
Applied Machine LearningApplied Machine Learning
Multilayer Perceptron

Siamak RavanbakhshSiamak Ravanbakhsh

COMP 551COMP 551 (winter 2020)(winter 2020)

1

multilayer percepron:

model
different supervised learning tasks
activation functions
architecture of a neural network

its expressive power
regularization techniques

Learning objectivesLearning objectives

2

Adaptive basesAdaptive bases

several methods can be classified as learning these bases adaptively

decision trees
generalized additive models
boosting
neural networks

f(x) = w ϕ (x; v)∑d d d d

3

Adaptive basesAdaptive bases

several methods can be classified as learning these bases adaptively

decision trees
generalized additive models
boosting
neural networks

f(x) = w ϕ (x; v)∑d d d d

consider the adaptive bases in a general form (contrast to decision trees)

3

Adaptive basesAdaptive bases

several methods can be classified as learning these bases adaptively

decision trees
generalized additive models
boosting
neural networks

f(x) = w ϕ (x; v)∑d d d d

consider the adaptive bases in a general form (contrast to decision trees)

use gradient descent to find good parameters (contrast to boosting)

3

Adaptive basesAdaptive bases

several methods can be classified as learning these bases adaptively

decision trees
generalized additive models
boosting
neural networks

f(x) = w ϕ (x; v)∑d d d d

consider the adaptive bases in a general form (contrast to decision trees)

use gradient descent to find good parameters (contrast to boosting)

create more complex adaptive bases by combining simpler bases
leads to deep neural networks

3

AdaptiveAdaptive Radial Bases Radial Bases
 ϕ (x) =d e

−

s2
(x−μ)d

2

model: f(x;w) = w ϕ (x)∑d d d

Gaussian bases, or radial bases

4 . 1

non-adaptive case

AdaptiveAdaptive Radial Bases Radial Bases
 ϕ (x) =d e

−

s2
(x−μ)d

2

model: f(x;w) = w ϕ (x)∑d d d

Gaussian bases, or radial bases

cost: J(w) = (f(x ;w) −2
1 ∑n

(n) y)(n) 2

4 . 1

non-adaptive case

AdaptiveAdaptive Radial Bases Radial Bases
 ϕ (x) =d e

−

s2
(x−μ)d

2

the model is linear in its parameters
the cost is convex in w (unique minimum)
even has a closed form solution

model: f(x;w) = w ϕ (x)∑d d d

Gaussian bases, or radial bases

mu = np.linspace(0,4,10) #4 Gaussians bases

#x: N 1
#y: N 2
plt.plot(x, y, 'b.') 3
phi = lambda x,mu: np.exp(-(x-mu)**2) 4

5
Phi = phi(x[:,None], mu[None,:]) #N x 106
w = np.linalg.lstsq(Phi, y)[0]7
yh = np.dot(Phi,w)8
plt.plot(x, yh, 'g-')9

the center are fixedcost: J(w) = (f(x ;w) −2
1 ∑n

(n) y)(n) 2

4 . 1

non-adaptive case

AdaptiveAdaptive Radial Bases Radial Bases
 ϕ (x) =d e

−

s2
(x−μ)d

2

the model is linear in its parameters
the cost is convex in w (unique minimum)
even has a closed form solution

model: f(x;w) = w ϕ (x)∑d d d

Gaussian bases, or radial bases

mu = np.linspace(0,4,10) #4 Gaussians bases

#x: N 1
#y: N 2
plt.plot(x, y, 'b.') 3
phi = lambda x,mu: np.exp(-(x-mu)**2) 4

5
Phi = phi(x[:,None], mu[None,:]) #N x 106
w = np.linalg.lstsq(Phi, y)[0]7
yh = np.dot(Phi,w)8
plt.plot(x, yh, 'g-')9

the center are fixedcost: J(w) = (f(x ;w) −2
1 ∑n

(n) y)(n) 2

4 . 1

non-adaptive case

AdaptiveAdaptive Radial Bases Radial Bases
 ϕ (x) =d e

−

s2
(x−μ)d

2

the model is linear in its parameters
the cost is convex in w (unique minimum)
even has a closed form solution

model: f(x;w) = w ϕ (x)∑d d d

Gaussian bases, or radial bases

mu = np.linspace(0,4,10) #4 Gaussians bases

#x: N 1
#y: N 2
plt.plot(x, y, 'b.') 3
phi = lambda x,mu: np.exp(-(x-mu)**2) 4

5
Phi = phi(x[:,None], mu[None,:]) #N x 106
w = np.linalg.lstsq(Phi, y)[0]7
yh = np.dot(Phi,w)8
plt.plot(x, yh, 'g-')9

the center are fixedcost: J(w) = (f(x ;w) −2
1 ∑n

(n) y)(n) 2

how to minimize the cost?

