Applied Machine Learning Gradient Computation & Automatic Differentiation Siamak Ravanbakhsh **COMP 551 (winter 2020)** # Learning objectives using the chain rule to calculate the gradients automatic differentiation - forward mode - reverse mode (backpropagation) ## Landscape of the cost function model two layer MLP $$f(x; W, V) = g(Wh(Vx))$$ there are **exponentially many** global optima: given one global optimum we can - permute hidden units in each layer - for symmetric activations: negate input/ouput of a unit - for rectifiers: rescale input/output of a unit #### general beliefs supported by empirical and theoretical results in a special settings many more saddle points than local minima number of local minima increases for lower costs therefore most local optima are close to global optima objective $\min_{W,V} \sum_n L(y^{(n)}, f(x^{(n)}; W, V))$ this is a non-convex optimization problem many critical points (points where gradient is zero) strategy use gradient descent methods (covered earlier in the course) image credit: https://www.offconvex.org ## Jacobian matrix $f: \mathbb{R} o \mathbb{R}$ - we have the derivative $rac{d}{dw} f(w) \in \mathbb{R}$ $f:\mathbb{R}^D o\mathbb{R}$ gradient is the vector of all partial derivatives $$abla_w f(w) = [rac{\partial}{\partial w_1} f(w), \ldots, rac{\partial}{\partial w_D} f(w)]^ op \in \mathbb{R}^D$$ $f: \mathbb{R}^D o \mathbb{R}^M$ the **Jacobian matrix** of all partial derivatives for all three case we may simply write $\frac{\partial}{\partial w}f(w)$, where M,D will be clear from the context what if W is a matrix? we assume it is reshaped it into a vector for these calculations ### **Chain rule** for $f: x \mapsto z$ and $h: z \mapsto y$ where $x,y,z \in \mathbb{R}$ $$\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$$ $$\begin{vmatrix} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$ more generally $$x \in \mathbb{R}^D, z \in \mathbb{R}^M, y \in \mathbb{R}^C$$ $rac{\partial y_c}{\partial x_d} = \sum_{m=1}^M rac{\partial y_c}{\partial z_m} rac{\partial z_m}{\partial x_d}$ we are looking at all the "paths" through which change in $\ x_d$ changes $\ y_c$ and add their contribution in matrix form $$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}$$ $$C \times D \text{ Jacobian } \text{ M} \times D \text{ Jacobian } \text{ C} \times M \text{ Jacobian } \text{ C} \text{ M} M} \text{ C} \text{ M} \text{ M} \text{ C} C} \text{ M} \text{ C} \text$$ ## Training a two layer network #### suppose we have - D inputs x_1,\ldots,x_D - $oldsymbol{\circ}$ C outputs $\hat{y}_1,\ldots,\hat{y}_C$ - M hidden *units* z_1, \ldots, z_M model $$\hat{y} = gig(W\,h(V\,x)ig)$$ Cost function we want to minimize $$J(W,V) = \sum_n L(y^{(n)}, g\left(W \; h\left(V \; x^{(n)} \; ight) ight)$$ need gradient wrt W and V: $rac{\partial}{\partial W}J, \; rac{\partial}{\partial V}J$ simpler to write this for one instance (n) so we will calculate $\frac{\partial}{\partial W}L, \ \frac{\partial}{\partial V}L$ and recover $\frac{\partial}{\partial W}J=\sum_{n=1}^N\frac{\partial}{\partial W}L(y^{(n)},\hat{y}^{(n)})$ and $\frac{\partial}{\partial V}J=\sum_{n=1}^N\frac{\partial}{\partial V}L(y^{(n)},\hat{y}^{(n)})$ for simplicity we drop the bias terms depends on the middle layer activation #### using the chain rule $$rac{\partial}{\partial W_{c,m}}L= rac{\partial L}{\partial \hat{y}_c} rac{\partial \hat{y}_c}{\partial u_c} rac{\partial u_c}{\partial W_{c,m}}$$ depends on the loss function depends on the activation function #### similarly for V $$rac{\partial}{\partial V_{m,d}}L=\sum_{c} rac{\partial L}{\partial \hat{y}_{c}} rac{\partial \hat{y}_{c}}{\partial u_{c}} rac{\partial u_{c}}{\partial z_{m}} rac{\partial z_{m}}{\partial q_{m}} rac{\partial q_{m}}{\partial V_{m,d}}$$ depends on the loss function $\left|egin{array}{c}W_{c,m}\end{array} ight| x_{d}$ depends on the activation function $$\frac{\partial}{\partial W_{c,m}}L = \frac{\partial L}{\partial \hat{y}_c} \frac{\partial g_c}{\partial u_c} \frac{\partial u_c}{\partial W_{c,m}} \qquad \qquad L(y,\hat{y})$$ epends on the loss function depends on the activation function $$z_m = \sum_{m=1}^M W_{c,m} z_m$$ similarly for V $$\frac{\partial}{\partial V_{m,d}}L = \sum_c \frac{\partial L}{\partial \hat{y}_c} \frac{\partial \hat{y}_c}{\partial u_c} \frac{\partial u_c}{\partial z_m} \frac{\partial z_m}{\partial q_m} \frac{\partial q_m}{\partial V_{m,d}} \qquad q_m = \sum_{d=1}^D V_{m,d} x_d$$ using the chain rule $$rac{\partial}{\partial W_{c,m}}L= rac{\partial L}{\partial \hat{y}_c} rac{\partial \hat{y}_c}{\partial u_c} rac{\partial u_c}{\partial W_{c,m}}$$ depends on the loss function depends on the activation function z_m regression $$egin{cases} \hat{y} = g(u) = u = Wz \ L(y,\hat{y}) = rac{1}{2}||y - \hat{y}||_2^2 \end{cases}$$ substituting $$L(y,z)= rac{1}{2}||y-Wz||_2^2$$ taking derivative $$rac{\partial}{\partial W_{c\,m}}L=(\hat{y}_c-y_c)z_m$$ we have seen this in linear regression lecture $$L(y,\hat{y})$$ $\hat{y}_c = g(u_c)$ $\mathbf{1}$ $u_c = \sum_{m=1}^M W_{c,m} z_m$ $\mathbf{1}$ $\mathbf{2}_m = h(q_m)$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{2}_m = \sum_{d=1}^D V_{m,d} x_d$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{2}$ #### using the chain rule $$rac{\partial}{\partial W_{c,m}}L= rac{\partial L}{\partial \hat{y}_c} rac{\partial \hat{y}_c}{\partial u_c} rac{\partial u_c}{\partial W_{c,m}}$$ depends on the loss function depends on the activation function z_m #### binary classification sification $$\begin{cases} \hat{y} = g(u) = \left(1 + e^{-u}\right)^{-1} \\ L(y, \hat{y}) = y \log \hat{y} + (1 - y) \log (1 - \hat{y}) \end{cases}$$ substituting and simplifying (see logistic regression lecture) $$egin{cases} L(y,u)=y\log(1+e^{-u})+(1-y)\log(1+e^{u})\ u=\sum_{m}W_{m}z_{m} \ ext{substituting u in L and taking derivative} \quad rac{\partial}{\partial W_{m}}L=(\hat{y}-y)z_{m} \end{cases}$$ $$egin{aligned} L(y,\hat{y}) \ \hat{y}_c &= g(u_c) \ \uparrow \ u_c &= \sum_{m=1}^M W_{c,m} z_m \ \uparrow \ z_m &= h(q_m) \ \uparrow \ q_m &= \sum_{d=1}^D V_{m,d} x_d \ \uparrow \ x_d \end{aligned}$$ #### using the chain rule $$rac{\partial}{\partial W_{c,m}}L= rac{\partial L}{\partial \hat{y}_c} rac{\partial \hat{y}_c}{\partial u_c} rac{\partial u_c}{\partial W_{c,m}}$$ depends on the loss function depends on the activation function z_m #### multiclass classification C is the number of classes $$egin{aligned} y = g(u) = \operatorname{softmax}(u) \ L(y, \hat{y}) = \sum_k y_k \log \hat{y}_k \end{aligned}$$ substituting and simplifying (see logistic regression lecture) $$egin{cases} L(y,u)=-y^ op u+\log\sum_c e^u\ u_c=\sum_m W_{c,m}z_m \end{cases}$$ substituting u in L and taking derivative $rac{\partial}{\partial W_{c,m}}L=(\hat{y}_c-y_c)z_m$ $$L(y,\hat{y})$$ $\hat{y}_c = g(u_c)$ $u_c = \sum_{m=1}^M W_{c,m} z_m$ $z_m = h(q_m)$ $q_m = \sum_{d=1}^D V_{m,d} x_d$ x_d gradient wrt V: we already did this part $$rac{\partial}{\partial V_{m,d}} L = \sum_c \left[rac{\partial L}{\partial \hat{y}_c} \, rac{\partial \hat{y}_c}{\partial u_m} \, rac{\partial u_m}{\partial z_m} \, rac{\partial z_m}{\partial q_m} \, rac{\partial q_m}{\partial V_{m,d}} ight] \ \left[egin{array}{c} V_{m,d} & V_{m,d} & V_{m,d} \end{array} ight]$$ depends on the middle layer activation logistic function $$\sigma(q_m)(1-\sigma(q_m))$$ hyperbolic tan. $1- anh(q_m)^2$ ReLU $egin{cases} 0 & q_m \leq 0 \ 1 & q_m > 0 \end{cases}$ example logistic sigmoid $$\begin{split} \frac{\partial}{\partial V_{m,d}} J &= \sum_n \sum_c (\hat{y}_c^{(n)} - y_c^{(n)}) W_{c,m} \sigma(q_m^{(n)}) (1 - \sigma(q_m^{(n)})) x_d^{(n)} \\ &= \sum_n \sum_c (\hat{y}_c^{(n)} - y_c^{(n)}) W_{c,m} z_m^{(n)} (1 - z_m^{(n)}) x_d^{(n)} \\ &\text{for biases we simply assume the input is 1. } x_0^{(n)} = 1 \end{split}$$ $$egin{aligned} L(y,\hat{y}) \ \hat{m{y}_c} &= g(u_c) \ m{u}_c &= \sum_{m=1}^M W_{c,m} z_m \ m{z}_m &= h(q_m) \ m{q}_m &= \sum_{d=1}^D V_{m,d} x_d \ m{r}_{x_d} \end{aligned}$$ #### a common pattern $$rac{\partial}{\partial W_{c,m}}L= rac{\partial L}{\partial \hat{y}_c} rac{\partial \hat{y}_c}{\partial u_c}igg| egin{array}{c} \partial u_c \ \partial W_{c,m} \ \end{array}$$ error from above $rac{\partial L}{\partial u_c}$ input from below z_m $$rac{\partial}{\partial V_{m,d}} L = \sum_{c} rac{\partial L}{\partial \hat{y}_c} rac{\partial \hat{y}_c}{\partial u_c} rac{\partial u_c}{\partial z_m} rac{\partial z_m}{\partial q_m} rac{\partial q_m}{\partial V_{m,d}}$$ error from above $rac{\partial L}{\partial q_m}$ input from below x_d $$L(y,\hat{y})$$ $\hat{y}_c = g(u_c)$ $u_c = \sum_{m=1}^M W_{c,m} z_m$ $z_m = h(q_m)$ $q_m = \sum_{d=1}^D V_{m,d} x_d$ x_d 5.7 ## **Example:** classification ``` Iris dataset (D=2 features + 1 bias) M = 16 hidden units C=3 classes ``` #### cost is softmax-cross-entropy ``` 1 def cost(X, #N x D 2 Y, #N x C 3 W, #M x C 4 V, #D x M 5 Q = np.dot(X, V) #N x M 7 Z = logistic(Q) #N x M 8 U = np.dot(Z, W) #N x K 9 Yh = softmax(U) 10 nll = - np.mean(np.sum(U*Y, 1) - logsumexp(U)) 11 return nll ``` ## **Example:** classification ``` Iris dataset (D=2 features + 1 bias) M = 16 hidden units C=3 classes ``` ``` \frac{\partial}{\partial W_m}L=(\hat{y}-y)z_m def gradients(X,#N x D Y,#N \times K rac{\partial}{\partial V_m} L = (\hat{y} - y) W_m z_m (1 - z_m) x_d W,#M \times K V,\#D \times M Z = logistic(np.dot(X, V))#N x M N,D = X.shape Yh = softmax(np.dot(Z, W))#N x K dY = Yh - Y \#N \times K 9 dW= np.dot(Z.T, dY)/N #M x K 11 dZ = np.dot(dY, W.T) #N x M dV = np.dot(X.T, dZ * Z * (1 - Z))/N \#D x M 12 13 return dW, dV ``` ``` L(y, \hat{y}) \hat{y} = \operatorname{softmax}(u) u_c = \sum_{m=1}^{M} W_{c,m} z_m z_m = \sigma(q_m) q_m = \sum_{d=1}^{D} V_{m,d} x_d x_d ``` check your gradient function using **finite difference** approximation that uses the *cost function* ## **Example:** classification Iris dataset (D=2 features + 1 bias) M = 16 hidden units C=3 classes #### using GD for optimization ``` 1 def GD(X, Y, M, lr=.1, eps=1e-9, max iters=100000): N, D = X.shape N,K = Y.shape W = np.random.randn(M, K)*.01 V = np.random.randn(D, M)*.01 dW = np.inf*np.ones like(W) t = 0 while np.linalg.norm(dW) > eps and t < max iters:</pre> 8 9 dW, dV = gradients(X, Y, W, V) 10 W = W - lr*dW 11 V = V - lr*dV 12 t += 1 return W, V ``` #### the resulting decision boundaries ## **Automating gradient computation** gradient computation is tedious and mechanical. can we automate it? #### using **numerical differentiation?** approximates partial derivatives using finite difference $\frac{\partial f}{\partial w} \approx \frac{f(w+\epsilon)-f(w)}{\epsilon}$ needs multiple forward passes (for each input output pair) can be slow and inaccurate useful for black-box cost functions or checking the correctness of gradient functions #### **symbolic differentiation**: symbolic calculation of derivatives does not identify the computational procedure and reuse of values #### **automatic / algorithmic differentiation** is what we want write code that calculates various functions, *e.g., the cost function* automatically produce (partial) derivatives *e.g., gradients used in learning* ## **Automatic differentiation** idea use the chain rule + derivative of simple operations $*, \sin, \frac{1}{x}$... use a computational graph as a data structure (for storing the result of computation) step 1 break down to atomic operations $$L= rac{1}{2}(y-wx)^2$$ step 2 build a graph with operations as internal nodes and input variables as leaf nodes step 3 there are two ways to use the computational graph to calculate derivatives forward mode: start from the leafs and propagate derivatives upward #### reverse mode: - 1. first in a bottom-up (forward) pass calculate the values $\,a_1,\ldots,a_4\,$ - 2. in a top-down (backward) pass calculate the derivatives this second procedure is called **backpropagation** when applied to neuran networks ### **Forward mode** suppose we want the derivative $$\frac{\partial y_1}{\partial w_1}$$ where $\begin{cases} y_1 = \sin(w_1 x + w_0) \\ y_2 = \cos(w_1 x + w_0) \end{cases}$ we can calculate both y_1, y_2 and derivatives $\frac{\partial y_1}{\partial y_2}$ $\frac{\partial y_2}{\partial y_2}$ in a single forward pass #### evaluation #### partial derivatives $$a_1=w_0$$ $a_2=w_1$ $a_3=x$ $a_4=a_2 imes a_3$ $a_5=a_4+a_1$ $a_6=\sin(a_5)$ $a_7=\cos(w_1x+w_0)$ $a_7=\cos(w_1x+w_0)$ $a_7=\cos(a_5)$ $a_1=0$ $a_2=1$ $a_2=1$ $a_3=0$ $a_2=1$ $a_3=0$ $a_3=0$ $a_3=0$ $a_4=a_2 