Applied Machine Learning

Regularization

Siamak Ravanbakhsh

COMP 551 (winter 2020)

Learning objectives

Basic idea of

overfitting and underfitting
Regularization (L1 & L2)

MLE vs MAP estimation

bias and variance trade off
evaluation metrics & cross validation

Previously...

Linear regression and logistic regression
is linear too simple? what if it's not a good fit?
how to increase the models expressiveness?

e create new nonlinear features
e is there a downside?

.

Recall: nonlinear basis functions

replace original features in fu () = Zd WIT(

.2

Recall: nonlinear basis functions

replace original features in fu () = Zd WL

with nonlinear bases fuw(z) =D, wq pa(x)

.2

Recall: nonlinear basis functions

replace original features in fu () = Zd WL
with nonlinear bases fuw(z) =D, wq pa(zx)

linear least squares solution 4% — ((I)T(I))—lq)Ty

replacing X with @

.2

Recall: nonlinear basis functions

replace original features in fu () = Zd WL
with nonlinear bases fuw(z) =D, wq pa(zx)

linear least squares solution 4% — ((I)T(I))—lq)Ty

replacing X with P

a (nonlinear) feature

-¢1(x(1))1 ¢2(x(1))7 R ¢D(x(1))-
$1(z@), go(a®), ---, ¢p(z®)

61e™), Ga@®), -, dp(a™)]

one instance

.2

Recall: nonlinear basis functions

DEIIEIM original inputis scalar £ € R

-1 0

polynomial bases

o () = z*

Winter 2020 | Applied Machine Learning (COMP551)

A \

0.75
0.5

0.25

-1 0 1

Gaussian bases

(z—pp,)?

Pr(z) =€

1
0.75
0.5
0.25
01 0

Sigmoid bases

Pr(z) = — =g

1+e s

Example: Gaussian bases

1

Example: Gaussian bases

1

Example: Gaussian bases

our fit to data using 10 Gaussian bases

1

Example: Gaussian bases

—— y™ =sin(z™) + cos(1/|z™|) + €
prediction for a new instance

f@') =) (&) 'Oy

W found using LLS

new instance

features evaluated for the new point

our fit to data using 10 Gaussian bases

1

Example: Gaussian bases
1 (=11)?

@) =

» our fit to data using 10 Gaussian bases

why not more?

plt.plot(x, vy,)

phi = X,Mu: np.exp(-(x-mu)**2)
5 mu = np.linspace(0,10,10) #10 Gaussians bases
Phi = phi(x[:, 1, muf[r:1)

w = np.linalg.lstsq(Phi, y)[0]
yh = np.dot(Phi,w)
plt.plot(x, yh,)

T Example: Gaussian bases
(w—py,)>

i (z) =e

using 50 bases

plt.plot(x, y,)

phi = X,mu: np.exp(-(x-mu)**2)
5 mu = np.linspace(0,10,50) #50 Gaussians bases
Phi = phi(x[:,], muf[r3])

w = np.linalg.lstsq(Phi, y)[0]
yh = np.dot(Phi,w)
plt.plot(x, yh,)

Example: Gaussian bases

- using 200, thinner bases (s=.1)

plt.plot(x, vy,)
phi = X,mu: np.exp(-((x-mu)/

5 mu = np.linspace(0,10,200) #200 Gaussians bases

i Phi = phi(x[:, 1, mu[,:1)
w = np.linalg.lstsq(Phi, y)[0]
yh = np.dot(Phi,w)

plt.plot(x, vh,)

* %

)

Example: Gaussian bases

- using 200, thinner bases (s=.1)
000
cost function J(w) is small and we have a "perfect" fit!

plt.plot(x, y,)

phi = X,mu: np.exp(-((x-mu)/.1**2)
5 mu = np.linspace(0,10,200) #200 Gaussians bases
Phi = phi(x[:, 1, mu[r:1)

w = np.linalg.lstsq(Phi, y)[0]
yh = np.dot(Phi,w)

plt.plot(x, vh,)

Generalization

.| |Owertraining error ﬁ

which one of these models performs better at test time?

Overfitting

which one of these models performs better at test time?

/,‘).—- predictions of 4 models for the same input f (')
i 7N

N

_ N .
N W 0N

Overfitting

which one of these models performs better at test time?

