Applied Machine Learning

Perceptron and Support Vector Machines

Siamak Ravanbakhsh

COMP 551 (winter 2020)

Learning objectives

geometry of linear classification

Perceptron learning algorithm

margin maximization and support vectors
hinge loss and relation to logistic regression

Perceptron

historically a significant algorithm

(first neural network, or rather just a neuron)

old implementation (1960's)

biologically motivated model

simple learning algorithm

convergence proof

beginning of connectionist Al

it's criticism in the book "Perceptrons" was a factor in Al winter

Perceptron

historically a significant algorithm

(first neural network, or rather just a neuron)

old implementation (1960's)

biologically motivated model

simple learning algorithm

convergence proof

beginning of connectionist Al

it's criticism in the book "Perceptrons" was a factor in Al winter

f () = sign(w & + wo)

f."] ~ Step function
e "--,_,-r"‘_ |;_
T e —
— .-'--::'r ' e :""'
- T iieighterd
~--‘.___J surn

image:https:/cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html

Perceptron

historically a significant algorithm

(first neural network, or rather just a neuron)

old implementation (1960's)

biologically motivated model

simple learning algorithm

convergence proof

beginning of connectionist Al

it's criticism in the book "Perceptrons" was a factor in Al winter

f(z) = sign(w 'z + wy)

\
AL R ~ Step functian
_:-““: -:_J: P""f' _L_J_.._—...|:l" .
—a J Wizighted note that we're using +1/-1 for labels rather than 0/1.
= 5L

image:https:/cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html

=menyorne SE@PArating hyperplane

this hyperplane has one dimension lower than D umber of features)

L2

a
\‘\‘b\

Yy=w T+ wy = wrxrs +wixrs +wy =0

1

1

=menyorne SE@PArating hyperplane

this hyperplane has one dimension lower than D umber of features)
for any two points a and b on the line w' (a—0b)+wy—wy=0

L2

I

y=w'x+wy = wexTs +wix; +wo =0

=menyorne SE@PArating hyperplane

this hyperplane has one dimension lower than D umber of features)
for any two points a and b on the line w' (a—0b)+wy—wy=0

L2

I

y=w'x+wy = wexTs +wix; +wo =0

=menyorne SE@PArating hyperplane

this hyperplane has one dimension lower than D umber of features)
for any two points a and b on the line w' (a—0b)+wy—wy=0

L2

.
the orthogonal component of any point on the line \TZU—Hb = Tl

a

/ b

/ 1

y=w'x+wy = wexTs +wix; +wo =0

1

=menyorne SE@PArating hyperplane

Wo

.
. . w .
the orthogonal component of any point on the line Wb = Tl

L2

e

1

=menyorne SE@PArating hyperplane

Wo

.
. . w .
the orthogonal component of any point on the line Wb = Tl

L2

e

1

=menyorne SE@PArating hyperplane

Wo

.
the orthogonal component of any point on the line ﬁi’u—ub = Tl

L2
signed distance of any from the line

\‘C\L
T

1

=menyorne SE@PArating hyperplane

.
the orthogonal component of any point on the line ﬁiu—Hb = — ﬁfU—OH
0 .
wch signed distance of any from the line
[
\\
\
\'C\J_
1

=menyorne SE@PArating hyperplane

.
the orthogonal component of any point on the line ﬁu—Hb = —ﬁfU—OH
ip) .
wch signed distance of any from the line
[
\

/\ \'C\J_
A T1 w'

=menyorne SE@PArating hyperplane

.
the orthogonal component of any point on the line ﬁu—Hb = " Twl]

L2

T

/\ \'C\J_
- T1 w'

Wo

T

wch signed distance of any from the line
T T
o WL W,
[|wl| [Twl] =

=menyorne SE@PArating hyperplane

.
the orthogonal component of any point on the line ﬁv—Hb — _ﬁfU_OH
I9 -
wch signed distance of any from the line
T T
[] w . w — 1 (wle 4w
Tl €~ M€t = Ten(@ ¢+ o) W

T

/e T

X w
" wrc:

Winter 2020 | Applied Machine Learning (COMP551)

Perceptron: objective

if y™g™ <0 try to make it positive

label and prediction have different signs

L2
distance to the boundary
this is positive for points that are on the wrong side

