Applied Machine Learning

Logistic Regression

Siamak Ravanbakhsh

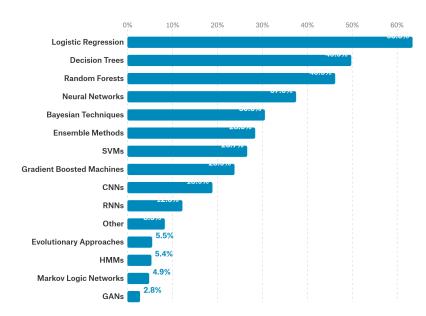
COMP 551 (winter 2020)

Learning objectives

- what are linear classifiers
- logistic regression
 - model
 - loss function
- maximum likelihood view
- multi-class classification

Motivation

- we have seen KNN for classification
- we see more classifiers today (linear classifiers)
- Logistic Regression is **the** most commonly reported data science method used at work



souce: 2017 Kaggle survey

Classification problem

dataset of inputs

$$x^{(n)} \in \mathbb{R}^D$$

and discrete targets

$$y^{(n)} \in \{0,\ldots,C\}$$

binary classification

$$y^{(n)}\in\{0,1\}$$

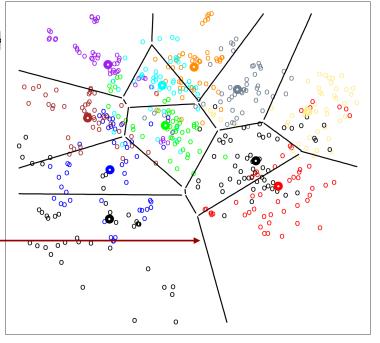
linear classification:

decision boundaries are linear

linear decision boundary $oldsymbol{w}^ op x + b$

how do we find these boundaries?

different approaches give different linear classifiers



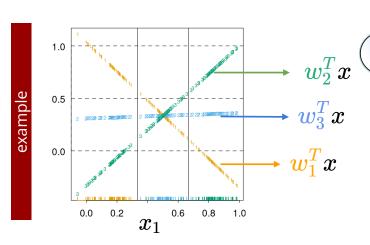
first idea

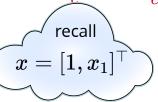
Using linear regression

fit a linear model to each class c: $w_c^* = rg \min_{w_c} rac{1}{2} \sum_{n=1}^N (w_c^ op x^{(n)} - \mathbb{I}(y^{(n)} = c))^2$

class label for a new instance is then $\ \hat{y}^{(n)} = rg \max_{\pmb{c}} w_{\pmb{c}}^ op x^{(n)}$

decision boundary between any two classes $w_c^ op x = w_{c'}^ op x$





- where are the decision boundaries?
- but the instances are linearly separable
 - we should be able to find these boundaries
- where is the problem?

first idea

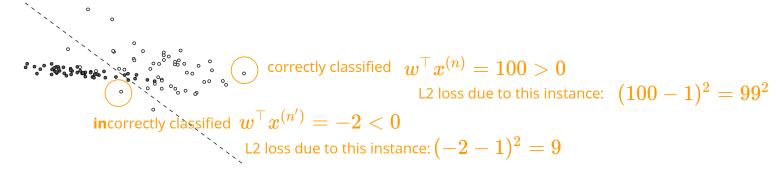
Using linear regression

Binary classification $y \in \{0,1\}$ so we are fitting 2 linear models $a^{\top}x, b^{\top}x$ $a^{\top}x - b^{\top}x = 0 \text{ decision boundary is here}$ $(a-b)^{\top}x = 0$ $w^{\top}x < 0$ so one weight vector is enough $y = 1 \quad w^{\top}x > 0$ $y = 0 \quad w^{\top}x < 0$

first idea

Using linear regression

Binary classification $y \in \{0,1\}$ so we are fitting 2 linear models $a^{ op}x,b^{ op}x$



correct prediction can have higher loss than the incorrect one!

