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Learning objectives

Basic idea of

overfitting and underfitting
Regularization (L1 & L2)

MLE vs MAP estimation

bias and variance trade off
evaluation metrics & cross validation



Previously...

Linear regression and logistic regression
is linear too simple? what if it's not a good fit?
how to increase the models expressiveness?

e create new nonlinear features
e is there a downside?

.
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Recall: nonlinear basis functions

replace original features in  fu () = Zd WL
with nonlinear bases fuw(z) =D, wq pa(zx)

linear least squares solution 4% — ((I)T(I))—lq)Ty

replacing X with P

a (nonlinear) feature

-¢1(x(1))1 ¢2(x(1))7 R ¢D(x(1))-
$1(z@), go(a®), ---, ¢p(z®)

61e™), Ga@®), -, dp(a™)]

one instance
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Recall: nonlinear basis functions

DEIIEIM original inputis scalar £ € R

-1 0

polynomial bases

o () = z*
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Example: Gaussian bases

—— y™ =sin(z™) + cos(1/|z™|) + €
prediction for a new instance

f@') =) (& ) 'Oy

W found using LLS

new instance

features evaluated for the new point

our fit to data using 10 Gaussian bases

1



Example: Gaussian bases
1 (=11 )?

@) =

» our fit to data using 10 Gaussian bases

why not more?

plt.plot(x, vy, )

phi = X,Mu: np.exp(-(x-mu)**2)
5 mu = np.linspace(0,10,10) #10 Gaussians bases
Phi = phi(x[:, 1, muf[ r:1)

w = np.linalg.lstsq(Phi, y)[0]
yh = np.dot(Phi,w)
plt.plot(x, yh, )



T Example: Gaussian bases
(w—py,)>

i (z) =e

using 50 bases

plt.plot(x, y, )

phi = X,mu: np.exp(-(x-mu)**2)
5 mu = np.linspace(0,10,50) #50 Gaussians bases
Phi = phi(x[:, ], muf[ r3])

w = np.linalg.lstsq(Phi, y)[0]
yh = np.dot(Phi,w)
plt.plot(x, yh, )




Example: Gaussian bases

- using 200, thinner bases (s=.1)

plt.plot(x, vy, )
phi = X,mu: np.exp(-((x-mu)/

5 mu = np.linspace(0,10,200) #200 Gaussians bases

i Phi = phi(x[:, 1, mu[ ,:1)
w = np.linalg.lstsq(Phi, y)[0]
yh = np.dot(Phi,w)

plt.plot(x, vh, )

* %
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Example: Gaussian bases

- using 200, thinner bases (s=.1)
000
cost function J(w) is small and we have a "perfect" fit!

plt.plot(x, y, )

phi = X,mu: np.exp(-((x-mu)/.1**2)
5 mu = np.linspace(0,10,200) #200 Gaussians bases
Phi = phi(x[:, 1, mu[ r:1)

w = np.linalg.lstsq(Phi, y)[0]
yh = np.dot(Phi,w)

plt.plot(x, vh, )




Generalization

.| |Owertraining error ﬁ

which one of these models performs better at test time?
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Overfitting

which one of these models performs better at test time?

N~
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Overfitting

which one of these models performs better at test time?

/,‘).—- predictions of 4 models for the same input f (')
i 7N
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B b-5 underfitting

D =10 ‘ lowest test error

R
Il o-50

B D=200 overfitting



Model selection

how to pick the model with lowest expected loss / test error?

bound the test error by bounding

e training error
e model complexity
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An observation

when overfitting, we often see large weights

dashed lines are wqdq(z)

vd

idea: penalize large parameter values
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Ridge regression

L2 regularized linear least squares regression:

J(w) = 3|[Xw —yl[3 + 3[fwlf3

sum of squared error (squared) L2 norm of w

3 (" —w'e)’ whw =35, w’

regularization parameter X > 0 controls the strength of regularization

a good practice is to not penalize the intercept A(||w||3 — w})



Ridge regression

we can set the derivative to zero J(w) = 5(Xw —y) (Xw —y) +

VJ(w)=X"(Xw—1y)+Iw=0

A,
zww
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VJ(w)=X"(Xw—y) +Aw =0

when using gradient descent, this term
reduces the weights at each step (weight
decay)
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Ridge regression

we can set the derivative to zero J(w) = 3 (Xw —y) (Xw —y) + jw w

VJ(w) =X"(Xw—1y)+Aw =0
. T when using gradient descent, this term
(X X + )\I)w =X Y reduces the weights at each step (weight

decay)

w= (X X +2)1X"y

A makes it invertible!
we can have linearly dependent features (e.g., D > N)
the solution will be unique!