N~
. \o

/,‘).—- predictions of 4 models for the same input f (')
i 7N

B Do-=5
D =10

Il o-50

B D =200

Overfitting

which one of these models performs better at test time?

/,‘).—- predictions of 4 models for the same input f (')
i 7N

Winter 2020 | Applied Machine Learning (COMP551)

B b-5 underfitting

D =10 ‘ lowest test error

R
Il o-50

B D=200 overfitting

Model selection

how to pick the model with lowest expected loss / test error?

bound the test error by bounding

e training error
e model complexity

Model selection

how to pick the model with lowest expected loss / test error?

bound the test error by bounding

e training error
e model complexity

use a (and a separate test set for final assessment)

use for final model assessment

Model selection

how to pick the model with lowest expected loss / test error?

bound the test error by bounding

e training error
e model complexity

use a (and a separate test set for final assessment)

use for final model assessment

An observation

when overfitting, we often see large weights

i ' dashed lines are wq¢q(z) Vd

.

An observation

when overfitting, we often see large weights

| dashed lines are wypq(x) Vd

D =10

An observation

when overfitting, we often see large weights

||| dashed lines are waga(z) Vd

4 \
J— S
—_— 7N, —_——
AR 7 \
/ \ v TN
/ Y /
¥ 7 \ \

An observation

when overfitting, we often see large weights

dashed lines are wqdq(x) Vd

An observation

when overfitting, we often see large weights

dashed lines are wqdq(z)

vd

idea: penalize large parameter values

7 \\
D =10 D =15
— 7N, —_——
/N ; \
; \ o
/ S VAR
NN / A A \
/ A \. Vi AR /'y
7 YN \ ST / AR RN
7 <z RN \ /) < / / \ / \
_-7 SN S <\ / / N/ N
S e Pt N KN
N N . B N . SRS - Gl
S \~\ N \ e A X, A\ 7/
\ \ \ 4 / \ \! /
"\ . \/ /4 \ \ N
. N A / \ \Wi
\ 4 \ y
\ i \ Y
\ / \ i\
\ / \ /N
\ / N
v N/
_/

1

Ridge regression

L2 regularized linear least squares regression:

J(w) = 3| Xw —y[|3 + 3] |w|l3

Ridge regression

L2 regularized linear least squares regression:

J(w) = 3|[Xw —yl[3 + /vl

sum of squared error

% Zn (y(n) o wT$)2

Ridge regression

L2 regularized linear least squares regression:

J(w) = 3|[Xw —yl[3 + 3[fwlf3

sum of squared error (squared) L2 norm of w

3 (" —w'z)’ whw =35, w’

Ridge regression

L2 regularized linear least squares regression:

J(w) = 3|[Xw —yl[3 + 3[fwlf3

sum of squared error (squared) L2 norm of w

2@ —w'z)? w'w =Y, w?

regularization parameter X > 0 controls the strength of regularization

Ridge regression

L2 regularized linear least squares regression:

J(w) = 3|[Xw —yl[3 + 3[fwlf3

sum of squared error (squared) L2 norm of w

3 (" —w'e)’ whw =35, w’

regularization parameter X > 0 controls the strength of regularization

a good practice is to not penalize the intercept A(||w||3 — w})

Ridge regression

we can set the derivative to zero J(w) = 5(Xw —y) (Xw —y) +

VJ(w)=X"(Xw—1y)+Iw=0

A,
zww

.3

Ridge regression

we can set the derivative to zero J(w) = 3 (Xw —y) (Xw —y) + jw w
VJ(w)=X"(Xw—y) +Aw =0

when using gradient descent, this term
reduces the weights at each step (weight
decay)

.3

Ridge regression

we can set the derivative to zero J(w) = 3 (Xw —y) (Xw —y) + jw w
VJ(w)=X"(Xw—y) +Aw =0

- T when using gradient descent, this term
(X X +)\I)w =X Yy reduces the weights at each step (weight
decay)

Ridge regression

we can set the derivative to zero J(w) = 3 (Xw —y) (Xw —y) + jw'w

VJ(w)=X"(Xw—y) +Aw =0

- T when using gradient descent, this term
(X X +)\I)w =X Yy reduces the weights at each step (weight

w= (X X +2)1X"y

Ridge regression

we can set the derivative to zero J(w) = 3 (Xw —y) (Xw —y) + jw'w

VJ(w)=X"(Xw—y) +Aw =0

- T when using gradient descent, this term
(X X +)\I)w =X Y reduces the weights at each step (weight

w= (X X +2) X"y

Ridge regression

we can set the derivative to zero J(w) = 3 (Xw —y) (Xw —y) + jw w

VJ(w) =X"(Xw—1y)+Aw =0
. T when using gradient descent, this term
(X X +)\I)w =X Y reduces the weights at each step (weight

decay)

w= (X X +2)1X"y

A makes it invertible!
we can have linearly dependent features (e.g., D > N)
the solution will be unique!

