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Learning objectives

generative vs. discriminative classifier
Naive Bayes classifier

e assumption
e different design choices



Discreminative vs generative classification

so far we modeled the conditional distribution: p(y | x)
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Discreminative vs generative classification

so far we modeled the conditional distribution: p(y | x)

learn the joint distribution p(vy, =) = p(y)p(x | y)

prior class probability: frequency of observing this label

likelihood of input features given the class label
(input features for each label come from a different distribution)
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Discreminative vs generative classification

so far we modeled the conditional distribution: p(y | x)

learn the joint distribution p(vy, =) = p(y)p(x | y)

prior class probability: frequency of observing this label

likelihood of input features given the class label
(input features for each label come from a different distribution)

i

ply =c| ) = P00

T T

posterior probability
of a given class 2521 p(a:, C/)

how to classify new input x?
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Example: Bayes rule for classification

y € {yes,no} patient having cancer?

r € {—,+} testresults, a single binary feature
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Example: Bayes rule for classification

y € {yes,no} patient having cancer?

r € {—,+} testresults, a single binary feature

likelihood: p(+4|yes) = .9 TP rate of the test (90%)

|
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p(z)
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Example: Bayes rule for classification

y € {yes,no} patient having cancer?

r € {—,+} testresults, a single binary feature

likelihood: p(+4|yes) = .9 TP rate of the test (90%)

|

__ ple)p(zfc)
ple|z) = p(z)
posterior: p(yes|+) = .08 T FTP rate of the test (5%)

p(+) = p(yes)p(+|yes) + p(no)p(+|no) = .01 x .9 + .99 x .05 = .189

in a generative classifier likelihood & prior class probabilities are learned from data
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Generative classification

likelihood of input features given the class label
(input features for each label come from a different distribution)

}

_ __ ple)p(zle)
—cCcl|l )=
P(CTU | ) pT(x)
posterior probability
of a given class 25:1 p(w, C’)

Some generative classifiers:

e Gaussian Discriminant Analysis: the likelihood is multivariate Gaussian
e Naive Bayes: decomposed likelihood

4.1
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Naive Bayes: model

number of input features

|
assumption about the likelihood p(w|y) = Hc?:l p(wd\y)
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when is this assumption correct?
when features are conditionally independent given the label x; 1 T ‘ Y
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Naive Bayes: model

number of input features

|
assumption about the likelihood p(w|y) = Hd:1 p(:vd\y)

when is this assumption correct?
when features are conditionally independent given the label x; 1 T ‘ Y

knowing the label, the value of one input feature gives us no information about the other input features

chain rule of probability (true for any distribution)
p(zly) = p(z1|y)p(z2|y, z1)p(23ly, 21, 22) - .. p(zD|Y, Z1, - - ., TD-1)

conditional independence assumption
x1, x2 give no extra information, so  p(z3l|y, z1, z2) = p(x3|y)

4.
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Naive Bayes: objective

given the training dataset D = {(zW,yW),..., (™), y™)}

maximize the joint likelihood (contrast with logistic regression)

L(w,u) = log py (2™, y™)
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Naive Bayes: objective

given the training dataset D = {(zW,yW),..., (™), y™)}

maximize the joint likelihood (contrast with logistic regression)

L(w,u) = log py (2™, y™)
=Y logp,(y™) + logp, (z™|y™)

=Y, logp,(y™) + >, logp, (z™|y™)

using Naive Bayes assumption — Zn log D, (y(n)) + Zd Zn logp ($£ln) ‘y(n))

separate MLE estimates for each part

4

.3



Naive Bayes: train-test

given the training dataset D = {(z™,yM),..., (2™, ™)}

learn the prior class probabilities pu (y)

learn the components

Wid]
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Naive Bayes: train-test

given the training dataset D = {(z™,yM),..., (2™, ™)}

learn the prior class probabilities Pu (y)

learn the components Wiy

find posterior class probabilities

D
Hdzl

arg max. p(c|cr) = arg max, =g
Zc’zl

[Tasy

Winter 2020 | Applied Machine Learning (COMP551)



