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Learning objectives

generative vs. discriminative classifier
Naive Bayes classifier

e assumption
e different design choices



Discreminative vs generative classification

so far we modeled the conditional distribution: p(y | x)

learn the joint distribution p(y, ) = p(y)p(z | y)

prior class probability: frequency of observing this label

likelihood of input features given the class label
(input features for each label come from a different distribution)

)

ply=c|z) = 150
T

T

posterior probability
of a given class 23:1 p(w, CI)

how to classify new input x?

image: https://rpsychologist.com



Example: Bayes rule for classification

y € {yes,no} patient having cancer?

r € {—,+} testresults, a single binary feature

likelihood: p(+]|yes) = .9 TP rate of the test (90%)

l

c
plc | z) = Horeld
. p FP rate of the test (5%)
posterior: p(yes|+) = .08 I I

p(+) = p(yes)p(+|yes) + p(no)p(+|no) = .01 x .9 + .99 x .05 = .189

in a generative classifier likelihood & prior class probabilities are learned from data
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Generative classification

likelihood of input features given the class label
(input features for each label come from a different distribution)

!

ply = c|a) = 220

T T

posterior probability
of a given class 25:1 p(m, C/)

Some generative classifiers:

e Gaussian Discriminant Analysis: the likelihood is multivariate Gaussian
e Naive Bayes: decomposed likelihood

image: https://rpsychologist.com
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Naive Bayes: model

number of input features

|
assumption about the likelihood p(m|y) = Hd:1 p(wd!y)

when is this assumption correct?
when features are conditionally independent given the label x; I T | Y

knowing the label, the value of one input feature gives us no information about the other input features

chain rule of probability (true for any distribution)
p(zly) = p(z1|y)p(z2ly, z1)p(2s3|y, 21, 22) - . . p(zD|Y, T1, - - ., TD-1)

conditional independence assumption
x1, X2 give no extra information, so  p(x3|y, z1,z2) = p(x3|y)



Naive Bayes: objective

given the training dataset D = {(z),yM),..., (™, 4™}

maximize the joint likelihood (contrast with logistic regression)

Z( , ) — Zn ]'ng'u,,’w (x(n),y(n))
=", logp.(y™) + logp. (™ |y™)

=3, logp.(y™) + 3, logp. (2™ |y™)

using Naive Bayes assumption —_— Zn log Dy (y(n)) + Zd Zn 10g D (wfln) ‘y(n))

separate MLE estimates for each part

.3



Naive Bayes: train-test

given the training dataset D = {(z,yM), ..., (=™,y™))}

learn the prior class probabilities Pu (y)

learn the components wig

find posterior class probabilities

D
Hd:l

arg max, p(c|z) = arg max, 5 pule) IR,

Winter 2020 | Applied Machine Learning (COMP551)



Class prior .

Bernoulli distribution  pu(y) = w¥(1 —u)'™¥

maximizing the log-likelihood
N n n
O(u) = >0,y log(u) + (1 — y™)log(1 — u)

= IV, log(u) + ( ) log(1 — u)

frequency of class 0 in the dataset

setting its derivative to zero

d .\ N-N; « _ Ny max-likelihood estimate (MLE) is the
duf(u) — u  1-u =0 = v = N frequency of class labels




Class prior

categorical distribution pu(y) = HcC:1 U

pu(c)

assuming one-hot coding for labels

u = [ul, e ,uc] is now a parameter vector

maximizing the log likelihood f(u) =>_ > y((;n) log(u.)
subject to: detuc=1
closed form for the optimal parameter —u* = [—, ceey %]

all instances in the dataset
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Likelihood terms

(class-conditionals)

p“’[d] (md ‘C)

choice of likelihood distribution depends on the type of features

(likelihood encodes our assumption about "generative process”)

Bernoulli: binary features
. note that these are different from the choice of
Catego rical: categorical features distribution for

Gaussian: continuous distribution

each feature 4 may use a different likelihood

separate max-likelihood estimates for each feature

* N n n
wig)* = arg maXu, > logpw[d] (a;gl ) | y( ))

.



Bernoulli Naive Bayes

binary features: iikelihood is Bernoulli

{ ot [y =) = Bemen s i) one parameter per label

Puy (za | y = 1) = Bernoulli(za; wyg)1)

short form: Puwy (%a | y) = Bernoulli(za; wg,)

max-likelihood estimation is similar to what we saw for the prior

N(y:cjwdzl) number of training instances satisfying this condition
N(y=c)

w
closed form solution of MLE [d],c



Example: Bernoulli Naive Bayes

using naive Bayes for document classification: ‘ - wikd]
0.8 1
Y
e 2 classes (documents types) 07) :
e 600 binary features w[kd] )
m :L'Eln) = 1 word d is present in the document n (vocabulary of 600) ol L ’
likelihood of words in two document types > e

0

1 def BernoulliNaiveBayes

5 logp = np.log(prior) + np.sum(np.log(likelihood * x[:, 1), 0) + \
6 np.sum(np.log((l-likelihood) * (1 - x[:, 1)), 0)
/ log p -= np.max(log p) #numerical stability

8 posterior = np.exp(log p) # vector of size 2
) posterior /= np.sum(posterior) # normalize
10 return posterior # posterior class probability