imes a_3$ $a_4=a_2 imes a_3+a_2 imes a_3$ $a_5=a_4+a_1$ $a_5=a_4+a_1$ $a_5=a_4+a_1$ $a_5=a_4+a_1$ $a_5=a_5+a_5$ $a_5=a_5$ $a_5=a_$ note that we get all partial derivatives $\frac{\partial \Box}{\partial w_1}$ in one forward pass ## Forward mode: computational graph suppose we want the derivative $$\ rac{\partial y_1}{\partial w_1} \ \ ext{where} \ \ egin{cases} y_1 = \sin(w_1 x + w_0) \\ y_2 = \cos(w_1 x + w_0) \end{cases}$$ we can represent this computation using a graph once the nodes up stream calculate their values and derivatives we may discard a node • e.g., once $a_5, \dot{a_5}$ are obtained we can discard the values and partial derivatives for $a_4, \dot{a_4}, a_1, \dot{a_1}$ #### ## Reverse mode suppose we want the derivative $$\ \, rac{\partial y_2}{\partial w_1} \,$$ where $\ \, y_2 = \cos(w_1 x + w_0) \,$ first do a forward pass for evaluation #### 1) evaluation $$a_1 = w_0 \ a_2 = w_1 \ a_3 = x \ w_1 x \ a_4 = a_2 imes a_3 \ w_1 x + w_0 \ a_5 = a_4 + a_1 rac{b}{b} \ y_1 = \sin(w_1 x + w_0) \ y_1 = a_6 = \sin(a_5) \ y_2 = \cos(w_1 x + w_0) \ y_2 = a_7 = \cos(a_5)$$ then use these values to calculate partial derivatives in a backward pass $$a_2 = w_1$$ $$a_3 = x$$ $$w_1 x$$ $$a_4 = a_2 \times a_3$$ $$a_5 = a_4 + a_1$$ $$a_5 = a_4 + a_1$$ $$a_6 = \sin(a_5)$$ $$a_6 = \cos(w_1 x + w_0)$$ $$a_7 = a_6 = \sin(a_5)$$ $$a_8 = \cos(w_1 x + w_0)$$ $$a_9 = a_9 = \cos(a_5)$$ $$\frac{\partial y_2}{\partial y_1} = 0$$ $$\frac{\partial y_2}{\partial y_2} = -\sin(w_1 x + w_0)$$ $$\frac{\partial y_2}{\partial a_4} = -\sin(w_1 x + w_0)$$ $$\frac{\partial y_2}{\partial a_4} = -\sin(w_1 x + w_0)$$ $$\frac{\partial y_2}{\partial x} = -w_1 \sin(w_1 x + w_0)$$ $$\frac{\partial y_2}{\partial x} = -w_1 \sin(w_1 x + w_0)$$ $$\frac{\partial y_2}{\partial x} = -w_1 \sin(w_1 x + w_0)$$ $$\frac{\partial y_2}{\partial x} = -\sin(w_1 x}{\partial x} = a_3 \bar{a}_4$$ we get all partial derivatives $\frac{\partial y_2}{\partial \Box}$ in one backward pass ## Reverse mode: computational graph suppose we want the derivative $$\; rac{\partial y_2}{\partial w_1} \;$$ where $\; y_2 = \cos(w_1 x + w_0)$ we can represent this computation using a graph - 1. in a forward pass we do evaluation and keep the values - 2. use these values in the backward pass to get partial derivatives #### 1) evaluation $$a_1 = w_0$$ $a_2 = w_1$ $$a_3 = x$$ $$a_4=a_2 imes a_3$$ $$a_5 = a_4 + a_1$$ $$y_1=a_6=\sin(a_5)$$ $$y_2=a_7=\cos(a_5)$$ #### 2) partial derivatives $$\bar{a_7}=1$$ $$\bar{a_6}=0$$ $$ar{a_5} = ar{a_6}\cos(a_5) - ar{a_7}\sin(a_5)$$ $$\bar{a_4}=\bar{a_5}$$ $$ar{a_3}=a_2ar{a_4}$$ $$\bar{a_2}=a_3\bar{a_4}$$ $$\bar{a_1} = \bar{a_5}$$ ### Forward vs Reverse mode forward mode is more natural, easier to implement and requires less memory a single forward pass calculates $\frac{\partial y_1}{\partial w}, \dots, \frac{\partial y_c}{\partial w}$ however, reverse mode is more efficient in calculating gradient $\nabla_w y = [\frac{\partial y}{\partial w_1}, \dots, \frac{\partial y}{\partial w_D}]^{\top}$ this is more efficient if we have single output (cost) and many variables (weights) for this