T~

\"”1

Perceptron: objective

if y™g™ <0 try to make it positive

label and prediction have different signs

- equivalent to minimizing —y(”) (wTw(") + wy)

distance to the boundary
this is positive for points that are on the wrong side

T~

\"”1

Perceptron: objective

if y™g™ <0 try to make it positive

label and prediction have different signs

o equivalent to minimizing —y(”) (wTw(") + wy)

distance to the boundary
€T (TL) this is positive for points that are on the wrong side

[
/
\ W(w 2™ + wy)

\"”1

Perceptron: objective

if y™g™ <0 try to make it positive
label and prediction have different signs

- equivalent to minimizing —y(”) (wTw(”) + wy)

distance to the boundary
€T (’I'L) this is positive for points that are on the wrong side

misclassified points from the decision boundary
and push them to the right side

\ = (wTw(n) 4+ ’wo) so perceptron tries to minimize the distance of

I

1

revisitng P@rceptron: optimization

if y™§™ <0 minimize Jp(w) = —y™ (w"z™)

revisitng P@rceptron: optimization

if y™g§™ <0 minimize Jp(w) = —y™ (w' ™)

revisitng P@rceptron: optimization

if y™g™ <0 minimize J,(w)=—y™(w'z®)

otherwise, do nothing

revisitng P@rceptron: optimization

if y™g™ <0 minimize J,(w)=—y™(w'z®)
otherwise, do nothing

use stochastic gradient descent VJ,(w) = —y™z®

revisitng P@rceptron: optimization

if y™g™ <0 minimize J,(w)=—y™(w'z™)
otherwise, do nothing

use stochastic gradient descent VJ,(w) = —y™z®

sign(w') = sign(cw ' z)

revisitng P@rceptron: optimization

if y™g™ <0 minimize J,(w)=—y™(w"z®)

otherwise, do nothing

use stochastic gradient descent VJ,(w) = —y™z®

sign(w') = sign(cw ' z)

Perceptron convergence theorem

the algorithm is guaranteed to converge in finite steps if linearly separable

Perceptron: example

| (linearly separable case)

zzzzzzz

iteration 1

.3

Perceptron: example

| (linearly separable case)

zzzzzzz

iteration 1 6 yh = np.sign(np.dot(X[n,:], w))
7 if yh != y[n]:
8 w=w+ y[n]*X[n,:]

.3

Perceptron: example

Iris dataset
(linearly separable case)

iteration 1 6 yh = np.sign(np.dot(X[n,:], w))
7 if yh != y[n]:
0000 oo o0 o 8 w =w + y[n]*X[n,:]

note that the code is not chacking for convergence

.3

Perceptron: example

iteration 1

Iris dataset
(linearly separable case)

6 vh

~

initial decision boundary

= np.sign(np.dot(X[n,:], w))
if yh != y[n]:

w=w + y[n]*X[n, :]

note that the code is not chacking for convergence

w'z=0

.3

Perceptron: example

Iris dataset
(linearly separable case)

iteration 10

O oo JOoO Ul WN K-

def Perceptron(X, y, max iters):
N,D = X.shape
w = np.random.rand(D)
for t in range(max iters):
n = np.random.randint (N)
yh = np.sign(np.dot(X[n,:], w))
if yh != y[n]:
w=w+ y[n]*X[n,:]
return w

note that the code is not chacking for convergence

Perceptron: example

Iris dataset

(linearly separable case)

iteration 10

O oo JOoO Ul WN K-

def Perceptron(X, y, max iters):

N,D = X.shape
w = np.random.rand(D)
for t in range(max iters):
n = np.random.randint (N)
yh = np.sign(np.dot(X[n,:], w))
if yh != y[n]:
w=w+ y[n]*X[n,:]
return w

note that the code is not chacking for convergence

Perceptron: example

Iris dataset
(linearly separable case)

def Perceptron(X, y, max iters):

N,D = X.shape

w = np.random.rand(D)

for t in range(max iters):
n = np.random.randint (N)
yh = np.sign(np.dot(X[n,:], w))
if yh != y[n]:

w=w+ y[n]*X[n,:]