Class prior



Class prior

binary classification

Bernoulli distribution

Pu(y)

(1 —u)l™Y

1



Class prior

Bernoulli distribution  pu(y) = w¥(1 — u)'~¥

maximizing the log-likelihood

u) = 3N y™ log(u) + (1 — y™) log(1 — u)
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Class prior

Bernoulli distribution  pu(y) = w¥(1 — u)'~¥

maximizing the log-likelihood
l(u) = ij:l y™ log(u) + (1 — y™) log(1 — u)

= [V log(u) + ( ) log(1 — )

frequency of class 0 in the dataset
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Class prior

Bernoulli distribution  pu(y) = w¥(1 — u)'~¥

pu(c)

maximizing the log-likelihood
l(u) = Z?],Ll y™ log(u) + (1 — y™) log(1 — u)

= [V log(u) + ( ) log(1 — u)
frequency of class 0 in the dataset

setting its derivative to zero

d Ny N—-N; « N, max-likelihood estimate (MLE) is the
@f(u) — u 1-u 0 = u" = ‘N frequency of class labels
5.1



Class prior

: L : C
categorical distribution pu(y) = chl uge
assuming one-hot coding for labels

u = [Uq,...,Uuc] isnowa parameter vector
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Class prior

categorical distribution Dy (y) = Hle uge

pu(c)

assuming one-hot coding for labels

u = [Uq,...,Uuc] isnowa parameter vector

maximizing the log likelihood  f(u) =) > yi) log(u.)
subject to: Do Ue =1

closed form for the optimal parameter u* = [—, ceey %]

all instances in the dataset
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Likelihood terms

(class-conditionals)

p“’[d] ($d ‘C)

choice of likelihood distribution depends on the type of features

(likelihood encodes our assumption about "generative process”)

Bernoulli: binary features
Categorical: categorical features
Gaussian: continuous distribution
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Likelihood terms

(class-conditionals)

p“’[d] ($d ‘C)

choice of likelihood distribution depends on the type of features

(likelihood encodes our assumption about "generative process”)

e Bernoulli: binary features , ,
) note that these are different from the choice of
® Categorlcal: categorical features distribution for

e (Gaussian: continuous distribution

each feature x4 may use a different likelihood

separate max-likelihood estimates for each feature

*

wig* = arg max,,, ij:l log pu, (wgn) | ™)



Bernoulli Naive Bayes

bina ry features: likelihood is Bernoulli

{ Pu, (%a | y = 0) = Bernoulli(z4; wig )

Pu, (za | y = 1) = Bernoulli(zq; wig,1)

one parameter per label
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Bernoulli Naive Bayes

bina ry features: likelihood is Bernoulli

{ Puy (2a | y = 0) = Bernoulli(z4; w(a o) one parameter per label

Pu, (za | y = 1) = Bernoulli(zq; wig,1)

short form: Pu, (zd | v) = Bernoulli(z4; wyg )

max-likelihood estimation is similar to what we saw for the prior

N(yzc,xdzl) number of training instances satisfying this condition

Wid,e = 7 Ny=c)

closed form solution of MLE

6

.2



Example: Bernoulli Naive Bayes

using naive Bayes for document classification:

e 2 classes (documents types)

e 600 binary features
(n)

= z,’ =1 worddis presentin the document n (vocabulary of 600)
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using naive Bayes for document classification: ‘ - wE‘d] J
0.8 ].
Y
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e 600 binary features ol wrd] .
m acgn) = 1 word d is present in the document n (vocabulary of 600) | Ll T
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Example: Bernoulli Naive Bayes

using naive Bayes for document classification:

e 2 classes (documents types) orr 1

e 600 binary features
u zr:gn) = 1 word dis present in the document n (vocabulary of 600) o o

likelihood of words in two document types > ]

0 103

0.2F

def BernoulliNaiveBayes

logp = np.log(prior) + np.sum(np.log(likelihood * x[:, 1), 0) + \
np.sum(np.log((l-likelihood) * (1 - x[:, 1)), 0)
log p -= np.max(log p) #numerical stability

posterior = np.exp(log p) # vector of size 2
posterior /= np.sum(posterior) # normalize
return posterior # posterior class probability

