
Applied Machine LearningApplied Machine Learning
Convolutional Neural Networks 

Siamak RavanbakhshSiamak Ravanbakhsh

COMP 551COMP 551  (winter 2020)(winter 2020)

1



understand the convolution layer and the architecture of conv-net

its inductive bias
its derivation from fully connected layer
different types of convolution

Learning objectivesLearning objectives

2



MLP and image dataMLP and image data
  

we can apply an MLP to image data

image:https://medium.com/@rajatjain0807/machine-learning-6ecde3bfd2f4

softmax ∘W ∘{L} …∘ReLU ∘W vect(x){1}

first vectorize the input x→ vec(x) ∈ R784

feed it to the MLP (with L layers) and predict the labels

the model knows nothing about the image structure

we could shuffle all pixels and learn an MLP with similar performance

lets find the right model for sequence first...

how to bias the model, so that it "knows" its input is image?

image is like 2D version of sequence data

3 . 1



  
Parameter-sharingParameter-sharing

suppose we want to convert one sequence to another R →D RD

suppose we have a dataset of input-output pairs {(x , y )}(n) (n)
n

e.g., convert one voice to anotherconsider only a single layer y = g(Wx)

W

...

...output

...

...

input

3 . 2

we may assume, each output unit is the same function shifted along the sequence
when is this a good assumption?

W

...

...output

...

...

input

elements of w of the same color are tied together
(parameter-sharing)



Locality & sparse weightLocality & sparse weight
  

we may assume, each output unit is the same function shifted along the sequence

W

...

...output

...

...

input

3 . 3

we may further assume each output is a local function of input

larger receptive field with multiple layers

...

...

...

...

size of the receptive field is 3

...... size of the receptive field is 5



Cross-correlation Cross-correlation (1D)(1D)
  

we may further assume each output is a local function of input

W

...

...output

3 . 4

...

...

input

parameter-sharing in W
W is very sparse

= g( w x )∑k=1
K

k c−⌊ ⌋+k2
K

instead of the whole matrix we can keep the one set of nonzero values

w = [w ,… ,w ] =1 K [W ,… ,W ]c,c−⌊ ⌋2
K c,c+⌊ ⌋2

K

y =c g( W x )∑d=1
D

c,d d

we can write matrix multiplication as cross-correlation of w and x

slide                   on the input, calculate inner product and apply the nonlinearity



w

x

w ∗ x

x ∗ w

  
Convolution Convolution (1D)(1D)

Cross-correlation is similar to convolution

y(c) = w(k)x(c−∑k=−∞
∞

k)

flips w or x (to be commutative)Convolution

w ∗ x x ∗ w
= w(c−∑d=−∞

∞
d)x(d)

change of variable

since we learn w, flipping it makes no difference
in practice, we use cross correlation rather than convolution

w

x

w ⋆ x

x ⋆ w

3 . 5

convolution is equivariant wrt translation
 -- i.e., shifting x, shifts w*x

ignoring the activation (for simpler notation)
assuming w and x are zero for any index outside the input and filter bound

Cross-correlation y(c) = w(k)x(c+∑k=−∞
∞

k)

w is called the filter or kernel

w ⋆ x



Convolution Convolution (2D)(2D)
  

similar idea of parameter-sharing and locality extends to 2 dimension (i.e. image data)

image credit: Vincent Dumoulin, Francesco Visin

y =d ,d1 2 x w∑k =11

K1 ∑k =12

K2
d +k −1,d +k −11 1 2 2 k ,k1 2

participates in all outputs

participates in a single output

this is related to the borders

3 . 6



Winter 2020 | Applied Machine Learning (COMP551)

Convolution Convolution (2D)(2D)
  

similar idea of parameter-sharing and locality extends to 2 dimension (i.e. image data)

image credit: Vincent Dumoulin, Francesco Visin

there are different ways of handling the borders

zero-pad the input, and produce all non-zero outputs (full)
output is larger than input (by how much?)
each input participates in the same number of output elements

3x3 kernel

x

y

w

zero-pad the input, to keep the output dims similar to input (same)

no padding at all (valid)
output is small than input (how much?)

y =d ,d1 2 x w∑k =11

K1 ∑k =12

K2
d +k −1,d +k −11 1 2 2 k ,k1 2

⌊D + padding −K + 1⌋

output length (for one dimension)

