Applied Machine Learning

Logistic Regression

Siamak Ravanbakhsh

COMP 551 (winter 2020)

Learning objectives

what are linear classifiers
logistic regression

= model
m |oss function

maximum likelihood view
multi-class classification

Motivation

we have seen KNN for classification
we see more classifiers today (linear classifiers)
Logistic Regression is the most commonly reported data science method used at work

0% 10% 20% 30% 40% 50% 60%

Logistic Regression

Decision Trees (G
Random Forests (N
Newral Networks (R
Bayesian Techniques (A
Ensemble Methods (ARG
svv: (A
Gradient Boosted Machines ﬂ
onns
s [
other (IR
. 5.5%
Evolutionary Approaches -
wnavts (D
i 4.9%
Markov Logic Networks -
2.8%
GANs [l

5.4%

souce: 2017 Kaggle survey

Classification problem

dataset of inputs £ ¢ RP
and discrete targets y™ € {0,...,C}
binary classification y" € {0,1}

linear classification:
decision boundaries are linear

linear decision boundary w'xz+b

how do we find these boundaries?

different approaches give different linear classifiers

== USING linear regression

fit a linear model to each class ¢ w? = argmin,, + Y0 (w/ 2™ —I(y™ = ¢))?

class label for a new instance is then Q(”) — arg max, wcTa:(”)

decision boundary between any two classes wcTa: = 'wCT,m

[i R by
‘gﬁ
T
A wyx
P
R F O .. _
v @l wgw .o * Where are the decision boundaries?
7 e but the instances are linearly separable
00 === 1~~~ -]
3@3” X ® e should be able to find these boundaries
3@’5 M4
HS R FFp— e where is the problem?
0.0 0.2 0.6 0.8 1.0

== USING linear regression

CIEIAAEESIi1 0l ¥ < 10,1} so we are fitting 2 linear models a'z,b'z

N ° g, °
N ? o o
° ° N 00° &o
.o.o¢. & N o o
0R © o °
o Wa? &% '\':\’. g% °
N0 o %

CLTZU — bT.’E — () decision boundary is here

(a—b)'z=0

s wle =0

y=1 w'z>0
{y:O w'z <0

so one weight vector is enough

== USING linear regression

CIEIAAEESIi« 1l ¥ < {0,1} so we are fitting 2 linear models a'z,b'x

correct prediction can have higher loss than the incorrect one! @

solution: we should try squashing all positive instance together and all the negative ones together

Logistic function

ldea: apply a squashing function to w'x — O'(’wTCIZ)

desirable property of 0 : R — R

all w'z >0 are squashed close together
all w'z < 0 are squashed together

|OgiStiC fu nCtiO N has these properties

1f the decision boundary is

Tg)= —1 wrz=0co(w'z)=1

G(w x) T 1+e—sz 0:5 () 2

J still a linear decision boundary
| | fa) | | J

Logistic regression: model

fu(z) = U(WTCB) — :

<
logit

logistic function
squashing function
activation function

note the linear decision boundary »

14ew' @

W=(1,4) W=(5,4)
A 1 1
w ’
W=(-2,3) 2 ovz ovz
-10 L -10 s
1 * x, 1010 x, x 1010 x
05 1
0 W=(0,2) W=(2,2)
-10 .
X, 10 -10 X, 1 Q 1 P
05 05
o 0 W=(5,1)
-0 0 10—~ S
10 -10 10 -10 1
X X X %2 05 ,
W=(1,0) W=(3,0) o g
10 s
1 1 10 -10
05 / 05 / X X
W=(-2,-1) 0 R
10 10 -10 o 2 10 o
10 -10 10 -10 -
05 X X X %2 w1
o W=(2,-2)
-10 10
0
1010 x | —
054
ol\/__'
10 10
° 0o Xo
X, >

Logistic regression: the loss

use the misclassification error

Loy (9,y) = 1(y # sign(y — 3))

B sy S T
e not a continuous function (in w)
e hard to optimize

.8

Logistic regression: the loss

use the L2 loss

e thanks to squashing, the previous problem is resolved
_* |lossis continuous
e still a problem: hard to optimize (non-convex in w)

.9

Logistic regression: the loss

use the cross-entropy loss

S Lep(9,y) = —ylog(g) — (1 —y) log(1 — 9)
e 10l

e itisconvexinw
e probabilistic interpretation (soon!)