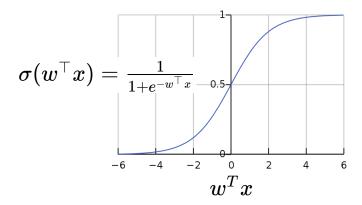
SOlution: we should try squashing all positive instance together and all the negative ones together

Logistic function

Idea: apply a squashing function to $w^ op x o \pmb{\sigma}(w^ op x)$ desirable property of $\ \sigma:\mathbb{R} o\mathbb{R}$

 \mid all $w^{ op}x>0$ are squashed close together all $w^{ op}x<0$ are squashed together

logistic function has these properties

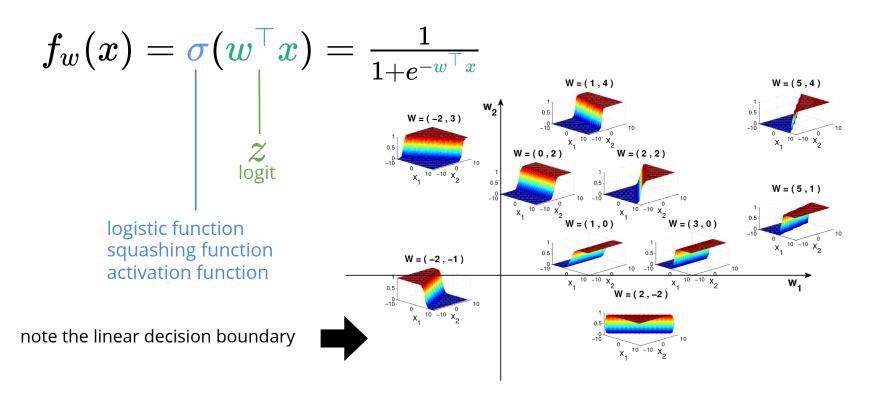


the decision boundary is

$$w^ op x = 0 \Leftrightarrow \sigma(w^ op x) = rac{1}{2}$$

still a linear decision boundary

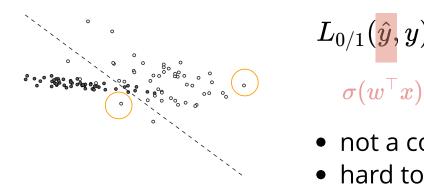
Logistic regression: model



Logistic regression: the loss

first idea

use the misclassification error

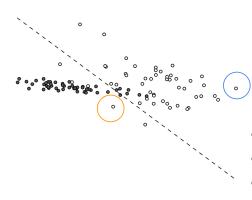


$$egin{align} L_{0/1}(\hat{m{y}},y) &= \mathbb{I}(y
eq ext{sign}(\hat{y}-rac{1}{2})) \ \sigma(w^ op x) \end{matrix}$$

- not a continuous function (in w)
- hard to optimize

Logistic regression: the loss

second idea use the L2 loss

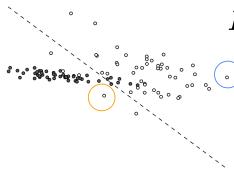


$$L_2(\hat{y},y) = rac{1}{2}(y-\hat{y})^2 \ \sigma(w^ op x)$$

- thanks to squashing, the previous problem is resolved
- loss is continuous
- still a problem: hard to optimize (non-convex in w)

Logistic regression: the loss

third idea use the cross-entropy loss



$$L_{CE}(\hat{oldsymbol{y}},y) = -y\log(\hat{y}) - (1-y)\log(1-\hat{y})$$

$$\sigma(w^{ op}x)$$

- it is convex in w
- probabilistic interpretation (soon!)

Cost function

we need to optimize the cost wrt. parameters

first: simplify

$$J(w) = \sum_{n=1}^N -y^{(n)} \log(\sigma(w^{ op}x^{(n)})) - (1-y^{(n)}) \log(1-\sigma(w^{ op}x^{(n)}))$$
 substitute logistic function $\log\left(rac{1}{1+e^{-w^{ op}x}}
ight) = -\log\left(1+e^{-w^{ op}x}
ight)$ substitute logistic function $\log\left(1-rac{1}{1+e^{-w^{ op}x}}
ight) = \log\left(rac{1}{1+e^{w^{ op}x}}
ight) = -\log\left(1+e^{w^{ op}x}
ight)$

simplified cost
$$J(w) = \sum_{n=1}^N y^{(n)} \log \left(1 + e^{-w^{ op}x}
ight) + \left(1 - y^{(n)}
ight) \log \left(1 + e^{w^{ op}x}
ight)$$

implementing the Cost function

```
simplified cost: J(w) = \sum_{n=1}^N y^{(n)} \log\left(1 + e^{-w^{	op}x}\right) + (1-y^{(n)}) \log\left(1 + e^{w^{	op}x}\right)
```

