Applied Machine Learning

Convolutional Neural Networks

Siamak Ravanbakhsh

COMP 551 (winter 2020)

Learning objectives

understand the convolution layer and the architecture of conv-net

e its inductive bias
e its derivation from fully connected layer
e different types of convolution

d X W \4
<% Q 4 O

0
0
0

16

0
0
0
4

4

0
1
0
9
0
4
0
0

0

o W L

/
&
/
9

000000000000
201139137 37 012147 8 0 0
0 41160250 255 235 162 255 238 206 11 13
9150 251 45 21184 159 154 255 233 40 @
0145146 310 0 111425325107 @
15236216 0 0 38109 247 240 169
0253253 23 62 224 241 255 164
31252 250 228 255 255 234 112
21255 253 251 255 172

26201237 98 0 67251 255 144
15255141 0 87 244 255 208
145 248 228 116 235 255 141 34

6 B12157114 2 0 0

3
0
BT/ U650 2 10
0
0

00000000

6

1

0163 225 251 255 229 120 0
21 162 255 255 254 255 126
79 242 255 141 66 255 245 189

0

8
8
0
0
0
2
0

i
0
10

8
0
1%

2

0
5

1
0
Y

MLP and image data

we can apply an MLP to image data

image:https://medium.com/@rajatjain0807/machine-learning-6ecde3bfd2f4

1

MLP and image data

we can apply an MLP to image data

first vectorize the input x — vec(z) € R™

o W L

/

&

/ feed it to the MLP (with L layers) and predict the labels
7 softmax o W o ... o ReLU o W{llvect(z)

d X W \4
<% Q 4 O

0000000 00000000000
00 0 0 112 01 391373 0152147 8 0 0 0
0 0 1 0 0 041160250255235162255238206 11 13 0
0 0 016 9 9150251 45 20184159154 255233 40 0 0
0000 0 0145146 3 10 0 1114253255107 0 0
0 0 3 0 41523626 0 0 38109247240169 0 11 0
1020 0 023253 23 6224241255164 0 5 0 0
60 0 4 0 325225028252523411228 0 217 0
0 2 1 4 02A25235125517231 8 01000
0 0 4 0163225251255229120 0 0 0 0 011 0 0
0 0 21162255255254255126 6 0 10 14 6 0 0 9 0
379242255141 66255245189 7 8 0 0 5 0 0 0 0
6201237 98 0 67251255144 0 8 0 0 7 0 011 0
5255141 0 &r44255208 3 0 013 01 0 1 0@
WS U8 228 116235255141 3¢ 011 0 1 0 0 0 1 3 @
BB7/3M62520 20 1 0 1 0 06 24000
6231121571142 0 0 0 0 2 08 07 000
0000000000000 O0O00C0O0

image:https://medium.com/@rajatjain0807/machine-learning-6ecde3bfd2f4

MLP and image data

we can apply an MLP to image data

first vectorize the input x — vec(z) € R™

/

&

/ feed it to the MLP (with L layers) and predict the labels
7 softmax o W o ... o ReLU o W{llvect(z)

d X W \4
% Q 4 O

000 0000000000
0 112 01139137 37 012147 8 0 0
0 0 0 41160 250 255 235 162 255 238 206 11 13
16 9 9150251 45 21184159154 255233 40 0
00 0145146 3 10 0 1112425325107 0 H H

sz sswems o0 the model knows nothing about the image structure
0 0 0253253 23 6224241255164 0 5 0
4 0 372527250228 255255 34112 28
4 0 202523251255172 31 8 0
0 4 016322525125529120 0 0 0
0 0 2116225255 254255126 6 0 10 14
3 79242255141 6625545189 7 8 0
6221237 % 0 6725125144 0
125255 141 0 87 244 255 208
145 248 228 116 235 255 141 34

3
0
BT/ U650 2 10
0
0

1

we could shuffle all pixels and learn an MLP with similar performance

6 B12157114 2 0 0

0
1
0
0
0
0
0
0
4
7
00000000 0

7

0
0 0
6 9
5 0
7 1
1 0
0 B
2 0
0 0
0 0

image:https://medium.com/@rajatjain0807/machine-learning-6ecde3bfd2f4

MLP and image data

we can apply an MLP to image data

first vectorize the input x — vec(z) € R™

/

&

/ feed it to the MLP (with L layers) and predict the labels
7 softmax o W o ... o ReLU o W{llvect(z)

d X W \4
% Q 4 O

000000 00000000000

00 0 0 112 01 391373 0152147 8 0 0 0

0 0 1 0 0 041160250255235162255238206 11 13 0

0 0 016 9 9150251 45 20184159154 255233 40 0 0

0000 0 0145146 3 10 0 1114253255107 0 0 H H

o5 esmn awuns o the model knows nothing about the image structure

1020 0 023253 23 6224241255164 0 5 0 0

60 0 4 0 325225028252523411228 0 217 0
vereoissasna oo we could shuffle all pixels and learn an MLP with similar performance
0 0 21162255255254255126 6 0 10 14 6 0 0 9 0

37205141 662554519 7 8 0 0 50 0 00

6201237 98 0 67251255144 0 8 0 0 7 0 011 0 7
saawogmsus oo how to bias the model, so that it "knows" its input is image?
WS U8 228 116235255141 3¢ 011 0 1 0 0 0 1 3 @

BB7/3M62520 20 1 0 1 0 06 24000 H H H H

Gawwns o000 image is like 2D version of sequence data

0000000000000 O0O00C0O0

lets find the right model for sequence first...