Winter 2020 | Applied Machine Learning (COMP551)

.10

Cost function

we need to optimize the cost wrt. parameters
first: simplify

J(w) = Yi, —y™log(o(w ™)) — (1 — y™)log(1 — o(w'z™))

l substitute logistic function

. —w! bstitute logistic functi
log (1+eme) = —log (1‘|‘6 w 17) substitute logistic function

1 _ 1 — w'w
log (1 — 1+e—wTw) = log (1+esz) = —log (1 +e)

simplified cost J(w) = ZNZI y™ log (1+ e_“’Tm) + (1 —y™)log (1+ e“’Ta’)

1

implementing the Cost fu nction
simplified cost: J(w) = ZnN:1 y'™ log (1+ B_WT:B) +(1—y™)log (1+ e"“T"")

def cost

z = np.dot(X,w)
J np.mean(y * np.loglp(np.exp(-z)) + (l-y) * np.loglp(np.exp(z)))
return J

why not . (1 + np. (-z)) ?

for small €, log(l + e) suffers from floating point inaccuracies

In [
Out[
In [
Out[

: np.log(1l+)
2 3

: np.loglp()]_0g(]_ —|— 6) = € — - + Lo

Example: binary classification

classification on Iris flowers dataset:

(a classic dataset originally used by Fisher)

N, = 50 samples with D=4 features, for each of C=3
species of Iris flower

oooooooo

2 classes
(blue vs others)

1 features
(petal width + bias)

4.0

3.0

20

25

15

0.5

Iris Data (red=setosa,green=versicolor,blue=virginica)

2.0 3.0 4.0
L L I

Sepal.Length

e B

o
»°*

T T T T T T
45 55 65 75

Sepal.Width

— T T T T T T
12 3 45 6 7

X g
".J' ‘ o3
EQ . :-) ::; . . .-I'l'.::.
;,F. ::';E $oe Petal.Length i.’!!!;'
L stk S e i~
T e [ipr. £,

| e e
B oy . ;ﬁ‘ . Petal. Width

vvvvvvv

45 55 65 75

||||||

.3

X

\r—.\ w0 Pl R
\} 0.0 . .
1.0:.. :.::...io.. .
\\\\\ ‘ A o (wh + wi
I l‘s(petczio/ W/c}sth)
4.4

Gradient

. how did we find the optimal weights?
, “ (in contrast to linear regression, no closed form solution)

cost: J(w) =3, 9™ log (1+e™ ") + (1 —y™)log (1 + " *")

_w ! 2™ . / ! ()
taking partial derivative 32-J(w) =Y, —yM g e+ 2 (1 — y(n))m
VI(w) =3, 2 (1" —y)
o(w’z™) w! ™
compare to gradient for linear regression VJ(w) =3 w(n)(_ y(n))

Winter 2020 | Applied Machine Learning (COMP551)

Probabilistic view of logistic regression

probabilistic interpretation of logistic regression g =p,(y=1|z) = He}m =o(w'z)

logit function is the inverse of logistic log 1__Ly —w'e

ILGlliglelele M probability of data as a function of model parameters

L(w) = pu(y™ | 2™) = Bernoulli(y™;a(w'a™)) _ gom¥" (1 _ gmy1-u®
g(”) is the probability of y™ =1

(n)

likelihood of the dataset L(w) =[], pu(y™ | ™) =", ™Y (1 — gm)t-v"

n=1

Maximum likelihood & logistic regression

)

L(w) = H,]Llpw (y™ | 2™) = HN g(n)y(n

n=1

(1 - gm)t=v”
MEYAnBInRIGEllelelel use the model that maximizes the likelihood of observations

w* = arg max,, L(w)

likelihood value blows up for large N, work with log-likelihood instead (same maximum)
log likelihoodjery. ZnN:1 log pw(y™ | ™)
— max, Y0, y™ log(™) + (1 — y™)log(1 — §™)

= min, J(w) the cross entropy cost function!

S0 using cross-entropy loss in logistic regression is maximizing likelihood

Maximum likelihood & linear regression

squared error loss also has max-likelihood interpretation

(y—w ')2

IEEIERY 1, (y |) = M (y | w72, 0%) = e 5

a2variance

o standard deviation

(don't confuse with logistic function)

image: http://blog.nguyenvg.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/

Maximum likelihood & linear regression

squared error loss also has max-likelihood interpretation

- _(_sz)Q
puly | 2) = N(y | w7 2,0%) = e "5

Yy . o_;._ﬂwTa: MPERREE L(w) = [T pw(y™ | ™)

_________ : =Y — o (y™ — w 2™)? 4 constants

. T

|
AME e i W' = arg max, {(w) = arg min,, Ly (g™ —w'z™)?

linear least squares!

image: http://blog.nguyenvg.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/

Winter 2020 | Applied Machine Learning (COMP551)

Multiclass classification

binary classification: Bernoulli likelihood:

Bernoulli(y | 7) = §#(1 — §)' e, g (0,1

using logistic function to ensure this § = o(2) = o(w!)

