Applied Machine Learning

Gradient Descent Methods

Siamak Ravanbakhsh

COMP 551 (winter 2020)

Learning objectives

Basic idea of

e gradient descent

e stochastic gradient descent
e method of momentum

e using adaptive learning rate
e sub-gradient

Application to

e |linear regression and classification

Optimization in ML

Inference and learning of a model often involves optimization:
optimization is a huge field

Optimization in ML

Inference and learning of a model often involves optimization:
optimization is a huge field
bold: the setting considered in this class

e discrete (combinatorial) vs continuous variables
e constrained vs unconstrained
e for continuous optimization in ML:

= convex Vs hoh-convex
= |ooking for local vs global optima?
= analytic gradient?

= analytic Hessian?

= stochastic vs batch

= smooth vs non-smooth

Gradient

for a multivariate function J(wg,w:)

partial derivatives instead of derivative

0 A qs J (wo,wi+€)—J (wo,wr)
5urJ (wo, w1) = limeo ;

we can estimate this numerically if needed
(use small epsilon in the the formula above)

1

Gradient

for a multivariate function J(wg,w;)
partial derivatives instead of derivative

0 FANE K J(w07w1 -|—€)—J(’LUO,’UJ1)
30 (Wo, w1) = lime

€

we can estimate this numerically if needed
(use small epsilon in the the formula above)

gradient: vector of all partial derivatives

VI(w) = [gar I (w), - g J (W)

1

Gradient descent

an iterative algorithm for optimization

e starts from some w'%
¢ Update using gradient witth it — Vj(w{t})

steepest descent direction

converges to a local minima

image: https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Gradient descent

an iterative algorithm for optimization

e starts from some wi?
e update using gradient w1 « w{th — oV 7 (wlt)
steepest descent direction

o learning rate
converges to a local minima

image: https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Gradient descent

an iterative algorithm for optimization

e starts from some wi?
e update using gradient w1 « w{th — oV 7 (wlt)
steepest descent direction

o learning rate
converges to a local minima

image: https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Gradient descent

an iterative algorithm for optimization

e starts from some wi?}
e update using gradient w1 « w{th — oV 7 (wlt)
steepest descent direction

o learning rate | cost function
Converges to a |Oca| minima (for maximization : objective function)

image: https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Convex function

a convex subset of R intersects any line in
at most one line segment

.3

Convex function

a convex subset of R intersects any line in
at most one line segment

a convex function is a function for which the epigraph is a convex set

A epigraph: set of all points above the graph

Y

.3

Convex function

a convex subset of R intersects any line in
at most one line segment

not convex convex

a convex function is a function for which the epigraph is a convex set

epigraph: set of all points above the graph

FOw+ (1 -=XNw) <Af(w)+ (1 -N)f(w') 0<A<1

Convex function

Convex functions are easier to minimize:

e critical points are global minimum
* gradientdescent canfindit ¢ {t+1} « i} — oV 7 (wit)

convex non-convex: gradient descent may find a local optima

image: https://www.willamette.edu/~gorr/classes/cs449/momrate.html

Convex function

Convex functions are easier to minimize:

e critical points are global minimum
* gradientdescent canfindit ¢, {t+1} « 1t} — oV 7 (wit)

convex non-convex: gradient descent may find a local optima

a concave function is a negative of a convex function (easy to maximize) 9

image: https://www.willamette.edu/~gorr/classes/cs449/momrate.html

Recognizing convex functions

. S T
a linear function is convex w™ &

.5

Recognizing convex functions

. S T
a linear function is convex w™ &

2
convex if second derivative is positive everywhere 2—2]” >0

2, ¢, — log(z), —/

.5

Recognizing convex functions

. S T
a linear function is convex w™ &

2
convex if second derivative is positive everywhere g—2f >0

2, ¢, — log(z), —/

sum of convex functions is convex WX — Y2+ \|w]||3

.5

Recognizing convex functions

. S T
a linear function is convex w™ &

2
convex if second derivative is positive everywhere g—2f >0
el =24 e”, —log(z), —/z
sum of convex functions is convex example WX —Y|[3 + Al|lwl|f3

maximum of convex functions is convex et [f(v) = max,cp s Voy'

note this is not convex in x

.5

Recognizing convex functions

. S T
a linear function is convex w™ &

2
convex if second derivative is positive everywhere g—2f >0
el =24 e”, —log(z), —/z
sum of convex functions is convex example WX —Y|[3 + Al|lwl|f3

maximum of convex functions is convex [[EeuNaEl [f(v) = max,cp s Voy'

note this is not convex in x

composition of convex functions is generally not convex (—log(x))?