.3
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Example: polynomial bases

/ polynomial bases

f/ or(z) = 2*

Without regularization:

® using D=10 we can perfectly fit the data (high test error)

degree 2 (D=3) |- degree 4 (D=5) | degree 9 (D=10)
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/ polynomial bases
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Example: polynomial bases

/ polynomial bases
| or(z) = 2"

with regularization:

® fixed D=10, changing the amount of regularization

A=0 A= 7o A=10
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Data normalization

what if we scale the input features, using different factors " = ~v2MVd, n

. L - 1
if we have no regularization: wa¢ = 5 ;waVd

everything remains the same because: || Xw — y| ’% — HXﬁ) — 9 ‘%

with regularization: ||@]]2 # ||w]||3 so the optimal w will be different!

features of different mean and variance will be penalized differently

_ 1 ,..(n)

. . d — &
normalization {M2 N
T4

— m(xd - ,ud)2

(n)
. n T —HUd
makes sure all features have the same mean and variance a:g ) < d - H
d
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previously: linear regression & logistic regression maximize log-likelihood
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w* = arg max p(y|w)
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= argmin y_, Ly(y™,w' ¢(z™))
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Maximum likelihood

previously: linear regression & logistic regression maximize log-likelihood

linear regression logistic regression
w* = arg max p(y|w) w* = arg max p(y|x,w)
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— argmaxXy Hrjzle N (y; dw, o°) = arg maxy | [,,_; Bernoulli(y; o(®w))

=argmin ., L(y™,w' ¢(z™)) = argmin_, Lop(y™, o(w' ¢(z")))

.



Maximum likelihood

previously: linear regression & logistic regression maximize log-likelihood

linear regression logistic regression
w* = arg max p(y|w) w* = arg max p(y|x,w)
N :
— argmaXy Hrjzle N (y; dw, o?) = arg maxy | [,,_; Bernoulli(y; o(®w))
= arg min Zn Lo (y(n) : w' ¢(x(n) )) = arg min Zn Lok (y(n), O'(wT¢(;cn)))

idea: maximize the posterior instead of likelihood

__ p(w)p(y|lw)
p(wly) = p(y)

.
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Maximum a Posteriori (MAP)

use the Bayes rule and find the parameters with max posterior prob.
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Maximum a Posteriori (MAP)

use the Bayes rule and find the parameters with max posterior prob.

__ p(w)p(y|w)
p(wly) = p(y)

MAP estimate

w* = arg max,, p(w)p(y|w)

= arg max, log p(y|w) + log p(w)

even better would be to estimate the posterior distribution p(w|y)
® more on this later in the course!
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Gaussian likelihood and
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Gaussian prior

Gaussian likelihood and

w* = arg max,, p(w)p(ylw) = argmax, logp(y|lw) +

= arg max,, log N (y|w ' z,0?) + 25:1 log NV (wyg, 0, 7?)

= argmax, 5 (y —w' z)* — = argmin,, 3(y —w'z)> +

0,2

T2

multiple data-points AI
A

= argmin, 1 >, (y™ —w'z™)? +

is assuming a on weights
the same is true for logistic regression (or any other cost function)



Laplace prior

another notable choice of prior is the Laplace distribution

image:https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions
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Laplace prior

another notable choice of prior is the Laplace distribution

Laplace
Digtribution

Gaussian

Distrbution

|l
p(w; B) = 26€ “notice the peak around zero

image:https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions



Laplace prior

another notable choice of prior is the Laplace distribution

minimizing negative log-likelihood 9 — Zd log p(wq) = Zd %|’wd\

0.7
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01k

Laplace 1 _ |w]

Dlistrbuion p(w; B) = 28€ “notice the peak around zero

Gaussian
Distrbution

image:https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions



Laplace prior

another notable choice of prior is the Laplace distribution

1
minimizing negative log-likelihood 9 — > qlogp(wa) =D, %|wd\ = ﬁHle

L1 norm of w

07 )
0EL aplace. . 1 i) .
Dlistrbuion p(w; B) = 26€ “notice the peak around zero
nsf ]
o4t ]
0sl Gaussian .

Distrbution

02k

01k

image:https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions



Laplace prior

another notable choice of prior is the Laplace distribution

1
minimizing negative log-likelihood 9 — > qlogp(wa) =D, %|wd\ = ﬁHle
o L1 norm of w
L1 regularization: J(w) « J(w) + also called lasso

(least absolute shrinkage and selection operator)

07 )
0EL aplace. . 1 i) .
Dlistrbuion p(w; B) = 26€ “notice the peak around zero
nsf ]
o4t ]
0sl Gaussian .

