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Basic idea of

overfitting and underfitting
Regularization (L1 & L2)
MLE vs MAP estimation
bias and variance trade off
evaluation metrics & cross validation

Learning objectivesLearning objectives
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Linear regression and logistic regression
is linear too simple? what if it's not a good fit?
how to increase the models expressiveness?

create new nonlinear features
is there a downside?

Previously...Previously...
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Recall: nonlinear basis functionsRecall: nonlinear basis functions

replace original features in f  (x) =w  w  x  ∑d d d

with nonlinear bases f  (x) =w  w  ϕ  (x)∑d d d

w =∗ (Φ Φ) Φ y⊤ −1 ⊤linear least squares solution

Φ =       
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replacing X with Φ
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Recall: nonlinear basis functionsRecall: nonlinear basis functions

examples x ∈ R

polynomial bases

ϕ  (x) =k xk

Gaussian bases

ϕ  (x) =k e−  

s2
(x−μ  )k

2

Sigmoid bases

ϕ  (x) =k  

1+e
−  

s

x−μ  k

1

original input is scalar
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ExampleExample: Gaussian bases: Gaussian bases
ϕ  (x) =k e−  
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(x−μ  )k
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ExampleExample: Gaussian bases: Gaussian bases
ϕ  (x) =k e−  

s2
(x−μ  )k

2

y =(n) sin(x ) +(n) cos(  ) +∣x ∣(n) ϵ
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ExampleExample: Gaussian bases: Gaussian bases
ϕ  (x) =k e−  

s2
(x−μ  )k

2

y =(n) sin(x ) +(n) cos(  ) +∣x ∣(n) ϵ

our fit to data using 10 Gaussian bases
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ExampleExample: Gaussian bases: Gaussian bases
ϕ  (x) =k e−  

s2
(x−μ  )k

2

y =(n) sin(x ) +(n) cos(  ) +∣x ∣(n) ϵ

our fit to data using 10 Gaussian bases

f(x ) =′ ϕ(x ) (Φ Φ) Φ y′ ⊤ ⊤ −1 ⊤

new instance
w

features evaluated for the new point

prediction for a new instance

found using LLS
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ExampleExample: Gaussian bases: Gaussian bases
ϕ  (x) =k e−  

s2
(x−μ  )k

2

mu = np.linspace(0,10,10) #10 Gaussians bases

#x: N 1
#y: N 2
plt.plot(x, y, 'b.') 3
phi = lambda x,mu: np.exp(-(x-mu)**2) 4

5
Phi = phi(x[:,None], mu[None,:]) #N x 106
w = np.linalg.lstsq(Phi, y)[0]7
yh = np.dot(Phi,w)8
plt.plot(x, yh, 'g-')9

our fit to data using 10 Gaussian bases

why not more?
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ExampleExample: Gaussian bases: Gaussian bases
ϕ  (x) =k e−  

s2
(x−μ  )k

2

mu = np.linspace(0,10,50) #50 Gaussians bases

#x: N 1
#y: N 2
plt.plot(x, y, 'b.') 3
phi = lambda x,mu: np.exp(-(x-mu)**2) 4

5
Phi = phi(x[:,None], mu[None,:]) #N x 106
w = np.linalg.lstsq(Phi, y)[0]7
yh = np.dot(Phi,w)8
plt.plot(x, yh, 'g-')9

using 50 bases
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mu = np.linspace(0,10,200) #200 Gaussians bases

#x: N 1
#y: N 2
plt.plot(x, y, 'b.') 3
phi = lambda x,mu: np.exp(-((x-mu)/.1**2) 4

5
Phi = phi(x[:,None], mu[None,:]) #N x 106
w = np.linalg.lstsq(Phi, y)[0]7
yh = np.dot(Phi,w)8
plt.plot(x, yh, 'g-')9

using 200, thinner bases (s=.1)

ExampleExample: Gaussian bases: Gaussian bases
ϕ  (x) =k e−  

s2
(x−μ  )k

2
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mu = np.linspace(0,10,200) #200 Gaussians bases

