Applied Machine Learning

Naive Bayes

Siamak Ravanbakhsh

COMP 551 (winter 2020)
Learning objectives

- generative vs. discriminative classifier
- Naive Bayes classifier
 - assumption
 - different design choices
so far we modeled the \textit{conditional} distribution: \(p(y \mid x) \)

learn the \textit{joint} distribution \(p(y, x) = p(y)p(x \mid y) \)

\textbf{prior class probability:} frequency of observing this label

\textbf{likelihood} of input features given the class label (input features for each label come from a different distribution)

how to classify new input \(x \)?

\textbf{Bayes rule}

\[
p(y = c \mid x) = \frac{p(c)p(x \mid c)}{p(x)}
\]

posterior probability of a given class

\[
\sum_{c'=1}^{C} p(x, c')
\]

marginal probability of the input (evidence)
Example: Bayes rule for classification

$y \in \{\text{yes}, \text{no}\}$ patient having cancer?

$x \in \{-, +\}$ test results, a single binary feature

prior: 1% of population has cancer $p(\text{yes}) = .01$

likelihood: $p(+|\text{yes}) = .9$ TP rate of the test (90%)

$\frac{p(c | x)}{p(x)} = \frac{p(c)p(x|c)}{p(x)}$

posterior: $p(\text{yes}|+) = .08$

$evidence: \quad p(+) = p(\text{yes})p(+|\text{yes}) + p(\text{no})p(+|\text{no}) = .01 \times .9 + .99 \times .05 = .189$

FP rate of the test (5%)

in a generative classifier likelihood & prior class probabilities are learned from data
Generative classification

prior class probability: frequency of observing this label

likelihood of input features given the class label
(input features for each label come from a different distribution)

\[
p(y = c \mid x) = \frac{p(c)p(x \mid c)}{p(x)}
\]

posterior probability of a given class

marginal probability of the input (evidence)

\[
\sum_{c=1}^{C} p(x, c')
\]

Some generative classifiers:

- Gaussian Discriminant Analysis: the likelihood is multivariate Gaussian
- Naive Bayes: decomposed likelihood

image: https://rpsychologist.com
Naive Bayes: model

assumption about the likelihood

\[p(x | y) = \prod_{d=1}^{D} p(x_d | y) \]

when is this assumption correct?
when features are **conditionally independent** given the label \(x_i \perp x_j \mid y \)

knowing the label, the value of one input feature gives us no information about the other input features

chain rule of probability (true for any distribution)

\[p(x | y) = p(x_1 | y)p(x_2 | y, x_1)p(x_3 | y, x_1, x_2) \cdots p(x_D | y, x_1, \ldots, x_{D-1}) \]

conditional independence assumption

\(x_1, x_2 \) give no extra information, so

\[p(x_3 | y, x_1, x_2) = p(x_3 | y) \]
Naive Bayes: objective

given the training dataset $D = \{(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})\}$

maximize the joint likelihood (contrast with logistic regression)

$$
\ell(w, u) = \sum_n \log p_{u,w}(x^{(n)}, y^{(n)})
$$

$$
= \sum_n \log p_u(y^{(n)}) + \log p_w(x^{(n)}|y^{(n)})
$$

$$
= \sum_n \log p_u(y^{(n)}) + \sum_n \log p_w(x^{(n)}|y^{(n)})
$$

using Naive Bayes assumption

$$
= \sum_n \log p_u(y^{(n)}) + \sum_d \sum_n \log p_{w[d]}(x_d^{(n)}|y^{(n)})
$$

separate MLE estimates for each part
Naive Bayes: train-test

given the training dataset $\mathcal{D} = \{(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})\}$

training time

- Learn the prior class probabilities $p_u(y)$
- Learn the likelihood components $p_{w[d]}(x_d | y) \quad \forall d$

test time

Find posterior class probabilities

$$\arg \max_c p(c | x) = \arg \max_c \frac{p_u(c) \prod_{d=1}^{D} p_{w[d]}(x_d | c)}{\sum_{c' = 1}^{C} p_u(c') \prod_{d=1}^{D} p_{w[d]}(x_d | c')}$$
Class prior