reason, in training neural networks, reverse mode is used the backward pass in the reverse mode is called **backpropagation** many machine learning software implement autodiff: - autograd (extends numpy) - pytorch - tensorflow ## Improving optimization in deep learning #### **Initialization** of parameters: - random initialization (uniform or Gaussian) with small variance - break the symmetry of hidden units - small positive values for bias (so that input to ReLU is >0) models that are simpler to optimize: this block is fixing residual errors of the predictions of the previous layers - using ReLU activation - $x^{\{\ell+l\}} = W^{\{\ell+l\}} \mathrm{ReLU}(\ldots \mathrm{ReLU}(W^{\{\ell\}}x^{\{\ell\}})\ldots) + x^{\{\ell\}}$ - using **skip-connection** - using batch-normalization (next) Pretrain a (simpler) model on a (simpler) task and **fine-tune** on a more difficult target setting (has many forms) #### continuation methods in optimization - gradually increase the difficulty of the optimization problem - good initialization for the next iteration #### curriculum learning (similar idea) - increase the number of "difficult" examples over time - similar to the way humans learn #### Improving optimization in deep learning ## **Batch Normalization** #### original motivation - gradient descent: parameters in all layers are updated - distribution of inputs to layer ℓ changes - each layer has to re-adjust - inefficient for very deep networks idea normalize the input to each unit (m) of a layer ℓ **alternatively:** apply the batch-norm to $W^{\{\ell\}}x^{\{\ell\}}$ each unit is unnecessarily constrained to have zero-mean and std=1 (we only need to fix the distribution) introduce learnable parameters $$\operatorname{ReLU}(\gamma^{\{\ell\}} \mathrm{BN}(W^{\{\ell\}} x^{\{\ell\}}) + oldsymbol{eta}^{\{\ell\}})$$ - mean and std per unit is calculated for the minibatch during the forward pass - we backpropagate through this normalization - at test time use the mean and std. from the whole training set - BN regularizes the model (e.g., no need for dropout) recent observations the change in distribution of activations is not a big issue empirically BN works so well because it makes the loss function smooth activation for the instance (n) at layer ℓ $\hat{x}_m^{\{\ell\},(n)} = \frac{x_m^{\{\ell\},(n)} - \mu_m^{\{\ell\}}}{\sigma_m^{\{\ell\}}}$ ## Summary optimization landscape in neural networks is special and not yet fully understood - exponentially many local optima and saddle points - most local minima are good - calculate the gradients using backpropagation #### automatic differentiation - simplifies gradient calculation for complex models - gradient descent becomes simpler to use - ullet forward mode is useful for calculating the jacobian of $\,f:\mathbb{R}^Q o\mathbb{R}^P$ when $\,P\geq Q\,$ - reverse mode can be more efficient when Q > P - backpropagation is reverse mode autodiff. #### Better optimization in deep learning: - better initialization - models that are easier to optimize (using skip-connection, batch-norm, ReLU) - pre-training and curriculum learning