Applied Machine Learning

Gradient Computation & Automatic Differentiation

Siamak Ravanbakhsh

COMP 551 (winter 2020)

Learning objectives

using the chain rule to calculate the gradients
automatic differentiation

e forward mode
e reverse mode (backpropagation)

Landscape of the cost function

model two layer MLP . n n
man,V En L(y()7 f(m()7 Wa V))
f(w; Wa V) =g (Wh(vw)) loss function depends on the task

there are exponentially many global optima:
given one global optimum we can

this is a non-convex optimization problem

many critical points (points where gradient is zero)

e permute hidden units in each layer

e for symmetric activations: negate input/ouput of a unit

e for rectifiers: rescale input/output of a unit tocal min local max saddle point

FE3
777 ,;:"::0:::::.::\ N
ST
AR
" f,,',“‘“‘\\\\\

supported by empirical and theoretical results in a special settings

many more saddle points than local minima

these are not stable and SGD can escape

number of local minima increases for lower costs

therefore most local optima are close to global optima

strateg use gradient descent methods (covered earlier in the course)

image credit: https://www.offconvex.org

Jacobian matrix

f:R >R we have the derivative -f(w) € R

f:RP” - R gradient is the vector of all partial derivatives

Vil () = [f (W), ., 5% f(w)] € R

f:RP? - RM the Jacobian matrix of all partial derivatives

0
Wf(w)
[0f1(w) 0fi(w)]
8w1) Tt 8wD
J = ; . : c RMxD
note that we use J also for cost function . * .
Ofu (w) Ofm (w)
Bwl ’ Tt 6wD

for all three case we may simply write %f(w) , where M,D will be clear from the context

what if W is a matrix? we assume it is reshaped it into a vector for these calculations

1

Chain rule

forf:x—2z and h:z—vy where z,y,z € R

dy __ dy dz
de ~ dz dx
|

speed of change in y as we change z
speed of change in y as we change x

%_ZM 0Ye Ozpy

D M C
more generally =z € R¥,ze R*,yeR 0ry m=1 0z, O0xq4

we are looking at all the "paths" through which change in X4 changes Yc and add their contribution

in matrix form @ — @ 0z
Ox 0z Oz
Cx D Jacobian |

C x M Jacobian

Winter 2020 | Applied Machine Learning (COMP551)

Training a two layer network

suppose we have

e Dinputs Z1y--+5TD
e Coutputs 91,---,9c
o Mhidden units z,..., zy output (9 92 PP //¢]
A w (RES==IN
§=9(Wh(Va)
hidden units (2 5 vee 21

we want to minimize v M

i t (1 z T 1
JW,V) =%, Lu"™,g(W h(V 2t)) o o
for simplicity we drop the bias terms
need gradient wrt W and V: BW J, 1% J

simpler to write this for one instance (n)

so we will calculate %L, BVL and recover g =N 2 rm §) and 5] = S Z L™, ™)

Gradient calculation

using the chain rule

OL 0Yy. Ou, N
anL 95, Ouc Wom L(y, 9)
| Yo = g(uc) h ge
T M \
depends on the activation function Ue = Zm:l Wszm pre- actlvatlons
Zm 7\
o Zm = h(qm)
S|m|IarIy forV 1
R D
OL Ofc Ou. 02y O4m G = D=1 Vi,
and L= Ec 0y, Ou, 0¢m OV d ,Pm =17
| | &
Ld

depends on the activation function depends on the middle layer activation

Gradient calculation

using the chain rule

L = OL 0Y. Ou,

8Wcm ag(t 8uc 8Wc,m L(y, g)
|
Ye= g(uc)
depends on the activation function N
Ue = ZM Wemz
Zm c m=1 c,m~m

| |
N
w
N
3

|
=
)
&

i
= { % y — 9ll3 Mt

substituting 1\
L(y, 2) = 3lly — W[} Zd

taking derivative

0 s .
Wom o— L = (yc)zm we have seen this in linear regression lecture

using the chain rule

Gradient calculation

L = OL 0Y. Ou,
3Wcm 0y, Ou. OW,

depends on the activation function

binary classification

scalar output C=1

Zm

g=gu)=(1+e")"
{L(y, 9) = ylogy + (1 —y)log(l—9)

substituting and simplifying (see logistic regression lecture)
{L(y, u) =ylog(l+e™)+ (1 —y)log(l+e*)

substituting u in L and taking derivative %L = (:l] — y)zm

L(y,9)

Je= 9(uc)

¢

Ue = 2%21 Wemzm
Zm = h(qm)

II\

gm — ZdD 1 Ym,dZd
™

Ld

Gradient calculation

using the chain rule

L = OL 0Y. Ou,
0y, Ou. OW,

8Wcm

depends on the activation function

Zm

= = softmax(u
multiclass classification { y = g(u (u)

Zk Yk log ik

Cis the number of classes

substituting and simplifying (see logistic regression lecture)