O oo JOoO Ul WN K-

iteration 10

return w

note that the code is not chacking for convergence

observations:

after finding a linear separator no further updates happen

the final boundary depends on the order of instances
(different from all previous methods)

Perceptron: example

def Perceptron(X, y, max iters):
N,D = X.shape
w = np.random.rand(D)
for t in range(max iters):

yh = np.sign(np.dot(X[n,:], w))
if yh != y[n]:

1

2

3

4

5 n = np.random.randint (N)
6

7

8 w=w + y[n]*X[n,:]
9

return w

note that the code is not chacking for convergence

Perceptron: example

Iris dataset

(NOT linearly separable case)

N\ e

1 def Perceptr
2 N,D = X.
3 W = np.r
4 for t in
5 n =
6 vh =
7 if y
8

9 return w

note that the code

shape
andom.rand (D)
range(max_iters):
np.random.randint (N)
np.sign(np.dot(X[n,:], w))
h != y[n]:

w=w+ y[n]*X[n, :]

is not chacking for convergence

Perceptron: example

Iris dataset
(NOT linearly separable case)

Q.
0]
Fh

rceptron(X, y, max_iters):

D = X.shape

= np.random.rand(D)

r t in range(max iters):
n = np.random.randint(N)
yh = np.sign(np.dot(X[n,:], w))
if yh != y[n]:

Pe
N,
w

fo

w =w + y[n]*X[n,:]

O oOoOJOOUL b WN K

return w

note that the code is not chacking for convergence

the algorithm does not converge

there is always a wrong prediction and the weights will be updated

Perceptron: issues

cyclic updates if the data is not linearly separable?

e try make the data separable using additional features?
e data may be inherently noisy

Perceptron: issues

cyclic updates if the data is not linearly separable?

e try make the data separable using additional features?
e data may be inherently noisy

even if linearly separable
convergence could take many iterations

Perceptron: issues

cyclic updates if the data is not linearly separable?

e try make the data separable using additional features?
e data may be inherently noisy

even if linearly separable
convergence could take many iterations '

154

.....

1.0 1

the decision boundary may be suboptimal

0.5 A

o oo
0.0 +—

Perceptron: issues

cyclic updates if the data is not linearly separable?

e try make the data separable using additional features?
e data may be inherently noisy

even if linearly separable
convergence could take many iterations

the decision boundary may be suboptimal

Winter 2020 | Applied Machine Learning (COMP551)

Margin

the ma rglﬂ Of d C|aSSIerr (assuming correct classification)
is the distance of the closest point to the decision boundary

this is positive for correctly classified points

margin

Margin

the ma rglﬂ Of d C|aSSIerr (assuming correct classification)
is the distance of the closest point to the decision boundary

signed distance is Ty (w2 + wy)

this is positive for correctly classified points

margin

Margin

the marglﬂ Of d C|aSSIerr (assuming correct classification)
is the distance of the closest point to the decision boundary

. . . 1
signed distance is W(me(“) + wo)
. . . 1 —
correcting for sign (margin) Wy(n) (me + wo) Y 1_ 0
this is positive for correctly classified points y= 1
y=—
o
[)
’ o
margin o

Max margin classifier

find the decision boundary with maximum margin

margin is not maximal

y=1

y=20
y=-1

margin

.2

Max margin classifier

find the decision boundary with maximum margin

margin is not maximal maximum margin

y=1

y=20 y =0
y=-—1 y=1

margin

.2

Max margin classifier

find the decision boundary with maximum margin

y— 1 { MaXy, 1,
y =0 < my(”) (wTa:(") +wg) Vn

.3

Max margin classifier

find the decision boundary with maximum margin

y— 1 { MaXy, 1,
y =0 < my(”) (wTa:(") +wg) Vn

only the points (n) with

« Tl y™ (wT&‘(") +wo) matter in finding the boundary

.3

Max margin classifier

find the decision boundary with maximum margin

Y= 1 { MaXy
y=0 < my(”) (w'z™ +wy) Vn

only the points (n) with

_ 1
((lwll2

y™ (w"z™ + wy) matter in finding the boundary

these are called support vectors

.3

Max margin classifier

find the decision boundary with maximum margin

y=-1

MaXy, 1,

— [[wl]l2

only the points (n) with

1
[[wll2

y™ (w"z™ + wy) matter in finding the boundary

these are called support vectors

max-margin classifier is called support vector machine (SVM)