image:https://medium.com/@rajatjain0807/machine-learning-6ecde3bfd2f4

Parameter-sharing

suppose we want to convert one sequence to another RP? — RP

suppose we have a dataset of input-output pairs {(:B(”) ,y™) In

e.g., convert one voice to another

Parameter-sharing

suppose we want to convert one sequence to another RP? — RP

suppose we have a dataset of input-output pairs {(:B(”) , y(”>)}n

consider On|y a Siﬂgle |ayer Yy = g(W:L') e.g., convert one voice to another

output

v ==

input

Parameter-sharing

suppose we want to convert one sequence to another RP? — RP

suppose we have a dataset of input-output pairs {(:B(”) ,y™) In

consider On|y a Siﬂgle |ayer Yy = g(W:L') e.g., convert one voice to another
output
v ===
input

we may assume, each output unit is the same function shifted along the sequence

when is this a good assumption?

output

elements of w of the same color are tied together
w ’:::><%;;ziff%;><i::] (parameter-sharing)

input

Locality & sparse weight

we may assume, each output unit is the same function shifted along the sequence

output

v b

input

.3

Locality & sparse weight

we may assume, each output unit is the same function shifted along the sequence

output

v bz

input

we may further assume each output is a local function of input

A

.3

Locality & sparse weight

we may assume, each output unit is the same function shifted along the sequence

output

v bz

input

we may further assume each output is a local function of input

A

size of the receptive field is 3

.3

Locality & sparse weight

we may assume, each output unit is the same function shifted along the sequence

output

v bz

input

we may further assume each output is a local function of input

larger receptive field with multiple layers

AP
<P

size of the receptive field is 3

size of the receptive field is 5

.3

Cross-correlation

we may further assume each output is a local function of input

output

" << <]

input

Cross-correlation

we may further assume each output is a local function of input

output parameter-sharing in W

W is very sparse
" <]

input

Cross-correlation

we may further assume each output is a local function of input

output parameter-sharing in W
W is very sparse
v << <]
input

instead of the whole matrix we can keep the one set of nonzero values

w = ['wl,...,'wK] = [Wc,c—ngr"?Wc,c—&-L%j] —_

Cross-correlation

we may further assume each output is a local function of input

output parameter-sharing in W
W is very sparse
v << <]
input

instead of the whole matrix we can keep the one set of nonzero values
w = [’wl,...,’w[{] = [WC,C—L%JV "?WC,C-H%H _—

we can write matrix multiplication as cross-correlation of w and x

Cross-correlation

we may further assume each output is a local function of input

output parameter-sharing in W
W is very sparse
v << <]
input

instead of the whole matrix we can keep the one set of nonzero values
w = [’wl,...,’w[{] = [WC,C—L%JV "7WC,C+L§j] _—

we can write matrix multiplication as cross-correlation of w and x

Ye = g(ZdDzl Wc,dxd)

Cross-correlation

we may further assume each output is a local function of input

output parameter-sharing in W
W is very sparse
v << <]
input

instead of the whole matrix we can keep the one set of nonzero values
w = [’wl,...,’w[{] = [WC,C—L%JV "7WC,C+L§j] _—

we can write matrix multiplication as cross-correlation of w and x

ve =9(ZdDzl Weaza) = 9| Eé{:l wkwc—{%ﬁk)

Cross-correlation

we may further assume each output is a local function of input

output parameter-sharing in W
W is very sparse
v << <]
input

instead of the whole matrix we can keep the one set of nonzero values
w = [’wl,...,’w[{] = [WC,C—L%JV "7WC,C+L§j] _—

we can write matrix multiplication as cross-correlation of w and x

ve =9(ZdDzl Weaza) = 9| Eé{:l wkwc—{%ﬁk)

slide on the input, calculate inner product

Convolution

Cross-correlation is similar to convolution

.5

Convolution

Cross-correlation is similar to convolution

y(e) = T w(ka(c+)

w is called the filter or kernel

ignoring the activation (for simpler notation)
assuming w and x are zero for any index outside the input and filter bound

Convolution

Cross-correlation is similar to convolution

y(e) = T w(ka(c+)

w is called the filter or kernel

ignoring the activation (for simpler notation)
assuming w and x are zero for any index outside the input and filter bound

Cross-correlation

Convolution

Cross-correlation is similar to convolution

y(e) = T w(ka(c+)

w is called the filter or kernel

ignoring the activation (for simpler notation)
assuming w and x are zero for any index outside the input and filter bound

ﬂipS W Or X (to be commutative)
y(e) = 2o wik)z(c — k)

Cross-correlation

AN
NN
NI
N
ﬂl\.
>~ N
)N N
N

Convolution

Cross-correlation is similar to convolution

y(e) = T w(ka(c+)

w is called the filter or kernel

ignoring the activation (for simpler notation)
assuming w and x are zero for any index outside the input and filter bound

ﬂipS W Or X (to be commutative)
y(C) — Zlfzoz—oo w(k)a:(c o k): Z;.loz—oo ’LU(C - d)l‘(d)

Cross-correlation

AN
NN
NI
N
ﬂl\.
>~ N
)N N
N

Convolution

Cross-correlation is similar to convolution Convolution Cross-correlation

y(e) = T w(ka(c+)

w is called the filter or kernel \ \
ignoring the activation (for simpler notation)
assuming w and x are zero for any index outside the input and filter bound] [
Convolution ﬂipS W Or X (to be commutative) | TT1 11 | AAAAAA
00 00
y(e) = 2o w(k)x(c — k)= >4, w(c — d)z(d) T