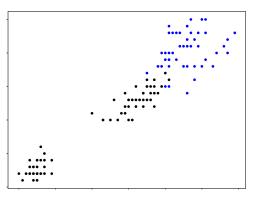
for small ϵ , $\log(1+\epsilon)$ suffers from floating point inaccuracies $\lim_{\substack{\text{In } [3]: \text{ np.log(1+le-100)} \\ \text{Out[3]: 0.0} \\ \text{In } [4]: \text{ np.log1p(1e-100)} \\ \text{Out[4]: le-100}} \longrightarrow \log(1+\epsilon) = \epsilon - \frac{x^2}{2} + \frac{x^3}{3} - \dots$

Example: binary classification

classification on **Iris flowers dataset**:

(a classic dataset originally used by Fisher)

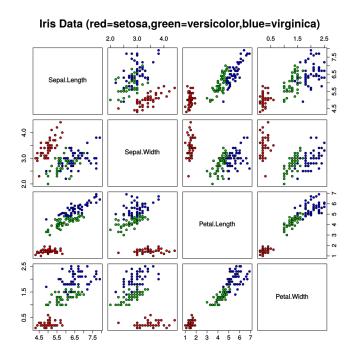
 $N_c=50$ samples with D=4 features, for each of C=3 species of Iris flower



our setting

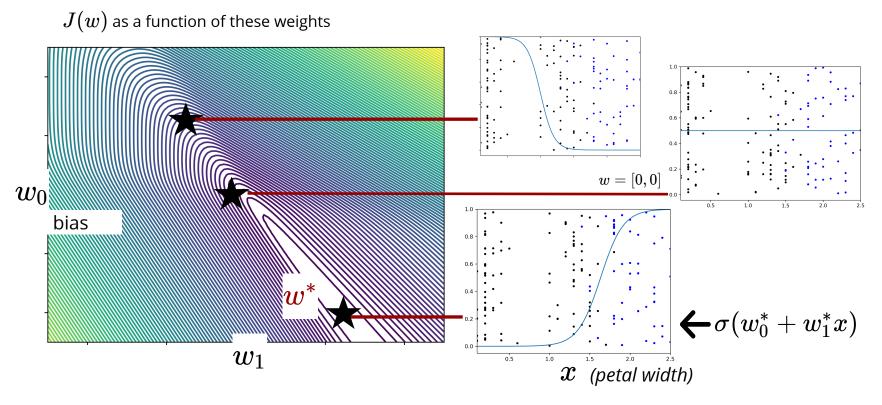
2 classes (blue vs others)

1 features (petal width + bias)

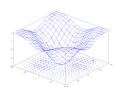


Example: binary classification

we have two weights associated with bias + petal width



Gradient



how did we find the optimal weights?

(in contrast to linear regression, no closed form solution)

cost:
$$J(w) = \sum_{n=1}^N y^{(n)} \log \left(1 + e^{-w^{ op} x^{(n)}}\right) + (1 - y^{(n)}) \log \left(1 + e^{w^{ op} x^{(n)}}\right)$$

taking partial derivative
$$\frac{\partial}{\partial w_d} J(w) = \sum_n -y^{(n)} x_d^{(n)} \frac{e^{-w^\top x^{(n)}}}{1+e^{-w^\top x^{(n)}}} + x_d^{(n)} (1-y^{(n)}) \frac{e^{w^\top x^{(n)}}}{1+e^{w^\top x^{(n)}}} = \sum_n -x_d^{(n)} y^{(n)} (1-\hat{y}^{(n)}) + x_d^{(n)} (1-y^{(n)}) \hat{y}^{(n)} = x_d^{(n)} (\hat{y}^{(n)} - y^{(n)})$$