4 . 1

non-adaptive case

we can make the bases adaptive by learning these centers

model: f(x;w,μ) = w ϕ (x;μ)∑d d d d

adaptive case

AdaptiveAdaptive Radial Bases Radial Bases
 ϕ (x) =d e

−

s2
(x−μ)d

2

the model is linear in its parameters
the cost is convex in w (unique minimum)
even has a closed form solution

model: f(x;w) = w ϕ (x)∑d d d

Gaussian bases, or radial bases

mu = np.linspace(0,4,10) #4 Gaussians bases

#x: N 1
#y: N 2
plt.plot(x, y, 'b.') 3
phi = lambda x,mu: np.exp(-(x-mu)**2) 4

5
Phi = phi(x[:,None], mu[None,:]) #N x 106
w = np.linalg.lstsq(Phi, y)[0]7
yh = np.dot(Phi,w)8
plt.plot(x, yh, 'g-')9

the center are fixedcost: J(w) = (f(x ;w) −2
1 ∑n

(n) y)(n) 2

how to minimize the cost?
not convex in all model parameters
use gradient descent to find a local minimum

4 . 1

non-adaptive case

we can make the bases adaptive by learning these centers

model: f(x;w,μ) = w ϕ (x;μ)∑d d d d

adaptive case

AdaptiveAdaptive Radial Bases Radial Bases
 ϕ (x) =d e

−

s2
(x−μ)d

2

the model is linear in its parameters
the cost is convex in w (unique minimum)
even has a closed form solution

model: f(x;w) = w ϕ (x)∑d d d

Gaussian bases, or radial bases

mu = np.linspace(0,4,10) #4 Gaussians bases

#x: N 1
#y: N 2
plt.plot(x, y, 'b.') 3
phi = lambda x,mu: np.exp(-(x-mu)**2) 4

5
Phi = phi(x[:,None], mu[None,:]) #N x 106
w = np.linalg.lstsq(Phi, y)[0]7
yh = np.dot(Phi,w)8
plt.plot(x, yh, 'g-')9

the center are fixedcost: J(w) = (f(x ;w) −2
1 ∑n

(n) y)(n) 2

how to minimize the cost?
not convex in all model parameters
use gradient descent to find a local minimum

note that the basis centers are adaptively changing

4 . 1

non-adaptive case

we can make the bases adaptive by learning these centers

model: f(x;w,μ) = w ϕ (x;μ)∑d d d d

adaptive case

Sigmoid BasesSigmoid Bases
 ϕ (x) =d

1+e
−()

s d

x−μ d

1

using adaptive sigmoid bases gives us a neural network

μ d

s =d 1

non-adaptive case

4 . 2

Sigmoid BasesSigmoid Bases
 ϕ (x) =d

1+e
−()

s d

x−μ d

1

using adaptive sigmoid bases gives us a neural network

 is fixed to D locations

μ d

s =d 1

non-adaptive case

4 . 2

Sigmoid BasesSigmoid Bases
 ϕ (x) =d

1+e
−()

s d

x−μ d

1

phi = lambda x,mu,sigma: 1/(1 + np.exp(-(x - mu)))
mu = np.linspace(0,3,10)

#x: N 1
#y: N 2
plt.plot(x, y, 'b.') 3

4
5

Phi = phi(x[:,None], mu[None,:]) #N x 106
w = np.linalg.lstsq(Phi, y)[0]7
yh = np.dot(Phi,w)8
plt.plot(x, yh, 'g-')9

using adaptive sigmoid bases gives us a neural network

model: f(x;w) = w ϕ (x)∑d d d

 is fixed to D locations

μ d

s =d 1

non-adaptive case

4 . 2

...
ϕ (x)1 ϕ (x)2 ϕ (x)D

w 1 w D
w 2

ŷ

Sigmoid BasesSigmoid Bases
 ϕ (x) =d

1+e
−()

s d

x−μ d

1

phi = lambda x,mu,sigma: 1/(1 + np.exp(-(x - mu)))
mu = np.linspace(0,3,10)

#x: N 1
#y: N 2
plt.plot(x, y, 'b.') 3

4
5

Phi = phi(x[:,None], mu[None,:]) #N x 106
w = np.linalg.lstsq(Phi, y)[0]7
yh = np.dot(Phi,w)8
plt.plot(x, yh, 'g-')9

using adaptive sigmoid bases gives us a neural network

model: f(x;w) = w ϕ (x)∑d d d

D=10

 is fixed to D locations

μ d

s =d 1

non-adaptive case

4 . 2

...
ϕ (x)1 ϕ (x)2 ϕ (x)D

w 1 w D
w 2

ŷ

Sigmoid BasesSigmoid Bases
 ϕ (x) =d

1+e
−()

s d

x−μ d

1

phi = lambda x,mu,sigma: 1/(1 + np.exp(-(x - mu)))
mu = np.linspace(0,3,10)

