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Learning objectives

geometry of linear classification

Perceptron learning algorithm

margin maximization and support vectors
hinge loss and relation to logistic regression
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it's criticism in the book "Perceptrons" was a factor in Al winter
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Perceptron: objective

if y™g™ <0 try to make it positive
label and prediction have different signs

- equivalent to minimizing —y(”) (wTw(”) + wy)

distance to the boundary
€T (’I'L) this is positive for points that are on the wrong side

misclassified points from the decision boundary
and push them to the right side

\ = (wTw(n) 4+ ’wo) so perceptron tries to minimize the distance of

I
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revisitng P@rceptron: optimization

if y™g™ <0 minimize J,(w)=—y™(w"z®)

otherwise, do nothing

use stochastic gradient descent  VJ,(w) = —y™z®

sign(w' ) = sign(cw ' z)

Perceptron convergence theorem

the algorithm is guaranteed to converge in finite steps if linearly separable
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Perceptron: example

iteration 1

Iris dataset
(linearly separable case)

6 vh

~

initial decision boundary

= np.sign(np.dot(X[n,:], w))
if yh != y[n]:

w=w + y[n]*X[n, :]

note that the code is not chacking for convergence

w'z=0
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Iris dataset
(linearly separable case)

iteration 10
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def Perceptron(X, y, max iters):
N,D = X.shape
w = np.random.rand(D)
for t in range(max iters):
n = np.random.randint (N)
yh = np.sign(np.dot(X[n,:], w))
if yh != y[n]:
w=w+ y[n]*X[n,:]
return w

note that the code is not chacking for convergence
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Perceptron: example

Iris dataset
(linearly separable case)

def Perceptron(X, y, max iters):

N,D = X.shape

w = np.random.rand(D)

for t in range(max iters):
n = np.random.randint (N)
yh = np.sign(np.dot(X[n,:], w))
if yh != y[n]:

w=w+ y[n]*X[n,:]
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iteration 10

return w

note that the code is not chacking for convergence

observations:

after finding a linear separator no further updates happen

the final boundary depends on the order of instances
(different from all previous methods)




Perceptron: example

def Perceptron(X, y, max iters):
N,D = X.shape
w = np.random.rand(D)
for t in range(max iters):

yh = np.sign(np.dot(X[n,:], w))
if yh != y[n]:

1

2

3

4

5 n = np.random.randint (N)
6

7

8 w=w + y[n]*X[n,:]
9

return w

note that the code is not chacking for convergence



Perceptron: example

Iris dataset

(NOT linearly separable case)

N\ e

1 def Perceptr
2 N,D = X.
3 W = np.r
4 for t in
5 n =
6 vh =
7 if y
8

9 return w

note that the code

shape
andom.rand (D)
range(max_iters):
np.random.randint (N)
np.sign(np.dot(X[n,:], w))
h != y[n]:

w=w+ y[n]*X[n, :]

is not chacking for convergence



Perceptron: example

Iris dataset
(NOT linearly separable case)

Q.
0]
Fh

rceptron(X, y, max_iters):

D = X.shape

= np.random.rand(D)

r t in range(max iters):
n = np.random.randint(N)
yh = np.sign(np.dot(X[n,:], w))
if yh != y[n]:

Pe
N,
w

fo

w =w + y[n]*X[n,:]

O oOoOJOOUL b WN K

return w

note that the code is not chacking for convergence

the algorithm does not converge

there is always a wrong prediction and the weights will be updated
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Perceptron: issues

cyclic updates if the data is not linearly separable?

e try make the data separable using additional features?
e data may be inherently noisy

even if linearly separable
convergence could take many iterations

the decision boundary may be suboptimal
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Margin

the marglﬂ Of d C|aSSIerr (assuming correct classification)
is the distance of the closest point to the decision boundary

. . . 1
signed distance is W(me(“) + wo)
. . . 1 —
correcting for sign (margin) Wy(n) (me + wo) Y 1_ 0
this is positive for correctly classified points y= 1
y=—
o
[ )
’ o
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Max margin classifier

find the decision boundary with maximum margin

y=-1

MaXy, 1,

— [[wl]l2

only the points (n) with

1
[[wll2

y™ (w"z™ + wy) matter in finding the boundary

these are called support vectors

max-margin classifier is called support vector machine (SVM)

