Applied Machine Learning

Naive Bayes

Siamak Ravanbakhsh

COMP 551 (winter 2020)

Learning objectives

generative vs. discriminative classifier Naive Bayes classifier

- assumption
- different design choices

Discreminative vs generative classification

discriminative

so far we modeled the **conditional** distribution: $p(y \mid x)$

generative

learn the **joint** distribution $\ p(y,x) = p(y)p(x \mid y)$

prior class probability: frequency of observing this label

image: https://rpsychologist.com

Example: Bayes rule for classification

 $y \in \{ ext{yes, no} \}$ patient having cancer? $x \in \{ -, + \}$ test results, a single binary feature prior: 1% of population has cancer $p(ext{yes}) = .01$ likelihood: $p(+| ext{yes}) = .9$ TP rate of the test (90%)

$$p(c\mid x) = \frac{p(c)p(x|c)}{p(x)}$$
 FP rate of the test (5%) evidence: $p(+) = p(yes)p(+|yes) + p(no)p(+|no) = .01 \times .9 + .99 \times .05 = .189$

in a generative classifier likelihood & prior class probabilities are learned from data

Generative classification

prior class probability: frequency of observing this label

Some generative classifiers:

- Gaussian Discriminant Analysis: the likelihood is multivariate Gaussian
- Naive Bayes: decomposed likelihood

Naive Bayes: model

number of input features

assumption about the likelihood
$$\; p(x|y) = \prod_{d=1}^D p(x_d|y) \;$$

when is this assumption correct?

when features are **conditionally independent** given the label $x_i \perp \!\!\! \perp x_j \mid y$

knowing the label, the value of one input feature gives us no information about the other input features

chain rule of probability (true for any distribution)

$$p(x|y) = p(x_1|y)p(x_2|y,x_1)p(x_3|y,x_1,x_2)\dots p(x_D|y,x_1,\dots,x_{D-1})$$

conditional independence assumption

x1, x2 give no extra information, so
$$p(x_3|y,x_1,x_2)=p(x_3|y)$$

Naive Bayes: objective

given the training dataset $\mathcal{D} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})\}$ maximize the joint likelihood (contrast with logistic regression)

$$egin{align} \ell(extbf{w}, u) &= \sum_n \log p_{u,w}(x^{(n)}, y^{(n)}) \ &= \sum_n \log p_u(y^{(n)}) + \log p_{ extbf{w}}(x^{(n)}|y^{(n)}) \ &= \sum_n \log p_u(y^{(n)}) + \sum_n \log p_{ extbf{w}}(x^{(n)}|y^{(n)}) \end{aligned}$$

using Naive Bayes assumption $=\sum_n \log p_u(y^{(n)}) + \sum_d \sum_n \log p_{w_{[d]}}(x_d^{(n)}|y^{(n)})$

separate MLE estimates for each part

Naive Bayes: train-test

given the training dataset $\mathcal{D} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})\}$

training time

find posterior class probabilities

$$rg \max_{c} p(c|x) = rg \max_{c} rac{p_u(c) \prod_{d=1}^D p_{w_{[d]}}(x_d|c)}{\sum_{c'=1}^C p_u(c') \prod_{d=1}^D p_{w_{[d]}}(x_d|c')}$$

Class prior

$$p(c|x) = rac{m{p_u(c)}\prod_{d=1}^D p_{w_{[d]}}(x_d|c)}{\sum_{c'=1}^C p_u(c)\prod_{d=1}^D p_{w_{[d]}}(x_d|c')}$$

binary classification

Bernoulli distribution $p_u(y) = u^y (1-u)^{1-y}$

maximizing the log-likelihood

$$\ell(u) = \sum_{n=1}^N y^{(n)} \log(u) + (1-y^{(n)}) \log(1-u)$$

$$N=N_1\log(u)+(N-N_1)\log(1-u)$$

frequency of class 1 in the dataset

frequency of class 0 in the dataset

setting its derivative to zero

$$rac{\mathrm{d}}{\mathrm{d}u}\ell(u)=rac{N_1}{u}-rac{N-N_1}{1-u}=0 \ \Rightarrow \ u^*=rac{N_1}{N}$$
 max-likelihood estimate (MLE) is the