.3

Support Vector Machine

find the decision boundary with maximum margin

y=-1

maxw’wo
y=20

= [fwll2

Support Vector Machine

find the decision boundary with maximum margin

MAaXy 4,
y=20
y=1 { < my(") (w'z™ +wy) Vn

if w*,wy isan optimal solution then

Support Vector Machine

find the decision boundary with maximum margin

maxw’wo
y=20

= [fwll2

if w*,wy isan optimal solution then

cw”, cwy is also optimal (same margin)

Support Vector Machine

find the decision boundary with maximum margin

MAaXy 4,
y=20
y=1 { < my(") (w'z™ +wy) Vn

if w*,wy isan optimal solution then
cw”, cwq is also optimal (same margin)

fix the norm of w to avoid this ||w||2 = ﬁ

Support Vector Machine

find the decision boundary with maximum margin

y=—1 maxw,wo
y=70 { < ey ™ (wz™ 4 wy) Vn

— |[w]]2

.5

Support Vector Machine

find the decision boundary with maximum margin

y=—1 maxw,wo
y=0 { < ey ™ (wz™ 4 wy) Vn

.5

Support Vector Machine

find the decision boundary with maximum margin

y=—1 maxw,wo
y=0 { < ey ™ (wz™ 4 wy) Vn

— |[w|]2

1

p mMaXay,wy w
fixing [|wll2 = 3 1 1) (T)
wh S Ry (W s +w) Vn

.5

Support Vector Machine

find the decision boundary with maximum margin

y=—1 maxw,wo
y=0 { < ey ™ (wz™ 4 wy) Vn
1

oing el =3 Y iy < ey @ 2 4 w) Vn
w||2

Jwllz =

MmN, [[wl];

simplifying, we get hard margin SVM objective
PG E S & ’ { y™(wTz™ +wy) >1 Vn

Winter 2020 | Applied Machine Learning (COMP551)

Perceptron: issues

cyclic updates if the data is not linearly separable?

e try make the data separable using additional features?
e data may be inherently noisy

even if linearly separable
convergence could take many iterations

the decision boundary may be suboptimal

Perceptron: issues

cyclic updates if the data is not linearly separable?

e try make the data separable using additional features?
e data may be inherently noisy

even if linearly separable
convergence could take many iterations

the decision boundary may be suboptimal

Perceptron: issues

cyclic updates if the data is not linearly separable?

e try make the data separable using additional features?
e data may be inherently noisy

even if linearly separable
convergence could take many iterations

the decision boundary may be suboptimal

Soft margin constraints

allow points inside the margin and on the wrong side
but penalize them

instead of hard constraint y(”) (wTa;(") + wo) >1 Vn

1

Soft margin constraints

allow points inside the margin and on the wrong side
but penalize them

instead of hard constraint y(”) (wT:I;(") + wo) >1 Vn

use y™ (me(”) +wy) >1— £ yn

1

Soft margin constraints

allow points inside the margin and on the wrong side
but penalize them

instead of hard constraint y(”) (wT:I;(") + wo) >1 Vn

use y™ (me(”) +wy) >1— £ yn

é‘(n) 2 0 SlaCk Varlab|eS (one for each n)

1

Soft margin constraints

allow points inside the margin and on the wrong side
but penalize them

instead of hard constraint y(”) (wT:I;(") + wo) >1 Vn

use y™ (me(”) +wy) >1— £ yn

é‘(n) 2 0 SlaCk Varlab|eS (one for each n)

¢ =0 zero if the point satisfies original margin constraint

1

Soft margin constraints

allow points inside the margin and on the wrong side
but penalize them

instead of hard constraint y(”) (wT:I;(") + wo) >1 Vn

use y™ (me(”) +wy) >1— £ yn

é‘(n) 2 0 SlaCk Varlab|eS (one for each n)
¢ =0 zero if the point satisfies original margin constraint