Bernoulli distribution

\[p_u(y) = u^y(1 - u)^{1-y} \]

maximizing the log-likelihood

\[
\ell(u) = \sum_{n=1}^{N} y^{(n)} \log(u) + (1 - y^{(n)}) \log(1 - u)
\]

\[
= N_1 \log(u) + (N - N_1) \log(1 - u)
\]

frequency of class 1 in the dataset

frequency of class 0 in the dataset

setting its derivative to zero

\[
\frac{d}{du} \ell(u) = \frac{N_1}{u} - \frac{N - N_1}{1-u} = 0 \Rightarrow u^* = \frac{N_1}{N}
\]

max-likelihood estimate (MLE) is the frequency of class labels
Class prior

categorical distribution \[p_u(y) = \prod_{c=1}^{C} u_c^{y_c} \]

assuming one-hot coding for labels

\[u = [u_1, \ldots, u_C] \] is now a parameter vector

maximizing the log likelihood \[\ell(u) = \sum_n \sum_c y_c^{(n)} \log(u_c) \]

subject to: \[\sum_c u_c = 1 \]

closed form for the optimal parameter \[u^* = \left[\frac{N_1}{N}, \ldots, \frac{N_C}{N} \right] \]

number of instances in class \(1\)

all instances in the dataset
choice of likelihood distribution depends on the type of features

(likelihood encodes our assumption about "generative process")

- Bernoulli: binary features
- Categorical: categorical features
- Gaussian: continuous distribution
- ...

each feature x_d may use a different likelihood

separate max-likelihood estimates for each feature

$$w_{[d]}^* = \arg \max_{w_{[d]}} \sum_{n=1}^{N} \log p_{w_{[d]}}(x_d^{(n)} | y^{(n)})$$

note that these are different from the choice of distribution for class prior
Bernoulli Naive Bayes

binary features: likelihood is Bernoulli

\[
\begin{align*}
p_{w[d]}(x_d \mid y = 0) &= \text{Bernoulli}(x_d; w[d],0) \\
p_{w[d]}(x_d \mid y = 1) &= \text{Bernoulli}(x_d; w[d],1)
\end{align*}
\]

short form: \(p_{w[d]}(x_d \mid y) = \text{Bernoulli}(x_d; w[d],y) \)

max-likelihood estimation is similar to what we saw for the prior

\[
\begin{align*}
w_{[d],c}^* &= \frac{N(y=c,x_d=1)}{N(y=c)} \quad \text{number of training instances satisfying this condition}
\end{align*}
\]

closed form solution of MLE
Example: Bernoulli Naive Bayes

using naive Bayes for document classification:

- 2 classes (documents types)
- 600 binary features
 - \(x_d^{(n)} = 1 \) word \(d \) is present in the document \(n \) (vocabulary of 600)

likelihood of words in two document types

```python
1 def BernoulliNaiveBayes(prior,# vector of size 2 for class prior
2     likelihood, #600 x 2: likelihood of each word under each class
3     x, #vector of size 600: binary features for a new document
4     ):
5     logp = np.log(prior) + np.sum(np.log(likelihood * x[:,None]), 0) + \n6     np.sum(np.log((1-likelihood) * (1 - x[:,None])), 0)
7     log_p -= np.max(log_p) #numerical stability
8     posterior = np.exp(log_p) # vector of size 2
9     posterior /= np.sum(posterior) # normalize
10    return posterior # posterior class probability
```
what if we wanted to use word frequencies in document classification

\[x_d^{(n)} \] is the number of times word \(d \) appears in document \(n \)

Multinomial likelihood:

\[
p_w(x | c) = \frac{(\sum_d x_d)！}{\prod_{d=1}^{D} x_d！} \prod_{d=1}^{D} w_{d,c}^{x_d} \]

we have a vector of size \(D \) for each class \(C \times D \) (parameters)