3 . 7



PoolingPooling
  

sometimes we would like to reduce the size of output e.g., from D x D to D/2 x D/2

=y~d g( x w )∑k=1
K

d+k−1 k1. calculate the output

a combination of pooling and downsampling is used

pooling results in some degree of invariance to translation

2. aggregate the output over different regions

two common aggregation functions are max and mean

y =d pool{ ,… , }y~d y~d+p

left translation

3. often this is followed by subsampling using the same step size

the same idea extends to higher dimensions

4 . 1



Strided convolutionStrided convolution
  

alternatively we can directly subsample the output

=y~d g( x w )∑k=1
K

(d−1)+k k

y =d y~dp

y~1 y~2 y~3y~3 y~4 y~5

y1 y2 y3

=y~d g( x w )∑k=1
K

p(d−1)+k k

y1 y2 y3

4 . 2

equivalent to



Winter 2020 | Applied Machine Learning (COMP551)

Strided convolutionStrided convolution
  

the same idea extends to higher dimensions

image: Dumoulin & Visin'16

output

input

y =d ,d1 2 x w∑k =11

K1 ∑k =12

K2
p (d −1)+k ,p (d −1)+k1 1 1 2 2 2 k ,k1 2

different step-sizes for different dimensions

output

input

with padding

⌊ +stride
D+padding−K 1⌋

output length (for one dimension)

4 . 3



  
ChannelsChannels

so far we assumed a single input and output sequence or image

with RGB data, we have 3 input channels (              )M = 3

this example: 2 input channels

x ∈ RM×D ×D1 2

similarly we can produce multiple output channels M =′ 3

y ∈ RM ×D ×D′
1
′

2
′

we have one                 filters per input-output channel combinationK ×1 K2 w ∈ RM×M ×K ×K′
1 2

+ add the result of convolution from different input channels

image: Dumoulin & Visin'16

5 . 1



Winter 2020 | Applied Machine Learning (COMP551)

ChannelsChannels
  

so far we assumed a single input and output sequence or image

M =
M =′ 5

D =1

D =2
K1

K2

RGB channels

image: https://cs231n.github.io/convolutional-networks/

y =m ,d ,d′ 1 2 g( w x +∑m=1
M ∑k1

∑k2 m,m ,k ,k′ 1 2 m,d +k −1,d +k −11 1 2 2 b )m′

w ∈ RM×M ×K ×K
′

1 2

x ∈ RM×D ×D1 2

y ∈ RM ×D ×D
′

1
′

2
′

we can also add a bias parameter (b), one per each output channel

5 . 2

b ∈ RM
′



Convolutional Neural Network (Convolutional Neural Network (CNNCNN))
  

CNN or convnet is a neural network with convolutional layers (so it's a special type of MLP)

example: conv-net architecture (derived from AlexNet) for image classification

fully connected layers

number of classes

it could be applied to 1D sequence, 2D image or 3D volumetric data

visualization of the convolution kernel at the first layer  11x11x3x96
96 filters, each one is 11x11x3. each of these is responsible for one of 96 feature maps in the second layer

6 . 1



Convolutional Neural Network (Convolutional Neural Network (CNNCNN))
  

CNN or convnet is a neural network with convolutional layers (so it's a special type of MLP)

example: conv-net architecture (derived from AlexNet) for image classification

fully connected layers

number of classes

it could be applied to 1D sequence, 2D image or 3D volumetric data

deeper units represent more abstract features

6 . 2



Application: image classificationApplication: image classification
  

Convnets have achieved super-human performance in image classification

image credit: He et al'15, https://semiengineering.com/new-vision-technologies-for-real-world-applications/

ImageNet challenge: > 1M images, 1000 classes

6 . 3



  
Application: image classificationApplication: image classification

variety of increasingly deeper architectures have been proposed

image credit: He et al'15, https://semiengineering.com/new-vision-technologies-for-real-world-applications/

6 . 4



Winter 2020 | Applied Machine Learning (COMP551)

  
Application: image classificationApplication: image classification

variety of increasingly deeper architectures have been proposed

image credit: He et al'15, https://semiengineering.com/new-vision-technologies-for-real-world-applications/

6 . 5



xm,p(d −1)+k′

  
Training: Training: backpropagation through convolutionbackpropagation through convolution

y =m ,d′ w x∑m ∑k m,m ,k′ m,p(d−1)+k

using backprop. we have                 so far and we need
  ∂ym ,d′ ′

∂J

consider the strided 1D convolution op.