.3

Example: polynomial bases

polynomial bases
//

/ o () = "

Without regularization:

® using D=10 we can perfectly fit the data (high test error)

Example: polynomial bases

polynomial bases
//

/ o () = z"

Without regularization:

® using D=10 we can perfectly fit the data (high test error)

degree 2 (D=3)

Example: polynomial bases

/ polynomial bases

f/ or(z) = 2*

Without regularization:

® using D=10 we can perfectly fit the data (high test error)

degree 2 (D=3)| |- degree 4 (D=5)

Example: polynomial bases

/ polynomial bases

f/ or(z) = 2*

Without regularization:

® using D=10 we can perfectly fit the data (high test error)

degree 2 (D=3) |- degree 4 (D=5) | degree 9 (D=10)

Example: polynomial bases

/ polynomial bases
| or(z) = 2*

with regularization:

® fixed D=10, changing the amount of regularization

%

Example: polynomial bases

polynomial bases

o () = z*

with regularization:

® fixed D=10, changing the amount of regularization

A=0

Example: polynomial bases

/ polynomial bases
| or(z) = 2*

with regularization:

® fixed D=10, changing the amount of regularization

A=0 A=

Example: polynomial bases

/ polynomial bases
| or(z) = 2"

with regularization:

® fixed D=10, changing the amount of regularization

A=0 A= 7o A=10

Data normalization

what if we scale the input features, using different factors " = ~v2MVd, n

Data normalization

what if we scale the input features, using different factors " = ~v2MVd, n

. L - 1
if we have no regularization: wa¢ = 5 ;waVd

everything remains the same because: || Xw — y| ’% — HXﬁ) — 9 ‘%

Data normalization

what if we scale the input features, using different factors " = ~v2MVd, n

. L - 1
if we have no regularization: wa¢ = 5 ;waVd

everything remains the same because: || Xw — y| ’% — H)Zﬁ) — 9 @

with regularization: ||@]]2 # ||w]||3 so the optimal w will be different!

Data normalization

what if we scale the input features, using different factors " = ~v2MVd, n

. L - 1
if we have no regularization: wa¢ = 5 ;waVd

everything remains the same because: || Xw — y| ’% — HXﬁ) — 9 ‘%

with regularization: ||@]]2 # ||w]||3 so the optimal w will be different!

features of different mean and variance will be penalized differently

_ 1 ,..(n)

. . d — &
normalization {M2 N
T4

— m(xd - ,ud)2

(n)
. n T —HUd
makes sure all features have the same mean and variance a:g) < d - H
d

Winter 2020 | Applied Machine Learning (COMP551)

Maximum likelihood

previously: linear regression & logistic regression maximize log-likelihood

.

Maximum likelihood

previously: linear regression & logistic regression maximize log-likelihood

linear regression

w* = arg max p(y|w)
— arg maxy Hfj:l N (y; dw, o°)
= argmin y_, Ly(y™,w' ¢(z™))

.

Maximum likelihood

previously: linear regression & logistic regression maximize log-likelihood

linear regression logistic regression
w* = arg max p(y|w) w* = arg max p(y|x,w)
N :
— argmaxXy Hrjzle N (y; dw, o°) = arg maxy | [,,_; Bernoulli(y; o(®w))

=argmin ., L(y™,w' ¢(z™)) = argmin_, Lop(y™, o(w' ¢(z")))

.

Maximum likelihood

previously: linear regression & logistic regression maximize log-likelihood

linear regression logistic regression
w* = arg max p(y|w) w* = arg max p(y|x,w)
N :
— argmaXy Hrjzle N (y; dw, o?) = arg maxy | [,,_; Bernoulli(y; o(®w))
= arg min Zn Lo (y(n) : w' ¢(x(n))) = arg min Zn Lok (y(n), O'(wT¢(;cn)))

idea: maximize the posterior instead of likelihood

__ p(w)p(y|lw)
p(wly) = p(y)

.