MLE estimates:

\[
w_{d,c}^* = \frac{\sum x_d^{(n)} y_c^{(n)}}{\sum_n \sum_{d'} x_{d'}^{(n)} y_c^{(n)}} \]

count of word \(d \) in all documents labelled \(y \)

total word count in all documents labelled \(y \)
Gaussian Naive Bayes

Gaussian likelihood terms

\[p_{w[d]}(x_d \mid y) = \mathcal{N}(x_d; \mu_{d,y}, \sigma_{d,y}^2) = \frac{1}{\sqrt{2\pi\sigma_{d,y}^2}} e^{-\frac{(x_d - \mu_{d,y})^2}{2\sigma_{d,y}^2}} \]

\[w[d] = (\mu_{d,1}, \sigma_{d,1}, \ldots, \mu_{d,C}, \sigma_{d,C}) \]

one mean and std. parameter for each class-feature pair

writing log-likelihood and setting derivative to zero we get maximum likelihood estimate:

\[\mu_{d,y} = \frac{1}{N_c} \sum_{n=1}^{N_c} x_d^{(n)} y_c^{(n)} \]

\[\sigma_{d,y}^2 = \frac{1}{N_c} \sum_{n=1}^{N_c} y_c^{(n)} (x_d^{(n)} - \mu_{d,y})^2 \]

empirical mean & std of feature \(x_d \) across instances with label \(y \)
Example: Gaussian Naive Bayes

classification on **Iris flowers dataset:**
(a classic dataset originally used by Fisher)

\[N_c = 50 \] samples with \(D = 4 \) features, for each of \(C = 3 \) species of Iris flower

our setting

3 classes

2 features
(septal width, petal length)
Example: Gaussian Naive Bayes

categorical class prior & Gaussian likelihood

```python
def GaussianNaiveBayes(X, # N x D
    y, # N x C
    Xtest,# N_test x D
):
    N,C = y.shape
    D = X.shape[1]
    mu, s = np.zeros((C,D)), np.zeros((C,D))
    for c in range(C):  # calculate mean and std
        inds = np.nonzero(y[:,c])[0]
        mu[c,:] = np.mean(X[inds,:], 0)
        s[c,:] = np.std(X[inds,:], 0)
    log_prior = np.log(np.mean(y, 0))[:,None]
    log_likelihood = - np.sum( np.log(s[:,None]) + 0.5*np.square((X[:,None] - mu[:,None])/s[:,None])**2, 2)
    return log_prior + log_likelihood  # N_text x C
```
Example: Gaussian Naive Bayes

categorical class prior & Gaussian likelihood

def GaussianNaiveBayes(X, # N x D
 y, # N x C
 Xtest, # N_test x D
):
 N,C = y.shape
 D = X.shape[1]
 mu, s = np.zeros((C,D)), np.zeros((C,D))
 for c in range(C): #calculate mean and std
 inds = np.nonzero(y[:,c])[0]
 mu[c,:] = np.mean(X[inds,:], 0)
 s[c,:] = np.std(X[inds,:], 0)
 log_prior = np.log(np.mean(y, 0))[:,None]
 log_likelihood = - np.sum(np.log(s[:,None])**2, 2)
 return log_prior + log_likelihood #N_test x C
Example: Gaussian Naive Bayes

using the **same variance** for all classes

its value does not make a difference

def GaussianNaiveBayes(
 X, # N x D
 y, # N x C
 Xtest,# N_test x D
):
 N,C = y.shape
 D = X.shape[1]
 mu, s = np.zeros((C,D)), np.zeros((C,D))
 for c in range(C): # calculate mean and std
 inds = np.nonzero(y[:,c])
 mu[c,:] = np.mean(X[inds,:], 0)
 log_prior = np.log(np.mean(y, 0))[:,None]
 log_likelyhood = - np.sum(.5*((Xt[None,:,:) - mu[:,None,:])**2), 2)
 return log_prior + log_likelyhood # N_text x C
Decision boundary in generative classifiers

Decision boundaries: two classes have the same probability \(p(y|x) = p(y'|x) \)

which means

\[
\log \frac{p(y=c|x)}{p(y=c'|x)} = \log \frac{p(c)p(x|c)}{p(c')p(x|c')} = \log \frac{p(c)}{p(c')} + \log \frac{p(x|c)}{p(x|c')} = 0
\]

not a function of \(x \) (ignore)

this ratio is linear (in some bases) for a large family of probabilities

(called linear exponential family)

\[
p(x|c) = \frac{e^{w_{y,c}^T \phi(x)}}{Z(w_{y,c})} \quad \log \frac{p(x|c)}{p(x|c')} = (w_{y,c} - w_{y,c'})^T \phi(x) + g(w_{y,c}, w_{y,c'})
\]

linear using some bases

not a function of \(x \)

\(e.g., \) Bernoulli is a member of this family with \(\phi(x) = x \)