Class prior

$p(c|x) = rac{ extbf{p_u(c)} \prod_{d=1}^D p_{w_{[d]}}(x_d|c)}{\sum_{c'=1}^C p_u(c) \prod_{d=1}^D p_{w_{[d]}}(x_d|c')}$

multiclass classification

categorical distribution
$$\;\;p_u(y) = \prod_{c=1}^C u_c^{y_c}$$

assuming one-hot coding for labels

$$u = [u_1, \dots, u_C]$$
 is now a parameter vector

maximizing the log likelihood
$$\ell(u) = \sum_n \sum_c y_c^{(n)} \log(u_c)$$

subject to:
$$\sum_c u_c = 1$$

closed form for the optimal parameter $u^* = [rac{N_1}{N}, \ldots, rac{N_C}{N}]$

number of instances in class 1

Likelihood terms

(class-conditionals)

$$p(c|x) = rac{p_u(c)\prod_{d=1}^D oldsymbol{p_{w_{[oldsymbol{d}]}}(x_d|c)}}{\sum_{c'=1}^C p_u(c)\prod_{d=1}^D p_{w_{[oldsymbol{d}]}}(x_d|c')}$$

choice of likelihood distribution depends on the type of features

(likelihood encodes our assumption about "generative process")

- Bernoulli: binary features
- Categorical: categorical features
- Gaussian: continuous distribution
- ...

note that these are different from the choice of distribution for class prior

each feature $\,x_d\,$ may use a different likelihood separate max-likelihood estimates for each feature

$$w_{[d]}{}^* = rg \max_{w_{[d]}} \sum_{n=1}^N \log p_{w_{[d]}}(x_d^{(n)} \mid y^{(n)})$$

Bernoulli Naive Bayes

binary **features**: likelihood is Bernoulli

$$\begin{cases} p_{w_{[d]}}(x_d \mid y=0) = \operatorname{Bernoulli}(x_d; w_{[d],0}) \\ p_{w_{[d]}}(x_d \mid y=1) = \operatorname{Bernoulli}(x_d; w_{[d],1}) \end{cases} \text{ one parameter per label}$$
 short form:
$$p_{w_{[d]}}(x_d \mid y) = \operatorname{Bernoulli}(x_d; w_{[d],y})$$

max-likelihood estimation is similar to what we saw for the prior

closed form solution of MLE
$$w^*_{[d],c}=rac{N(y=c,x_d=1)}{N(y=c)}$$
 number of training instances satisfying this condition $w^*_{[d],c}=rac{N(y=c,x_d=1)}{N(y=c)}$

Example: Bernoulli Naive Bayes

using naive Bayes for **document classification**:

- 2 classes (documents types)
- 600 binary features
 - $lacksquare x_d^{(n)}=1$ word d is present in the document n (vocabulary of 600) lacksquare

likelihood of words in two document types —

```
w^*_{[d],1}
```

Multinomial Naive Bayes

what if we wanted to use word frequencies in document classification

 $x_d^{(n)}$ is the number of times word $rac{ extsf{d}}{ extsf{a}}$ appears in document $rac{ extsf{n}}{ extsf{n}}$

Multinomial likelihood:
$$p_w(x|c) = rac{(\sum_d x_d)!}{\prod_{d=1}^D x_d!} \prod_{d=1}^D w_{d,c}^{x_d}$$

we have a vector of size D for each class $C \times D$ (parameters)

MLE estimates:
$$w_{d,c}^* = \frac{\sum x_d^{(n)} y_c^{(n)}}{\sum_n \sum_{d'} x_{d'}^{(n)} y_c^{(n)}}$$
 count of word d in all documents labelled y total word count in all documents labelled y

6.4

Gaussian Naive Bayes

Gaussian likelihood terms

$$p_{w_{[d]}}(x_d \mid y) = \mathcal{N}(x_d; \mu_{d,y}, \sigma_{d,y}^2) = rac{1}{\sqrt{2\pi\sigma_{d,y}}^2} e^{-rac{(x_d - \mu_{d,y})^2_{10}}{2\sigma_{d,y}^2}} e^{-rac{(x_d - \mu_{d,y})^2_{10}}{2\sigma_{d,y}^2}} e^{-rac{\mu_{0,x} - \mu_{0,x} - \mu_{0$$

writing log-likelihood and setting derivative to zero we get maximum likelihood estimate:

$$\mu_{d,y}=rac{1}{N_c}\sum_{n=1}^N x_d^{(n)}y_c^{(n)}$$
 empirical mean & std of feature $m{\mathcal{X}}_d$ $\sigma_{d,y}^2=rac{1}{N_c}\sum_{n=1}^N y_c^{(n)}(x_d^{(n)}-\mu_{d,y})^2$ across instances with label y

classification on **Iris flowers dataset**:

(a classic dataset originally used by Fisher)