0 < ¢™ <1 if correctly classified but inside the margin

1

Soft margin constraints

allow points inside the margin and on the wrong side
but penalize them

instead of hard constraint y(”) (wT:I;(") + wo) >1 Vn

use y™ (me(”) +wy) >1— £ yn

é‘(n) 2 0 SlaCk Varlab|eS (one for each n)
¢ =0 zero if the point satisfies original margin constraint

0 < ¢™ <1 if correctly classified but inside the margin

£ > 1 incorrectly classified

1

Soft margin constraints

allow points inside the margin and on the wrong side
but penalize them

soft-margin objective
miny,u, 3| |w|[3 +

Yy (wTze™ +awg) >1—-£6M vn
¢ >0 vn

Soft margin constraints

allow points inside the margin and on the wrong side
but penalize them

soft-margin objective
. 1
miny,w, /w3 +
Yy (wTz™ +awg) >1—£6M vn

¢ >0 vn

’Y is a hyper-parameter that defines the importance of constraints
for very large ’y this becomes similar to hard margin svm

Hinge loss

would be nice to turn this into an unconstrained optimization

minu,w, 3w} + v, £

y® (w 2™ 4+ w) > 1 — £
¢ >0 vn

.3

Hinge loss

would be nice to turn this into an unconstrained optimization

minu,w, 3w} + v, £

y® (w 2™ 4+ w) > 1 — £
¢ >0 vn

‘ if point satisfies the margin ™ (w 2™ + w) > 1

minimum slack is & =0

.3

Hinge loss

would be nice to turn this into an unconstrained optimization

minu,w, 3w} + v, £

y® (w 2™ 4+ w) > 1 — £
¢ >0 vn

if point satisfies the margin ™ (w 2™ + w) > 1

minimum slack is & =0

otherwise y™ (w'z™ 4+ wp) < 1
the smallest slackis ¢ —1 — y(® (wa(n) + wo)

.3

Hinge loss

would be nice to turn this into an unconstrained optimization

minu,w, 3w} + v, £

y® (w 2™ 4+ w) > 1 — £
¢ >0 vn

if point satisfies the margin ™ (w 2™ + w) > 1

minimum slack is & =0

otherwise y™ (w'z™ 4 wp) < 1
the smallest slackis ¢ —1 — y(® (wa(n) + wo)

so the optimal slack satisfying both cases

£ = max(0,1 — y™ (w" 2™ + wy))

.3

Hinge loss

would be nice to turn this into an unconstrained optimization

min,w, 3 |wl3 +7v 32, €

™ (w 2™ 4 w) > 1 — £
¢™ >0 vn

Hinge loss

would be nice to turn this into an unconstrained optimization

Miny,w, %HUJH% +v> ¢m

y(“) (me(“) + 'LUO) >1-— g(n)
¢M >0 vn

replace €™ = max(0,1 — y™ (w'z™ 4 wy))

Hinge loss

would be nice to turn this into an unconstrained optimization

ming,w, 3/|wll3 +vY, ¢
y(”) (me(”) + wO) > 1— g(n)
¢M >0 vn
replace €™ = max(0,1 — y™ (w'z™ 4 wy))

we get miny,, 3wl +7 3, max(0,1 -y (w2 + wy))

Hinge loss

would be nice to turn this into an unconstrained optimization

min,w, 3 |wl3 +7v 32, €

™ (w 2™ 4 w) > 1 — £
¢™ >0 vn

replace €™ = max(0,1 — y™ (w'z™ 4 wy))

we get miny,, 3wl +7 3, max(0,1 -y (w2 + uy))

the same as miny,u, 3, max(0,1 — y™ (w 2™ + wy)) + 5 ||wl[3

Hinge loss

would be nice to turn this into an unconstrained optimization

min,u, 3|wl3 +75 32, €

™ (w 2™ 4 wg) > 1 — £
¢™ >0 vn

replace €™ = max(0,1 — y™ (w'z™ 4 wy))

we get miny,, 3wl +7 3, max(0,1 -y (w2 + uy))

the same as miny,y, 3, max(0,1 — y™ (w 2™ + wy)) + 5 ||wl[3

w
[[wl]2 N this is called the hinge 10ss Lhinge (y, §) = max(0,1 — yg)