Convolution

Cross-correlation is similar to convolution Convolution Cross-correlation

y(e) = T w(k)a(c+)

w is called the filter or kernel \ \
ignoring the activation (for simpler notation)

assuming w and x are zero for any index outside the input and filter bound] [

Convolution ﬂipS W Or X (to be commutativey T 1117 _T17111

y(e) = Xkt w(k)z(c — k)= 325" w(c — d)z(d)

since we learn w, flipping it makes no difference T 77

Convolution

Cross-correlation is similar to convolution Convolution Cross-correlation

y(e) = T w(k)a(c+)

w is called the filter or kernel

ignoring the activation (for simpler notation)
assuming w and x are zero for any index outside the input and filter bound

ﬂipS W Or X (to be commutative)
y(C) — Zlfzoz—oo w(k)a:(c o k): Z;.loz—oo ’LU(C - d)l‘(d)

L

Sa

L
[

S #?5, S
e

since we learn w, flipping it makes no difference
in practice, we use cross correlation rather than convolution

Y
A
N
i

Convolution

Cross-correlation is similar to convolution Convolution Cross-correlation

y(e) = T w(k)a(c+)

w is called the filter or kernel

ignoring the activation (for simpler notation)
assuming w and x are zero for any index outside the input and filter bound

ﬂipS W Or X (to be commutative)
y(C) — Zlfzoz—oo w(k)a:(c o k): Z;.loz—oo ’LU(C - d)l‘(d)

L

Sa

L
[

S #?5, S
e

since we learn w, flipping it makes no difference

in practice, we use cross correlation rather than convolution
convolution is equivariant wrt translation

-- i.e., shifting x, shifts w*x

Y
A
N
i

Convolution (2D)

similar idea of parameter-sharing and locality extends to 2 dimension (.e. image data)

P e
Ydydy = Zklzl Zk2:1 Wk, ks,

Convolution (2D)

similar idea of parameter-sharing and locality extends to 2 dimension (.e. image data)

K K
Ydy,dy = Zkllzl Zk;:l Ldy+ky—1,do+ky—1Wky ky
| | |

image credit: Vincent Dumoulin, Francesco Visin

Convolution (2D)

similar idea of parameter-sharing and locality extends to 2 dimension (.e. image data)

Ydy,dy = Zkl—l Zkz 1 Ld, +k1*1 d2+k’2*1’wk1,k2

participates in all outputs

participates in a single output

this is related to the borders

image credit: Vincent Dumoulin, Francesco Visin

Convolution (2D)

similar idea of parameter-sharing and locality extends to 2 dimension (.e. image data)

. K, K,
Ydy,dy = Zklzl Zkzzl Wy ,ky

there are different ways of handling the borders

image credit: Vincent Dumoulin, Francesco Visin

Convolution (2D)

similar idea of parameter-sharing and locality extends to 2 dimension (.e. image data)

. K, K,
Yd,d, = Zklzl Zkzzl Ldy+ky—1,dy+ky—1 Wk, k,

there are different ways of handling the borders

no padding at all (valid)
output is small than input (how much?)

image credit: Vincent Dumoulin, Francesco Visin

Convolution (2D)

similar idea of parameter-sharing and locality extends to 2 dimension (.e. image data)

. K, K,
Ydy,dy = Zklzl Zkzzl Ldy+ky—1,do+ky—1Wky ks

there are different ways of handling the borders

zero-pad the input, to keep the output dims similar to input (same)

no padding at all (valid)
output is small than input (how much?)

image credit: Vincent Dumoulin, Francesco Visin

Convolution (2D)

similar idea of parameter-sharing and locality extends to 2 dimension (.e. image data)

L K, K,
Ydy,dy = Zklzl Zkzzl Ldy+ky—1,do+ky—1Wky ks

there are different ways of handling the borders

zero-pad the input, and produce all non-zero outputs (full)
output is larger than input (by how much?)
each input participates in the same number of output elements

zero-pad the input, to keep the output dims similar to input (same)

no padding at all (valid)
output is small than input (how much?)

image credit: Vincent Dumoulin, Francesco Visin

Convolution (2D)

similar idea of parameter-sharing and locality extends to 2 dimension (.e. image data)

. K, K,
Ydy,dy = Zklzl Zkzzl Ldy+ky—1,do+ky—1Wky ks

there are different ways of handling the borders

zero-pad the input, and produce all non-zero outputs (full)
output is larger than input (by how much?) | D + padding — K + 1]

each input participates in the same number of output elements

zero-pad the input, to keep the output dims similar to input (same)

no padding at all (valid)
output is small than input (how much?)

image credit: Vincent Dumoulin, Francesco Visin

Winter 2020 | Applied Machine Learning (COMP551)

Pooling

sometimes we would like to reduce the size of output e.g, from D x D to D/2 x D2

.

Pooling

sometimes we would like to reduce the size of output e.g, from D x D to D/2 x D2

a combination of pooling and downsampling is used

.

Pooling

sometimes we would like to reduce the size of output e.g, from D x D to D/2 x D2

a combination of pooling and downsampling is used

~ K
1. calculate the output yq = g(Y r1 33d+k—1wk)

.