#x: N 1
#y: N 2
plt.plot(x, y, 'b.') 3

4
5

Phi = phi(x[:,None], mu[None,:]) #N x 106
w = np.linalg.lstsq(Phi, y)[0]7
yh = np.dot(Phi,w)8
plt.plot(x, yh, 'g-')9

using adaptive sigmoid bases gives us a neural network

model: f(x;w) = w ϕ (x)∑d d d

D=10 D=5 D=3

 is fixed to D locations

μ d

s =d 1

non-adaptive case

4 . 2

...
ϕ (x)1 ϕ (x)2 ϕ (x)D

w 1 w D
w 2

ŷ

AdaptiveAdaptive Sigmoid Bases Sigmoid Bases

ϕ (x) =d

1+e
−()

s d

x−μ d

1

rewrite the sigmoid basis

ϕ (x) =d σ() =s d

x−μ d σ(v x +d b)d

4 . 3

AdaptiveAdaptive Sigmoid Bases Sigmoid Bases

ϕ (x) =d

1+e
−()

s d

x−μ d

1

rewrite the sigmoid basis

ϕ (x) =d σ() =s d

x−μ d σ(v x +d b)d

each basis is the logistic regression model ϕ (x) =d σ(v x +d
⊤ b)d

assuming input is higher than one dimension

4 . 3

AdaptiveAdaptive Sigmoid Bases Sigmoid Bases

ϕ (x) =d

1+e
−()

s d

x−μ d

1

rewrite the sigmoid basis

ϕ (x) =d σ() =s d

x−μ d σ(v x +d b)d

model: f(x;w, v, b) = w σ(v x +∑d d d b)d

each basis is the logistic regression model ϕ (x) =d σ(v x +d
⊤ b)d

assuming input is higher than one dimension

4 . 3

AdaptiveAdaptive Sigmoid Bases Sigmoid Bases

ϕ (x) =d

1+e
−()

s d

x−μ d

1

rewrite the sigmoid basis

ϕ (x) =d σ() =s d

x−μ d σ(v x +d b)d

model: f(x;w, v, b) = w σ(v x +∑d d d b)d

each basis is the logistic regression model ϕ (x) =d σ(v x +d
⊤ b)d

assuming input is higher than one dimension

this is a neural network with two layers ...ϕ 1

w 1 w D
w 2

ŷ

ϕ D

v , b D D
v , b 1 1

x

4 . 3

Winter 2020 | Applied Machine Learning (COMP551)

AdaptiveAdaptive Sigmoid Bases Sigmoid Bases

ϕ (x) =d

1+e
−()

s d

x−μ d

1

rewrite the sigmoid basis

ϕ (x) =d σ() =s d

x−μ d σ(v x +d b)d

model: f(x;w, v, b) = w σ(v x +∑d d d b)d

each basis is the logistic regression model ϕ (x) =d σ(v x +d
⊤ b)d

assuming input is higher than one dimension

optimize using gradient descent (find a local optima)

D=3 adaptive bases D=3 fixed bases

this is a neural network with two layers ...ϕ 1

w 1 w D
w 2

ŷ

ϕ D

v , b D D
v , b 1 1

x

4 . 3

Multilayer Perceptron (Multilayer Perceptron (MLPMLP))

suppose we have

D inputs
K outputs
M hidden units

 =ŷk g (W h(V x))∑
m k,m ∑

d m,d d

nonlinearity, activation function: we have different choices

x , … ,x 1 D

z , … , z 1 M

 , … , ŷ1 ŷK

more compressed form

 =ŷ g(W h(V x))
non-linearities are applied elementwise

for simplicity we may drop bias terms

W

x 1 ...

...

...

x 2 x D 1

1z 1 z 2 z M

ŷ1 ŷ2 ŷC

input

hidden units

output

V

5 . 1

model

Regression Regression using Neural Networksusing Neural Networks

the choice of activation function in the final layer depends on the task

W

x 1 ...

...

...

x 2 x D 1

1z 1 z 2 z M

ŷ1 ŷ2 ŷC

input

hidden units

output

V

5 . 2

 =ŷ g(W h(V x))model

Regression Regression using Neural Networksusing Neural Networks

the choice of activation function in the final layer depends on the task

regression

identity function + L2 loss : Gaussian likelihood

 =ŷ g(Wz) = Wz

L(y,) =ŷ ∣∣y −2
1

 ∣∣ =ŷ 2
2 logN (y; ,βI) +ŷ constant

we may have one or more output variables W

x 1 ...

...

...

x 2 x D 1

1z 1 z 2 z M

ŷ1 ŷ2 ŷC

input

hidden units

output

V

5 . 2

 =ŷ g(W h(V x))model

Regression Regression using Neural Networksusing Neural Networks

the choice of activation function in the final layer depends on the task

regression

identity function + L2 loss : Gaussian likelihood

 =ŷ g(Wz) = Wz

L(y,) =ŷ ∣∣y −2
1

 ∣∣ =ŷ 2
2 logN (y; ,βI) +ŷ constant

we may have one or more output variables W

x 1 ...