Maximum a Posteriori (MAP)

use the Bayes rule and find the parameters with max posterior prob.

__ p(w)p(y|w)
p(wly) = p(y)

Maximum a Posteriori (MAP)

use the Bayes rule and find the parameters with max posterior prob.

__ p(w)p(y|w)
p(wly) = p(y)

MAP estimate

w* = arg max,, p(w)p(y|w)

Maximum a Posteriori (MAP)

use the Bayes rule and find the parameters with max posterior prob.

__ p(w)p(y|w)
p(wly) = p(y)

MAP estimate

w* = arg max,, p(w)p(y|w)

= arg max, log p(y|w) + log p(w)

Maximum a Posteriori (MAP)

use the Bayes rule and find the parameters with max posterior prob.

__ p(w)p(y|w)
p(wly) = p(y)

MAP estimate

w* = arg max,, p(w)p(y|w)

= arg max,, log p(y|w) + log p(w)

Maximum a Posteriori (MAP)

use the Bayes rule and find the parameters with max posterior prob.

__ p(w)p(y|w)
p(wly) = p(y)

MAP estimate

w* = arg max,, p(w)p(y|w)

= arg max, log p(y|w) + log p(w)

Maximum a Posteriori (MAP)

use the Bayes rule and find the parameters with max posterior prob.

__ p(w)p(y|w)
p(wly) = p(y)

MAP estimate

w* = arg max,, p(w)p(y|w)

= arg max, log p(y|w) + log p(w)

even better would be to estimate the posterior distribution p(w|y)
® more on this later in the course!

Gaussian prior

Gaussian likelihood and

w* = arg max,, p(y|lw)

Gaussian prior

Gaussian likelihood and

w* = arg max,, p(w)p(ylw) = argmax, logp(y|lw) +

Gaussian prior

Gaussian likelihood and

w* = arg max,, p(w)p(ylw) = argmax, logp(y|lw) +

= arg max,, log N (y|w ' z,0?) + 25:1 log N (wyg,0,7?)

Gaussian prior

Gaussian likelihood and

w* = argmax,, p(w)p(ylw) = argmax, logp(y|lw) +

= arg max,, log N (y|w ' z,0?) + 25:1 log NV (wyg, 0, 7?)

Gaussian prior

Gaussian likelihood and

w* = argmax,, p(w)p(ylw) = argmax, logp(y|lw) +

= arg max,, log N (y|w ' z,0?) + 25:1 log NV (wyg, 0, 7?)

= arg max, %(y —w!)2 —

Gaussian prior

Gaussian likelihood and

w* = argmax,, p(w)p(ylw) = argmax, logp(y|lw) +

= arg max,, log N (y|w ' z,0?) + 25:1 log NV (wyg, 0, 7?)

= argmax, 5 (y —w z)° — = argmin,, 3(y —w'z)? +

Gaussian prior

Gaussian likelihood and
w* = arg max,, p(y|lw) = argmax, logp(y|w) +

= arg max,, log N (y|w ' z,0?) + 25:1 log N (wg, 0, 7?)

= argmax, 5 (y —w' z)* — = argmin,, 3(y —w'z)> +

multiple data-points

= argmin, 1 >, (y™ —w'z™)? +

Gaussian prior

Gaussian likelihood and

w* = arg max,, p(w)p(ylw) = argmax, logp(y|lw) +

= arg max,, log N (y|w ' z,0?) + 25:1 log N (wg, 0, 7?)

= argmax, 5 (y —w' z)* — = argmin,, 3(y —w'z)> +

0,2

T2

multiple data-points AI
A

= argmin, 1 >, (y™ —w'z™)? +

Gaussian prior

Gaussian likelihood and

w* = arg max,, p(w)p(ylw) = argmax, logp(y|lw) +

= arg max,, log N (y|w ' z,0?) + 25:1 log NV (wyg, 0, 7?)