 $w^{ op}x^{(n)}$

gradient
$$abla J(w) = \sum_n x^{(n)} (\hat{y}^{(n)} - y^{(n)}) \ \sigma(w^ op x^{(n)})$$

compare to gradient for linear regression $abla J(w) = \sum_n x^{(n)} (\hat{y}^{(n)} - y^{(n)})$

4.5

Probabilistic view of logistic regression

probabilistic interpretation of logistic regression $\hat{y} = p_w(y=1 \mid x) = \frac{1}{1+e^{-w^\top x}} = \sigma(w^\top x)$ logit function is the inverse of logistic $\log \frac{\hat{y}}{1-\hat{y}} = w^\top x$

likelihood probability of data as a function of model parameters

$$egin{aligned} L(w) &= p_w(y^{(n)} \mid x^{(n)}) = \operatorname{Bernoulli}(y^{(n)}; \sigma(w^{ op}x^{(n)})) &= \hat{y}^{(n)}^{y^{(n)}} (1 - \hat{y}^{(n)})^{1 - y^{(n)}} \ & \text{is a function of w} \ & \hat{y}^{(n)} \ & \text{is the probability of} \ & y^{(n)} &= 1 \end{aligned}$$

likelihood of the dataset $L(w) = \prod_{n=1}^N p_w(y^{(n)} \mid x^{(n)}) = \prod_{n=1}^N \hat{y}^{(n)} y^{(n)} (1-\hat{y}^{(n)})^{1-y^{(n)}}$

Maximum likelihood & logistic regression

likelihood
$$L(w) = \prod_{n=1}^N p_w(y^{(n)} \mid x^{(n)}) = \prod_{n=1}^N \hat{y}^{(n)} y^{(n)} (1 - \hat{y}^{(n)})^{1 - y^{(n)}}$$

maximum likelihood use the model that maximizes the likelihood of observations

$$w^* = rg \max_w L(w)$$

likelihood value blows up for large N, work with log-likelihood instead (same maximum)

$$\log$$
 likelihood $\max_{w} \sum_{n=1}^{N} \log p_w(y^{(n)} \mid x^{(n)})$

$$= \max_w \sum_{n=1}^N y^{(n)} \log(\hat{y}^{(n)}) + (1-y^{(n)}) \log(1-\hat{y}^{(n)})$$

$$= \min_w J(w)$$
 the cross entropy cost function!

so using cross-entropy loss in logistic regression is maximizing conditional likelihood

Maximum likelihood & linear regression

squared error loss also has max-likelihood interpretation

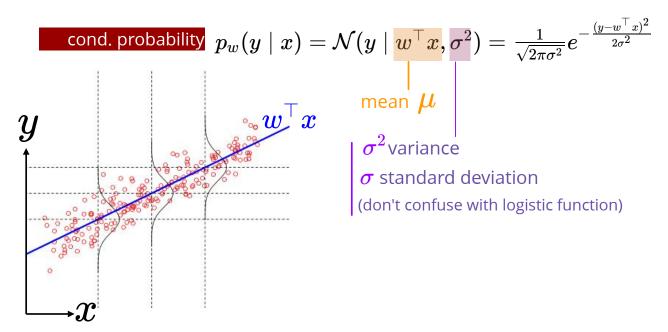


image: http://blog.nguyenvq.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/

Maximum likelihood & linear regression

squared error loss also has max-likelihood interpretation

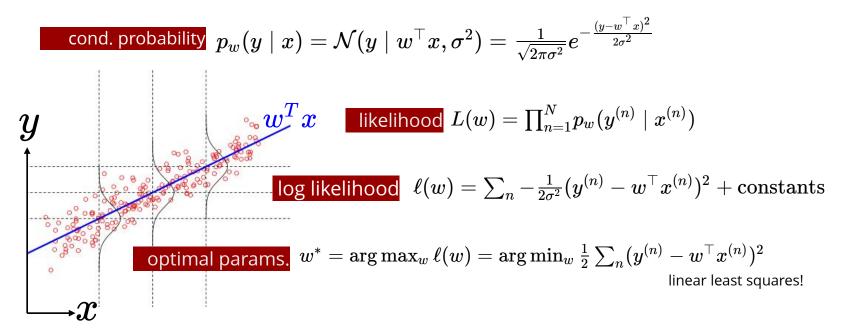


image: http://blog.nguyenvq.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/