Distrbution

02k

01k

image:https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions
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regularization path shows how {ws}change as we change A

Lasso produces sparse Weights (many are zero, rather than small)

Ridge regression
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L vs Ly regularization

regularization path shows how {ws}change as we change A

Lasso produces sparse Weights (many are zero, rather than small)
red-line is the optimal A from cross-validation

Ridge regression

Icavol

wq
Svi svi
i ey
Ibph - loph
Wq

lep

— (e Creasing regularization coef. A é
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L: vs Ly regularization

min,, J(w) + )\||w||£

is equivalentto min, J(w) subjectto |lwl[h < X for an appropriate choice of 5\
figures below show the constraint and the isocontours of J(w)
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L: vs Ly regularization

min,, J(w) + Al|w|} 3 -~
is equivalentto min, J(w) subjectto |lw|[p < X foran appropriate choice of )\
figures below show the constraint and the isocontours of J(w)

optimal solution with L1-regularization is more likely to have zero components

w1 w1
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Subset selection

p-norms with p > 1 are convex (easier to optimize)

p-norms with p < linduces sparsity

SERSPl

>S4 wy >4 W > _q [wdl Zd [wa 24 |wd‘ L
m closer to 0-norm =———>

penalizes the number of non-zero features
J(w) + Awllo = J(w) + A, I(wa # 0)

a penalty of \ for each feature

performs feature selection



Subset selection

p-norms with P Z 1 are convex (easier to optimize)
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\ | |
| I \ | 1 | 1
>4 Wa >4 W >_a lwdl 2 lwal? 2_q |wal%

closer to 0-NOrM =—p

optimizing this is a difficult combinatorial problem:

e search over all 2P subsets



Subset selection

p-norms with yY Z 1 are convex (easier to optimize)

p-norms with p < linduces sparsity
|

\ |
| | | | . I
>, wh >, w? >, |wal > a lwal? > a lwal1

closer to 0-NOrM =—p

optimizing this is a difficult combinatorial problem:

e search over all 2P subsets

L1 regularization is a viable alternative to LO regularization
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Bias-variance decomposition

for L2 loss

assume a true distribution p(x,y)
the regression functionis f(z) = E,|y|z]
assume that a dataset D = {(z™,y™)},, is sampled from p(x,y)

let fp be our model based on the dataset

what we care about is the expected loss (aka risk)

E[(Fo(2) — )

all blue items are random variables

.
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Bias-variance decomposition

for L2 loss

the expected loss is decomposed to:
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Bias-variance decomposition

for L2 loss
the expected loss is decomposed to:
Low High
- 2 Variance Variance
E[(f(x) — En[fp(z)))’] %
bias: how average over all datasets differs from the regression function High . .)2‘
Bias

Low X X
Bias X
X
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Bias-variance decomposition

for L2 loss
the expected loss is decomposed to:
Low High
- 2 Variance Variance
E[(f(x) - E[fp(z)))’] %
bias: how average over all datasets differs from the regression function High . .)?‘
Bias

Low X X
Bias X
X

different models vary in their trade off between error due to bias and variance

® simple models: often more biased

® complex models: often have more variance

image: P. Domingos' posted article
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Example: bias vs. variance

models for different datasets fp true model f

using Gaussian bases
| their average [E[fp]

random datasets of size N=25 instances are not shown T

L ‘ - L

0 . 1 0 .
variance is the average difference (in bias is the difference (in L2 norm)
squared L2 norm) between these curves between two curves
and their average
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Example: bias vs. variance

the average fit is very good, despite high variance

model averaging: uses "average" prediction of

expressive models to prevent overfitting

L

using larger regularization penalty: higher bias - lower variance
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Example: bias vs. variance

the lowest expected loss (test error) is somewhere between the two extremes

tl 0.15
L . /\/ (bi.'a.s)2
= 0.12¢ variance
-1 (bias)2 + variance
0.09 f 1—/
o : 0.06
7 \ In A = —0.31 '
7 \\\ 1 % 0.03
4 |
7
\\ﬂ ‘?T; 5z /,e 1
S - 0
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Example: bias vs. variance

the lowest expected loss (test error) is somewhere between the two extremes

./ 0.15
= 0 /\_/ (bias)z
::' 0.12 ¢ variance
B (bias)2 + variance
0.09 1—/
7 \\\ n A = —0.31 e‘ 006 [
# \\ o, % 0.03
77 K L
7
AN 7 | |
S _ o
-3 -2 -1 0 1 2

in reality, we don't have access to the true model

how to decide which model to use?




prediction error

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Big picture!