#x: N 1
#y: N 2
plt.plot(x, y, 'b.') 3
phi = lambda x,mu: np.exp(-((x-mu)/.1**2) 4

5
Phi = phi(x[:,None], mu[None,:]) #N x 106
w = np.linalg.lstsq(Phi, y)[0]7
yh = np.dot(Phi,w)8
plt.plot(x, yh, 'g-')9

cost function             is small and we have a "perfect" fit!J(w)

using 200, thinner bases (s=.1)

ExampleExample: Gaussian bases: Gaussian bases
ϕ  (x) =k e−  

s2
(x−μ  )k

2
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GeneralizationGeneralization

which one of these models performs better at test time?

D = 5

D = 10

D = 50

D = 200

lower training error
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OverfittingOverfitting
which one of these models performs better at test time?

predictions of 4 models for the same input

x′

y

f(x )′
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OverfittingOverfitting
which one of these models performs better at test time?

predictions of 4 models for the same input

x′

D = 5

D = 10

D = 50

D = 200
y

lowest test error

overfitting

underfitting
f(x )′
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Model selectionModel selection
how to pick the model with lowest expected loss / test error?

bound the test error by bounding

training error
model complexity

regularization
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An observationAn observation
when overfitting, we often see large weights

dashed lines are w  ϕ  (x) ∀dd d
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D = 20
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D = 20

An observationAn observation
when overfitting, we often see large weights

dashed lines are w  ϕ  (x) ∀dd d

D = 10 D = 15

idea: penalize large parameter values
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RidgeRidge regression regression
L2 regularized linear least squares regression:

J(w) =  ∣∣Xw −2
1 y∣∣  +2

2 ∣∣w∣∣  2
λ

2
2
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  (y −2
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RidgeRidge regression regression
L2 regularized linear least squares regression:

J(w) =  ∣∣Xw −2
1 y∣∣  +2

2 ∣∣w∣∣  2
λ

2
2

  (y −2
1 ∑n

(n) w x)⊤ 2
sum of squared error (squared) L2 norm of w

w w =T
 w∑d

2

regularization parameter              controls the strength of regularizationλ > 0

a good practice is to not penalize the intercept λ(∣∣w∣∣  −2
2 w  )0

2
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RidgeRidge regression regression
we can set the derivative to zero J(w) =  (Xw −2

1 y) (Xw −⊤ y) +  w w2
λ ⊤

∇J(w) = X (Xw −⊤ y) + λw = 0
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RidgeRidge regression regression
we can set the derivative to zero J(w) =  (Xw −2

1 y) (Xw −⊤ y) +  w w2
λ ⊤

∇J(w) = X (Xw −⊤ y) + λw = 0

(X X +⊤ λI)w = X y⊤

w = (X X +⊤ λI) X y−1 ⊤

the only part different due to regularization

        makes it invertible!
we can have linearly dependent features (e.g., D > N)
the solution will be unique!

λI

when using gradient descent, this term
reduces the weights at each step (weight
decay)
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Example: Example: polynomial basespolynomial bases
polynomial bases

ϕ  (x) =k xk

Without regularization:

using D=10 we can perfectly fit the data (high test error)
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Example: Example: polynomial basespolynomial bases

degree 2 (D=3)

polynomial bases

ϕ  (x) =k xk

Without regularization:
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Example: Example: polynomial basespolynomial bases

degree 2 (D=3)

polynomial bases

ϕ  (x) =k xk

degree 4 (D=5)

Without regularization:

using D=10 we can perfectly fit the data (high test error)
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Example: Example: polynomial basespolynomial bases

degree 2 (D=3)

polynomial bases

ϕ  (x) =k xk

degree 4 (D=5) degree 9 (D=10)

Without regularization:

using D=10 we can perfectly fit the data (high test error)
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Example: Example: polynomial basespolynomial bases
polynomial bases

ϕ  (x) =k xk

with regularization:

fixed D=10, changing the amount of regularization
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Example: Example: polynomial basespolynomial bases
polynomial bases