Hinge loss

would be nice to turn this into an unconstrained optimization

min,u, 3|wl3 +75 32, €

™ (w 2™ 4 wg) > 1 — £
¢™ >0 vn

replace €™ = max(0,1 — y™ (w'z™ 4 wy))

we get miny,, 3wl +7 3, max(0,1 -y (w2 + uy))

the same as miny,, 3, max(0,1 — y™ (w" ™ + wp)) + 2 ||w]|3
this is called the hinge 10ss Linge (¥, §) = max(0,1 — yg)

soft-margin SVM is doing L2 regularized hinge loss minimization

Winter 2020 | Applied Machine Learning (COMP551)

Perceptron vs. SVM

Perceptron

if correctly classified evaluates to zero
otherwise itis miny,y, _y(n) (me(n) + wp))

.

Perceptron vs. SVM

Perceptron

if correctly classified evaluates to zero
otherwise itis miny,y, _y(n) (me(n) + wp))

can be written as

>, max(0, —y™ (wT:c(") + wp))

.

Perceptron vs. SVM

Perceptron SVM

if correctly classified evaluates to zero Zn maX(O, 1- y(n) (me(n) + wo)) + %Hw| ‘%
otherwise itis miny,y, _y(n) (me(n) + wp))

can be written as

>, max(0, —y™ (me(") + wp))

.

Perceptron vs. SVM

Perceptron SVM

if correctly classified evaluates to zero
otherwise itis miny, u, _y(n) (me(n) + wp))

>, max(0, 1= 4™ (w2t +wo)) + 5wl

so this is the difference!
. (plus regularization)
can be written as

>, max(0, —y™ (me(”) + wp))

.

Perceptron vs. SVM

Perceptron

if correctly classified evaluates to zero
otherwise itis miny,,u, _y(n) (me(n) + wp))

can be written as

>, max(0, —y(") (me(") + wy))

finds some linear decision boundary if exists

SVM
3, max(0, L~ y™ (w' 2™ 4 w)) + %Hng

so this is the difference!
(plus regularization)

for small lambda finds the max-marging decision boundary

.

Perceptron vs. SVM

Perceptron

if correctly classified evaluates to zero
otherwise itis miny,,u, _y(n) (me(n) + wp))

can be written as

>, max(0, —y(") (me(") + wy))

finds some linear decision boundary if exists

stochastic gradient descent with fixed learning rate

SVM
3, max(0, L~ y™ (w' 2™ 4 w)) + %Hng

so this is the difference!
(plus regularization)

for small lambda finds the max-marging decision boundary

depending on the formulation we have many choices

.

Perceptron vs. SVM

cost J(w) =3, max(0,1—y™w"z™) + §|wl3

now we included bias in w

.2

Perceptron vs.

cost J(w) =3, max(0,1—y™w"z™) + §|wl3

now we included bias in w

check that the cost function is convex in w(?)

SVM

.2

Perceptron vs. SVM

cost J(w) =3, max(0,1—y™w z™) + §|wl}3

now we included bias in w def cost(X,y,w, lamb-le-3):

1
2 z = np.dot(X, w)

3 J = np.mean(np.maximum(0, 1 - y*z)) + lamb * np.dot(w[:-1],w[:-1])/2
4 return J

check that the cost function is convex in w(?)

.2

Perceptron vs. SVM

cost J(w) =3, max(0,1—y™w z™) + §|wl}3

now we included bias in w def cost(X,y,w, lamb-le-3):

1
2 z = np.dot(X, w)

3 J = np.mean(np.maximum(0, 1 - y*z)) + lamb * np.dot(w[:-1],w[:-1])/2
4 return J

check that the cost function is convex in w(?)

hinge loss is not smooth (piecewise linear)

\

.2

Perceptron vs. SVM

cost J(w) =3, max(0,1—y™w z™) + §|wl}3

now we included bias in w def cost(X,y,w, lamb-le-3):

1
2 z = np.dot(X, w)

3 J = np.mean(np.maximum(0, 1 - y*z)) + lamb * np.dot(w[:-1],w[:-1])/2
4 return J

check that the cost function is convex in w(?)