...

...

x 2 x D 1

1z 1 z 2 z M

ŷ1 ŷ2 ŷC

input

hidden units

output

V

5 . 2

 =ŷ g(W h(V x))model

we may explicitly produce a distribution at output - e.g.,

mean and variance of a Gaussian
mixture of Gaussians

the loss will be the log-likelihood of the data under our model

L(y,) =ŷ log p(y; f(x))
neural network outputs the parameters of a distribution

more generally

Classification Classification using neural networksusing neural networks

the choice of activation function in the final layer depends on the task

W

x 1 ...

...

...

x 2 x D 1

1z 1 z 2 z M

ŷ1 ŷ2 ŷC

input

hidden units

output

V

5 . 3

 =ŷ g(W h(V x))model

Classification Classification using neural networksusing neural networks

the choice of activation function in the final layer depends on the task

L(y,) =ŷ y log +ŷ (1 − y) log(1 −) =ŷ log Bernouli(y;)ŷ

binary classification =ŷ g(Wz) = (1 + e)−Wz −1

logistic sigmoid + CE loss: Bernouli likelihood

scalar output C=1 W

x 1 ...

...

...

x 2 x D 1

1z 1 z 2 z M

ŷ1 ŷ2 ŷC

input

hidden units

output

V

5 . 3

 =ŷ g(W h(V x))model

Classification Classification using neural networksusing neural networks

the choice of activation function in the final layer depends on the task

L(y,) =ŷ y log +ŷ (1 − y) log(1 −) =ŷ log Bernouli(y;)ŷ

binary classification =ŷ g(Wz) = (1 + e)−Wz −1

logistic sigmoid + CE loss: Bernouli likelihood

scalar output C=1

multiclass classification =ŷ g(Wz) = softmax(Wz)

softmax + multi-class CE loss: categorical likelihood

L(y,) =ŷ y log =∑k k ŷk log Categorical(y;)ŷ

C is the number of classes

W

x 1 ...

...

...

x 2 x D 1

1z 1 z 2 z M

ŷ1 ŷ2 ŷC

input

hidden units

output

V

5 . 3

 =ŷ g(W h(V x))model

Activation functionActivation function

for middle layer(s) there is more freedom in the choice of activation function

5 . 4

Activation functionActivation function

for middle layer(s) there is more freedom in the choice of activation function

identity (no activation function)h(x) = x

5 . 4

Activation functionActivation function

for middle layer(s) there is more freedom in the choice of activation function

identity (no activation function)h(x) = x

composition of two linear functions is linear

 x =
W ′

 WV W x′
K × M M × D K × D

5 . 4

Activation functionActivation function

for middle layer(s) there is more freedom in the choice of activation function

identity (no activation function)h(x) = x

composition of two linear functions is linear

 x =
W ′

 WV W x′
K × M M × D K × D

M < min(D,K)

so nothing is gained (in representation power) by stacking linear layers

exception: if then the hidden layer is
compressing the data (W' is low-rank)

this idea is used in dimensionality reduction (later!)

5 . 4

Activation functionActivation function

5 . 5

for middle layer(s) there is more freedom in the choice of activation function

Activation functionActivation function

logistic functionh(x) = σ(x) = 1+e−x
1

5 . 5

for middle layer(s) there is more freedom in the choice of activation function

Activation functionActivation function

logistic functionh(x) = σ(x) = 1+e−x
1

the same function used in logistic regression
used to be the function of choice in neural networks

5 . 5

for middle layer(s) there is more freedom in the choice of activation function

Activation functionActivation function

logistic functionh(x) = σ(x) = 1+e−x
1

the same function used in logistic regression
used to be the function of choice in neural networks

away from zero it changes slowly, so the derivative is small (leads to vanishing gradient)

5 . 5

for middle layer(s) there is more freedom in the choice of activation function

Activation functionActivation function

logistic functionh(x) = σ(x) = 1+e−x
1

the same function used in logistic regression
used to be the function of choice in neural networks

away from zero it changes slowly, so the derivative is small (leads to vanishing gradient)