\(\Rightarrow \) Bernoulli Naive Bayes has a linear decision boundary linear.
Discreminative vs generative classification

\[p(y, x) = p(y)p(x \mid y) \] generative

maximize joint likelihood
it makes assumptions about \(p(x) \)
can deal with missing values
can learn from unlabelled data
often works better on smaller datasets

\[p(y \mid x) \] discriminative

maximize conditional likelihood
makes no assumption about \(p(x) \)
only works better on larger datasets
Discriminative vs generative classification

Example naive Bayes vs logistic regression on UCI datasets

<table>
<thead>
<tr>
<th>naive Bayes</th>
<th>logistic regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>pima (continuous)</td>
<td>adult (continuous)</td>
</tr>
<tr>
<td>boston (predict if > median price, continuous)</td>
<td></td>
</tr>
<tr>
<td>optdigits (0's and 1's, continuous)</td>
<td>optdigits (2's and 3's, continuous)</td>
</tr>
<tr>
<td>ionosphere (continuous)</td>
<td></td>
</tr>
</tbody>
</table>

m is #instances

from: Ng & Jordan 2001
Summary

• generative classification
 ▪ learn the class prior and likelihood
 ▪ Bayes rule for conditional class probability

• Naive Bayes
 ▪ assumes conditional independence
 ◦ e.g., word appearances indep. of each other given document type
 ▪ class prior: Bernoulli or Categorical
 ▪ likelihood: Bernoulli, Gaussian, Categorical...
 ▪ MLE has closed form (in contrast to logistic regression)
 ▪ estimated separately for each feature and each label

• evaluation measures for classification accuracy
Measuring performance

A side note on measuring performance of classifiers

We use the confusion matrix to count the combinations of y and \hat{y}.

<table>
<thead>
<tr>
<th>Result</th>
<th>Truth</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td></td>
<td>FN</td>
<td>TN</td>
</tr>
<tr>
<td>Σ</td>
<td>P</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result</th>
<th>Truth</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Σ</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>
Measuring performance

Binary classification

Use the confusion matrix to quantify difference metrics.

<table>
<thead>
<tr>
<th>Result</th>
<th>Truth</th>
<th>∑</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>FP</td>
<td>RP</td>
</tr>
<tr>
<td>FN</td>
<td>TN</td>
<td>RN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>∑</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
</table>

Margins:

- \(RP = TP + FP \)
- \(RN = FN + TN \)
- \(P = TP + FN \)
- \(N = FP + TN \)

Accuracy

\[
\text{Accuracy} = \frac{TP + TN}{P + N}
\]

Error rate

\[
\text{Error rate} = \frac{FP + FN}{P + N}
\]

Precision

\[
\text{Precision} = \frac{TP}{RP}
\]

Recall

\[
\text{Recall} = \frac{TP}{P}
\]

F1 score

\[
F_1 \text{score} = 2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
\]

(Harmonic mean)
Measuring performance

Binary classification

<table>
<thead>
<tr>
<th>Result</th>
<th>Truth</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>FP</td>
<td>RP</td>
</tr>
<tr>
<td>FN</td>
<td>TN</td>
<td>RN</td>
</tr>
</tbody>
</table>

| Σ | P | N |

- **Accuracy**
 \[\text{Accuracy} = \frac{TP+TN}{P+N} \]
- **Precision**
 \[\text{Precision} = \frac{TP}{RP} \]
- **Recall**
 \[\text{Recall} = \frac{TP}{T} \]
- **F1 score**
 \[F_1 \text{score} = 2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \] (Harmonic mean)

Less common

- **Miss rate**
 \[\text{Miss rate} = \frac{FN}{P} \]
- **Fallout**
 \[\text{Fallout} = \frac{FP}{N} \]
- **False discovery rate**
 \[\text{False discovery rate} = \frac{FP}{RP} \]
- **Selectivity**
 \[\text{Selectivity} = \frac{TN}{N} \]
- **False omission rate**
 \[\text{False omission rate} = \frac{FN}{RN} \]
- **Negative predictive value**
 \[\text{Negative predictive value} = \frac{TN}{RN} \]
Threshold invariant: ROC & AUC

ROC as a function of threshold

TPR = TP/P (recall, sensitivity)

FPR = FP/N (fallout, false alarm)