Pooling

sometimes we would like to reduce the size of output e.g, from D x D to D/2 x D2

a combination of pooling and downsampling is used
~ K
1. calculate the output yq = g(p 33d+k—1wk)
2. aggregate the output over different regions

Yq = pool{Ja, ..., Yasp}

two common aggregation functions are max and mean

1

Pooling

sometimes we would like to reduce the size of output e.g, from D x D to D/2 x D2

a combination of pooling and downsampling is used
O§ONONO3

~ K
1. calculate the output yq = g(p CEd—Hc—lwk)

2. aggregate the output over different regions

CHEEEDT

¢ left translation

ofofofclp

Ya = pool{Yd, - - -, Ya+p} v
two common aggregation functions are max and mean

pooling results in some degree of invariance to translation

1

Pooling

sometimes we would like to reduce the size of output e.g, from D x D to D/2 x D2

a combination of pooling and downsampling is used
O§ONONO3

1. calculate the output yq = g(ZfZl $d+k_1wk) ‘i ?<i Xi foi

J
< A\

Yd — p001{yd7 . 7yd+p} ¥ 4
two common aggregation functions are max and mean e ‘ e °

pooling results in some degree of invariance to translation

- o | OO0
3. often this is followed by subsampling using the same step size '\./'
O <?> 0J0)0f0

2. aggregate the output over different regions

1

Pooling

sometimes we would like to reduce the size of output e.g, from D x D to D/2 x D2

a combination of pooling and downsampling is used
O§ONONO3

1. calculate the output yq = g(ZfZl $d+k_1wk) ‘i ?<i Xi foi

J
< A\

Yd — p001{yd7 . 7yd+p} ¥ 4
two common aggregation functions are max and mean e ‘ e °

pooling results in some degree of invariance to translation

- o | OO0
3. often this is followed by subsampling using the same step size '\./'
O <?> 0J0)0f0

12 120 | 30 [O

the same idea extends to higher dimensions | 8 [12| 2 | 0 | 22 MaxPool | 20|30
34 (70 [37 | 4 112 | 37

2. aggregate the output over different regions

1121100 | 25 | 12

1

Strided convolution

alternatively we can directly subsample the output

~ K
Ya = g(Zk:l m(d—1)+kwk)
Yd = :gdp

Strided convolution

alternatively we can directly subsample the output

~ K
Ya = g(Zk:l m(d—1)+kwk)
Yd = :gdp

Jownsampling

@D @ @D @9 equivalentto%

Strided convolution

alternatively we can directly subsample the output

~ K
Ya = g(Zk:l m(d—1)+kwk)
Yd = :gdp

ONONONONO

Ya = 9(Zf:l wp(d—1)+kwk)

OO0

Strided
sonvolution
equivalent to 9 G

Strided convolution

the same idea extends to higher dimensions

Yd,,d, = Zkl_l Z =1 Lp1(di —1)+k1,p2(d2—1)+k2 Wky ks

different step-sizes for different dimensions

et

image: Dumoulin & Visin'16

Strided convolution

the same idea extends to higher dimensions

Yd,,dy, = Zkl—l Z =1 Lp1(di —1)+k1,p2(d2—1)+k2 Wky ks

different step-sizes for different dimensions

et

with padding

output

input

image: Dumoulin & Visin'16

Strided convolution

the same idea extends to higher dimensions

Yd,,d, = Zkl—l Zk2_1 p1(di1—1)+k1,p2(d2—1)+ke Wk ks

different step-sizes for different dimensions

output

input

with padding

output

output length (for one dimension)

. D+padding— K
nput L stride + 1J

image: Dumoulin & Visin'16

Winter 2020 | Applied Machine Learning (COMP551)

Channels

so far we assumed a single input and output sequence or image

image: Dumoulin & Visin'16

1

Channels

so far we assumed a single input and output sequence or image

/.Ml

with RGB data, we have 3 input channels (M = 3)
this example: 2 input channels

T E RMXDlxDz

image: Dumoulin & Visin'16

1

Channels

so far we assumed a single input and output sequence or image

/.Ml

with RGB data, we have 3 input channels (M = 3)
this example: 2 input channels

xERMXDIXDZ
BRI R

similarly we can produce multiple output channels M’ =3

! / /
y € RM x Dy x D,

image: Dumoulin & Visin'16

1

Channels

so far we assumed a single input and output sequence or image

!
we have one K; x Ko filters per input-output channel combination € RMxM xKixK,

///..+*|l\

add the result of convolution from different input channels

with RGB data, we have 3 input channels (M = 3)
this example: 2 input channels

T E RMXDlxDz

similarly we can produce multiple output channels M’ =3

! / /
= RM x Dy x D,

image: Dumoulin & Visin'16

1

Channels

so far we assumed a single input and output sequence or image

image: https://cs231n.github.io/convolutional-networks/

Channels

so far we assumed a single input and output sequence or image

!
we can also add a bias parameter (b), one per each output channel b € RM

image: https://cs231n.github.io/convolutional-networks/

Channels

so far we assumed a single input and output sequence or image

!
we can also add a bias parameter (b), one per each output channel b € RM

M
ym,adladQ — g(Zmzl Zkl ZkQ wmvmlaklakZ wm7d1+k1_17d2+k2_1 _|_ bm,)

MXD1><D2
M'x D! x D), zeR
yecR 175

w e RMXM'XleKz

image: https://cs231n.github.io/convolutional-networks/

Channels

so far we assumed a single input and output sequence or image

!
we can also add a bias parameter (b), one per each output channel b € RM

M
ym,adladQ — g(Zm:1 Zkl Zkz wmamlaklakZ wm7d1+k1_1ad2+k2_1 _|_ bm,)

. , , T E RMXDlxDz
y € RM x Dy xD, P
K
B 00
‘-‘-‘-‘-"‘-h
wERMXM,XKIXK2 KﬁjéOOOO(D
230
M=3
RGB channels M/ =5

image: https://cs231n.github.io/convolutional-networks/

Winter 2020 | Applied Machine Learning (COMP551)

Convolutional Neural Network (CNN)

CNN or convnet is a neural network with convolutional layers (so it's a special type of MLP)

.