 $N_c=50$ samples with D=4 features, for each of C=3 species of Iris flower

our setting

3 classes

2 features (septal width, petal length)

categorical class prior & Gaussian likelihood

```
decision boundaries are not linear!
 1 def GaussianNaiveBayes(
                   y, # N x C
                   Xtest, # N test x D
      N,C = y.shape
       D = X.shape[1]
       mu, s = np.zeros((C,D)), np.zeros((C,D))
       for c in range(C): #calculate mean and std
           inds = np.nonzero(y[:,c])[0]
           mu[c,:] = np.mean(X[inds,:], 0)
           s[c,:] = np.std(X[inds,:], 0)
       log prior = np.log(np.mean(y, 0))[:,None]
       log_likelihood = -np.sum(np.log(s[:,None,:]) + .5*(((Xt[None,:,:])
   - mu[:, None,:])/s[:, None,:])**2), 2)
       return log prior + log likelihood #N text x C
15
```

categorical class prior & Gaussian likelihood

```
posterior class probability for c=1
   def GaussianNaiveBayes(
                   X, # N x D
                   y, # N x C
                   Xtest, # N test x D
       N,C = y.shape
       D = X.shape[1]
       mu, s = np.zeros((C,D)), np.zeros((C,D))
       for c in range(C): #calculate mean and std
10
           inds = np.nonzero(y[:,c])[0]
11
           mu[c,:] = np.mean(X[inds,:], 0)
12
           s[c,:] = np.std(X[inds,:], 0)
13
       log prior = np.log(np.mean(y, 0))[:,None]
14
       log likelihood = - np.sum( np.log(s[:,None,:]) +.
   - mu[:, None,:])/s[:, None,:])**2), 2)
       return log prior + log likelihood #N text x C
15
```

using the **same variance** for all classes its value does not make a difference

Decision boundary in generative classifiers

decision boundaries: two classes have the same probability $\,p(y|x)=p(y'|x)\,$

which means
$$\log \frac{p(y=c|x)}{p(y=c'|x)} = \log \frac{p(c)p(x|c)}{p(c')p(x|c')} = \log \frac{p(c)}{p(c')} + \log \frac{p(x|c)}{p(x|c')} = 0$$

this ratio is linear (in some bases) for a large family of probabilities

(called linear exponential family)

$$p(x|c)=rac{e^{w_{y,c}^T\phi(x)}}{Z(w_{y,c})} ext{ } ext{linear using some bases} ext{ } ext{not a function of x}$$
 $ext{ } ext{ } ext{$

→ Bernoulli Naive Bayes has a linear decision boundary linear.

Discreminative vs generative classification

$$p(y,x) = p(y)p(x \mid y)$$

generative

maximize joint likelihood

it makes assumptions about p(x)

can deal with missing values

can learn from unlabelled data

often works better on smaller datasets

discriminative

 $p(y \mid x)$

maximize *conditional* likelihood

makes no assumption about $\,p(x)\,$

often works better on larger datasets

Discreminative vs generative classification

9.2

Summary

- generative classification
 - learn the class prior and likelihood
 - Bayes rule for conditional class probability
- Naive Bayes
 - assumes conditional independence
 - o e.g., word appearances indep. of each other given document type
 - class prior: Bernoulli or Categorical
 - likelihood: Bernoulli, Gaussian, Categorical...
 - MLE has closed form (in contrast to logistic regression)
 - estimated separately for each feature and each label
- evaluation measures for classification accuracy

Measuring performance

A side note on measuring performance of classifiers

Measuring performance

binary classification

use the confusion matrix to quantify difference metrics

	Truth		\sum
Result	TP	FP	RP
	FN	TN	RN
$\overline{\Sigma}$	Р	N	

marginals:

$$RP = TP + FP$$

 $RN = FN + TN$
 $P = TP + FN$
 $N = FP + TN$

$$Accuracy = rac{TP+TN}{P+N}$$

$$Error\ rate = rac{FP+FN}{P+N}$$

$$Precision = \frac{TP}{RP}$$

$$Recall = \frac{TP}{P}$$

$$F_1 score = 2rac{Precision imes Recall}{Precision + Recall}$$

{Harmonic mean}

Measuring performance

binary classification

	Truth		\sum
Result	TP	FP	RP
	FN	TN	RN
$\overline{\Sigma}$	Р	N	

$$egin{aligned} Accuracy &= rac{TP+TN}{P+N} \ Precision &= rac{TP}{RP} \end{aligned}$$

$$Recall = \frac{TP}{P}$$

$$F_1 score = 2rac{Precision imes Recall}{Precision + Recall}$$

{Harmonic mean}

Less common

$$egin{aligned} Miss \ rate &= rac{FN}{P} \ Fallout &= rac{FP}{N} \ False \ discovery \ rate &= rac{FP}{RP} \ Selectivity &= rac{TN}{N} \ False \ omission \ rate &= rac{FN}{RN} \ Negative \ predictive \ value &= rac{TN}{RN} \end{aligned}$$

Threshold invariant: ROC & AUC

ROC as a function of threshold

TPR = TP/P (**recall**, sensitivity)

FPR = FP/N (**fallout**, false alarm)