Recognizing convex functions

. S T
a linear function is convex w™ &

2
convex if second derivative is positive everywhere g—2f >0

BT ™", —log(a), —v@

sum of convex functions is convex WX — Y3+ \|wl||3

maximum of convex functions is convex [[EeuNaEl [f(v) = max,cp s Voy'

note this is not convex in x

composition of convex functions is generally not convex (—log(x))?

however, if f.g are convex, and g is non-decreasing g(f(x)) is convex

o/ (@)
= p l € for convex f

Winter 2020 | Applied Machine Learning (COMP551)

G rad ient for linear and logistic regression
in both cases: VJ(w) = XT(§ — y)

linear regression: 3§ = Xw

logistic regression: § = o(Xw)

1

G rad ient for linear and logistic regression
in both cases: VJ(w) = XT(§ — y)

linear regression: 3§ = Xw

logistic regression: § = o(Xw)

time complexity: O(ND)

(two matrix multiplications) 5 3
compared to the direct solution for linear regression: O(ND + D)
gradient descent can be much faster for large D

1

G rad ient for linear and logistic regression
in both cases: VJ(w) = XT(§ — y)

linear regression: 3§ = Xw

def gradient

. . . A N,D = X.shape
logistic regression: § = o(Xw) yh = logistic(np.dot (X, W)
grad = np.dot(X.T, vh - y) / N
return grad

time complexity: O(ND)

(two matrix multiplications) 5 3
compared to the direct solution for linear regression: O(ND + D)
gradient descent can be much faster for large D

Gradient Descent

implementing gradient descent is easy!

def GradientDescent

N,D = X.shape

w = np.zeros(D)

g = np.inf

while np.linalg.norm(g) > eps:
g = gradient (X, y, w)
w =w - lr*g

return w

code on the previous page

Gradient Descent

implementing gradient descent is easy!

def GradientDescent

,D = X.shape

= np.zeros(D)

= np.inf

hile np.linalg.norm(g) > eps: g
N AR
w w - lr*g

return w

N
w
g
w

» Some termination conditions:

some max #iterations

small gradient

a small change in the objective

e increasing error on validation set

(one way to avoid overfitting)

Example: GD for Linear Regression

applying this to to fit toy data

]
2
3
4
5
6
7
8
9

10
11

12
13

def GradientDescent

N,D = X.shape

W = np.zeros(D)

g = np.inf

while np.linalg.norm(g) > eps:
g = gradient(X, y, w)

w =w - 1lr*g
return w

v

gradient

N,D = X.shape

vyh = np.dot (X, w)

grad = np.dot(X.T, yh - y)
return grad

/ N

Example: GD for Linear Regression

applying this to to fit toy data ~—

single feature (intercept is zero) p. linspace(N)[: |

n
ruth = np.dot(x, np.array([1))
y truth + *np.random.randn(N)

| I N | |

MK X2

10 1

—10 1

—20 41

—30 41

—40

Example: GD for Linear Regression

applying this to to fit toy data ~—

single feature (intercept is zero)

S (2™, =32 + noise)

MK X 2 3%

D=1

np.linspace(1,10, N)[:, 1
_truth = np.dot(x, np.array([1))
= y truth + *np.random.randn(N)

10 1

—10 1

—20 41

—30 41

—40 4

Example: GD for Linear Regression

applying this to to fit toy data ~—

#D = 1

. . . N =

single feature (intercept is zero) X = np.linspace(N)[: |
y_truth = np.dot(x, np.array([1))
y = y_truth + *np.random.randn(N)

S (2™, =32 + noise)

