Applied Machine Learning

Gradient Computation & Automatic Differentiation

Siamak Ravanbakhsh

COMP 551 (winter 2020)
Learning objectives

- using the chain rule to calculate the gradients
- automatic differentiation
 - forward mode
 - reverse mode (backpropagation)
Landscape of the cost function

Model

Two layer MLP

\[
 f(x; W, V) = g(W h(V x))
\]

there are \textbf{exponentially many} global optima:
given one global optimum we can

- permute hidden units in each layer
- for symmetric activations: negate input/output of a unit
- for rectifiers: rescale input/output of a unit

\textbf{General beliefs}

supported by empirical and theoretical results in a special settings

- many more saddle points than local minima
- number of local minima increases for lower costs
- therefore most local optima are close to global optima

\textbf{Strategy}

use gradient descent methods (covered earlier in the course)

Objective

\[
 \min_W, V \sum_n L(y^{(n)}, f(x^{(n)}; W, V))
\]

loss function depends on the task

this is a non-convex optimization problem

many critical points (points where gradient is zero)

image credit: https://www.offconvex.org
Jacobian matrix

\(f : \mathbb{R} \to \mathbb{R} \) we have the derivative \(\frac{d}{dw} f(w) \in \mathbb{R} \)

\(f : \mathbb{R}^D \to \mathbb{R} \) gradient is the vector of all partial derivatives

\[
\nabla_w f(w) = [\frac{\partial}{\partial w_1} f(w), \ldots, \frac{\partial}{\partial w_D} f(w)]^\top \in \mathbb{R}^D
\]

\(f : \mathbb{R}^D \to \mathbb{R}^M \) the Jacobian matrix of all partial derivatives

\[
J = \begin{bmatrix}
\frac{\partial f_1(w)}{\partial w_1}, & \ldots, & \frac{\partial f_1(w)}{\partial w_D} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_M(w)}{\partial w_1}, & \ldots, & \frac{\partial f_M(w)}{\partial w_D}
\end{bmatrix} \in \mathbb{R}^{M \times D}
\]

note that we use \(J \) also for cost function

for all three case we may simply write \(\frac{\partial}{\partial w} f(w) \), where \(M,D \) will be clear from the context

what if \(W \) is a matrix? we assume it is reshaped it into a vector for these calculations
Chain rule

for $f: x \mapsto z$ and $h: z \mapsto y$ where $x, y, z \in \mathbb{R}$

$$\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$$

speed of change in z as we change x

speed of change in y as we change z

speed of change in y as we change x

more generally $x \in \mathbb{R}^D, z \in \mathbb{R}^M, y \in \mathbb{R}^C$

$$\frac{\partial y_c}{\partial x_d} = \sum_{m=1}^{M} \frac{\partial y_c}{\partial z_m} \frac{\partial z_m}{\partial x_d}$$

we are looking at all the "paths" through which change in x_d changes y_c and add their contribution

in matrix form

$$\begin{bmatrix} \frac{\partial y}{\partial x} \\ \frac{\partial y}{\partial z} \end{bmatrix} = \begin{bmatrix} \frac{\partial y}{\partial z} \\ \frac{\partial y}{\partial x} \end{bmatrix} \begin{bmatrix} \frac{\partial z}{\partial x} \\ \frac{\partial z}{\partial x} \end{bmatrix}$$

$C \times D$ Jacobian

$M \times D$ Jacobian

$C \times M$ Jacobian
Training a two layer network

suppose we have

- D inputs \(x_1, \ldots, x_D \)
- C outputs \(\hat{y}_1, \ldots, \hat{y}_C \)
- M hidden units \(z_1, \ldots, z_M \)

\[
\text{model } \quad \hat{y} = g(W \ h(V \ x))
\]