ϕ  (x) =k xk

with regularization:

fixed D=10, changing the amount of regularization

λ = 0 λ = .1 λ = 10

6 . 5



Data normalizationData normalization
what if we scale the input features, using different factors =x~(n) γ  x ∀d,nd

(n)
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Data normalizationData normalization
what if we scale the input features, using different factors =x~(n) γ  x ∀d,nd

(n)

if we have no regularization:  =w  d
~

 w  ∀d
γ  d

1
d

everything remains the same because: ∣∣Xw − y∣∣  =2
2 ∣∣ −X

~
w~ y∣∣  2

2
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Data normalizationData normalization
what if we scale the input features, using different factors =x~(n) γ  x ∀d,nd

(n)

with regularization: ∣∣ ∣∣   =w~ 2  ∣∣w∣∣  2
2 so the optimal w will be different!

if we have no regularization:  =w  d
~

 w  ∀d
γ  d

1
d

everything remains the same because: ∣∣Xw − y∣∣  =2
2 ∣∣ −X

~
w~ y∣∣  2

2

features of different mean and variance will be penalized differently

μ  =d  x  

N
1

d
(n)

σ  =d
2

 (x  −
N−1

1
d
(n)

μ  )d
2{normalization

makes sure all features have the same mean and variance x  ←d
(n)

 

σ  d

x  −μ  d

(n)
d
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previously: linear regression & logistic regression maximize log-likelihood

w =∗ arg max p(y∣w)

≡ arg min  L  (y ,w ϕ(x ))∑n 2
(n) ⊤ (n)

= arg max   N (y; Φw,σ )w∏n=1
N 2

linear regression
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Maximum likelihoodMaximum likelihood
previously: linear regression & logistic regression maximize log-likelihood

w =∗ arg max p(y∣w)

≡ arg min  L  (y ,w ϕ(x ))∑n 2
(n) ⊤ (n)

= arg max   N (y; Φw,σ )w∏n=1
N 2

linear regression

w =∗ arg max p(y∣x,w)

≡ arg min  L  (y ,σ(w ϕ(x )))∑n CE
(n) ⊤ n

= arg max   Bernoulli(y;σ(Φw))w∏n=1
N

logistic regression
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Maximum likelihoodMaximum likelihood
previously: linear regression & logistic regression maximize log-likelihood

w =∗ arg max p(y∣w)

≡ arg min  L  (y ,w ϕ(x ))∑n 2
(n) ⊤ (n)

= arg max   N (y; Φw,σ )w∏n=1
N 2

linear regression

w =∗ arg max p(y∣x,w)

≡ arg min  L  (y ,σ(w ϕ(x )))∑n CE
(n) ⊤ n

= arg max   Bernoulli(y;σ(Φw))w∏n=1
N

logistic regression

idea: maximize the posterior instead of likelihood

p(w∣y) =  

p(y)
p(w)p(y∣w)

7 . 1



Maximum a Posteriori (Maximum a Posteriori (MAPMAP))
use the Bayes rule and find the parameters with max posterior prob.

p(w∣y) =  

p(y)
p(w)p(y∣w)

 the same for all choices of w (ignore)
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Maximum a Posteriori (Maximum a Posteriori (MAPMAP))
use the Bayes rule and find the parameters with max posterior prob.

p(w∣y) =  

p(y)
p(w)p(y∣w)

 the same for all choices of w (ignore)
MAP estimate

w =∗ arg max  p(w)p(y∣w)w

≡ arg max  log p(y∣w) +w log p(w)
likelihood: original objective prior

even better would be to estimate the posterior distribution            
more on this later in the course!

p(w∣y)
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(one per each weight)
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Gaussian likelihood and Gaussian prior

w =∗ arg max  p(w)p(y∣w)w ≡ arg max  log p(y∣w) +w log p(w)

assuming independent Gaussian
(one per each weight)

≡ arg max   (y −w 2σ2
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2
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≡ arg min    (y −w 2
1 ∑n