Example: GD for Linear Regression

applying this to to fit toy data ~—

#D = 1
. . . N =
single feature (intercept is zero) X = np.linspace(1,10, N)[:, |
y_truth = np.dot(x, np.array([1))
y = y_truth + *np.random.randn(N)
10 1
S (2™, =32 + noise)
0 . using direct solution method

w=(XTX)1XTy~ -3.2

—10 1

—20 41

—30 41

—40 1 °

Example: GD for Linear Regression

After 22 iterations of Gradient Descent wi*1} « w{th — 01V J(wlt)

Example: GD for Linear Regression

After 22 iterations of Gradient Descent w1} « w{th — 01V J(wlt)

10

Example: GD for Linear Regression

After 22 iterations of Gradient Descent w1} « w{th — 01V J(wlt)
o
" :

—-10 4

_20 -

—30

—-40 4

Learning rate «

Learning rate has a significant effect on GD

too small: may take a long time to converge
too large: it overshoots

GD for logistic Regression

example: logistic regression for Iris dataset (D=2, Ir=.01)

def GradientDescent

N,D = X.sh
W = np.z (D)
g = np.inf
while np.linalg.norm(g) P
g = gradient(X, y, w)
w =w - lr*g
eturn w

GD for logistic Regression

example: logistic regression for Iris dataset (D=2, Ir=.01)

def GradientDescent

N,D = X.shape

w = np.zeros(D)

g = np.inf

while np.linalg.norm(g) > eps:
g = gradient(X, y, w)
w =w - lr*g

return w

def gradient :
yh = logistic(np.dot(X, w))
grad = np.dot(X.T, yh - y)
return grad

GD for logistic Regression
example: logistic regression for Iris dataset (D=2, Ir=.01)
eoeo \
1? return w ‘ . .
1 def gradient(X, y, w):
R
5.7

rrrrrrrrrr

Winter 2020 | Applied Machine Learning (COMP551)

Stochastic Gradient Descent

we can write the cost function as a average over instances
_ 1 N
J(w) = § 2y Jnl(w)

cost for a single data-point

e.g. for linear regression J,(w) = % (wTz™ —y™)2

DO [=

1

Stochastic Gradient Descent

we can write the cost function as a average over instances

J(w) = % S, Ju(w)

cost for a single data-point

e.g. for linear regression J, (w) = 1(wTz™ — yM))?

the same is true for the partial derivatives

6?03 J(w)_Nzn 1an In(w)

1

Stochastic Gradient Descent

we can write the cost function as a average over instances

J(w) = % S, Ju(w)

cost for a single data-point

e.g. for linear regression J, (w) = 1(wTz™ — yM))?

the same is true for the partial derivatives

8?03 J(w)_Nzn 1an In(w)

therefore VJ(w) = E|VJ,(w)]

1

Stochastic Gradient Descent

|dea: use stochastic approximations VJ.(w) in gradient descent

Stochastic Gradient Descent

|dea: use stochastic approximations VJ.(w) in gradient descent

contour plot of the cost function + batch gradient update w < w — aVJ(w)

with small learning rate: guaranteed improvement at each step

image:https://jaykanidan.wordpress.com

Stochastic Gradient Descent

|dea: use stochastic approximations VJ.(w) in gradient descent

using stochastic gradient w < w — aVJ,(w)

image:https://jaykanidan.wordpress.com

Stochastic Gradient Descent

|dea: use stochastic approximations VJ.(w) in gradient descent

using stochastic gradient w < w — aVJ,(w)

the are "on average" in the right direction

image:https://jaykanidan.wordpress.com

.3

Stochastic Gradient Descent

|dea: use stochastic approximations VJ.(w) in gradient descent

using stochastic gradient w < w — aVJ,(w)

the are "on average" in the right direction

each step is using gradient of a different cost .J,, (w)

image:https://jaykanidan.wordpress.com

Stochastic Gradient Descent

|dea: use stochastic approximations VJ.(w) in gradient descent

using stochastic gradient w < w — aVJ,(w)

the are "on average" in the right direction

each step is using gradient of a different cost .J,, (w)

each update is (1/N) of the cost of batch gradient

image:https://jaykanidan.wordpress.com

Stochastic Gradient Descent

|dea: use stochastic approximations VJ.(w) in gradient descent

using stochastic gradient w < w — aVJ,(w)

the are "on average" in the right direction

each step is using gradient of a different cost .J,, (w)
each update is (1/N) of the cost of batch gradient

e.g., for linear regression O(D)