{L(y, u) =~y u+logy, e
= Zm Wc,mzm

substituting u in L and taking derivative %L = (@c — Y

)Zm

Gradient calculation

gradient wrt V:

we already did this part

0 _ 0L agc 0zm 0 ~
5Va L' = 2 e Bt 0. 0. Vi L(y, 9)
|
| Ld Ye= g(uc)
depends on the middle layer activation 1\
M
logistic function o (gm)(1 — o(gm)) Ue = Zmzl Wemzm
hyperbolic tan. 1— tanh(qm)2
Zm = h(qn)
ReLU {0 gm <0 1
1 qn D
Gm >0 dm = Zdzl Vm,dmd

logistic sigmoid T4
=d =3, @8 —)W (@) (1 - a(gh))a

~(n) (n) (n) (n)y,.(n)
= Zn Zc(yc — Yc) Zm (1 — Zm)ZEd

for biases we simply assume the input is 1. mén) =1

a common pattern

Gradient calculation

I = OL 0Y. Ou,

aVVc m

error from above

and L Z

Winter 2020 | Applied Machine Learning (COMP551)

09. Ou, OW,p,

Au, input from below Zym,

OL 0y, Ou. 0z, Oqn
¢ 0y Ou. 0z, 0¢m OViyg

L
error from above 8—

Oqm input from below X4

L(y, 9)

o= 9(uc)

¢

Ue = Zm 1 Wc,mzm
Zm = h(qm)

Example: classification

. é < Iris dataset (D=2 features + 1 bias)
i M = 16 hidden units
C=3 classes

cost is softmax-cross-entropy helper functions

def logsumexp(

1

2 7,# NxC

3):

4 Zmax = np.max(Z,axis=1)[:, None]

5 lse = Zmax + np.log(np.sum(np.exp(% - Zmax), axis=1))[:, None]

6 return lse #N

7

8 def softmax(

9 u, # N x C

10)=

11 u_exp = np.exp(u - np.max(u, 1)[:, None])

12 return u_exp / np.sum(u_exp, axis=-1)[:, None]
10 nll = - np.mean(np.sum(U*Y, 1) - logsumexp(U)) 9 J = —

L(y,9)

g = softmax(u)
2\

M
Ue = 2t Wemzm

Zm = 0(qm)

T D

dm = Zd:l Vin,dZd
2~

Ld

1

Example: classification

\ i i Iris dataset (D=2 features + 1 bias i’
e M = 16 hidden units

C=3 classes = softmax(u)

xfg B
xxx
ppphped o s

T

M
Ue = D 1 Wemzm

- - Zm = 0(qm)
mL = (y - y)szm(l — Zm).’lld 'P

D
dm = Zdzl Vm,dmd
g N

Ld

check your gradient function using finite difference
approximation that uses the cost function

13 return dw, dv

1 scipy.optimize.check grad

Example: classification

M = 16 hidden units

C=3 classes

9 dw, dv = gradients(X, Y, W, V)
10 W=W - lr*dw
11 V =V - lr*dv

Winter 2020 | Applied Machine Learning (COMP551)

ty ¥ X Iris dataset (D=2 features + 1 bias)

the resulting decision boundaries

7 X
X X
=T X =
6 X
X % gx
X X Xyo¥ X
57 X §><
gg X % x
e e ;E%xx X
4 xxgsggx)%% %
X X X
X X
3 X
g ¥y kX
X3 X X X
= X % ﬁxggx =
14 - X
2.0 2.5 3.0 3.5 4.0 4.5

.3

Automating gradient computation

gradient computation is tedious and mechanical.
can we automate it?

using numerical differentiation?

approximates partial derivatives using finite difference % = ﬂw—ﬁe_ﬂﬂ
needs multiple forward passes (for each input output pair)
can be slow and inaccurate

useful for black-box cost functions or checking the correctness of gradient functions

symbolic differentiation: symbolic calculation of derivatives

does not identify the computational procedure and reuse of values

automatic / algorithmic differentiation is what we want

write code that calculates various functions, e.g., the cost function
automatically produce (partial) derivatives e.g., gradients used in learning

1

Automatic differentiation

m use the chain rule + derivative of simple operations , sin,

T

use a computational graph as a data structure (for storing the result of computation)

(y — wz)? =

break down to atomic operations L=

DN =

build a graph with operations as internal
nodes and input variables as leaf nodes

there are two ways to use the computational graph to calculate derivatives

forward mode: start from the leafs and propagate derivatives upward

reverse mode:

1. first in a bottom-up (forward) pass calculate the values ay, ..., a4
2. in a top-down (backward) pass calculate the derivatives

this second procedure is called backpropagation when applied to neuran networks

ai
as
as
a4

as

ag —

ar

suppose we want the derivative gﬂ where

Forward mode

w1

y1 = sin(wiz + wo)
y2 = cos(wiz + wo)

we can calculate both ¥1,%2 and derivatives YL gﬂ in a single forward pass

evaluation

a1 = wo

as = W1

as = &

as = asz X as
as = a4 + a1
ag = sin(as)
a7 = cos(as)

note that we get all partial derivatives 88—51

ow; Owr

partial derivatives

ar =0

. 1 we initialize these to identify which derivative we want
as = :

2 this means |:| = g%
as — 0 !