Convolutional Neural Network (CNN)

CNN or convnet is a neural network with convolutional layers (so it's a special type of MLP)
it could be applied to 1D sequence, 2D image or 3D volumetric data

.

Convolutional Neural Network (CNN)

CNN or convnet is a neural network with convolutional layers (so it's a special type of MLP)

it could be applied to 1D sequence, 2D image or 3D volumetric data
example: conv-net architecture (erived rom aexven fOr image classification

1

Convolutional Neural Network (CNN)

CNN or convnet is a neural network with convolutional layers (so it's a special type of MLP)

it could be applied to 1D sequence, 2D image or 3D volumetric data
example: conv-net architecture (erived rom aexven fOr image classification

Input Convil Conv2 Conv3 Convd Conv5 FC6 FC7 FC8 fully connected layers
2 13 \ 13 13
i
gt o8 e AT e =
“I - =% |13 36: - ERE A = O PE
224 = 3 -
384 384 256 number of classes
Max 455t
Max Max pooling 409 4096
pooling pooling
224

1

Convolutional Neural Network (CNN)

CNN or convnet is a neural network with convolutional layers (so it's a special type of MLP)

it could be applied to 1D sequence, 2D image or 3D volumetric data
example: conv-net architecture ervedfrom aexven fOr image classification

Input Convil Conv2 Conv3 Convd Conv5 FC6 FC7 FC8 fully connected layers

by 13 13 13
1
o T - a T~ —_—
£ - ol B! AN - 13 3 —9% |3 dense’| |dens
224 = A -
3% 384 256 1000 number of classes
Max 4
Max Max pooling 49 096
pooling pooling
224

visualization of the convolution kernel at the first layer 11x11x3x96
96 filters, each one is 11x11x3. each of these is responsible for one of 96 feature maps in the second layer

Convolutional Neural Network (CNN)

CNN or convnet is a neural network with convolutional layers (so it's a special type of MLP)

it could be applied to 1D sequence, 2D image or 3D volumetric data
example: conv-net architecture werived rom exneny fOr image classification

Input Convil Conv2 Conv3 Convd Conv5 FC6 FC7 FC8 fully connected layers
~ 13 13 13 ’7
1
= E/ (N £ - _
£ A =% L-TV e r—-x s dense’| [dens
224 A T N~
L 384 256 1000 number of classes
Max
256 :
Max pooling ¥ 096
224

¢ deeper units represent more abstract features

Application: image classification

Convnets have achieved super-human performance in image classification

image credit: He et al'15, https://semiengineering.com/new-vision-technologies-for-real-world-applications/

.3

Application: image classification

Convnets have achieved super-human performance in image classification
ImageNet challenge: > 1M images, 1000 classes

GT: horse cart GT: birdhouse GT: forklift

1: horse cart 1: birdhouse 1: forklift

2: minibus 2: sliding door 2: garbage truck
3:oxcart 3: window screen 3: tow truck

4: stretcher 4: mailbox 4: trailer truck
5:

half track 5: pot 5: go-kart

GT: coucal GT: komondor GT: yellow lady's slipper
1: coucal 1: komondor 1: yellow lady's sli
2:indigo bunting 2: patio 2:slug

3: lorikeet 3:llama 3: hen-of-the-woods

4; walking stick 4: mobile home 4: stinkhorn

5: custard apple 5: Old English sheepdog 5: coral fungus

image credit: He et al'15, https://semiengineering.com/new-vision-technologies-for-real-world-applications/

Application: image classification

Convnets have achieved super-human performance in image classification
ImageNet challenge: > 1M images, 1000 classes

GT: forklift

GT: horse cart

1: horse cart 1: 1: forklift

2: minibus 2: sliding door 2: garbage truck /
3:oxcart 3: window screen 3: tow truck 4
4: stretcher 4: mailbox 4: trailer truck

5: half track 5: pot 5: go-kart

o i f
i,

G velln lady' sl pr

GT: komondor

shallow

1: coucal 1: komondor - yellow lady's slipper

2:indigo bunting 2: patio 2:slug

3: lorikeet 3:llama 3: hen-of-the-woods

4; walking stick 4: mobile home 4: stinkhorn 2010 2011 2012

5: custard apple 5: Old English sheepdog 5: coral fungus

AlexNet, 8 layers

ZF, 8layers

/

VGG, 19 layers

7

/" GooglLeNet, 22 layers
/ P “ResNet, 152 layers
/" (Ensemble)

SENet

36% 3.0% o ore, | Humememor
. - 225

100% accuracy and reliability not realistic

I Traditional computer vision
N Dcep learning computer vision

2013 2014 2015 2016 2017

image credit: He et al'15, https://semiengineering.com/new-vision-technologies-for-real-world-applications/

ication

lassif

image c

Application

variety of increasingly deeper architectures have been proposed

ARUOS “H 0001

[iou sy seor | [rroow o osor |
T T
LT EELA
1 {

z/ ‘jaod TEw zj ‘pod <Ew

— Ineafer.anxn
[zismoopxs | _ Z18 Wuoo EXE _
i i
[zsmuooexe | | zismuooexe |
T 1
| zisnuooexe | [zismuosexg |
1 1
Z joed wEw i poed Xew
—. Iurn_...__,.,oonnn
[zismoopxg | [ziswwomgxe |
i i
[zisnuooexe | | zismuosexe |
T i i
[zismuoagxg | [zig muoa gxg |
1 1
Zi med wrw Zi oed TEwWw
i i
| sszwwospep | [sszuoagxe |
T 1
[sszawooexe | | sszauoagxe |
I 1
Zi med wew Zi 'wed ew
1 1
| sz awoexe | [szrmuosexe |
+ ,
[#zinwospxg | _ T _
1 1
Z ‘ood xew 21 'mod xew
1 ,
[vomwooexg | _ !.Enu,n# _
i 1
| vomwogxe | [vonwooexe |
ofiew) aoy ¥IZ X ¥ZZ B 90N ¥ZE X ¥ZE