VJ, (w) = 2™ (wz™ — 4™)

image:https://jaykanidan.wordpress.com

Example: SGD for logistic regression

setting 1: using batch gradient

logistic regression for Iris dataset (D=2, a = .1)
after 8000 iterations

000
1 def GradientDescent(X, # N D
2 y, # N
3 lr=.01, # learnin g rat
4 eps=le-2, # termination dit
5):
6 N,D = X.shape
7 w = np.zeros(D)
8 g = np.inf
9 while np.linalg.norm(g) > eps:
10 g = gradient(X, y, w)
11 w =w - lr*g
12 return w
E o0o

1 def gradient(X, y, w):

2 N, D = X.shape

yh = logistic(np.dot(X, w))
grad = np.dot(X.T, vh - y) / N
return grad

U W

Example: SGD for logistic regression

setting 2: using stochastic gradient

logistic regression for Iris dataset (D=2, a = .1))

Minibatch SGD

use a minibatch to produce gradient estimates

VI =) nep VIn(w)

BC{1,..., N} a subset of the dataset

Minibatch SGD

use a minibatch to produce gradient estimates

VI =) nep VJn(w)

BC{1,...,N} asubset of the dataset

minibatch = np.random.randint(N, size=(bsize))
g = gradient(X[minibatch,:], y[inibatch], w)

JB V Jn (w)
ZneB nn

\\\\\\\\

-‘._\‘
; \
=\
'\‘,4‘%;
Nk
N
6.7

|||

Momentum

to help with oscillations of SGD (or even full-batch GD):

e use a running average of gradients
e more recent gradients should have higher weights

.

Momentum

to help with oscillations of SGD (or even full-batch GD):

e use a running average of gradients
e more recent gradients should have higher weights

— BAwWEY 4 (1 — p)VJIp(wit)
w{t} <— w{t_]'} —

.

Momentum

to help with oscillations of SGD (or even full-batch GD):

e use a running average of gradients
e more recent gradients should have higher weights

— BAwWEY 4 (1 — p)VJIp(wit)

w{t} e w{t_l} — momentum of 0 reduces to SGD

common value > .9

.

Momentum

to help with oscillations of SGD (or even full-batch GD):

e use a running average of gradients
e more recent gradients should have higher weights

— BAwWEY 4 (1 — p)VJIp(wit)
|

w{t} e w{t_l} — momentum of 0 reduces to SGD

common value > .9

is effectively an exponential moving average

‘I""""lllluu.. with = Zt:l BT (1 — B)VJs(wit)

1

Momentum

to help with oscillations of SGD (or even full-batch GD):

e use a running average of gradients
e more recent gradients should have higher weights

— BAwWEY 4 (1 — B)VJIp(wit)
|

w{t} e w{t_l} — momentum of 0 reduces to SGD

common value > .9

is effectively an exponential moving average

""lllluu........ Aw(T = ST 5741 B)V e (wlh)

there are other variations of momentum with similar idea

1

Momentum

to help with oscillations of SGD (or even full-batch GD):

e use a running average of gradients
e more recent gradients should have higher weights

dw = (l-beta)*g + beta*dw
w =w - lr*dw

Momentum

Example: logistic regression

no momentum

a=.5p=0,Bl=8

Momentum

Example: logistic regression A BAWY 4+ (1 — 5)V I ()

wt — wtt — aAuw!

no momentum

a=.5p=0,Bl=8

o = 5,8 = .99, |B| = 8

Momentum

Example: logistic regression A e BAWY 4+ (1— 5)V I (wt D)

t t—1 Awt

no momentum

a=.5p=0,Bl=8

%

see the beautiful demo at Distill
https://distill.pub/2017/momentum/

Winter 2020 | Applied Machine Learning (COMP551)

https://distill.pub/2017/momentum/

Ad d g ra d (Adaptive gradient)

use different learning rate for each parameter Wy
also make the learning rate adaptive

1

Ad d g ra d (Adaptive gradient)

use different learning rate for each parameter Wy
also make the learning rate adaptive

Si e SV + 2 g (w12

sum of squares of derivatives over all iterations so far (for individual parameter)

1

Ad d g ra d (Adaptive gradient)

use different learning rate for each parameter Wy
also make the learning rate adaptive