hinge loss is not smooth (piecewise linear)

if we use "stochastic" sub-gradient descent

the update will look like Perceptron

\

if y™g™ <1 minimize —y™ (w'2™) + 3(|wl[3

otherwise, do nothing

Perceptron vs. SVM

cost J(w) =3, max(0,1—y™w z™) + §|wl}3

now we included bias in w def cost(X,y,w, lamb-le-3):

1
2 z = np.dot(X, w)

3 J = np.mean(np.maximum(0, 1 - y*z)) + lamb * np.dot(w[:-1],w[:-1])/2
4 return J

check that the cost function is convex in w(?)

hinge loss is not smooth (piecewise linear)

if we use "stochastic" sub-gradient descent

the update will look like Perceptron

\

. N L T A 2 5 grad = -np.dot(X[violations,:].T,
lf y(n)y(n) < 1 minimize _y(n)(w w(n)) —+ EHwHZ y[violations])/N

otherwise, do nothing

.2

Perceptron vs. SVM

cost J(w) =3, max(0,1—y™w z™) + §|wl}3

now we included bias in w def cost(X,y,w, lamb-le-3):

1
2 z = np.dot(X, w)

3 J = np.mean(np.maximum(0, 1 - y*z)) + lamb * np.dot(w[:-1],w[:-1])/2
4 return J

check that the cost function is convex in w(?)

hinge loss is not smooth (piecewise linear)

if we use "stochastic" sub-gradient descent

the update will look like Perceptron

\

. R e A
if y™g" <1 minimize —y™ (w"z™) + (|w|[3

6 grad[:-1] += lamb2 * w[:-1]
otherwise, do nothing

Example

Iris dataset (D=2)

(linearly separable case)

6 while np.linalg.norm(w - w_old) > eps and t < max_iters:

.3

Example

Iris dataset (D=2)

(linearly separable case)

©

g = subgradient(X, y, w, lamb=lamb)
w_old = w
w =w - lr*g/np.sqrt(t+l)

.3

Example

Iris dataset (D=2)

(linearly separable case)

©

g = subgradient(X, y, w,
w_old = w
w =w - lr*g/np.sqrt(t+l)

lamb=lamb)

.3

Example

: .- .| Iris dataset (D=2)

(linearly separable case)

7 g = subgradient(X, y, w, lamb=lamb)
N 8 w_old = w
1 2 3 a 5 6 7 9 w =w - lr*g/np.sqrt(t+l)

1078)

.3

Example

| Iris dataset (D=2)

. (NOT linearly separable case)

q
LI X]]
LX BN] L]
. o0 o e o o
L] L]
\\\\‘ ° 1 def SubGradientDescent(X,y,lr=1,eps=1le-18,

max_iters=1000, lamb=le-8):
N,D = X.shape
w = np.zeros(D)
g = np.inf

t=0

while np.linalg.norm(g) > eps and t < max iters:
g = subgradient(X, y, w, lamb=lamb)
w = w - lr*g/np.sqrt(t+l)
t +=1

return w

O VOO U B WN

-

Example

Iris dataset (D=2)

(NOT linearly separable case)

1 def SubGradientDescent(X,y,lr=1,eps=1le-18,
max_iters=1000, lamb=le-8):

2 N,D = X.shape

3 w = np.zeros(D)

4 g = np.inf

5 t=20

6 while np.linalg.norm(g) > eps and t < max iters:
7 g = subgradient(X, y, w, lamb=lamb)

8 w = w - lr*g/np.sqrt(t+l)

9 t +=1

10 return w

Example

| Iris dataset (D=2)

. (NOT linearly separable case)

q
. LI X]]
- LX BN] L]
. n: o0 o e o o
ces o .
° ° 1 def SubGradientDescent(X,y,lr=1,eps=1le-18,
ee soe max_iters=1000, lamb=le-8):
. 2 N,D = X.shape
3 w = np.zeros(D)
4 g = np.inf
| X 5 t=20
6 while np.linalg.norm(g) > eps and t < max iters:
7 g = subgradient(X, y, w, lamb=lamb)
soft margins using small lambda A = 108 g VI lrxg/np.sqrt(t+1)
+=
2.54 . oo 10 return w
2.0 vt 5
22 e Perceptron does not converge
1.54 = = ——————— 5 7 ~
1.0 ° o .".. .