9TO9A

6TOOA

l-world-applications/

n-technologies-for-rea

ring.com/new-visio

image credit: He et al'15, https://semienginee

Application: image classification

variety of increasingly deeper architectures have been proposed

Inception V3

224 X224 RGB image
[axaconv3ziz |
cony, 64
[323 scom, 128 |
3x3sconv, 128
x pooi,

Xception
<= 1x1 cony, 12872

ResNet-50
224 x 724 RGB image
!
| 7t conveaia |

Winter 2020 | Applied Machine Learning (COMP551)

x
Y

]

3x3 avg pool

@

1
3x3 avg pool
3x3 avg pool

m—"ml

1
$x3 avg pool
P

cony,

1x1 conv, 64

T

17 cony, 128

3x3 conw, 96
1T cony, 192

Filtor Goncat

[3xconos |

s
33

[o]

Filter Concat

E 2 3 gﬂ.’
g_J¢ FREI R
E—elgHE- B 2B

=

[Tix7conw 128 || 7xt conv 128 |[1x1 conw 182 |

[t coms 1 |

1

1
| ixtconv 448 |
3x3 conv, 384
[3xt conesi
Filter Concat

[C7xt con 160 |
1T cony, 192
Txi cony, 192
1xT cony, 182

1x1 cony, 192 | 3x3 max pool, /2

[ixtconw 182 |[7xt cony, 192 || 1x1 come 182 |

[7x3 conv, 192_| [T con 192

%7 conv, 160 || 7x1 conv, 180 || 1x1 cony, 192
Tetcomn 192][t cone 60|

1x1 conv, 192/2
333 coay, 32012

T
| txteconv 192 || 1xiconv.128 || 1x1conw 128

Tomn | e | ||
[txtconves || ot conv 48 || ixtconves |

=

3x3 max pool, 12

3x3 sconv, 728
2
33 max pool, 12

r s
3x3 scony, 256

T
| 3x3sc0mv, 728

gl 9
1000 fe, seftmax

1x1 cony, 25612

[4x1 conv. 72812 | | w2 scom 728 |

1 conv, 128

1x1 cony, 512

Txi conv, 256
x:

3x3 conv, 128

s

[it conv 192 |[1x1conv 160 || 1x1comw 180 | 3x3avgpoat
[mn:mnz Il meu:w.ln Il 1u=n:w.|n | m-:'pod
¥ s s

T
3x3avapool | 1xicoms320 || 1xiconv,384 |

i conw, 512
3x3 con, 512
x1 conv, 2048
3x3 conv, 512
x1 con, 2048

xi cony, 512

757 avg pool

image credit: He et al'15, https://semiengineering.com/new-vision-technologies-for-real-world-applications/

Training: backpropagation through convolution

consider the strided 1D convolution op. ym’, = Zm Zk wm,m’,k xm,p(~1)+k
output channel index input channellindex stlride
0J

3ym/ ,d/

1

Training: backpropagation through convolution

consider the strided 1D convolution op. Y,/ | = Zm Zk Wim,m!,k xm,p(—1)+k
| |

output channel index input channel index stride

using backprop. we have 9J _ so far and we need
3ym/’d/

1

Training: backpropagation through convolution

consider the strided 1D convolution op. Y,/ | = Zm Zk Wim,m!,k xm,p(—1)+k
| |

output channel index input channel index stride

using backprop. we have 9J _ so far and we need
3ym/’d/

1) so as to get the gradients

1

Training: backpropagation through convolution

consider the strided 1D convolution op. Y,/ | = Zm Zk Wim,m!,k xm,p(—1)+k
| |

output channel index input channel index stride

using backprop. we have dJ _ so far and we need
3ym/’d/

1) so as to get the gradients

2) 8ym/ 4" to backpropagate to previous layer
8$m,d

1

Training: backpropagation through convolution

consider the strided 1D convolution op. Y,/ | = Zm Zk Wim,m!,k xm,p(—1)+k
| |

output channel index input channel index stride

using backprop. we have dJ _ so far and we need
3ym/’d/

. oJ __ 0J
1) so as to get the gradients (?’wm o = Zd’ W

2) 8ym/ 4" to backpropagate to previous layer
8$m,d

1

Training: backpropagation through convolution

consider the strided 1D convolution op. Y,/ | = Zm Zk Wim,m!,k xm,p(—1)+k
| |

output channel index input channel index stride

using backprop. we have dJ _ so far and we need
3ym/’d/

. oJ __ 0J
1) so as to get the gradients (?’wm o = Zd’ W

2) 8ym/ 4" to backpropagate to previous layer
8$m,d

1

Training: backpropagation through convolution

consider the strided 1D convolution op. Y,/ | = Zm Zk Wim,m!,k xm,p(—1)+k
| |

output channel index input channel index stride

using backprop. we have 9J _ so far and we need
3ym/’d/

1) so as to get the gradients 0J Zd’ _6.13;],

6wm,ml &

Yy
2) %ny/’Z’ to backpropagate to previous layer % — Zd’,m' 3;?,:'],‘1' 3%2
m7

Training: backpropagation through convolution

consider the strided 1D convolution op. Y,/ | = Zm Zk Wim,m!,k wm,p(—1)+k
| |

output channel index input channel index stride

using backprop. we have 9J _ so far and we need
3ym/’d/

’l) so as to get the gradients awaJ — Zd’ F)

m,m! k

such that

8yml U
2) aay;n/a‘jl’ to backpropagate to previous layer % - Zd’,m’ ay?n‘,],d amdi i
m7