\text{Cost function } we want to minimize

\[
J(W, V) = \sum_n L(y^{(n)}, g(W \ h(V \ x^{(n)})))
\]

need gradient wrt \(W \) and \(V \): \(\frac{\partial}{\partial W} J, \frac{\partial}{\partial V} J \)

simpler to write this for one instance (n)

so we will calculate \(\frac{\partial}{\partial W} L, \frac{\partial}{\partial V} L \) and recover \(\frac{\partial}{\partial W} J = \sum_{n=1}^{N} \frac{\partial}{\partial W} L(y^{(n)}, \hat{y}^{(n)}) \) and \(\frac{\partial}{\partial V} J = \sum_{n=1}^{N} \frac{\partial}{\partial V} L(y^{(n)}, \hat{y}^{(n)}) \)
Gradient calculation

using the chain rule

$$\frac{\partial}{\partial W_{c,m}} L = \frac{\partial L}{\partial \hat{y}_c} \frac{\partial \hat{y}_c}{\partial u_c} \frac{\partial u_c}{\partial W_{c,m}}$$

depends on the loss function
depends on the activation function

$$\hat{y}_c = g(u_c)$$

$$u_c = \sum_{m=1}^{M} W_{c,m} z_m$$

$$z_m = h(q_m)$$

$$q_m = \sum_{d=1}^{D} V_{m,d} x_d$$

$$L(y, \hat{y})$$

similarly for V
Gradient calculation

using the chain rule

\[
\frac{\partial}{\partial W_{c,m}} L = \frac{\partial L}{\partial \hat{y}_c} \frac{\partial \hat{y}_c}{\partial u_c} \frac{\partial u_c}{\partial W_{c,m}}
\]

depends on the loss function

depends on the activation function

\[
\begin{align*}
\hat{y} &= g(u) = u = W z \\
L(y, \hat{y}) &= \frac{1}{2} ||y - \hat{y}||_2^2
\end{align*}
\]

regression

substituting

\[
L(y, z) = \frac{1}{2} ||y - W z||_2^2
\]

taking derivative

\[
\frac{\partial}{\partial W_{c,m}} L = (\hat{y}_c - y_c) z_m
\]

we have seen this in linear regression lecture

\[
\begin{align*}
L(y, \hat{y}) \\
\hat{y}_c &= g(u_c) \\
u_c &= \sum_{m=1}^{M} W_{c,m} z_m \\
z_m &= h(q_m) \\
q_m &= \sum_{d=1}^{D} V_{m,d} x_d \\
x_d
\end{align*}
\]
Gradient calculation

using the chain rule

\[
\frac{\partial}{\partial W_{c,m}} L = \frac{\partial L}{\partial y_c} \frac{\partial y_c}{\partial u_c} \frac{\partial u_c}{\partial W_{c,m}}
\]

depends on the loss function

depends on the activation function

\[
\begin{array}{l}
\hat{y}_c = g(u_c) \\
u_c = \sum_{m=1}^{M} W_{c,m} z_m \\
z_m = h(q_m) \\
q_m = \sum_{d=1}^{D} V_{m,d} x_d \\
x_d
\end{array}
\]

binary classification

scalar output \(C=1 \)

\[
\begin{align*}
\hat{y} &= g(u) = (1 + e^{-u})^{-1} \\
L(y, \hat{y}) &= y \log \hat{y} + (1 - y) \log(1 - \hat{y}) \\
L(y, u) &= y \log(1 + e^{-u}) + (1 - y) \log(1 + e^{u}) \\
u &= \sum_{m} W_m z_m
\end{align*}
\]

substituting and simplifying (see logistic regression lecture)

substituting \(u \) in \(L \) and taking derivative

\[
\frac{\partial}{\partial W_m} L = (\hat{y} - y) z_m
\]
Gradient calculation

using the chain rule

\[
\frac{\partial}{\partial W_{c,m}} L = \frac{\partial L}{\partial y_c} \frac{\partial y_c}{\partial u_c} \frac{\partial u_c}{\partial W_{c,m}}
\]

depends on the loss function

depends on the activation function

\[
y = g(u) = \text{softmax}(u)
\]

\[
L(y, \hat{y}) = \sum_k y_k \log \hat{y}_k
\]

substituting and simplifying (see logistic regression lecture)

\[
\begin{align*}
L(y, u) &= -y^\top u + \log \sum_c e^u \\
u_c &= \sum_m W_{c,m} z_m \\
z_m &= h(q_m) \\
q_m &= \sum_{d=1}^D V_{m,d} x_d \\
x_d
\end{align*}
\]