High Bias

Low Variance

B B

Low Bias
High Variance

R

error for random dataset D

average training error

model complexity



prediction error

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Big picture!

high variance in more complex models means that

error for random dataset D

average training error

model complexity
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Big picture!

high variance in more complex models means that
high bias in simplistic models means that

N High Bias Low Bias
Low Variance High Variance
B E— e

E

o |
(- o
o
|-
—
(3]

[(=]
C o 7
o
B
Y
D T error for random dataset D
-
o

o

o

average training error
o |
o
I I I ] [ I I I
0 5 10 15 20 25 30 35

model complexity
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Model selection

how to pick the model with lowest expected loss / test error?

use a (and a separate test set for final assessment)

use for final model assessment

bound the test error by bounding

e training error
e model complexity
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Model selection

how to pick the model with lowest expected loss / test error?

use a (and a separate test set for final assessment)

Validation Test

use for model selection use for final model assessment

bound the test error by bounding

e training error
e model complexity

in the end we may have to use a validation set to find the right amount of regularization



Cross validation

getting a more reliable estimate of test error using validation set

- | I I ] run 1
e randomly partition the data into K folds [ I [ [ |-
e use K-1 for training, and 1 for validation L 1 T [ [w
e report average/std of the validationerrorover [ T T Tl ]~

all folds |
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Cross validation

getting a more reliable estimate of test error using validation set

- | I I ] run 1

e randomly partition the data into K folds [ I [ [ |-
e use K-1 for training, and 1 for validation L 1 T [ [w
e report average/std of the validationerrorover [ T T Tl ]~
all folds | | , I - —

leave-one-out CV:extreme case of k=N



Cross validation

getting a more reliable estimate of test error using validation set

0.26 Cross-validated MSE of Lasso fit

024
022F

e randomly partition the data into k folds >4
e use k-1 for training, and 1 for validation ol - i |

e report average/std of the validation error

012

over all folds

w0181
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107! 1072 107 10
Lambda

image credit: Thanh Nguyen et al'19
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Cross validation

getting a more reliable estimate of test error using validation set

0.26 Cross-validated MSE of Lasso fit

024
022F

0.2F

e randomly partition the data into k folds

e use k-1 for training, and 1 for validation §oul B :
e report average/std of the validation error
over all folds

01}

008L e
107 1072 107 104

Lambda

once the hyper-parameters are selected, we can use the whole set for training
use test set for the final assessment

image credit: Thanh Nguyen et al'19
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Evaluation

evaluation metric can be different from the optimization objective

confusion matrix is a CxC table that compares truth-vs-prediction

for binary classification:
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confusion matrix is a CxC table that compares truth-vs-prediction

for binary classification:

Truth b

TP | FP | RP
Result N TTN | R’N
b)) P N

some evaluation metrics
(based on the confusion table)
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Accuracy = 5y
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Error rate = PN
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Precision = £P
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Recall = —
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Evaluation

evaluation metric can be different from the optimization objective

confusion matrix is a CxC table that compares truth-vs-prediction

some evaluation metrics
(based on the confusion table)

for binary classification:

Truth 3

TP | FP | RP
Result

FN [ TN | RN _ TP+TN
5 o Accuracy = 5y

__ FP+FN
Error rate = PN
TP

Precision = £P

TP
Recall = —

__ o Precisionx Recall
Fyscore = 2Precz’sion+Recall

type | vs type Il error
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Evaluation

threshold

if we produce class score (probability) p(y = 1|z)
we can trade-off between type | & type Il error

0
goal: evaluate class scores/probabilities (independent of choice of threshold)

ROC_CURVE

Receiver Operating Characteristic ROC curve Y07\ [PERFECT CTASSFER L0
TPR = TP/P (recall, sensitivity) w08
FPR = FP/N (fallout, false alarm) ;0,6_

&

0.2+
OTO O..Z ofu 076 OT‘B

FALSE POSITIVE RATE
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Summary

e complex models can have very different training and test error (generalization gap)
¢ regularization bounds this gap by penalizing model complexity

m |1 & L2 regularization

= probabilistic interpretation: different priors on weights

= L1 produces sparse solutions (useful for feature selection)
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® bias-variance trade off:
» formalizes the relation between
o training error (bias)
o complexity (variance) and
o and the test error (bias + variance)

= not so elegant beyond L2 loss
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Summary

complex models can have very different training and test error (generalization gap)
regularization bounds this gap by penalizing model complexity

m |1 & L2 regularization
= probabilistic interpretation: different priors on weights
= L1 produces sparse solutions (useful for feature selection)

bias-variance trade off:
» formalizes the relation between
o training error (bias)
o complexity (variance) and
o and the test error (bias + variance)

= not so elegant beyond L2 loss
(cross) validation for model selection
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