 σ(x) =∂x
∂ σ(x)(1 − σ(x))its derivative is easy to remember

5 . 5

for middle layer(s) there is more freedom in the choice of activation function

Activation functionActivation function

logistic functionh(x) = σ(x) = 1+e−x
1

the same function used in logistic regression
used to be the function of choice in neural networks

away from zero it changes slowly, so the derivative is small (leads to vanishing gradient)

hyperbolic tangenth(x) = 2σ(x) − 1 = e +ex −x
e −ex −x

similar to sigmoid, but symmetric

 σ(x) =∂x
∂ σ(x)(1 − σ(x))its derivative is easy to remember

5 . 5

for middle layer(s) there is more freedom in the choice of activation function

Activation functionActivation function

logistic functionh(x) = σ(x) = 1+e−x
1

the same function used in logistic regression
used to be the function of choice in neural networks

away from zero it changes slowly, so the derivative is small (leads to vanishing gradient)

hyperbolic tangenth(x) = 2σ(x) − 1 = e +ex −x
e −ex −x

similar to sigmoid, but symmetric

 σ(x) =∂x
∂ σ(x)(1 − σ(x))its derivative is easy to remember

often better for optimization because close to zero it
similar to a linear function

(rather than an affine function when using logistic)

5 . 5

for middle layer(s) there is more freedom in the choice of activation function

Activation functionActivation function

logistic functionh(x) = σ(x) = 1+e−x
1

the same function used in logistic regression
used to be the function of choice in neural networks

away from zero it changes slowly, so the derivative is small (leads to vanishing gradient)

hyperbolic tangenth(x) = 2σ(x) − 1 = e +ex −x
e −ex −x

similar to sigmoid, but symmetric

 σ(x) =∂x
∂ σ(x)(1 − σ(x))its derivative is easy to remember

often better for optimization because close to zero it
similar to a linear function

(rather than an affine function when using logistic)

5 . 5

 tanh(x) =∂x
∂ 1 − tanh(x)2

similar problem with vanishing gradient

for middle layer(s) there is more freedom in the choice of activation function

Activation functionActivation function

γ

for middle layer(s) there is more freedom in the choice of activation function

5 . 6

Activation functionActivation function

Rectified Linear Unit (ReLU)h(x) = max(0,x)

γ

for middle layer(s) there is more freedom in the choice of activation function

5 . 6

Activation functionActivation function

replacing logistic with ReLU significantly improves the training of deep networks

zero derivative if the unit is "inactive"
initialization should ensure active units at the beginning of optimization

Rectified Linear Unit (ReLU)h(x) = max(0,x)

γ

for middle layer(s) there is more freedom in the choice of activation function

5 . 6

Activation functionActivation function

replacing logistic with ReLU significantly improves the training of deep networks

zero derivative if the unit is "inactive"
initialization should ensure active units at the beginning of optimization

Rectified Linear Unit (ReLU)h(x) = max(0,x)

leaky ReLU h(x) = max(0,x) + γ min(0,x)

fixes the zero-gradient problem

γ

for middle layer(s) there is more freedom in the choice of activation function

5 . 6

Activation functionActivation function

replacing logistic with ReLU significantly improves the training of deep networks

zero derivative if the unit is "inactive"
initialization should ensure active units at the beginning of optimization

Rectified Linear Unit (ReLU)h(x) = max(0,x)

leaky ReLU h(x) = max(0,x) + γ min(0,x)

fixes the zero-gradient problem

parameteric ReLU:
make a learnable parameterγ

for middle layer(s) there is more freedom in the choice of activation function

5 . 6

Winter 2020 | Applied Machine Learning (COMP551)

Activation functionActivation function

replacing logistic with ReLU significantly improves the training of deep networks

zero derivative if the unit is "inactive"
initialization should ensure active units at the beginning of optimization

Rectified Linear Unit (ReLU)h(x) = max(0,x)

leaky ReLU h(x) = max(0,x) + γ min(0,x)

fixes the zero-gradient problem

parameteric ReLU:
make a learnable parameterγ

Softplus (differentiable everywhere) h(x) = log(1 + e)x

it doesn't perform as well
in practice

for middle layer(s) there is more freedom in the choice of activation function

5 . 6

Network architectureNetwork architecture

architecture is the overall structure of the network

6 . 1

Network architectureNetwork architecture

architecture is the overall structure of the network
feedforward network (aka multilayer perceptron)

can have many layers
layers is called the depth of the network

x 1 ...

...

...

x 2 x D

z 1 z 2 z M

ŷ1 ŷ2 ŷC...
...z 1

{ℓ}
z 2

{ℓ} z M
{ℓ}

...

de
pt

h

width

6 . 1

Network architectureNetwork architecture

architecture is the overall structure of the network
feedforward network (aka multilayer perceptron)

can have many layers
layers is called the depth of the network

x 1 ...

...

...

x 2 x D

z 1 z 2 z M

ŷ1 ŷ2 ŷC...
...z 1

{ℓ}
z 2

{ℓ} z M
{ℓ}

...

de
pt

h

width

6 . 1

x 1 ...

...

x 2 x D

z 1 z 2 z M

fully connected

x 1 ...

...

x 2 x D

z 1 z 2 z M

sparsely connected

each layer can be fully connected (dense) or sparse

Network architectureNetwork architecture

architecture is the overall structure of the network
feed-forward network (aka multilayer perceptron)

can have many layers
layers is called the depth of the network
each layer can be fully connected (dense) or sparse

x 1 ...

