for prediction in each region?

  
Prediction per regionPrediction per region

w  k

suppose we have identified the regions R  k
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what constant           to use for prediction in each region?

  
Prediction per regionPrediction per region

w  k

suppose we have identified the regions R  k

fore regression

use the mean value of training data-points in that region

w  =k mean(y ∣x ∈(n) (n) R  )k

for classification
count the frequency of classes per region
predict the most frequent label
or return probability

example: predicting survival in titanic

most frequent label

frequency of survival

percentage of training data in this region

5 . 2

w  =k mode(y ∣x ∈(n) (n) R  )k



Feature typesFeature types
  

given a feature what are the possible tests
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it could lead to sparse subsets
data fragmentation: some splits may have few/no datapoints
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alternative: binary splits that produce balanced subsets
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Search spaceSearch space   
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       = greedy­test (     ,   )

D

R  node DR  ,R  left right

R  ,R  left right

R  node

R  left D
R  right D

final decision tree in the form of nested list of regions

{{R  ,R  }, {R  , {R  ,R  }}1 2 3 4 5
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return the split with the lowest greedy cost



Stopping the recursionStopping the recursion   
worth­splitting subroutine

if we stop when             has zero cost, we may overfitR  node

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

7 . 3



Stopping the recursionStopping the recursion   
worth­splitting subroutine

if we stop when             has zero cost, we may overfitR  node

heuristics for stopping the splitting:

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

7 . 3



Stopping the recursionStopping the recursion   
worth­splitting subroutine

if we stop when             has zero cost, we may overfitR  node

heuristics for stopping the splitting:

reached a desired depth

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

7 . 3



Stopping the recursionStopping the recursion   
worth­splitting subroutine

if we stop when             has zero cost, we may overfitR  node

heuristics for stopping the splitting:

reached a desired depth
number of examples in           or           is too smallR  left R  right

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

7 . 3



Stopping the recursionStopping the recursion   
worth­splitting subroutine

if we stop when             has zero cost, we may overfitR  node

heuristics for stopping the splitting:

reached a desired depth
number of examples in           or           is too small
      is a good approximation, the cost is small enough

R  left R  right

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

7 . 3



Stopping the recursionStopping the recursion   
worth­splitting subroutine

if we stop when             has zero cost, we may overfitR  node

heuristics for stopping the splitting:

reached a desired depth
number of examples in           or           is too small
      is a good approximation, the cost is small enough

R  left R  right

w  k

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

7 . 3



Winter 2020 | Applied Machine Learning (COMP551)

Stopping the recursionStopping the recursion   
worth­splitting subroutine

if we stop when             has zero cost, we may overfitR  node

heuristics for stopping the splitting:

reached a desired depth
number of examples in           or           is too small
      is a good approximation, the cost is small enough
reduction in cost by splitting is small

R  left R  right

w  k

cost(R  ,D) −node (  cost(R  ,D) +N  node

N  left
left  cost(R  ,D))N  node

N  right
right
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cost(R  ,D) =k   I(y  =N  k
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=  p(c) −∑c=1
C

 p(c) =∑c=1
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Gini index it is the expected error rate

cost(R  ,D) =k  p(c)(1 −∑c=1
C

p(c))
probability of class c probability of error

another cost for selecting the test in classification

comparison of costs of a node when we have 2 classes

p(y = 1)

cost
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decision tree for Iris dataset

decision boundariesdataset (D=2)

decision boundaries suggest overfitting

confirmed using a validation set

training accuracy                   ~ 85%
(Cross) validation accuracy   ~ 70% 1

2

3

decision tree
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a decision tree can fit any Boolean function (binary classification with binary features)

image credit: https://www.wikiwand.com/en/Binary_decision_diagram

example: of decision tree representation of a boolean function (D=3)

there are         such functions, why?22D

large decision trees have a high variance - low bias (low training error, high test error)

idea 1. grow a small tree

example cost drops after the second node

9 . 2

 substantial reduction in cost may happen after a few steps

by stopping early we cannot know this
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PruningPruning   
idea 2. grow a large tree and then prune it

greedily turn an internal node into a leaf node
choice is based on the lowest increase in the cost
repeat this until left with the root node

pick the best among the above models using using a validation set

after pruning cross-validation is used to pick
the best size

example

before pruning

idea 3. random forests (later!)
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SummarySummary
model: divide the input into axis-aligned regions
cost: for regression and classification
optimization:

NP-hard
use greedy heuristic

adjust the cost for the heuristic
using entropy (relation to mutual information maximization)
using Gini index

decision trees are unstable (have high variance)
use pruning to avoid overfitting

there are variations on decision tree heuristics
what we discussed in called Classification and Regression Trees (CART)
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