Multinomial Naive Bayes

what if we wanted to use word frequencies in document classification

(n)

T, isthe number of times word d appears in document n

Multinomial likelihood: Dy (CU|C) Zd za) Hd 1 W

we have a vector of size D for each class C x D (parameters)

> gy

Zn Zd’ :c((;)yén) total word count in all documents labelled y

MLE estimates: ’w:lc =
)
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Gaussian Naive Bayes

Gaussian likelihood terms

(xd_“d,y)Z“’

2 1 T 2% 2
xd — N wd. d O- — —e dvy [}
p’w[d} ( ‘ y) ( 9 ,LL 'Y d,y) \/W '
w{d] — (,U/d,17 Od1ly--- ),UJd,C7 O-d’C) 14
one mean and std. parameter for each class-feature pair &

writing log-likelihood and setting derivative to zero we get maximum likelihood estimate:

_ 1 ZN MO
Kdy = N, 2un=1%a Ye empirical mean & std of feature &4
g§,y — NL Zivzl y((:”) (a;g”) — ,ud,y)2 across instances with label y



Example: Gaussian Naive Bayes

classification on Iris flowers dataset:

(a classic dataset originally used by Fisher)

N, = 50 samples with D=4 features, for each of C=3

species of Iris flower

3 classes

2 features

(septal width, petal length).|
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Example: Gaussian Naive Bayes

categorical class prior & Gaussian likelihood
cee

15 return log prior + log likelihood #N text x C



Example: Gaussian Naive Bayes

categorical class prior & Gaussian likelihood

posterior class probability for c=1

def GaussianNaiveBayes

2
€ N,C = y.shape
D = X.shape[l]
mu, s = np.zeros((C,D)), np.zeros((C,D))
for ¢ in range(C): #calculate mean and std
10 inds = np.nonzero(y[:,c])[0]
11 mu[c,:] = np.mean(X[inds,:], 0)
12 s[c,:] = np.std(X[inds,:], 0)
13 log prior = np.log(np.mean(y, 0))[:, ]
14 log likelihood = - np.sum( np.log(s[:, ;1) +
- muf:, r21)/slz, r21)**2), 2)

return log prior + log likelihood #N text x C



Example: Gaussian Naive Bayes

using the same variance for all classes

its value does not make a difference

decision boundaries are linear

13 log likelihood = - np.sum(.5*(((Xt[None,:,:] - mu[:,None,:]))**2), 2)
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Decision boundary in generative classifiers

decision boundaries: two classes have the same probability p(y]w) = p(y’|:1:)

sle=dE) _ o sEkEE e i)
log ty=os) = 198 ;(@)p(ale) = 198 pi7) 108 jpey = O

not a function of x (ignore) l

which means

this ratio is linear (in some bases) for a large family of probabilities

(called linear exponential family)
linear using some bases  not a function of x

p(zlc) = ¢ y,;vyc =) log 255 = (wy, wy,cwl()

e.g., Bernoulli is a member of this family with ¢(x) = x
= Bernoulli Naive Bayes has a linear decision boundary linear.




Discreminative vs generative cassification

p(yz) = p(y)p(z | y)

maximize joint likelihood
it makes assumptions about p(z)

can deal with missing values

can learn from unlabelled data

often works better on smaller datasets

p(y | z)
maximize conditional likelihood
makes no assumption about p(CB)

often works better on larger datasets

1



Discreminative vs generative cassification

Example naive Bayes vs logistic regression on UCI datasets
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m is #instances

from: Ng & Jordan 2001



Summary

e generative classification

= |earn the class prior and likelihood
= Bayes rule for conditional class probability

e Naive Bayes
= assumes conditional independence
o e.g., word appearances indep. of each other given document type

class prior: Bernoulli or Categorical

likelihood: Bernoulli, Gaussian, Categorical...

MLE has closed form (in contrast to logistic regression)
estimated separately for each feature and each label

e evaluation measures for classification accuracy

10



Measuring performance

A side note on measuring performance of classifiers

Truth by

TP | FP | RP
Result N TN | RN
by P N

We use the confusion matrix
count the combinations of y and gy

Truth >,

14 42 = K
Result s T 14
Y 17 | 13

Example

1.



Measuring performance

binary classification

use the confusion matrix to
quantify difference metrics

Truth b
TP | FP | RP
Result N TN BN
b)) P N
marginals:

RP=TP+ FP
RN =FN+TN
P=TP+FN
N=FP+TN

__ TP+TN
Accuracy = S5y
__ FP+FN
Error rate = PN

. __ TP
Precision = =P

Recall = %

Precisionx Recall
Precision+ Recall

Fiscore = 2

tHarmonic mean}



Measuring performance

Truth ) Accuracy = S5~
Result TP | FP RP Precision = %
FN | TN | RN Recall = %
> P N Fiscore = 2?:232321%23% (Harmonic mean}
FN

Miss rate = %~

FP
Fallout = N
FP

Less common False discovery rate = 75

Selectivity = %

False omission rate = g—%

Negative predictive value = g—%



Threshold invariant: ROC & AUC

ROC as a function of threshold

ROC CURVE
V0= PPERFECT CLASSIFIER " &

TPR = TP/P (recall, sensitivity)

FPR = FP/N (fallout, false alarm)
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