...

...

x 2 x D

z 1 z 2 z M

ŷ1

6 . 2

ŷ2 ŷC...

...z 1
{ℓ}

z 2
{ℓ} z M

{ℓ}

...skip connection

Network architectureNetwork architecture

architecture is the overall structure of the network
feed-forward network (aka multilayer perceptron)

can have many layers
layers is called the depth of the network
each layer can be fully connected (dense) or sparse
layers may have skip layer connections

helps with gradient flow

x 1 ...

...

...

x 2 x D

z 1 z 2 z M

ŷ1

6 . 2

ŷ2 ŷC...

...z 1
{ℓ}

z 2
{ℓ} z M

{ℓ}

...skip connection

Network architectureNetwork architecture

architecture is the overall structure of the network
feed-forward network (aka multilayer perceptron)

can have many layers
layers is called the depth of the network
each layer can be fully connected (dense) or sparse
layers may have skip layer connections

helps with gradient flow
units may have different activations

x 1 ...

...

...

x 2 x D

z 1 z 2 z M

ŷ1

6 . 2

ŷ2 ŷC...

...z 1
{ℓ}

z 2
{ℓ} z M

{ℓ}

...skip connection

Network architectureNetwork architecture

architecture is the overall structure of the network
feed-forward network (aka multilayer perceptron)

can have many layers
layers is called the depth of the network
each layer can be fully connected (dense) or sparse
layers may have skip layer connections

helps with gradient flow
units may have different activations
parameters may be shared across units (e.g., in conv-nets) x 1 ...

...

...

x 2 x D

z 1 z 2 z M

ŷ1

6 . 2

ŷ2 ŷC...

...z 1
{ℓ}

z 2
{ℓ} z M

{ℓ}

...skip connection

parameter sharing

Winter 2020 | Applied Machine Learning (COMP551)

Network architectureNetwork architecture

architecture is the overall structure of the network
feed-forward network (aka multilayer perceptron)

can have many layers
layers is called the depth of the network
each layer can be fully connected (dense) or sparse
layers may have skip layer connections

helps with gradient flow
units may have different activations
parameters may be shared across units (e.g., in conv-nets) x 1 ...

...

...

x 2 x D

z 1 z 2 z M

ŷ1

6 . 2

ŷ2 ŷC...

...z 1
{ℓ}

z 2
{ℓ} z M

{ℓ}

...skip connection

parameter sharing

more generally a directed acyclic graph (DAG) expresses the
feed-forward architecture

Expressive powerExpressive power

an MLP with single hidden layer can approximate any continuous function with arbitrary accuracy

universal approximation theorem

7 . 1

Expressive powerExpressive power

an MLP with single hidden layer can approximate any continuous function with arbitrary accuracy

universal approximation theorem

for 1D input we can see this even with fixed bases
M = 100 in this example
the fit is good (hard to see the blue line)

7 . 1

Expressive powerExpressive power

an MLP with single hidden layer can approximate any continuous function with arbitrary accuracy

universal approximation theorem

for 1D input we can see this even with fixed bases
M = 100 in this example
the fit is good (hard to see the blue line)

however # bases (M) should grow exponentially
with D (curse of dimensionality)

7 . 1

Depth vs WidthDepth vs Width

an MLP with single hidden layer can approximate any continuous function on with arbitrary accuracy
Caveats

we may need a very wide network (large M)
this is only about training error, we care about test error

universal approximation theorem

7 . 2

Depth vs WidthDepth vs Width

an MLP with single hidden layer can approximate any continuous function on with arbitrary accuracy
Caveats

we may need a very wide network (large M)
this is only about training error, we care about test error

universal approximation theorem

Deep networks (with ReLU activation) of bounded width are also shown to be universal

7 . 2

Depth vs WidthDepth vs Width

an MLP with single hidden layer can approximate any continuous function on with arbitrary accuracy
Caveats

we may need a very wide network (large M)
this is only about training error, we care about test error

universal approximation theorem

Deep networks (with ReLU activation) of bounded width are also shown to be universal
empirically it is observed that increasing depth is often more effective than increasing width (#parameters per layer)
assuming a compositional functional form (through depth) is a useful inductive bias

7 . 2

Depth vs WidthDepth vs Width

an MLP with single hidden layer can approximate any continuous function on with arbitrary accuracy
Caveats

we may need a very wide network (large M)
this is only about training error, we care about test error

universal approximation theorem

Deep networks (with ReLU activation) of bounded width are also shown to be universal
empirically it is observed that increasing depth is often more effective than increasing width (#parameters per layer)
assuming a compositional functional form (through depth) is a useful inductive bias