Si e SV + 2 g (w12

sum of squares of derivatives over all iterations so far (for individual parameter)

0
d NE

the learning rate is adapted to previous updates
€ is to avoid numerical issues

1

Ad d g ra d (Adaptive gradient)

use different learning rate for each parameter Wy
also make the learning rate adaptive

Si e SV + 2 g (w12

sum of squares of derivatives over all iterations so far (for individual parameter)

0
d NE

the learning rate is adapted to previous updates
€ is to avoid numerical issues

useful when parameters are updated at different rates (eg, NLP)

1

o =.1,|B| = 1,T = 80,000

d (Adaptive gradient)
“i‘i}x

. A.dagrad (Adaptive gradient)

Ad d g ra d (Adaptive gradient)
. \\\

RMSprop

(Root Mean Squared propagation)

solve the problem of diminishing step-size with Adagrad
e use exponential moving average instead of sum (similar to momentum)
St 481 4 (1 —) VI (wlt1})?

identical to Adagrad

(l-gamma)*g**2 + gamma*S
w - lr*g/np.sqrt(S + epsilon)

1

Ada m (Adaptive Moment Estimation)

two ideas so far:

1. use momentum to smooth out the oscillations

' ; h xponential moving aver
2. adaptive per-parameter learning rate both use exponential moving averages

Adam combines the two:

MY g M1 4 VJ(w{t_l}) identical to method of momentum

St g, glt-1} 4 VJ(,w{t—l})2 identical to

w{t}% w({lt_l}_ Oz]A\AI{t} VJ(,w{t—l})
S{t}+e

.2

Ada m (Adaptive Moment Estimation)

Adam combines thee two:

M g pmit-1 4 VJ(w{t_l}) identical to method of momentum

St g, 90t-13 4 VJ(,w{t—l})2 identical to

with wc{it_l} _ o VJ(wlt=1h)
S{t} +e

since M and S are initialized to be zero, at early stages they are biased towards zero

M{t} ya M Sf{t} ya sith for large time-steps it has no effect

1-8¢ 1-8¢ for small t, it scales up numerator

In practice

, ———— — qd the list of methods is growing ...
N = |
/ — — momentum | they have recommended range of parameters
0 — nag '
— adagrad || ® learning rate, momentum etc.
-1} adadelta 1y still may need some hyper-parameter tuning
rmsprop

these are all first order methods

100
80 |) o
= e they only need the first derivative
‘213 e 2nd order methods can be much more effective,
0 - : but also much more expensive
0 20 40 60 80 100 120

image:Alec Radford

Adding L: regularization

do not penalize the bias wy

Adding L: regularization

do not penalize the bias wy

grad(l:] += lambdaa * w[1:]

1.

Adding L: regularization

do not penalize the bias wy

L2 penalty makes the optimization easier too!

1.

Adding L: regularization

do not penalize the bias wy

L2 penalty makes the optimization easier too!

Adding L: regularization

.
5 grad[l:] += lambda
\\\\\A - O NA — . 0 1
10 i\:\\i\\§§§\\§\\\\\\\\\\\ — 10
NN
N
Naaaaaaaaaaa
N A
N A
N
0 0 \ \\\\\\\Q\\\\§ 0
-10 -10
- k - k
-20 -10 0 10 20 —20 ~10 0 10 20

Adding L: regularization

do not penalize the bias wy

Adding L: regularization

do not penalize the bias wy

L2 penalty makes the optimization easier too!

note that the optimal W1 shrinks

|

L !
-20 -10 0 10 20

Subgderivatives

L1 penalty is no longer smooth or differentiable (at 0)

extend the notion of derivative to non-smooth functions

Subgderivatives

L1 penalty is no longer smooth or differentiable (at 0)

| extend the notion of derivative to non-smooth functions

sub-differential is the set of all sub-derivatives at a point

w—w w

Of (W) = [Hmw—m— F)=1®) iy, g, {@=10)

w

f(w)}

Subgderivatives

L1 penalty is no longer smooth or differentiable (at 0)

| extend the notion of derivative to non-smooth functions

sub-differential is the set of all sub-derivatives at a point

w—w

8f(’lf)) — [limw_)w_ M,limw%er flw)—f(w@)

if fis differentiable at W then sub-differential has one member %f(zb)

Subgderivatives

L1 penalty is no longer smooth or differentiable (at 0)

| extend the notion of derivative to non-smooth functions

sub-differential is the set of all sub-derivatives at a point

Of () = [limw%— f) 1) - fw —Z;(w)}

w—w

if fis differentiable at W) then sub-differential has one member %f(u?)