= argmax, 5 (y —w' z)* — = argmin,, 3(y —w'z)> +

0,2

T2

multiple data-points AI
A

= argmin, 1 >, (y™ —w'z™)? +

is assuming a on weights
the same is true for logistic regression (or any other cost function)

Laplace prior

another notable choice of prior is the Laplace distribution

image:https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions

0.7

08

0a

0.4

0.3

0.2

0.1

Laplace prior

another notable choice of prior is the Laplace distribution

Laplace
Digtribution

Gaussian

Distrbution

|l
p(w; B) = 26€ “notice the peak around zero

image:https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions

Laplace prior

another notable choice of prior is the Laplace distribution

minimizing negative log-likelihood 9 — Zd log p(wq) = Zd %|’wd\

0.7

06

0af

0.4

03k

02k

01k

Laplace 1 _ |w]

Dlistrbuion p(w; B) = 28€ “notice the peak around zero

Gaussian
Distrbution

image:https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions

Laplace prior

another notable choice of prior is the Laplace distribution

1
minimizing negative log-likelihood 9 — > qlogp(wa) =D, %|wd\ = ﬁHle

L1 norm of w

07)
0EL aplace. . 1 i) .
Dlistrbuion p(w; B) = 26€ “notice the peak around zero
nsf]
o4t]
0sl Gaussian .

Distrbution

02k

01k

image:https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions

Laplace prior

another notable choice of prior is the Laplace distribution

1
minimizing negative log-likelihood 9 — > qlogp(wa) =D, %|wd\ = ﬁHle
o L1 norm of w
L1 regularization: J(w) « J(w) + also called lasso

(least absolute shrinkage and selection operator)

07)
0EL aplace. . 1 i) .
Dlistrbuion p(w; B) = 26€ “notice the peak around zero
nsf]
o4t]
0sl Gaussian .

Distrbution

02k

01k

image:https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions

L vs Ly regularization

regularization path shows how {ws}change as we change A

Ridge regression

wq

Wq

; p lcp
— (e Creasing regularization coef. A é

L vs Ly regularization

regularization path shows how {ws}change as we change A

Lasso produces sparse Weights (many are zero, rather than small)

Ridge regression

Icavol

Wy

svi
Iweight
pggas

Ibph

Wq

lep

— (e Creasing regularization coef. A é

L vs Ly regularization

regularization path shows how {ws}change as we change A

Lasso produces sparse Weights (many are zero, rather than small)
red-line is the optimal A from cross-validation

Ridge regression

Icavol

wq
Svi svi
i ey
Ibph - loph
Wq

lep

— (e Creasing regularization coef. A é

L: vs Ly regularization

min,, J(w) + Al|w|} 3 -~
is equivalentto min, J(w) subjectto |lw|[p < A foran appropriate choice of)\

L: vs Ly regularization

min,, J(w) +)\||w||£

is equivalentto min, J(w) subjectto |lwl[h < X for an appropriate choice of 5\
figures below show the constraint and the isocontours of J(w)

w1y

(%)

e WirAP

//;/::'

/ 7
/e

) %UMLE
YA Py
/o ="

)

| A

|/
/

)

w1y

L: vs Ly regularization

min,, J(w) + Al|w|} 3 -~
is equivalentto min, J(w) subjectto |lw|[p < X foran appropriate choice of)\
figures below show the constraint and the isocontours of J(w)

optimal solution with L1-regularization is more likely to have zero components

w1 w1

Subset selection

BPP+

1
S w) >, w? >, |wal Zd [wal? > d de\ I

Subset selection

p-norms with p > 1 are convex (easier to optimize)

B PP+

1
>4 W >4 W > _q [wdl Zd [wa 24 |wal '

Subset selection

p-norms with p > 1 are convex (easier to optimize)

p-norms with p < linduces sparsity

&+ ¢ B

1
>4 W >4 W > _q [wdl Zd [wa 24 |wd\w

Subset selection

p-norms with p > 1 are convex (easier to optimize)

p-norms with p < linduces sparsity

& ¢ B

w; > wh > g |wal Zd |wd‘ 2 > |’wd‘ i

d
'm closer to 0-norm =———>

Subset selection

p-norms with p > 1 are convex (easier to optimize)

p-norms with p < linduces sparsity

S

w; > wh > g |wal Zd |wd‘ 2 > |’wd‘ i

d
'm closer to 0-norm =———>

penalizes the number of non-zero features

J(w) + Awllo = J(w) + A, I(wa # 0)