output channel index input channel index filter index stride

=∂wm,m ,k′

∂J ∑d′ ∂ym ,d′ ′

∂J
∂wm,m ,k′

∂ym ,d′ ′

=∂xd,m

∂J ∑d ,m′ ′ ∂ym ,d′ ′

∂J
∂xd,m

∂ym ,d′ ′
to backpropagate to previous layer

∂xm,d

∂ym ,d′ ′2)

7 . 1

∂wm,m ,k′

∂ym ,d′ ′
so as to get the gradients1)

w∑k m,m ,k′

such that
p(d −′ 1) + k = d

this operation is similar to multiplication by transpose of
the parameter-sharing matrix (transposed convolution)



Naive implementationNaive implementation
  

y =d w x∑k k d+k−1

consider the strided 1D convolution op. with stride 1. and single input-output channels

def Conv1DBackProp(
    x, #D (length)
    w, #K
    dJdy,#Dp: error from layer above
    ):
    
    D, = x.shape
    K, = w.shape
    Dp, = dJdy.shape
    dw = np.zeros_like(w)
    dJdx = np.zeros_like(x)   
    for dp in range(Dp):
     dw += np.sum(dJdy[dp] * x[dp:dp+K], 
     dJdx[dp:dp+K] += dJdy[dp:dp+K] * w
    return dJdx, dw #error to layer below and weight update

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

def Conv1D(
    x, # D (length)
    w, # K (filter length)
    ):
    
    D, = x.shape
    K, = w.shape
    Dp = D - K + 1 #output length
    y = np.zeros((Dp))
    for dp in range(Dp):
     y[dp] = np.sum(x[dp:dp+K] * w)
    return y

1
2
3
4
5
6
7
8
9
10
11
12

forward pass
backward pass

in practice most efficient implementation depends on the filter size (using FFT for large filters)

7 . 2



Transposed ConvolutionTransposed Convolution
  

Transposed convolution (aka deconvolution) recovers the shape of the original input

this can be used for up-sampling (opposite of stride/pooling)
as expected the transpose of a transposed
convolution is the original convolution

image: Dumoulin & Visin'16

Convolution with no stride and its transpose
no padding of the original convolution corresponds to full padding of in transposed version

transposed

input

output Convolution with stride and its transpose

transposed

input

output

7 . 3

full padding of the original convolution corresponds to no paddingof in transposed version

input

output

transposed



Winter 2020 | Applied Machine Learning (COMP551)

Dilated ConvolutionDilated Convolution
  

Dilated (aka atrous) convolution

this can be used to create exponentially large receptive field in few layers

dilation = 1 (i.e., no dilation), size of receptive field = 3

dilation = 2, size of receptive field = 7

dilation = 4, size of receptive field = 15

dilation = 8, size of receptive field = 31

image credits: Kalchbrenner et al'17, Dumoulin & Visin'16

torch.nn.Conv2d(in_channels, out_channels, kernel_size, 
stride=1, padding=0, dilation=1, groups=1, bias=True, 
padding_mode='zeros')

1

in contrast to stride, dilation does not lose resolution

⌊ +stride
D+padding−dilation×(K−1)−1 1⌋

output length (for one dimension)

7 . 4



variety of architectures... one that performs well is U-Net

  
Structured PredictionStructured Prediction

transposed convolution (upconv), concatenation, and skip connection are common in architecture design

image:https://sthalles.github.io/deep_segmentation_network/

architecture search (i.e., combinatorial hyper-parameter search) is an expensive process and an active research area

the output itself may have (image) structure (e.g., predicting text, audio, image)

in (semantic) segmentation, we classify each pixel

loss is the sum of cross-entropy loss across the whole image

example

8



SummarySummary
  

convolution layer introduces an inductive bias to MLP
equivariance as an inductive bias:

translation of the same model is applied to produce different outputs (pixels)
the layer is equivariant to translation
achieved through parameter-sharing

conv-nets use combinations of

convolution layers
ReLU (or similar) activations
pooling and/or stride for down-sampling
skip-connection and/or batch-norm to help with optimization / regularization
potentially fully connected layers in the end

training

backpropagation (similar to MLP)
SGD or its improved variations with adaptive learning rate
monitor the validation error for early stopping

9