C classes: categorical likelihood

Categorical(y | 1) =[], T

1

Softmax

generalization of logistic to > 2 classes:
e logistic: 0 : R — (0,1) produces a single probability

= probability of the second classis (1 — o(2))

e softmax: R¢ — Ap

e’c

J. = softmax(z). = SC g SO Do G=1
d=1
if input values are large, becomes similar to

softmax([lO, 100, —1]) ~ [0, 1, 0] numerical stability

so similar to logistic this is also a squashing function

def softmax

zZ = zZ - np.max(z,
yh = np.exp(z)
yh /= np.sum(yh,
return yh

)

)

Multiclass classification

C classes: categorical likelihood

Categorical(y | /) = Hle gj]i(y:c) using softmax to enforce sum-to-one constraint
N T T c
Jc = softmax([w; z,...,w T])e = Ze AE
Cl € ¢

so we have on parameter vector for each class

to simplify equations we write 2z, = w[c]Ta:

Y. = softmax([z1,...,2¢])c = ijcezc,

.3

Likelihood

C classes: categorical likelihood
C l(y=c)

Categorical(y | 7) = [[.—1 Ye using softmax to enforce sum-to-one constraint
9 ee _ T
Ye — SOftIﬂ&X([Zl, e ooy ZC’])C = S~ where %c — W[<
C

substituting softmax in Categorical likeihood:

I L ({w.}) =], Hle softmax([2"), .. ., zgz)])g(ym):c)

One-hot encoding

I(y"™ =c)
o
likelihood MEACKZSIEE RPN N9 <<>>

/
c
o €

[RTENER (({w.)) = N, 520 I(y™ = ¢)2f™ —log 3, e

one-hot encoding for labels

() () () def one hot

y\" — [I(y\"™ =1),...,[(y'"™ = C)]
N, C = y.shape[0], np.max(y)
y _hot = np.zeros(N, C)
y_hot[np.arange(N), y-1] =
return y_hot

using this encoding from now on

log-likelihood [NACENS D SAPETORSY DRSS SR

One-hot encoding

we can also use this encoding for categorical inputs features

one-hot encoding for input features

wfln) — []I(:cén) =1),... ,]I(wg") = O]

these features are not linearly independent, why?
might become an issue for linear regression. why?

remove one of the one-hot encoding features

2 = Izl =1),..., 1zl = ¢ —1)]

Implementing the cost function

softmax cross entropy cost function is the negative of the log-likelihood
similar to the binary case

N T (ﬂ) T
J{w.}) = — (Y1 y™ (") _log Y€)where ze=wyg ' T
naive implementation of log-sum-exp causes over/underflow
prevent this using the following trick:

logd e* =zZ+logd e**

def logsumexp

nll = - np.sum(np.sum(z * Y, 1) - logsumexp(Z)) Zmax = np.max(Z,axis=0)[iy
lse = Zmax + np.log(np.sum(np.exp(Z - Zmax), axis=0))
return lse #N

Optimization

given the training data D = {(z™,y™)},
find the best model parameters {wy}¢
by minimizing the cost

J{w.}) = — Zf:]:l y(”)Tz(”’) +log) ., ezy) where 2, = w[c]Taz

need to use gradient descent

0 0 0
VJ(’LU) = [511)[1}, J""@’wm, J,...,WJ]T

.8

Gradient

need to use gradient descent

T)
J({we}) = — 22721 y(n) 2™ + log > ., €% where Ze = w[C]TCB

using chain rule

0 g N a5 %) g ())y, ()
aw[cl,dJ_ Zn:l 2™ Ow, o Zn(yc Ye)Cl?d

c J:d

this looks familiar!

|
M0

) e* e
C

1 so the derivative of log-sum-exp is softmax

g(n)

Winter 2020 | Applied Machine Learning (COMP551)

.9

Summary

* |ogistic regression: logistic activation function + cross-entropy loss

= cost function
= probabilistic interpretation

o using maximum likelihood to derive the cost function
Gaussian likelihood L2 loss
Bernoulli likelihood cross-entropy loss

e multi-class classification: softmax + cross-entropy

= cost function
= one-hot encoding
= gradient calculation (will use later!)