\[
\frac{\partial}{\partial W_{c,m}} L = (\hat{y}_c - y_c) z_m
\]
Gradient calculation

gradient wrt V:

$$\frac{\partial}{\partial V_{m,d}} L = \sum_c \frac{\partial L}{\partial \hat{y}_c} \frac{\partial \hat{y}_c}{\partial u_m} \frac{\partial u_m}{\partial z_m} \frac{\partial z_m}{\partial q_m} \frac{\partial q_m}{\partial V_{m,d}}$$

depends on the middle layer activation

- **logistic function**: $\sigma(q_m)(1 - \sigma(q_m))$
- **hyperbolic tan.**: $1 - \tanh(q_m)^2$
- **ReLU**: $\begin{cases} 0 & q_m \leq 0 \\ 1 & q_m > 0 \end{cases}$

example: logistic sigmoid

$$\frac{\partial}{\partial V_{m,d}} J = \sum_n \sum_c (\hat{y}_c^{(n)} - y_c^{(n)}) W_{c,m} \sigma(q_m^{(n)})(1 - \sigma(q_m^{(n)})) x_d^{(n)}$$

$$= \sum_n \sum_c (\hat{y}_c^{(n)} - y_c^{(n)}) W_{c,m} z_m^{(n)} (1 - z_m^{(n)}) x_d^{(n)}$$

for biases we simply assume the input is 1. $x_0^{(n)} = 1$

$L(y, \hat{y})$

\[\uparrow \]

\[\hat{y}_c = g(u_c) \]

\[\uparrow \]

$u_c = \sum_{m=1}^{M} W_{c,m} z_m$

\[\uparrow \]

$z_m = h(q_m)$

\[\uparrow \]

$q_m = \sum_{d=1}^{D} V_{m,d} x_d$

\[\uparrow \]

x_d
Gradient calculation

a common pattern

\[
\frac{\partial}{\partial W_{c,m}} L = \frac{\partial L}{\partial \hat{y}_c} \frac{\partial \hat{y}_c}{\partial u_c} \frac{\partial u_c}{\partial W_{c,m}} \\
\text{error from above} \quad \frac{\partial L}{\partial u_c} \quad \text{input from below} \quad z_m
\]

\[
\frac{\partial}{\partial V_{m,d}} L = \sum_c \frac{\partial L}{\partial \hat{y}_c} \frac{\partial \hat{y}_c}{\partial u_c} \frac{\partial u_c}{\partial z_m} \frac{\partial z_m}{\partial q_m} \frac{\partial q_m}{\partial V_{m,d}} \\
\text{error from above} \quad \frac{\partial L}{\partial q_m} \quad \text{input from below} \quad x_d
\]
Example: classification

Iris dataset (D=2 features + 1 bias)
M = 16 hidden units
C=3 classes

cost is softmax-cross-entropy

```python
1 def cost(X, #N x D
2 Y, #N x C
3 W, #M x C
4 V, #D x M
5 ):
6 Q = np.dot(X, V) #N x M
7 Z = logistic(Q) #N x M
8 U = np.dot(Z, W) #N x K
9 Yh = softmax(U)
10 nll = - np.mean(np.sum(U*Y, 1 ) - logsumexp(U))
11 return nll
```

helper functions

```python
1 def logsumexp:
2 x, #N x C
3 :
4 Zmax = np.max(Z, axis=1)[t, None]
5 lse = Zmax + np.log(np.sum(np.exp(Z - Zmax), axis=1)[t, None]
6 return lse #N
7 
8 def softmax:
9 u, # N x C
10 ):
11 u_exp = np.exp(u - np.max(u, 1))[t, None]
12 return u_exp / np.sum(u_exp, axis=1)[t, None]
```

\[L(y, \hat{y}) \]
\[\hat{y} = \text{softmax}(u) \]
\[u_c = \sum_{m=1}^{M} W_{c,m} z_m \]
\[z_m = \sigma(q_m) \]
\[q_m = \sum_{d=1}^{D} V_{m,d} x_d \]
\[x_d \]

\[J = - \sum_{n=1}^{N} y_n^{(n)} u_n^{(n)} + \log \sum_c e^{u_n^{(n)}} \]
Example: classification