(n) w x ) +⊤ (n) 2
  w  ∑d=1

D

2
λ

d
2

L2 regularization

λ =  

τ 2
σ2

L2- regularization is assuming a Gaussian prior on weights
the same is true for logistic regression (or any other cost function)
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Laplace priorLaplace prior
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minimizing negative log-likelihood −  log p(w  ) =∑d d   ∣w  ∣∑d 2β
1
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=  ∣∣w∣∣  2β

1
1

L1 norm of w

p(w;β) =  e2β
1 −  

β

∣w∣

w

notice the peak around zero

J(w) ← J(w) + λ∣∣w∣∣  1L1 regularization: also called lasso
(least absolute shrinkage and selection operator)
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regularization path shows how           change as we change{w  }d λ

decreasing regularization coef.      λ

w  d′

Lasso produces sparse weights (many are zero, rather than small)

red-line is the optimal       from cross-validationλ

w  d

Ridge regressionLasso
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figures below show the constraint and the isocontours of J(w)

optimal solution with L1-regularization is more likely to have zero components
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Subset selectionSubset selection

penalizes the number of non-zero features

J(w) + λ∣∣w∣∣  =0 J(w) + λ  I(w   =∑d d  0)

performs feature selection

a penalty of       for each featureλ

closer to 0-normL  norm0

p-norms with             induces sparsityp ≤ 1
p-norms with              are convex (easier to optimize)p ≥ 1
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p-norms with             induces sparsityp ≤ 1

p-norms with              are convex (easier to optimize)p ≥ 1

closer to 0-norm

optimizing this is a difficult combinatorial problem:

search over all         subsets2D
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Subset selectionSubset selection

L1 regularization is a viable alternative to L0 regularization

 w  ∑d d
4

 w  ∑d d
2

 ∣w  ∣∑d d
 ∣w  ∣∑d d

 2
1

 ∣w  ∣∑d d
 10

1

p-norms with             induces sparsityp ≤ 1

p-norms with              are convex (easier to optimize)p ≥ 1

closer to 0-norm

optimizing this is a difficult combinatorial problem:

search over all         subsets2D

7 . 8

L  norm0



Bias-variance decompositionBias-variance decomposition
for L2 loss

8 . 1



Bias-variance decompositionBias-variance decomposition
for L2 loss

assume a true distribution p(x, y)

8 . 1



Bias-variance decompositionBias-variance decomposition
for L2 loss

assume a true distribution p(x, y)

f(x) = E  [y∣x]pthe regression function is

8 . 1



Bias-variance decompositionBias-variance decomposition
for L2 loss

assume a true distribution p(x, y)

f(x) = E  [y∣x]pthe regression function is

assume that a dataset                                      is sampled fromD = {(x , y )}  

(n) (n)
n p(x, y)

8 . 1



Bias-variance decompositionBias-variance decomposition

let          be our model based on the datasetf̂D

for L2 loss

assume a true distribution p(x, y)

f(x) = E  [y∣x]pthe regression function is

assume that a dataset                                      is sampled fromD = {(x , y )}  

(n) (n)
n p(x, y)

8 . 1



Bias-variance decompositionBias-variance decomposition

let          be our model based on the datasetf̂D

for L2 loss

assume a true distribution p(x, y)

f(x) = E  [y∣x]pthe regression function is

assume that a dataset                                      is sampled fromD = {(x , y )}  

(n) (n)
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what we care about is the expected loss (aka risk)

for L2 loss

E[(   (x) −f̂D y) ]2

f(x) + ϵ

biasvariance unavoidable
noise error
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Bias-variance decompositionBias-variance decomposition
for L2 loss