.3
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Support Vector Machine

find the decision boundary with maximum margin

MAaXy 4,
y=20
y=1 { < my(") (w'z™ +wy) Vn

if w*,wy isan optimal solution then
cw”, cwq is also optimal (same margin)

fix the norm of w to avoid this ||w||2 = ﬁ
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Support Vector Machine

find the decision boundary with maximum margin

y=—1 maxw,wo
y=0 { < ey ™ (wz™ 4 wy) Vn

— |[w|]2

1

p mMaXay,wy w
fixing [|wll2 = 3 1 1) (T )
wh S Ry (W s +w) Vn
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Support Vector Machine

find the decision boundary with maximum margin

y=—1 maxw,wo
y=0 { < ey ™ (wz™ 4 wy) Vn
1

oing el =3 Y iy < ey @ 2 4 w) Vn
w||2

Jwllz =

MmN, [[wl];

simplifying, we get hard margin SVM objective
PG E S & ’ { y™(wTz™ +wy) >1 Vn
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Soft margin constraints

allow points inside the margin and on the wrong side
but penalize them

instead of hard constraint y(”) (wT:I;(") + wo) >1 Vn

use y™ (me(”) +wy) >1— £ yn

é‘(n) 2 0 SlaCk Varlab|eS (one for each n)
¢ =0 zero if the point satisfies original margin constraint

0 < ¢™ <1 if correctly classified but inside the margin

£ > 1 incorrectly classified
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Soft margin constraints

allow points inside the margin and on the wrong side
but penalize them

soft-margin objective
. 1
miny,w, /w3 +
Yy (wTz™ +awg) >1—£6M  vn

¢ >0 vn

’Y is a hyper-parameter that defines the importance of constraints
for very large ’y this becomes similar to hard margin svm
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Hinge loss

would be nice to turn this into an unconstrained optimization

minu,w, 3w} + v, £

y® (w 2™ 4+ w) > 1 — £
¢ >0 vn

if point satisfies the margin ™ (w 2™ + w) > 1

minimum slack is & =0

otherwise y™ (w'z™ 4 wp) < 1
the smallest slackis ¢ —1 — y(® (wa(n) + wo)

so the optimal slack satisfying both cases

£ = max(0,1 — y™ (w" 2™ + wy))

.3
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Hinge loss

would be nice to turn this into an unconstrained optimization

min,u, 3|wl3 +75 32, €

™ (w 2™ 4 wg) > 1 — £
¢™ >0 vn

replace €™ = max(0,1 — y™ (w'z™ 4 wy))

we get  miny,, 3wl +7 3, max(0,1 -y (w2 + uy))

the same as miny,, 3, max(0,1 — y™ (w" ™ + wp)) + 2 ||w]|3
this is called the hinge 10ss  Linge (¥, §) = max(0,1 — yg)

soft-margin SVM is doing L2 regularized hinge loss minimization
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Perceptron vs. SVM

Perceptron

if correctly classified evaluates to zero
otherwise itis  miny,,u, _y(n) (me(n) + wp))

can be written as

>, max(0, —y(") (me(") + wy))

finds some linear decision boundary if exists

stochastic gradient descent with fixed learning rate

SVM
3, max(0, L~ y™ (w' 2™ 4 w)) + %Hng

so this is the difference!
(plus regularization)

for small lambda finds the max-marging decision boundary

depending on the formulation we have many choices

.
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Perceptron vs. SVM

cost J(w) =3, max(0,1—y™w z™) + §|wl}3

now we included bias in w def cost(X,y,w, lamb-le-3):

1
2 z = np.dot(X, w)

3 J = np.mean(np.maximum(0, 1 - y*z)) + lamb * np.dot(w[:-1],w[:-1])/2
4 return J

check that the cost function is convex in w(?)

hinge loss is not smooth (piecewise linear)

if we use "stochastic" sub-gradient descent

the update will look like Perceptron
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Perceptron vs. SVM

cost J(w) =3, max(0,1—y™w z™) + §|wl}3

now we included bias in w def cost(X,y,w, lamb-le-3):

1
2 z = np.dot(X, w)

3 J = np.mean(np.maximum(0, 1 - y*z)) + lamb * np.dot(w[:-1],w[:-1])/2
4 return J

check that the cost function is convex in w(?)

hinge loss is not smooth (piecewise linear)

if we use "stochastic" sub-gradient descent

the update will look like Perceptron

\

. N L T A 2 5 grad = -np.dot(X[violations,:].T,
lf y(n)y(n) < 1 minimize _y(n)(w w(n)) —+ EHwHZ y[violations])/N

otherwise, do nothing
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Perceptron vs. SVM

cost J(w) =3, max(0,1—y™w z™) + §|wl}3

now we included bias in w def cost(X,y,w, lamb-le-3):

1
2 z = np.dot(X, w)

3 J = np.mean(np.maximum(0, 1 - y*z)) + lamb * np.dot(w[:-1],w[:-1])/2
4 return J

check that the cost function is convex in w(?)

hinge loss is not smooth (piecewise linear)

if we use "stochastic" sub-gradient descent

the update will look like Perceptron

\

. R e A
if y™g" <1 minimize —y™ (w"z™) + (|w|[3

6 grad[:-1] += lamb2 * w[:-1]
otherwise, do nothing



Example

Iris dataset (D=2)