Multiclass classification

binary classification: Bernoulli likelihood:

$$\begin{aligned} & \text{Bernoulli}(y \mid \hat{y}) = \hat{y}^y (1 - \hat{y})^{1 - y} & \xrightarrow{\text{subject to}} & \hat{y} \in [0, 1] \\ & \text{using logistic function to ensure this} & \hat{y} = \sigma(z) = \sigma(w^T x) \end{aligned}$$

C classes: categorical likelihood

$$\operatorname{Categorical}(y \mid \hat{\pmb{y}}) = \prod_{c=1}^C \hat{y}_c^{\mathbb{I}(y=c)} \xrightarrow{\operatorname{subject to}} \sum_c \hat{y}_c = 1$$

achieved using softmax function

Softmax

generalization of logistic to > 2 classes:

- **logistic**: $\sigma: \mathbb{R} \to (0,1)$ produces a single probability
 - probability of the second class is $(1 \sigma(z))$
- ullet softmax: $\mathbb{R}^C o \Delta_C$ probability simplex $\ p \in \Delta_c o \sum_{c=1}^C p_c = 1$

$$\hat{y}_c = \operatorname{softmax}(z)_c = rac{e^{z_c}}{\sum_{c'=1}^C e^{z_{c'}}}$$
 so $\sum_c \hat{y} = 1$

if input values are large, softmax becomes similar to argmax

```
example \operatorname{softmax}([10,100,-1]) pprox [0,1,0] numerical stability so similar to logistic this is also a squashing function
```

```
1 def softmax(
2    z # C x ... array
3    ):
4    z = z - np.max(z,0)
5    yh = np.exp(z)
6    yh /= np.sum(yh, 0)
7    return yh
```

Multiclass classification

C classes: categorical likelihood

 $\operatorname{Categorical}(y \mid \hat{\pmb{y}}) = \prod_{c=1}^C \hat{y}_c^{\mathbb{I}(y=c)}$ using softmax to enforce sum-to-one constraint

$$\hat{y}_c = \operatorname{softmax}([w_{[1]}^ op x, \dots, w_{[C]}^ op x])_c = rac{e^{w_{[c]}^ op x}}{\sum_{c'} e^{w_{[c']}^ op x}}$$
 so we have on parameter vector for each class

to simplify equations we write $~~ oldsymbol{z_c} = w_{[c]}^{ op} x$

$$\hat{y}_c = \operatorname{softmax}([z_1, \dots, z_C])_c = rac{e^{z_c}}{\sum_{c'} e^{z_{c'}}}$$

Likelihood

C classes: categorical likelihood

 $\operatorname{Categorical}(y\mid \hat{\pmb{y}}) = \prod_{c=1}^C \hat{y}_c^{\mathbb{I}(y=c)}$ using softmax to enforce sum-to-one constraint

$$\hat{y}_c = \operatorname{softmax}([z_1, \dots, z_C])_c = rac{e^{z_c}}{\sum_{c'} e^{z_{c'}}}$$
 where $z_c = w_{[c]}^ op x$

substituting softmax in Categorical likeihood:

likelihood
$$L(\{w_c\}) = \prod_{n=1}^N \prod_{c=1}^C \operatorname{softmax}([z_1^{(n)}, \dots, z_C^{(n)}])_c^{\mathbb{I}(y^{(n)}=c)}$$
 $= \prod_{n=1}^N \prod_{c=1}^C \left(\frac{e^{z_c^{(n)}}}{\sum_{c} e^{z_c^{(n)}}} \right)^{\mathbb{I}(y^{(n)}=c)}$

One-hot encoding

likelihood

$$L(\{w_c\}) = \prod_{n=1}^{N} \prod_{c=1}^{C} \left(rac{e^{z_c^{(n)}}}{\sum_{c'} e^{z_c^{(n)}}}
ight)^{\mathbb{I}(y^{(n)}=c)}$$

log-likelihood
$$\ell(\{w_c\}) = \sum_{n=1}^N \sum_{c=1}^C \mathbb{I}(y^{(n)} = c) z_c^{(n)} - \log \sum_{c'} e^{z_{c'}^{(n)}}$$

one-hot encoding for labels

$$y^{(n)}
ightarrow \left[\mathbb{I}(y^{(n)}=1), \ldots, \mathbb{I}(y^{(n)}=C)
ight]$$

using this encoding from now on

log-likelihood
$$\ell(\{w_c\}) = \sum_{n=1}^N y^{(n)}^ op z^{(n)} - \log \sum_{c'} e^{z_{c'}^{(n)}}$$