Training: backpropagation through convolution

consider the strided 1D convolution op. Y,/ | = Zm Zk Wim,m!,k xm,p(—1)+k
| |

output channel index input channel index stride

using backprop. we have 9J _ so far and we need

OYpt
1) so as to get the gradients #‘;l’k — Zd’ 6.1;31—',]@/
s’uch that '
2) aﬁnyn:j to backpropagate to previous layer % — Zd/,m/ 3yi{d 381/;:2,

this operation is similar to multiplication by transpose of
the parameter-sharing matrix (transposed convolution)

1

Naive implementation

consider the strided 1D convolution op. with stride 1. and single input-output channels

Yo = D, WEZith—1

Naive implementation

consider the strided 1D convolution op. with stride 1. and single input-output channels

Yo = D, WEZith—1

in practice most efficient implementation depends on the filter size (using FFT for large filters)

Naive implementation

consider the strided 1D convolution op. with stride 1. and single input-output channels

Yo = D, WEZith—1

in practice most efficient implementation depends on the filter size (using FFT for large filters)

[
1 def ConvlD(
2 x, # D (length)
3 w, # K (filter length)
4):
5
6 D, = x.shape
7 K, = w.shape
8 Dp = D - K + 1 #output length
9 y = np.zeros((Dp))
10 for dp in range(Dp):
11 y[dp] = np.sum(x[dp:dp+K] * w)

12 return y

Naive implementation
consider the strided 1D convolution op. with stride 1. and single input-output channels
Yo = D) WeTi4i-1

in practice most efficient implementation depends on the filter size (using FFT for large filters)

PR, backward pass

() o 1 def ConvlDBackProp(
2 x, #D (length)
3 w, #K
1 def ConvlD(!
2 x, # D (length) é dfdy,#Dp. error from layer above
3 w, # K (filter length) ;)i
4) 7 D, = x.shape
> 8 K, = w.shape
D, = x.sh ! "
6 + T X.shape 9 Dp, = dJdy.shape
7 K, = w.shape 10 dw = np.zer lik
8 Dp = D - K + 1 #output length v p.2eros_ ?(w)
_ 11 dJdx = np.zeros_like(x)
9 y = np.zeros((Dp)) X —
. 12 for dp in range(Dp):
10 for dp in range(Dp):
_ 13 dw += np.sum(dJddy[dp] * x[dp:dp+K],
1 yldp] = np.sum(x[dp:dp+K] * w) 14 dJdx[dp:dp+K] += dJdy[dp:dp+K] *
12 return y X[dp:dp+K] += y[dp:dp+K] w

15 return dJdx, dw #error to layer below and weight update

Transposed Convolution

Transposed convolution (aka deconvolution) recovers the shape of the original input

image: Dumoulin & Visin'16

Transposed Convolution

Transposed convolution (aka deconvolution) recovers the shape of the original input

Convolution with no stride and its transpose

no padding of the original convolution corresponds to full padding of in transposed version

transposed

image: Dumoulin & Visin'16

Transposed Convolution

Transposed convolution (aka deconvolution) recovers the shape of the original input

Convolution with no stride and its transpose

no padding of the original convolution corresponds to full padding of in transposed version

transposed

output

input

transposed

image: Dumoulin & Visin'16

Transposed Convolution

Transposed convolution (aka deconvolution) recovers the shape of the original input

Convolution with no stride and its transpose

no padding of the original convolution corresponds to full padding of in transposed version

Convolution with stride and its transpose

By ‘l output
full padding of the original convolution corresponds to no paddingof in transposed version g S~ input

transposed

image: Dumoulin & Visin'16

Transposed Convolution

Transposed convolution (aka deconvolution) recovers the shape of the original input

Convolution with no stride and its transpose

no padding of the original convolution corresponds to full padding of in transposed version

Convolution with stride and its transpose

By ‘l output
full padding of the original convolution corresponds to no paddingof in transposed version g S~ ‘ input

this can be used for up-sampling (opposite of stride/pooling)

as expected the transpose of a transposed
convolution is the original convolution

transposed

image: Dumoulin & Visin'16

Dilated Convolution

Dilated (aka atrous) convolution

image credits: Kalchbrenner et al'17, Dumoulin & Visin'16

Dilated Convolution

Dilated (aka atrous) convolution

image credits: Kalchbrenner et al'17, Dumoulin & Visin'16

Dilated Convolution

Dilated (aka atrous) convolution

dilation = 1 (i.e., no dilation), size of receptive field = 3

image credits: Kalchbrenner et al'17, Dumoulin & Visin'16

Dilated Convolution

Dilated (aka atrous) convolution

dilation = 2, size of receptive field =7

dilation = 1 (i.e., no dilation), size of receptive field = 3

image credits: Kalchbrenner et al'17, Dumoulin & Visin'16

Dilated Convolution

Dilated (aka atrous) convolution

dilation = 4, size of receptive field = 15
dilation = 2, size of receptive field =7