6.3



Multinomial Naive Bayes

what if we wanted to use word frequencies in document classification
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Multinomial Naive Bayes

what if we wanted to use word frequencies in document classification

(n)

X, isthe number of times word d appears in document n

Zd wd

Multinomial likelihood: Dy, (QE’C) Hd 1 wcaij,dc

6

.4



Multinomial Naive Bayes

what if we wanted to use word frequencies in document classification

(n)

X, isthe number of times word d appears in document n

Multinomial likelihood: Py (QE’C) Zd 7). Hd 1 UJ

we have a vector of size D for each class C x D (parameters)

6

.4



Multinomial Naive Bayes

what if we wanted to use word frequencies in document classification

(n)

X, isthe number of times word d appears in document n

Multinomial likelihood: Py (£E|C) — Zd 7). Hd 1 UJ

we have a vector of size D for each class C x D (parameters)

>z

Zn Zd/ xg})ygn) total word count in all documents labelled y

MLE estimates: fwzkl c —
)
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Gaussian Naive Bayes

Gaussian likelihood terms

1
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Gaussian Naive Bayes

Gaussian likelihood terms

1

p’w[d] (md | y) — N(mdv :ud,y7 O?l,y) — WB

Wiq) = (,ud,laffd,la---,Md,cagd,c)
one mean and std. parameter for each class-feature pair

.




Gaussian Naive Bayes

Gaussian likelihood terms

B (wd—ud,y)2m
1 204 2

Puwy (za | y) = N(md;/‘l’day70—c2l,y) = \/776 v e

04

04

Wiq] — (,ud,lao'd,la---7,ud,070'd,0)
one mean and std. parameter for each class-feature pair r

on

writing log-likelihood and setting derivative to zero we get maximum likelihood estimate:

p S 2y
dy = N Lt empirical mean & std of feature &4
= 5 SNy ( ") pigy)? across instances with label y



Example: Gaussian Naive Bayes

classification on Iris flowers dataset:

(a classic dataset originally used by Fisher)

N, = 50 samples with D=4 features, for each of C=3
species of Iris flower
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Example: Gaussian Naive Bayes

classification on Iris flowers dataset:

(a classic dataset originally used by Fisher)

N, = 50 samples with D=4 features, for each of C=3

species of Iris flower
our setting

BT 3 classes

et 2 features

4.0

3.0

2.0

25

(septal width, petal length).
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Iris Data (red=setosa,green=versicolor,blue=virginica)
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Example: Gaussian Naive Bayes
categorical class prior & Gaussian likelihood

def GaussianNaiveBayes

7.
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= y.shape
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6 N,C
7 D =
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Example: Gaussian Naive Bayes

categorical class prior & Gaussian likelihood

9
10
11
12

mu, s = np.zeros((C,D)), np.zeros((C,D))
for ¢ in range(C): #calculate mean and std

inds = np.nonzero(y[:,c])[0]
mu[c,:] = np.mean(X[inds,:], 0)
s[c,:] = np.std(X[inds,:], 0)

7.



Example: Gaussian Naive Bayes

categorical class prior & Gaussian likelihood
cee

13 log prior = np.log(np.mean(y, 0))[:,None]
14 log likelihood = - np.sum( np.log(s[:,None,:]) +.5*%(((Xt[None,:,:]
- mu[:,None,:])/s[:,None,:])**2), 2)
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Example: Gaussian Naive Bayes

categorical class prior & Gaussian likelihood
cee

15 return log prior + log likelihood #N text x C
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Example: Gaussian Naive Bayes

categorical class prior & Gaussian likelihood

N

N O H W

def GaussianNaiveBayes

= y.shape
X.shape[1]
mu, s = np.zeros((C,D)), np.zeros((C,D))
c in range(C): #calculate mean and std
inds = np.nonzero(y[:,c])[0]

mu[c,:] = np.mean(X[inds,:], 0)
s[c,:] = np.std(X[inds,:], 0)
log prior = np.log(np.mean(y, 0))[:, ]
log likelihood = - np.sum( np.log(s[:, rt])

- muf[:, I:])/S[:I l:])** )I )
return log prior + log likelihood #N text x C

+

posterior class probability for c=1

7.