Winter 2020 | Applied Machine Learning (COMP551)

SVM vs. logistic regression

recall: logistic regression simplified cost for y € {0,1}

J(w) = Z,szl y™ log (1 + e—z(”)) + (1 —y™)log (1+ ez(”)) where 2z = z™

includes the bias

Y

10

SVM vs. logistic regression

recall: logistic regression simplified cost for y € {0,1}

J(w) = Z,]Ll y™ log (1 + e—z(”)) + (1 —y™)log (1+ ez(”)) where 2z = z™
includes the bias

for y € {—1,+1} we can write this as

(n) _(n) c
Jw) =N log (1+e¥"*") + w3

also added L2 regularization

Y

10

SVM vs. logistic regression

recall: logistic regression simplified cost for y € {0,1}

J(w) = Z,]Ll y™ log (l + e—z(”)) + (1 —y™)log (1 + ez(”)) where 2z = z™
includes the bias

for y € {—1,+1} we can write this as

(n) _(n) c
Jw) =N log (1+e¥"*") + w3

also added L2 regularization

compare to SVM cost for y € {—1,+1}

J(w) = 32, max(0,1 -y (")) + 5/|w]]}

Y

10

SVM vs. logistic regression

recall: logistic regression simplified cost for y € {0,1}

J(w) =N y™log (1+e ") + (1 - y™)log (1 +)

for y € {—1,+1} we can write this as

(n) (n) .
J(w) =" log (14 e#"=") + 2| |w|f3

also added L2 regularization

compare to SVM cost for y € {—1,+1}

J(w) = 32, max(0,1 -y (")) + 5/|w]]}

they both try to approximate 0-1 loss (accuracy)

where 2™ = "z

includes the bias

J(w)
Lhinge|(SVM)
Lo,l (logistic regression)
scaled Lcg
\
> 2
—2 —1 0 1 2 y

10

Multiclass classification

can we use multiple binary classifiders?

one versus the rest

image credit: Andrew Zisserman

1.

Multiclass classification

can we use multiple binary classifiders?

one versus the rest

training:
train C different 1-vs-(C-1) classifiers z.(z) = w[z]x

image credit: Andrew Zisserman

1.

Multiclass classification

can we use multiple binary classifiders?

one versus the rest

training:
train C different 1-vs(C-1) classifiers z.(z) = w[z]x

1vs2&3

3vs1&2

2vs1&3

image credit: Andrew Zisserman

1.

Multiclass classification

can we use multiple binary classifiders?

one versus the rest

training:

train C different 1-vs(C-1) classifiers z.(z) = w[z]x

1vs28&3 .
test time:

choose the class with the highest score

z* = arg max, z.(x)

3vs1&2

2vs1&3

J
, 1vs2&3

C3 X 3vs1&
2vs1&3‘\

image credit: Andrew Zisserman

1.

Multiclass classification

can we use multiple binary classifiders?

one versus the rest

training:
train C different 1-vs(C-1) classifiers z.(z) = w[z]x

1vs28&3 .
test time:

choose the class with the highest score

z* = arg max, z.(x)

3vs1&2

2vs1&3

problems:
class imbalance
not clear what it means to compare z.(x) values

J
, 1vs2&3

C3 X 3vs1&
2vs1&3‘\

image credit: Andrew Zisserman

1.

Multiclass classification

can we use multiple binary classifiders?

one versus one

Multiclass classification

can we use multiple binary classifiders?

one versus one

training:
train ﬂ%l classifiers for each class pair

Multiclass classification

can we use multiple binary classifiders?

one versus one

training:
train ﬂ%l classifiers for each class pair

test time:
choose the class with the highest vote

Multiclass classification

can we use multiple binary classifiders?

one versus one

training:
train ﬂ%l classifiers for each class pair

test time:
choose the class with the highest vote

problems:
computationally more demanding for large C
ambiguities in the final classification

1.
Winter 2020 | Applied Machine Learning (COMP551)

Summary

geometry of linear classification

Perceptron algorithm

distance to the decision boundary (margin)
max-margin classification

support vectors

hard vs soft SVM

relation to perceptron

hinge loss and its relation to logistic regression
some ideas for max-margin multi-class classification

12