Iris dataset (D=2 features + 1 bias)
M = 16 hidden units
C=3 classes

```python
1 def gradients(X, #N x D
2     Y, #N x K
3     W, #M x K
4     V, #D x M
5     ):
6     Z = logistic(np.dot(X, V)) #N x M
7     N,D = X.shape
8     Yh = softmax(np.dot(Z, W)) #N x K
9     dY = Yh - Y #N x K
10    dW= np.dot(Z.T, dY)/N #M x K
11    dZ = np.dot(dY, W.T) #N x M
12    dV = np.dot(X.T, dZ * (1 - Z))/N #D x M
13    return dW, dV
```

$L(y, \hat{y})$

$\hat{y} = \text{softmax}(u)$

$u_c = \sum_{m=1}^{M} W_{c,m} z_m$

$z_m = \sigma(q_m)$

$q_m = \sum_{d=1}^{D} V_{m,d} x_d$

x_d

check your gradient function using **finite difference** approximation that uses the **cost function**

```python
1 scipy.optimize.check_grad
```
Example: classification

Iris dataset (D=2 features + 1 bias)
M = 16 hidden units
C=3 classes

Using GD for optimization:

```python
def GD(X, Y, M, lr=.1, eps=1e-9, max_iters=100000):
    N, D = X.shape
    N, K = Y.shape
    W = np.random.randn(M, K) * .01
    V = np.random.randn(D, M) * .01
    dW = np.inf * np.ones_like(W)
    t = 0
    while np.linalg.norm(dW) > eps and t < max_iters:
        dW, dV = gradients(X, Y, W, V)
        W = W - lr * dW
        V = V - lr * dV
        t += 1
    return W, V
```

The resulting decision boundaries
Automating gradient computation

Gradient computation is tedious and mechanical. Can we automate it?

Using **numerical differentiation**?
- Approximates partial derivatives using finite difference:
 \[\frac{\partial f}{\partial w} \approx \frac{f(w+\epsilon) - f(w)}{\epsilon} \]
- Needs multiple forward passes (for each input output pair)
- Can be slow and inaccurate
- Useful for black-box cost functions or checking the correctness of gradient functions

Symbolic differentiation: symbolic calculation of derivatives
- Does not identify the computational procedure and reuse of values

Automatic / algorithmic differentiation is what we want
- Write code that calculates various functions, *e.g.*, the cost function
- Automatically produce (partial) derivatives *e.g.*, gradients used in learning
Automatic differentiation

idea
use the chain rule + derivative of simple operations $\ast, \sin, \frac{1}{x} \ldots$
use a computational graph as a data structure (for storing the result of computation)

step 1
break down to atomic operations

step 2
built a graph with operations as internal nodes and input variables as leaf nodes

step 3
there are two ways to use the computational graph to calculate derivatives

forward mode: start from the leaves and propagate derivatives upward

reverse mode:
1. first in a bottom-up (forward) pass calculate the values a_1, \ldots, a_4
2. in a top-down (backward) pass calculate the derivatives

this second procedure is called **backpropagation** when applied to neural networks

$\begin{align*}
L &= \frac{1}{2} (y - wx)^2 \\
a_1 &= w \\
a_2 &= x \\
a_3 &= y \\
a_4 &= a_1 \times a_2 \\
a_5 &= a_4 - a_3 \\
a_6 &= a_5^2 \\
a_7 &= .5 \times a_6
\end{align*}$
Forward mode

suppose we want the derivative \(\frac{\partial y_1}{\partial w_1} \)

we can calculate both \(y_1, y_2 \) and derivatives \(\frac{\partial y_1}{\partial w_1} \) \(\frac{\partial y_2}{\partial w_1} \) in a single forward pass

\[
\begin{align*}
\text{evaluation} & \quad \text{partial derivatives} \\
a_1 &= w_0 & \dot{a}_1 &= 0 \quad & a_2 &= w_1 & \dot{a}_2 &= 1 \quad & a_3 &= x & \dot{a}_3 &= 0
\end{align*}
\]