(linearly separable case)

6 while np.linalg.norm(w - w_old) > eps and t < max_iters:
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Example

Iris dataset (D=2)

(linearly separable case)

©

g = subgradient(X, y, w,
w_old = w
w =w - lr*g/np.sqrt(t+l)
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Example

: .- .| Iris dataset (D=2)

(linearly separable case)

7 g = subgradient(X, y, w, lamb=lamb)
N 8 w_old = w
1 2 3 a 5 6 7 9 w =w - lr*g/np.sqrt(t+l)
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Example

| Iris dataset (D=2)

. (NOT linearly separable case)

q
LI X]]
LX BN ] L]
. o0 o e o o
L] L]
\\\\‘ ° 1 def SubGradientDescent(X,y,lr=1,eps=1le-18,

max_iters=1000, lamb=le-8):
N,D = X.shape
w = np.zeros(D)
g = np.inf

t=0

while np.linalg.norm(g) > eps and t < max iters:
g = subgradient(X, y, w, lamb=lamb)
w = w - lr*g/np.sqrt(t+l)
t +=1

return w
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Example

Iris dataset (D=2)

(NOT linearly separable case)

1 def SubGradientDescent(X,y,lr=1,eps=1le-18,
max_iters=1000, lamb=le-8):

2 N,D = X.shape

3 w = np.zeros(D)

4 g = np.inf

5 t=20

6 while np.linalg.norm(g) > eps and t < max iters:
7 g = subgradient(X, y, w, lamb=lamb)

8 w = w - lr*g/np.sqrt(t+l)

9 t +=1

10 return w




Example

| Iris dataset (D=2)

. (NOT linearly separable case)

q
. LI X]]
- LX BN ] L]
. n: o0 o e o o
ces o .
° ° 1 def SubGradientDescent(X,y,lr=1,eps=1le-18,
ee soe max_iters=1000, lamb=le-8):
. 2 N,D = X.shape
3 w = np.zeros(D)
4 g = np.inf
| X 5 t=20
6 while np.linalg.norm(g) > eps and t < max iters:
7 g = subgradient(X, y, w, lamb=lamb)
soft margins using small lambda A = 108 g VI lrxg/np.sqrt(t+1)
+=
2.54 . oo 10 return w
2.0 vt 5
22 e Perceptron does not converge
1.54 = = ——————— 5 7 ~
1.0 ° o .".. .
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SVM vs. logistic regression

recall: logistic regression simplified cost for y € {0,1}

J(w) = Z,szl y™ log (1 + e—z(”)) + (1 —y™)log (1+ ez(”)) where 2z = z™

includes the bias
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SVM vs. logistic regression

recall: logistic regression simplified cost for y € {0,1}

J(w) =N y™log (1+e ") + (1 - y™)log (1 + )

for y € {—1,+1} we can write this as

(n) (n) .
J(w) =" log (14 e#"=") + 2| |w|f3

also added L2 regularization

compare to SVM cost for y € {—1,+1}

J(w) = 32, max(0,1 -y (")) + 5/|w] ]}

they both try to approximate 0-1 loss (accuracy)

where 2™ = "z

includes the bias

J(w)
Lhinge|(SVM)
Lo,l (logistic regression)
scaled Lcg
\
> 2
—2 —1 0 1 2 y
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can we use multiple binary classifiders?

one versus the rest

image credit: Andrew Zisserman
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training:
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test time:
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Multiclass classification

can we use multiple binary classifiders?

one versus the rest

training:
train C different 1-vs(C-1) classifiers  z.(z) = w[z]x

1vs28&3 .
test time:

choose the class with the highest score

z* = arg max, z.(x)

3vs1&2

2vs1&3

problems:
class imbalance
not clear what it means to compare z.(x) values

J
, 1vs2&3

C3 X 3vs1&
2vs1&3‘\

image credit: Andrew Zisserman

1.



Multiclass classification

can we use multiple binary classifiders?

one versus one



Multiclass classification

can we use multiple binary classifiders?

one versus one

training:
train ﬂ%l classifiers for each class pair



Multiclass classification

can we use multiple binary classifiders?

one versus one

training:
train ﬂ%l classifiers for each class pair

test time:
choose the class with the highest vote




Multiclass classification

can we use multiple binary classifiders?

one versus one

training:
train ﬂ%l classifiers for each class pair

test time:
choose the class with the highest vote

problems:
computationally more demanding for large C
ambiguities in the final classification

1.
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Summary

geometry of linear classification

Perceptron algorithm

distance to the decision boundary (margin)
max-margin classification

support vectors

hard vs soft SVM

relation to perceptron

hinge loss and its relation to logistic regression
some ideas for max-margin multi-class classification
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