Subset selection

p-norms with p > 1 are convex (easier to optimize)

p-norms with p < linduces sparsity

SERSPl

>S4 wy >4 W > _q [wdl Zd [wa 24 |wd‘ L
m closer to 0-norm =———>

penalizes the number of non-zero features
J(w) + Awllo = J(w) + A, I(wa # 0)

a penalty of \ for each feature

performs feature selection

Subset selection

p-norms with P Z 1 are convex (easier to optimize)

p-norms with p < linduces sparsity
\ | |
| I \ | 1 | 1
>4 Wa >4 W >_a lwdl 2 lwal? 2_q |wal%

closer to 0-NOrM =—p

optimizing this is a difficult combinatorial problem:

e search over all 2P subsets

Subset selection

p-norms with yY Z 1 are convex (easier to optimize)

p-norms with p < linduces sparsity
|

\ |
| | | | . I
>, wh >, w? >, |wal > a lwal? > a lwal1

closer to 0-NOrM =—p

optimizing this is a difficult combinatorial problem:

e search over all 2P subsets

L1 regularization is a viable alternative to LO regularization

Winter 2020 | Applied Machine Learning (COMP551)

Bias-variance decomposition

for L2 loss

Bias-variance decomposition

for L2 loss

assume a true distribution p(x,y)

Bias-variance decomposition

for L2 loss

assume a true distribution p(x,y)

the regression functionis f(z) = E,|y|z]

.

Bias-variance decomposition

for L2 loss

assume a true distribution p(x,y)
the regression functionis f(z) = E,|y|z]
assume that a dataset D = {(z™,y™)},, is sampled from p(x,y)

.

Bias-variance decomposition

for L2 loss

assume a true distribution p(x,y)
the regression functionis f(z) = E,|y|z]
assume that a dataset D = {(z™,y™)},, is sampled from p(x,y)

let fp be our model based on the dataset

.

Bias-variance decomposition

for L2 loss

assume a true distribution p(x,y)
the regression functionis f(z) = E,|y|z]
assume that a dataset D = {(z™,y™)},, is sampled from p(x,y)

let fp be our model based on the dataset

what we care about is the expected loss (aka risk)

E[(Fo(2) —)

all blue items are random variables

.

Bias-variance decomposition

for L2 loss
what we care about is the expected loss (aka risk)

E[(fp(z) - y)’]

.2

Bias-variance decomposition

for L2 loss
what we care about is the expected loss (aka risk)

E[(fo(z) - 3|J)2]
f(z) +¢€

.2

Bias-variance decomposition

for L2 loss
what we care about is the expected loss (aka risk)

E[(fp(z) — y)°]

|
1o
fo(z) + Ep[fpo(z)] — Ep[fp(x)] add and subtract a term

.2

Bias-variance decomposition

for L2 loss
what we care about is the expected loss (aka risk)

E[(fo(z) —y)*] =E[(fp(z) —Eplfp(z)] -y + Ep[fp(z)])’]

|
1o
fo(z) + Ep[fpo(z)] — Ep[fp(x)] add and subtract a term

.2

Bias-variance decomposition

for L2 loss
what we care about is the expected loss (aka risk)

E[(fo(z) —y)*] =E[(fp(z) —Eplfp(z)] -y + Ep[fp(z)])’]

|
1o
fo(z) + Ep[fpo(z)] — Ep[fp(x)] add and subtract a term

the remaining terms evaluate to zero (check for yourself!)

.2

Bias-variance decomposition

for L2 loss
what we care about is the expected loss (aka risk)

E[(fo(z) —y)*] =E[(fp(z) —Eplfp(z)] -y + Ep[fp(z)])’]

|
1o
fo(z) + Ep[fpo(z)] — Ep[fp(x)] add and subtract a term

the remaining terms evaluate to zero (check for yourself!)