\[
\begin{align*}
w_1 x & \quad a_4 = a_2 \times a_3 & \dot{a}_4 &= a_2 \times \dot{a}_3 + \dot{a}_2 \times a_3 & x \\
w_1 x + w_0 & \quad a_5 = a_4 + a_1 & \dot{a}_5 &= \dot{a}_4 + \dot{a}_1 & x \\
y_1 = \sin(w_1 x + w_0) & \quad a_6 = \sin(a_5) & \dot{a}_6 &= \dot{a}_5 \cos(a_5) & x \cos(w_1 x + w_0) = \frac{\partial y_1}{\partial w_1} \\
y_2 = \cos(w_1 x + w_0) & \quad a_7 = \cos(a_5) & \dot{a}_7 &= -\dot{a}_5 \sin(a_5) & -x \sin(w_1 x + w_0) = \frac{\partial y_2}{\partial w_1}
\end{align*}
\]

note that we get all partial derivatives \(\frac{\partial \square}{\partial w_1} \) in one forward pass

\[
\begin{align*}
& \text{we initialize these to identify which derivative we want} \\
& \text{this means } \square = \frac{\partial \square}{\partial w_1}
\end{align*}
\]
Forward mode: computational graph

suppose we want the derivative \(\frac{\partial y_1}{\partial w_1} \)

\[
\begin{aligned}
y_1 &= \sin(w_1 x + w_0) \\
y_2 &= \cos(w_1 x + w_0)
\end{aligned}
\]

we can represent this computation using a graph

once the nodes up stream calculate their values and derivatives we may discard a node

- e.g., once \(a_5, a_7 \) are obtained we can discard the values and partial derivatives for \(a_4, a_4, a_1, a_1 \)

evaluation

\[
\begin{align*}
a_1 &= w_0 \\
a_2 &= w_1 \\
a_3 &= x \\
a_4 &= a_2 \times a_3 \\
a_5 &= a_4 + a_1 \\
y_1 &= a_6 = \sin(a_5) \\
y_2 &= a_7 = \cos(a_5)
\end{align*}
\]

partial derivatives

\[
\begin{align*}
a_1 &= 0 \\
a_2 &= 1 \\
a_3 &= 0 \\
a_4 &= a_2 \times a_3 + a_2 \times a_3 \\
a_5 &= \dot{a}_4 + \dot{a}_1 \\
a_6 &= \dot{a}_5 \cos(a_5) \\
a_7 &= -\dot{a}_5 \cos(a_5)
\end{align*}
\]
Reverse mode

suppose we want the derivative \(\frac{\partial y_2}{\partial w_1} \) where \(y_2 = \cos(w_1 x + w_0) \)

first do a forward pass for evaluation

1) evaluation

\[
\begin{align*}
 a_1 &= w_0 \\
 a_2 &= w_1 \\
 a_3 &= x \\
 a_4 &= a_2 \times a_3 \\
 a_5 &= a_4 + a_1 \\
 y_1 &= \sin(w_1 x + w_0) \\
 y_1 &= a_6 = \sin(a_5) \\
 y_2 &= \cos(w_1 x + w_0) \\
 y_2 &= a_7 = \cos(a_5)
\end{align*}
\]

then use these values to calculate partial derivatives in a backward pass

2) partial derivatives

\[
\begin{align*}
\frac{\partial y_2}{\partial y_2} &= 1 \\
\frac{\partial y_2}{\partial y_1} &= 0 \\
\frac{\partial y_2}{\partial a_5} &= -\sin(w_1 x + w_0) \\
\frac{\partial y_2}{\partial a_4} &= -\sin(w_1 x + w_0) \\
\frac{\partial y_2}{\partial a_3} &= -w_1 \sin(w_1 x + w_0) \\
\frac{\partial y_2}{\partial a_2} &= -x \sin(w_1 x + w_0) \\
\frac{\partial y_2}{\partial w_1} &= -\sin(w_1 x + w_0) \\
\frac{\partial y_2}{\partial w_0} &= -\sin(w_1 x + w_0)
\end{align*}
\]

\(a_7 = 1 \) \(a_6 = 0 \)

\(\tilde{a}_7 \) \(\tilde{a}_6 \)

we get all partial derivatives \(\frac{\partial y_2}{\partial \square} \) in one backward pass