7 . 2

Depth vs WidthDepth vs Width

an MLP with single hidden layer can approximate any continuous function on with arbitrary accuracy
Caveats

we may need a very wide network (large M)
this is only about training error, we care about test error

universal approximation theorem

Deep networks (with ReLU activation) of bounded width are also shown to be universal
empirically it is observed that increasing depth is often more effective than increasing width (#parameters per layer)
assuming a compositional functional form (through depth) is a useful inductive bias

7 . 2

Depth vs WidthDepth vs Width

an MLP with single hidden layer can approximate any continuous function on with arbitrary accuracy
Caveats

we may need a very wide network (large M)
this is only about training error, we care about test error

universal approximation theorem

Deep networks (with ReLU activation) of bounded width are also shown to be universal

7 . 3

Winter 2020 | Applied Machine Learning (COMP551)

Depth vs WidthDepth vs Width

an MLP with single hidden layer can approximate any continuous function on with arbitrary accuracy
Caveats

we may need a very wide network (large M)
this is only about training error, we care about test error

universal approximation theorem

Deep networks (with ReLU activation) of bounded width are also shown to be universal
number of regions (in which the network is linear) grows exponentially with depth

W x ={ℓ} {ℓ} 0

 layer ℓ

h(W x) ={ℓ} ∣W x∣{ℓ}simplified demonstration

W x ={ℓ+1} {ℓ+1} 0

7 . 3

Regularization strategiesRegularization strategies

universality of neural networks also means they can overfit
strategies for variance reduction:

8 . 1

Regularization strategiesRegularization strategies

universality of neural networks also means they can overfit
strategies for variance reduction:

L1 and L2 regularization (weight decay)

8 . 1

Regularization strategiesRegularization strategies

universality of neural networks also means they can overfit
strategies for variance reduction:

L1 and L2 regularization (weight decay)
data augmentation
noise robustness
early stopping
bagging and dropout

8 . 1

Regularization strategiesRegularization strategies

universality of neural networks also means they can overfit
strategies for variance reduction:

L1 and L2 regularization (weight decay)
data augmentation
noise robustness
early stopping
bagging and dropout
sparse representations (e.g., L1 penalty on hidden unit activations)

8 . 1

Regularization strategiesRegularization strategies

universality of neural networks also means they can overfit
strategies for variance reduction:

L1 and L2 regularization (weight decay)
data augmentation
noise robustness
early stopping
bagging and dropout
sparse representations (e.g., L1 penalty on hidden unit activations)
semi-supervised and multi-task learning

8 . 1

Regularization strategiesRegularization strategies

universality of neural networks also means they can overfit
strategies for variance reduction:

L1 and L2 regularization (weight decay)
data augmentation
noise robustness
early stopping
bagging and dropout
sparse representations (e.g., L1 penalty on hidden unit activations)
semi-supervised and multi-task learning
adversarial training

8 . 1

Regularization strategiesRegularization strategies

universality of neural networks also means they can overfit
strategies for variance reduction:

L1 and L2 regularization (weight decay)
data augmentation
noise robustness
early stopping
bagging and dropout
sparse representations (e.g., L1 penalty on hidden unit activations)
semi-supervised and multi-task learning
adversarial training
parameter-tying

8 . 1

Data augmentationData augmentation

a larger dataset results in a better generalization

8 . 2

Data augmentationData augmentation

a larger dataset results in a better generalization

N = 20 N = 40 N = 80

example: in all 3 examples below training error is close to zero

however, a larger training dataset leads to better generalization

8 . 2

Data augmentationData augmentation

a larger dataset results in a better generalization

increase the size of dataset by adding reasonable transformations
that change the label in predictable ways; e.g.,

τ(x)

f(τ(x)) = f(x)

image: https://github.com/aleju/imgaug/blob/master/README.md

idea

8 . 3

special approaches to data-augmentation

adding noise to the input
adding noise to hidden units

noise in higher level of abstraction

Data augmentationData augmentation

a larger dataset results in a better generalization

increase the size of dataset by adding reasonable transformations
that change the label in predictable ways; e.g.,

τ(x)

f(τ(x)) = f(x)

image: https://github.com/aleju/imgaug/blob/master/README.md

idea

8 . 3

special approaches to data-augmentation

adding noise to the input
adding noise to hidden units

noise in higher level of abstraction

Data augmentationData augmentation

a larger dataset results in a better generalization

increase the size of dataset by adding reasonable transformations
that change the label in predictable ways; e.g.,

τ(x)

f(τ(x)) = f(x)

image: https://github.com/aleju/imgaug/blob/master/README.md

idea

 (x, y)p̂

x , y ∼(n)′ (n)′
 p̂

learn a generative model of the data
use for training

8 . 3

special approaches to data-augmentation

adding noise to the input
adding noise to hidden units

noise in higher level of abstraction

Data augmentationData augmentation

a larger dataset results in a better generalization

increase the size of dataset by adding reasonable transformations
that change the label in predictable ways; e.g.,