E[(f(x) − E  [   (x)]) ]D f̂D
2

bias: how average over all datasets differs from the regression function

E[(   (x) −f̂D E  [   (x)]) ]D f̂D
2

variance: how change of dataset affects the prediction

E[ϵ ]2

noise error: the error even if we used  the true model f(x)

the expected loss is decomposed to:

different models vary in their trade off between error due to bias and variance

simple models: often more biased

complex models: often have more variance

image: P. Domingos' posted article
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x x

y

their average E[   ]f̂D

true model fmodels for different datasets f̂D

random datasets of size N=25 instances are not shown

using Gaussian bases

bias is the difference (in L2 norm)
between two curves

variance is the average difference (in
squared L2 norm) between these curves
and their average

Example:Example: bias vs. variance bias vs. variance
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using larger regularization penalty: higher bias - lower variance
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x x

y

using larger regularization penalty: higher bias - lower variance

the average fit is very good, despite high variance

model averaging: uses "average" prediction of

expressive models to prevent overfitting

side note

Example:Example: bias vs. variance bias vs. variance
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increasing bias

the lowest expected loss (test error) is somewhere between the two extremes

Example:Example: bias vs. variance bias vs. variance
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increasing variance
increasing bias

the lowest expected loss (test error) is somewhere between the two extremes

in reality, we don't have access to the true model
how to decide which model to use?

Example:Example: bias vs. variance bias vs. variance

8 . 6



Big picture!Big picture!

model complexity

pr
ed

ic
tio

n 
er

ro
r

error for random dataset

average training error

average test error

D

8 . 7



Big picture!Big picture!

model complexity

pr
ed

ic
tio

n 
er

ro
r

error for random dataset

average training error

average test error

D

high variance in more complex models means that test and training error can be very different

8 . 7



Winter 2020 | Applied Machine Learning (COMP551)

Big picture!Big picture!

model complexity

pr
ed

ic
tio

n 
er

ro
r

error for random dataset
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high variance in more complex models means that test and training error can be very different
high bias in simplistic models means that training error can be high
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Model selectionModel selection
how to pick the model with lowest expected loss / test error?

use for model selection use for final model assessment

use a validation set (and a separate test set for final assessment)

bound the test error by bounding

training error
model complexity

regularization

in the end we may have to use a validation set to find the right amount of regularization
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getting a more reliable estimate of test error using validation set

K-fold cross validation(CV)

randomly partition the data into K folds
use K-1 for training, and 1 for validation
report average/std of the validation error over
all folds

leave-one-out CV:extreme case of k=N
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Cross validationCross validation
getting a more reliable estimate of test error using validation set

K-fold cross validation(CV)

randomly partition the data into k folds
use k-1 for training, and 1 for validation
report average/std of the validation error
over all folds

image credit: Thanh Nguyen et al'19

once the hyper-parameters are selected, we can use the whole set for training
use test set for the final assessment
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EvaluationEvaluation
evaluation metric can be different from the optimization objective

type I vs type II error

confusion matrix is a CxC table that compares truth-vs-prediction

for binary classification:
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if we produce class score (probability)
we can trade-off between type I & type II error

EvaluationEvaluation

0 1

p(y = 1∣x)
threshold

goal: evaluate class scores/probabilities (independent of choice of threshold)

TPR = TP/P (recall, sensitivity)
FPR = FP/N (fallout, false alarm)

 

Receiver Operating Characteristic ROC curve
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L1 produces sparse solutions (useful for feature selection)

10



SummarySummary
complex models can have very different training and test error (generalization gap)
regularization bounds this gap by penalizing model complexity

L1 & L2 regularization
probabilistic interpretation: different priors on weights
L1 produces sparse solutions (useful for feature selection)

bias-variance trade off:
formalizes the relation between

training error (bias)
complexity (variance) and
and the test error (bias + variance)

not so elegant beyond L2 loss

10



SummarySummary
complex models can have very different training and test error (generalization gap)
regularization bounds this gap by penalizing model complexity

L1 & L2 regularization
probabilistic interpretation: different priors on weights
L1 produces sparse solutions (useful for feature selection)

bias-variance trade off:
formalizes the relation between

training error (bias)
complexity (variance) and
and the test error (bias + variance)

not so elegant beyond L2 loss
(cross) validation for model selection
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