7.5
Reverse mode: computational graph

suppose we want the derivative $\frac{\partial y_2}{\partial w_1}$ where $y_2 = \cos(w_1 x + w_0)$

we can represent this computation using a graph

1. in a forward pass we do evaluation and **keep the values**
2. use these values in the backward pass to get partial derivatives

1) evaluation

\[
\begin{align*}
 a_1 &= w_0 \\
 a_2 &= w_1 \\
 a_3 &= x \\
 a_4 &= a_2 \times a_3 \\
 a_5 &= a_4 + a_1 \\
 y_1 &= a_6 = \sin(a_5) \\
 y_2 &= a_7 = \cos(a_5)
\end{align*}
\]

2) partial derivatives

\[
\begin{align*}
 \tilde{a}_7 &= 1 \\
 \tilde{a}_6 &= 0 \\
 \tilde{a}_5 &= \tilde{a}_6 \cos(a_5) - \tilde{a}_7 \sin(a_5) \\
 \tilde{a}_4 &= \tilde{a}_5 \\
 \tilde{a}_3 &= a_2 \tilde{a}_4 \\
 \tilde{a}_2 &= a_3 \tilde{a}_4 \\
 \tilde{a}_1 &= \tilde{a}_5
\end{align*}
\]
Forward vs Reverse mode

forward mode is more natural, easier to implement and requires less memory
a single forward pass calculates \(\frac{\partial y_1}{\partial w}, \ldots, \frac{\partial y_c}{\partial w} \)

however, reverse mode is more efficient in calculating gradient
\[
\nabla_w y = \left[\frac{\partial y}{\partial w_1}, \ldots, \frac{\partial y}{\partial w_D} \right]^T
\]
this is more efficient if we have single output (cost) and many variables (weights)
for this reason, in training neural networks, reverse mode is used
the backward pass in the reverse mode is called \textbf{backpropagation}

many machine learning software implement autodiff:

- autograd (extends numpy)
- pytorch
- tensorflow
Improving optimization in deep learning

Initialization of parameters:
- random initialization (uniform or Gaussian) with small variance
- break the symmetry of hidden units
- small positive values for bias (so that input to ReLU is >0)

models that are simpler to optimize:
- using ReLU activation
- using **skip-connection**
- using **batch-normalization** (next)

Pretrain a (simpler) model on a (simpler) task and
fine-tune on a more difficult target setting (has many forms)

continuation methods in optimization
- gradually increase the difficulty of the optimization problem
- good initialization for the next iteration

curriculum learning (similar idea)
- increase the number of "difficult" examples over time
- similar to the way humans learn

This block is fixing residual errors of the predictions of the previous layers
Batch Normalization

Original motivation
- gradient descent: parameters in all layers are updated
- distribution of inputs to layer ℓ changes
- each layer has to re-adjust
- inefficient for very deep networks

Idea
- normalize the input to each unit (m) of a layer ℓ

Alternatively: apply the batch-norm to $W^{\ell} x^{\ell}$
- each unit is unnecessarily constrained to have zero-mean and std=1 (we only need to fix the distribution)

Introduce learnable parameters
$$ReLU(\gamma^{\ell} \text{BN}(W^{\ell} x^{\ell}) + \beta^{\ell})$$

- mean and std per unit is calculated for the minibatch during the forward pass
- we backpropagate through this normalization
- at test time use the mean and std. from the whole training set
- BN regularizes the model (e.g., no need for dropout)

Recent observations
- the change in distribution of activations is not a big issue empirically
- BN works so well because it makes the loss function smooth
Summary

optimization landscape in neural networks is special and not yet fully understood
• exponentially many local optima and saddle points
• most local minima are good
• calculate the gradients using backpropagation

automatic differentiation
• simplifies gradient calculation for complex models
• gradient descent becomes simpler to use
• forward mode is useful for calculating the jacobian of $f : \mathbb{R}^Q \rightarrow \mathbb{R}^P$ when $P \geq Q$
• reverse mode can be more efficient when $Q > P$
 ▪ backpropagation is reverse mode autodiff.

Better optimization in deep learning:
• better initialization
• models that are easier to optimize (using skip-connection, batch-norm, ReLU)
• pre-training and curriculum learning