τ(x)

f(τ(x)) = f(x)

sometimes we an achieve the same goal by designing the models
that are invariant to a given set of transformations

image: https://github.com/aleju/imgaug/blob/master/README.md

idea

 (x, y)p̂

x , y ∼(n)′ (n)′
 p̂

learn a generative model of the data
use for training

8 . 3

Noise robustnessNoise robustness

make the model robust to noise in

8 . 4

Noise robustnessNoise robustness

make the model robust to noise in
 input (data augmentation)

 hidden units (e.g., in dropout)

8 . 4

Noise robustnessNoise robustness

make the model robust to noise in

weights the loss is not sensitive to small changes in the weight (flat minima)

image credit: Keshkar et al'17

 input (data augmentation)

 hidden units (e.g., in dropout)

8 . 4

Noise robustnessNoise robustness

make the model robust to noise in

weights the loss is not sensitive to small changes in the weight (flat minima)

flat minima generalize better
good performance of SGD using small minibatch is attributed to flat minima

in this case, SGD regularizes the model due to gradient noise

image credit: Keshkar et al'17

 input (data augmentation)

 hidden units (e.g., in dropout)

8 . 4

Noise robustnessNoise robustness

make the model robust to noise in

label smoothing

output (avoid overfitting, specially to wrong labels)

a heuristic is to replace hard labels with "soft-labels"
[0, 0, 1, 0] → [, , 1 −3

ϵ
3
ϵ ϵ,]3

ϵe.g.,

weights the loss is not sensitive to small changes in the weight (flat minima)

flat minima generalize better
good performance of SGD using small minibatch is attributed to flat minima

in this case, SGD regularizes the model due to gradient noise

image credit: Keshkar et al'17

 input (data augmentation)

 hidden units (e.g., in dropout)

8 . 4

Early stoppingEarly stopping

the test loss-vs-time step is "often" U-shaped
use validation for early stopping
also saves computation!

8 . 5

Early stoppingEarly stopping

the test loss-vs-time step is "often" U-shaped
use validation for early stopping
also saves computation!

early stopping bounds the region of the parameter-space that is reachable in T time-steps
assuming

bounded gradient
starting with a small w

it has an effect similar to L2 regularization
we get the regularization path (various)
we saw a similar phenomena in boosting

λ

8 . 5

BaggingBagging

several sources of variance in neural networks, such as

optimization
initialization
randomness of SGD
learning rate and other hyper-parameters

choice of architecture
number of layers, hidden units, etc.

8 . 6

BaggingBagging

use bagging or even averaging without bootstrap to reduce variance
issue: computationally expensive

several sources of variance in neural networks, such as

optimization
initialization
randomness of SGD
learning rate and other hyper-parameters

choice of architecture
number of layers, hidden units, etc.

8 . 6

DropoutDropout

idea

randomly remove a subset of units during training
as opposed to bagging a single model is trained

8 . 7

DropoutDropout

idea

randomly remove a subset of units during training
as opposed to bagging a single model is trained

exponentially many subnetworks that share parameterscan be viewed as

8 . 7

DropoutDropout

idea

randomly remove a subset of units during training
as opposed to bagging a single model is trained

exponentially many subnetworks that share parameterscan be viewed as

is one of the most effective regularization schemes for MLPs

8 . 7

DropoutDropout

at test time

during training

8 . 8

DropoutDropout

at test time

during training

for each instance (n):
randomly dropout each unit with probability p (e.g., p=.5)
only the remaining subnetwork participates in training

8 . 8

DropoutDropout

at test time

ideally we want to average over the prediction of all possible sub-networks

during training

for each instance (n):
randomly dropout each unit with probability p (e.g., p=.5)
only the remaining subnetwork participates in training

8 . 8

DropoutDropout

at test time

ideally we want to average over the prediction of all possible sub-networks

1) Monte Carlo dropout: average the prediction of several feed-forward passes using dropout

during training

for each instance (n):
randomly dropout each unit with probability p (e.g., p=.5)
only the remaining subnetwork participates in training

this is computationally infeasible, instead

8 . 8

Winter 2020 | Applied Machine Learning (COMP551)

DropoutDropout

at test time

ideally we want to average over the prediction of all possible sub-networks

1) Monte Carlo dropout: average the prediction of several feed-forward passes using dropout
2) weight scaling: scale the weights by p to compensate for dropout

e.g., for 50% dropout, scale by a factor of 2
in general this is not equivalent to the average prediction of the ensemble

during training

for each instance (n):
randomly dropout each unit with probability p (e.g., p=.5)
only the remaining subnetwork participates in training

this is computationally infeasible, instead

8 . 8

SummarySummary

Deep feed-forward networks learn adaptive bases
more complex bases at higher layers
increasing depth is often preferable to width
various choices of activation function and architecture
universal approximation power
their expressive power often necessitates using regularization schemes

9