1 def one hot(y, #vector of size N class-labels [1,...,C] N, C = y.shape[0], np.max(y)5 y hot = np.zeros(N, C) 6 y hot[np.arange(N), y-1] = 1 7 return y hot

One-hot encoding

side note

we can also use this encoding for categorical **inputs** features

one-hot encoding for input features

$$x_d^{(n)}
ightarrow \left[\mathbb{I}(x_d^{(n)}=1),\ldots,\mathbb{I}(x_d^{(n)}=C)
ight]$$

problem

these features are **not** linearly independent, why? might become an issue for *linear regression*. why?

solution

remove one of the one-hot encoding features

$$x_d^{(n)}
ightarrow \left[\mathbb{I}(x_d^{(n)}=1),\ldots,\mathbb{I}(x_d^{(n)}= extbf{ extit{C}}-1)
ight]$$

Implementing the cost function

softmax cross entropy cost function is the negative of the log-likelihood similar to the binary case

$$oldsymbol{J}(\{w_c\}) = -ig(\sum_{n=1}^N y^{(n)}^ op z^{(n)} - \log \sum_{c'} e^{z^{(n)}_{c'}}ig)$$
 where $z_c = w_{[c]}^ op x$

naive implementation of log-sum-exp causes over/underflow prevent this using the following trick:

```
\log \sum_c e^{z_c} = \overline{z} + \log \sum_c e^{z_c - \overline{z}}
```

 $\bar{z} \leftarrow \max_c z_c$

```
1 def logsumexp(
2   Z# C x N
3 ):
4   Zmax = np.max(Z,axis=0)[None,:]
5   lse = Zmax + np.log(np.sum(np.exp(Z - Zmax), axis=0))
6   return lse #N
```

Optimization

given the training data $\mathcal{D}=\{(x^{(n)},y^{(n)})\}_n$ find the best model parameters $\{w_{[c]}\}_c$ by minimizing the cost (maximizing the likelihood of \mathcal{D})

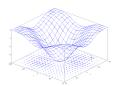
$$J(\{w_c\}) = -\sum_{n=1}^N {y^{(n)}}^ op z^{(n)} + \log \sum_{c'} e^{z_{c'}^{(n)}}$$
 where $z_c = w_{[c]}^ op x$

need to use gradient descent (for now calculate the gradient)

$$abla J(w) = [rac{\partial}{\partial w_{[1], 1}} J, \dots rac{\partial}{\partial w_{[1], D}} J, \dots, rac{\partial}{\partial w_{[C], D}} J]^ op$$

length $C \times D$

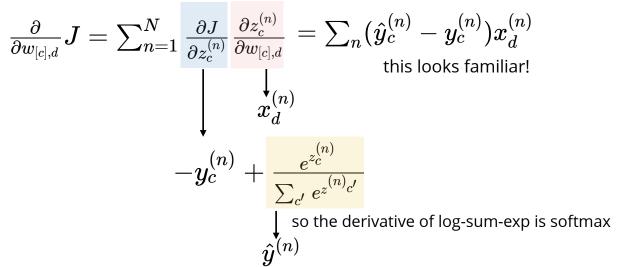
Gradient



need to use gradient descent (for now calculate the gradient)

$$J(\{w_c\}) = -\sum_{n=1}^N y^{(n)^ op} z^{(n)} + \log \sum_{c'} e^{z_{c'}^{(n)}}$$
 where $z_c = w_{[c]}^ op x$

using chain rule



Summary

- logistic regression: logistic activation function + cross-entropy loss
 - cost function
 - probabilistic interpretation
 - o using maximum likelihood to derive the cost function

```
Gaussian likelihood

Bernoulli likelihood

Cross-entropy loss
```

- multi-class classification: softmax + cross-entropy
 - cost function
 - one-hot encoding
 - gradient calculation (will use later!)