dilation = 1 (i.e., no dilation), size of receptive field = 3

image credits: Kalchbrenner et al'17, Dumoulin & Visin'16

Dilated Convolution

Dilated (aka atrous) convolution

this can be used to create exponentially large receptive field in few layers
» dilation = 8, size of receptive field = 31

dilation = 4, size of receptive field = 15
dilation = 2, size of receptive field =7

dilation = 1 (i.e., no dilation), size of receptive field = 3

image credits: Kalchbrenner et al'17, Dumoulin & Visin'16

Dilated Convolution

Dilated (aka atrous) convolution

this can be used to create exponentially large receptive field in few layers
» dilation = 8, size of receptive field = 31

dilation = 4, size of receptive field = 15
dilation = 2, size of receptive field =7

dilation = 1 (i.e., no dilation), size of receptive field = 3

in contrast to stride, dilation does not lose resolution

output length (for one dimension)

image credits: Kalchbrenner et al'17, Dumoulin & Visin'16

Dilated Convolution

Dilated (aka atrous) convolution

this can be used to create exponentially large receptive field in few layers
» dilation = 8, size of receptive field = 31

dilation = 4, size of receptive field = 15
dilation = 2, size of receptive field =7

dilation = 1 (i.e., no dilation), size of receptive field = 3

in contrast to stride, dilation does not lose resolution XK)

output |en th (fOI’ one dimenSion) 1 torch.nn.Conv2d(in_channels, out channels, kernel size,

stride=1, padding=0, dilation=1, groups=1, bias=True,
padding_mode='zeros')

image credits: Kalchbrenner et al'17, Dumoulin & Visin'16

Winter 2020 | Applied Machine Learning (COMP551)

Structured Prediction

the output itself may have (image) structure (e.g., predicting text, audio, image)

image:https://sthalles.github.io/deep_segmentation_network/

Structured Prediction

the output itself may have (image) structure (e.g., predicting text, audio, image)
in (semantic) segmentation, we classify each pixel
loss is the sum of cross-entropy loss across the whole image

b, A A '

™ AMBASSADOR nure

image:https://sthalles.github.io/deep_segmentation_network/

Structured Prediction

the output itself may have (image) structure (e.g., predicting text, audio, image)

EJEN in (semantic) segmentation, we classify each pixel

loss is the sum of cross-entropy loss across the whole image

6: 4
128 64 64 2
AT input
output
| - e Imat%z g o > ': ': segmentation
g ‘ = - 97 mee
; - ; 1 ' 128 128
256 128
>
RE sz
METESS 512 256 t
8 -z > g[l': > =»conv 3x3, ReLU
T 512 512 1024 512 1H copy and crop
il — i - # max pool 2¢2
S ¥ om s B 4 up-conv 2x2
i i i > >
variety of architectures... one that performs well is U-Net ——> C = conv 1x1

image:https://sthalles.github.io/deep_segmentation_network/

Structured Prediction

the output itself may have (image) structure (e.g., predicting text, audio, image)
in (semantic) segmentation, we classify each pixel
loss is the sum of cross-entropy loss across the whole image

e o,) ‘{t *- 5 I input
AMBASSADOR reare [image g
tile
L l-',LZBIZ‘E
h N' 256 256
A
gl;.:’
variety of architectures... one that performs well is U-Net ——>

256 128

-
Sl s
g
1024 512 1
>
r

transposed convolution (upconv), concatenation, and skip connection are common in architecture design

392 x 392

>
3

8 64 64 2

output
segmentation

>
o
& map

=» conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

image:https://sthalles.github.io/deep_segmentation_network/

Structured Prediction

the output itself may have (image) structure (e.g., predicting text, audio, image)
in (semantic) segmentation, we classify each pixel
loss is the sum of cross-entropy loss across the whole image

64 64
o ‘;7;,,,, ”‘ o2 input
AMBASSADOR reare Image i
tile
'128 128
' 256 256 512 256 t
N e - -l
o . ﬁi 1024 512»4S :
| (> ke “
. . . - % Z" 1024 -> ‘ o 3
variety of architectures... one that performs well is U-Net ——> S

transposed convolution (upconv), concatenation, and skip connection are common in architecture design

architecture search e, combinatorial hyper-parameter searchy IS @N €XpPeNsive process and an active research area

392 x 392

>
3

8 64 64 2

output
segmentation

>
o
& map

=» conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

image:https://sthalles.github.io/deep_segmentation_network/

Summary

convolution layer introduces an inductive bias to MLP
equivariance as an inductive bias:
¢ translation of the same model is applied to produce different outputs (pixels)

¢ the layer is equivariant to translation
e achieved through parameter-sharing

Summary

convolution layer introduces an inductive bias to MLP
equivariance as an inductive bias:

¢ translation of the same model is applied to produce different outputs (pixels)
¢ the layer is equivariant to translation
e achieved through parameter-sharing

conv-nets use combinations of

e convolution layers

e RelU (or similar) activations

* pooling and/or stride for down-sampling

¢ skip-connection and/or batch-norm to help with optimization / regularization
¢ potentially fully connected layers in the end

Summary

convolution layer introduces an inductive bias to MLP
equivariance as an inductive bias:

¢ translation of the same model is applied to produce different outputs (pixels)
¢ the layer is equivariant to translation
e achieved through parameter-sharing

conv-nets use combinations of

convolution layers

ReLU (or similar) activations

pooling and/or stride for down-sampling

skip-connection and/or batch-norm to help with optimization / regularization
potentially fully connected layers in the end

training

¢ backpropagation (similar to MLP)
e SGD or its improved variations with adaptive learning rate
e monitor the validation error for early stopping