A

another expression for sub-differential

0f(w) = {9 € R| f(w) > f() + g(w —)}

\

Subgradient

subdifferential absolute f(w) = |w|

8£(0) = [-1,1)
8f (w # 0) = {sign(w)}

11—

‘ — I-1

image credit: G. Gordon

Subgradient

subdifferential absolute f(w) = |w|

8f(0) = [~1,1
. Of(w+0) = {sign(w)}

recall, gradient was the vector of partial derivatives

subgradient is a vector of sub-derivatives

image credit: G. Gordon

Subgradient

subdifferential absolute f(w) = |w|

8f(0) = [~1,1
. Of(w+0) = {sign(w)}

recall, gradient was the vector of partial derivatives

subgradient is a vector of sub-derivatives

subdifferential for functions of multiple variables

of () = {g € R”|f(w) > f(@) + g" (w —w)}

image credit: G. Gordon

Subgradient

subdifferential absolute f(w) = |w|

8f(0) = [~1,1
. Of(w+0) = {sign(w)}

recall, gradient was the vector of partial derivatives

subgradient is a vector of sub-derivatives

subdifferential for functions of multiple variables
0f(w) = {g € R”|f(w) > f() + g" (w — ®)}

we can use sub-gradient with diminishing step-size for optimization

image credit: G. Gordon

Adding L: regularization

L1-regularized linear regression has efficient solvers
subgradient method for L1-regularized logistic regression

Adding L: regularization

L1-regularized linear regression has efficient solvers
subgradient method for L1-regularized logistic regression

do not penalize the bias Wy
using diminishing learning rate

Adding L: regularization

L1-regularized linear regression has efficient solvers
subgradient method for L1-regularized logistic regression

do not penalize the bias Wy
using diminishing learning rate grad[1:] += lambdaa

* np.sign(w[l:

Adding L: regularization

Winter 2020 | Applied Machine Learning (COMP551)

Summary

learning: optimizing the model parameters (minimizing a cost function)
use gradient descent to find local minimum

e easy to implement (esp. using automated differentiation)
e for convex functions gives global minimum

12

Summary

learning: optimizing the model parameters (minimizing a cost function)
use gradient descent to find local minimum

e easy to implement (esp. using automated differentiation)
e for convex functions gives global minimum

Stochastic GD: for large data-sets use mini-batch for a noisy-fast estimate of gradient
* Robbins Monro condition: reduce the learning rate to help with the noise
better (stochastic) gradient optimization

* Momentum: exponential running average to help with the noise
e Adagrad & RMSProp: per parameter adaptive learning rate
e Adam: combining these two ideas

12

Summary

learning: optimizing the model parameters (minimizing a cost function)
use gradient descent to find local minimum

e easy to implement (esp. using automated differentiation)
e for convex functions gives global minimum

Stochastic GD: for large data-sets use mini-batch for a noisy-fast estimate of gradient
* Robbins Monro condition: reduce the learning rate to help with the noise
better (stochastic) gradient optimization

* Momentum: exponential running average to help with the noise
e Adagrad & RMSProp: per parameter adaptive learning rate
e Adam: combining these two ideas

Adding regularization can also help with optimization

12

Adadelta

solve the problem of diminishing step-size with Adagrad

e use exponential moving average instead of sum (similar to momentum)
also gets rid of a "learning rate" altogether

e use another moving average for that!
S{t} — ’}/S{t_l} + (1 — ’)/)VJ(’w{t_l})2 moving average of the sq. gradient

U{t} < ’}/U{t_l} —+ (1 — ’}/)A’w{t_l} moving average of the sq. updates

Aw'th « _, /Ul Vj(w{t—l}) square root of the ratio of the above is used as the
S{th+e adaptive learning rate

w{t} <— w{t_l} _|_ Aw{t}

13