.2

Bias-variance decomposition

for L2 loss

the expected loss is decomposed to:

image: P. Domingos' posted article

.3

Bias-variance decomposition

for L2 loss

the expected loss is decomposed to:

image: P. Domingos' posted article

.3

Bias-variance decomposition

for L2 loss

the expected loss is decomposed to:

image: P. Domingos' posted article

.3

Bias-variance decomposition

for L2 loss

the expected loss is decomposed to:

image: P. Domingos' posted article

.3

Bias-variance decomposition

for L2 loss
the expected loss is decomposed to:
Low High
- 2 Variance Variance
E[(f(x) — En[fp(z)))’] %
bias: how average over all datasets differs from the regression function High . .)2‘
Bias

Low X X
Bias X
X

image: P. Domingos' posted article

Bias-variance decomposition

for L2 loss
the expected loss is decomposed to:
Low High
- 2 Variance Variance
E[(f(x) - E[fp(z)))’] %
bias: how average over all datasets differs from the regression function High . .)?‘
Bias

Low X X
Bias X
X

different models vary in their trade off between error due to bias and variance

® simple models: often more biased

® complex models: often have more variance

image: P. Domingos' posted article

.3

Example: bias vs. variance

Example: bias vs. variance

models for different datasets fp
T using Gaussian bases

random datasets of size N=25 instances are not shown

I

-,{_.;_‘.,,f% R
/7 /;;f_’.’\ R\

Example: bias vs. variance

models for different datasets fp true model f
T using Gaussian bases
random datasets of size N=25 instances are not shown thel rave rage E [fD]

1

U

T >N o
}7}2\“ \ In A = —0.31

Example: bias vs. variance

models for different datasets fp true model f

using Gaussian bases
| their average [E[fp]

random datasets of size N=25 instances are not shown T

L ‘ - L

0 . 1 0 .
variance is the average difference (in bias is the difference (in L2 norm)
squared L2 norm) between these curves between two curves
and their average

Example: bias vs. variance

Example: bias vs. variance

L

Example: bias vs. variance

the average fit is very good, despite high variance

model averaging: uses "average" prediction of

expressive models to prevent overfitting

L

using larger regularization penalty: higher bias - lower variance

acueniea Suiseasdul

selq Suisealdul

Example: bias vs. variance

InA=26

acueniea Suiseasdul
selq Suisealdul

Example: bias vs. variance

the lowest expected loss (test error) is somewhere between the two extremes

tl 0.15
L . /\/ (bi.'a.s)2
= 0.12¢ variance
-1 (bias)2 + variance
0.09 f 1—/
o : 0.06
7 \ In A = —0.31 '
7 \\\ 1 % 0.03
4 |
7
\\ﬂ ‘?T; 5z /,e 1
S - 0
-3 -2 -1 0 1 2

acueniea Suiseasdul
selq Suisealdul

Example: bias vs. variance

the lowest expected loss (test error) is somewhere between the two extremes

./ 0.15
= 0 /_/ (bias)z
::' 0.12 ¢ variance
B (bias)2 + variance
0.09 1—/
7 \\\ n A = —0.31 e‘ 006 [
\\ o, % 0.03
77 K L
7
AN 7 | |
S _ o
-3 -2 -1 0 1 2

in reality, we don't have access to the true model

how to decide which model to use?

prediction error

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Big picture!

High Bias

Low Variance

B B

Low Bias
High Variance

R

error for random dataset D

average training error

model complexity

prediction error

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Big picture!

high variance in more complex models means that

error for random dataset D

average training error

model complexity

| High Bias Low Bias
Low Variance High Variance
B E— e
I I I I | I I I
0 5 10 15 20 25 30 35

Big picture!

high variance in more complex models means that
high bias in simplistic models means that

N High Bias Low Bias
Low Variance High Variance
B E— e

E

o |
(- o
o
|-
—
(3]

[(=]
C o 7
o
B
Y
D T error for random dataset D
-
o

o

o

average training error
o |
o
I I I] [I I I
0 5 10 15 20 25 30 35

model complexity

Winter 2020 | Applied Machine Learning (COMP551)

Model selection

how to pick the model with lowest expected loss / test error?

use a (and a separate test set for final assessment)

use for final model assessment

bound the test error by bounding

e training error
e model complexity

.