as = as X dg + do X ag

as + ax

as
dg = ds cos(as)

d7; = —ds sin(as)

in one forward pass

suppose we want the derivative 91 \where

we can represent this computation using a graph

Forward mode: computational graph

y1 = sin(wiz + wo)
y2 = cos(wiz + wp)

once the nodes up stream calculate their values and derivatives we may discard a node

e eg,once as,as are obtained we can discard the values and partial derivatives for a4, ds, a1, a1

Y1 =
Y2 =

evaluation
ap = Wy
a2 = w1
as = &

as = as X as
as = a4 + ap
ag = sin(as)

a7 = cos(as)

y1 = ag = sin(a

a4 — a2 X as

a2 = w1

5)

.
7z

y2 = a7 = cos(as)

as = a4 + ay

a3 — T

Reverse mode

suppose we want the derivative gﬂ where ¥2 = cos(wiz + wyo)

w1

first do a forward pass for evaluation

1
Y2

1) evaluation

aj
a2
as
a4

as

— wp
— wy

=z

= a9 X ag
= a4 +a
= sin(as)

= cos(as)

then use these values to calculate partial derivatives in a backward pass

2) partial derivatives

Oys Ty — —
dyy 1 ar 1 this means [| = %
v _ ag =0
O

Oyy _ Oys day | Oyp Bag _ _ s , - - .

Oas ~— Oay Oas + Oag Oas ~— Sln(wlx + w(]) as — Qg COS(a5) — ay Sln(a5)
Ay . _ _
ﬁ = —sin(wix + wp) as = ds

Oy»
oz

= —w; sin(wiz +wg) @3 = 204
0y»

o = T sin(wiz + wo) 2 = azaq

By, . _

o — — sin(wiz + wo) 1= as
Oy

we get all partial derivatives 30 inone backward pass

Reverse mode: computational graph

suppose we want the derivative gﬂ where 2 = cos(wiz + wo)
w1y

we can represent this computation using a graph

1.in a forward pass we do evaluation and keep the values
2. use these values in the backward pass to get partial derivatives

. Y1 = ag = sin(as
1) evaluation (as)

n

az — W1

as = &

as = ag X as
14 = Q° . a; = Wy
a5 = ay + ai a4 az X as
Y1 = Qg — SiH(CL(,)
o az =T
Y2 = a7 = cos(as) az = w

ot

Forward vs Reverse mode

forward mode is more natural, easier to implement and requires less memory

a single forward pass calculates 2% 9ye
g p B Do
. 0 0
however, reverse mode is more efficient in calculating gradient Vuy = [gacs -+, guz]’

this is more efficient if we have single output (cost) and many variables (weights)
for this reason, in training neural networks, reverse mode is used
the backward pass in the reverse mode is called backpropagation

many machine learning software implement autodiff:

® autograd (extends numpy)
® pytorch

® tensorflow

Winter 2020 | Applied Machine Learning (COMP551)

Improving optimization in deep learning

Initialization of parameters:
¢ random initialization (uniform or Gaussian) with small variance

¢ break the symmetry of hidden units
e small positive values for bias (so that input to ReLU is >0)
X

weight layer
weight layer

this block is fixing residual errors of the predictions of the previous layers
x

models that are simpler to optimize:
identity

¢ using RelLU activation DY o fel 0oLy ,
« usingskip-connection 10 = W IReLU(... ReLUW W)) 4 20
e using batch-normalization (next)

Pretrain a (simpler) model on a (simpler) task and
fine-tune on a more difficult target setting (has many forms)

continuation methods in optimization

e gradually increase the difficulty of the optimization problem
e good initialization for the next iteration

\A// curriculum learning (similar idea)

1 ¢ increase the number of "difficult" examples over time
e similar to the way humans learn

v

image credit: Mobahi'16

Improving optimization in deep learning

Batch Normalization

o gradient descent: parameters in all layers are updated

distribution of inputs to layer £ changes

each layer has to re-adjust

inefficient for very deep networks activation for the instance (n) at Iayerﬁ

I _ 2l)

BEEEE normalize the input to each unit (m) of a layer £ — {0y

unit m

alternatively: apply the batch-norm to W{e} x{E}

each unit is unnecessarily constrained to have zero-mean and std=1 (we only need to fix the distribution)

introduce learnable parameters ReLU('y{Z} BN(W{Z} 8) + ﬁ{f})

e mean and std per unit is calculated for the minibatch during the forward pass
e we backpropagate through this normalization

e at test time use the mean and std. from the whole training set

¢ BN regularizes the model (e.g., no need for dropout)

the change in distribution of activations is not a big issue empirically
BN works so well because it makes the loss function smooth

Summary

optimization landscape in neural networks is special and not yet fully understood

* exponentially many local optima and saddle points
* most local minima are good
* calculate the gradients using backpropagation

automatic differentiation

simplifies gradient calculation for complex models

gradient descent becomes simpler to use

forward mode is useful for calculating the jacobian of f : RY — RP when P > Q
reverse mode can be more efficient when (@ > P

= backpropagation is reverse mode autodiff.

Better optimization in deep learning:

® better initialization
* models that are easier to optimize (using skip-connection, batch-norm, ReLU)
® pre-training and curriculum learning

10