Example: Gaussian Naive Bayes

using the same variance for all classes

its value does not make a difference

log likelihood = - np.sum(.5%(((Xt[ ;2,0] - muf:, r21))**2),



Example: Gaussian Naive Bayes

using the same variance for all classes

its value does not make a difference

decision boundaries are linear

13 log likelihood = - np.sum(.5*(((Xt[None,:,:] - mu[:,None,:]))**2), 2)

Winter 2020 | Applied Machine Learning (COMP551)
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Decision boundary in generative classifiers

decision boundaries: two classes have the same probability p(y|z) = p(y'|x)
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Decision boundary in generative classifiers

decision boundaries: two classes have the same probability p(y|z) = p(y'|x)

. py=cia) _ 1. pe)p(alo) () p(ale) _
which means  10g 3=y = 10g 35[0y = 108 3oy +108 jpjey =0

not a function of x (ignore) l

this ratio is linear (in some bases) for a large family of probabilities

(called linear exponential family)
linear using some bases  not a function of x

p(zlc) = 5 g —) log 215, = (wy,cwy,c,)wl(w)

'wy

e.g., Bernoulli is a member of this family with ¢(x) = x
= Bernoulli Naive Bayes has a linear decision boundary linear.
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Discreminative vs generative dassitication

p(y,z) = p(y)p(z | y)

maximize joint likelihood

it makes assumptions about p(a:)

can deal with missing values

can learn from unlabelled data

often works better on smaller datasets

p(y | z)
maximize conditional likelihood
makes no assumption about P(CU)

often works better on larger datasets

.



Discreminative vs generative dassification

Example naive Bayes vs logistic regression on UCI datasets ——— naive Bayes

______ logistic regression

pima (continuous) adult (continuous) boston (predict if > median price, continuous)
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Summary

e generative classification

» |earn the class prior and likelihood
= Bayes rule for conditional class probability

e Naive Bayes
= assumes conditional independence
o e.g., word appearances indep. of each other given document type

class prior: Bernoulli or Categorical

likelihood: Bernoulli, Gaussian, Categorical...

MLE has closed form (in contrast to logistic regression)
estimated separately for each feature and each label

e evaluation measures for classification accuracy

10



Measuring performance

A side note on measuring performance of classifiers

binary classification

Truth >

TP | FP | RP
Result N TN | RN
Y P N

We use the confusion matrix
count the combinations of y and gy
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A side note on measuring performance of classifiers

binary classification

g
Truth ) (53,7
TP | FP | RP S 0.00 GO
Result N [ TN | RN §,g@ © QQQ o
Y P |N $/ @ el o
We use the confusion matrix < \*\\
count the combinations of y and § o 00000 o §\~
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We use the confusion matrix < \\\
count the combinations of y and § o ooc oo o N§~ -
Truth | % (+ 1+ oo ©0
Result 14 | 2 16 Example
3 11 | 14
)) 17 | 13

11.



Measuring performance

A side note on meas

binary classification

uring performance of classifiers

g
Truth ) (53,7
TP | FP | RP S 0.00 GO
Result N [ TN | RN §,g@ © QQQ o
Y P |N $/ @ el o
We use the confusion matrix < o~ s <
count the combinations of y and § o oco oo o N§~ -
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Measuring performance

Truth )y Accuracy = L5
R It TP | FP RP Precision = g—g
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FN | TN | RN Recall = %
> P N Precisionx Recall ,
Fiscore = 2fzedsiansliccl  armonic meary

Miss rate = %

__FP
Fallout = N
FP

Less commmon False discovery rate = =P

Selectivity = %

False omission rate = g—%

Negative predictive value = g—%



Threshold invariant: ROC & AUC

ROC as a function of threshold
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