Model selection

how to pick the model with lowest expected loss / test error?

use a (and a separate test set for final assessment)

Validation Test

use for model selection use for final model assessment

bound the test error by bounding

e training error
e model complexity

in the end we may have to use a validation set to find the right amount of regularization

Cross validation

getting a more reliable estimate of test error using validation set

- | I I] run 1
e randomly partition the data into K folds [I [[|-
e use K-1 for training, and 1 for validation L 1 T [[w
e report average/std of the validationerrorover [T T Tl]~

all folds |

[[.-

Cross validation

getting a more reliable estimate of test error using validation set

- | I I] run 1

e randomly partition the data into K folds [I [[|-
e use K-1 for training, and 1 for validation L 1 T [[w
e report average/std of the validationerrorover [T T Tl]~
all folds | | , I - —

leave-one-out CV:extreme case of k=N

Cross validation

getting a more reliable estimate of test error using validation set

0.26 Cross-validated MSE of Lasso fit

024
022F

e randomly partition the data into k folds >4
e use k-1 for training, and 1 for validation ol - i |

e report average/std of the validation error

012

over all folds

w0181

MS

0,08 i T U
107! 1072 107 10
Lambda

image credit: Thanh Nguyen et al'19

.3

Cross validation

getting a more reliable estimate of test error using validation set

0.26 Cross-validated MSE of Lasso fit

024
022F

0.2F

e randomly partition the data into k folds

e use k-1 for training, and 1 for validation §oul B :
e report average/std of the validation error
over all folds

01}

008L e
107 1072 107 104

Lambda

once the hyper-parameters are selected, we can use the whole set for training
use test set for the final assessment

image credit: Thanh Nguyen et al'19

.3

Evaluation

evaluation metric can be different from the optimization objective

confusion matrix is a CxC table that compares truth-vs-prediction

for binary classification:

Truth ¥

TP | FP | RD
Result =0 TN TRN
5 P [N

Evaluation

evaluation metric can be different from the optimization objective

confusion matrix is a CxC table that compares truth-vs-prediction

for binary classification:

Truth b

TP | FP | RP
Result N TTN | R’N
b)) P N

some evaluation metrics
(based on the confusion table)

__ TP+TN
Accuracy = 5y
_ FP+FN
Error rate = PN
TP

Precision = £P

TP
Recall = —

__ o Precisionx Recall
Fiscore =2 Precision+Recall

Evaluation

evaluation metric can be different from the optimization objective

confusion matrix is a CxC table that compares truth-vs-prediction

some evaluation metrics
(based on the confusion table)

for binary classification:

Truth 3

TP | FP | RP
Result

FN [TN | RN _ TP+TN
5 o Accuracy = 5y

__ FP+FN
Error rate = PN
TP

Precision = £P

TP
Recall = —

__ o Precisionx Recall
Fyscore = 2Precz’sion+Recall

type | vs type Il error

Evaluation

threshold
if we produce class score (probability) p(y = 1|z)
we can trade-off between type | & type Il error

0 1

.5

Evaluation

if we produce class score (probability) p(y = 1|z)
we can trade-off between type | & type Il error

0

goal: evaluate class scores/probabilities (independent of choice of threshold)

threshold

.5

Evaluation

threshold

if we produce class score (probability) p(y = 1|z)
we can trade-off between type | & type Il error

0
goal: evaluate class scores/probabilities (independent of choice of threshold)

ROC_CURVE

Receiver Operating Characteristic ROC curve Y07\ [PERFECT CTASSFER L0
TPR = TP/P (recall, sensitivity) w08
FPR = FP/N (fallout, false alarm) ;0,6_

&

0.2+
OTO O..Z ofu 076 OT‘B

FALSE POSITIVE RATE

Winter 2020 | Applied Machine Learning (COMP551)

Summary

e complex models can have very different training and test error (generalization gap)
¢ regularization bounds this gap by penalizing model complexity

m |1 & L2 regularization

= probabilistic interpretation: different priors on weights

= L1 produces sparse solutions (useful for feature selection)

10

Summary

e complex models can have very different training and test error (generalization gap)
¢ regularization bounds this gap by penalizing model complexity

m |1 & L2 regularization
= probabilistic interpretation: different priors on weights
= L1 produces sparse solutions (useful for feature selection)

® bias-variance trade off:
» formalizes the relation between
o training error (bias)
o complexity (variance) and
o and the test error (bias + variance)

= not so elegant beyond L2 loss

10

Summary

complex models can have very different training and test error (generalization gap)
regularization bounds this gap by penalizing model complexity

m |1 & L2 regularization
= probabilistic interpretation: different priors on weights
= L1 produces sparse solutions (useful for feature selection)

bias-variance trade off:
» formalizes the relation between
o training error (bias)
o complexity (variance) and
o and the test error (bias + variance)

= not so elegant beyond L2 loss
(cross) validation for model selection

10

