Applied Machine Learning

Multilayer Perceptron

Siamak Ravanbakhsh

COMP 551 (winter 2020)
Learning objectives

multilayer perceptron:

- model
 - different supervised learning tasks
 - activation functions
 - architecture of a neural network
- its expressive power
- regularization techniques
Adaptive bases

several methods can be classified as learning these bases adaptively

\[f(x) = \sum_d w_d \phi_d(x; v_d) \]

- decision trees
- generalized additive models
- boosting
- neural networks

- consider the adaptive bases in a general form (contrast to decision trees)
- use gradient descent to find good parameters (contrast to boosting)
- create more complex adaptive bases by combining simpler bases
 - leads to deep neural networks
Adaptive Radial Bases

\[\phi_d(x) = e^{-\frac{(x-mu_d)^2}{2}} \]

Gaussian bases, or radial bases

Non-adaptive case

model: \[f(x; w) = \sum_d w_d \phi_d(x) \]

cost: \[J(w) = \frac{1}{2} \sum_n (f(x^{(n)}; w) - y^{(n)})^2 \]

the model is linear in its parameters
the cost is convex in \(w \) (unique minimum)
even has a closed form solution

Adaptive case

we can make the bases adaptive by learning these centers

model: \[f(x; w, \mu) = \sum_d w_d \phi_d(x; \mu_d) \]

how to minimize the cost?
not convex in all model parameters
use gradient descent to find a **local minimum**

note that the basis centers are adaptively changing
Sigmoid Bases

\[\phi_d(x) = \frac{1}{1 + e^{-\frac{x - \mu_d}{s_d}}} \]

using adaptive sigmoid bases gives us a neural network

non-adaptive case
- \(\mu_d \) is fixed to \(D \) locations
- \(s_d = 1 \)

model: \(f(x; w) = \sum_d w_d \phi_d(x) \)

\[
\begin{align*}
\phi_1(x) & \quad w_1 \\
\phi_2(x) & \quad w_2 \\
\vdots & \quad \vdots \\
\phi_D(x) & \quad w_D
\end{align*}
\]

\[
\hat{y} = w \phi(x)
\]

\[
\begin{align*}
\Phi &= \phi(x[:, None], \mu[None, :]) \\
w &= \text{np.linalg.lstsq}(\Phi, y)[0] \\
yh &= \text{np.dot}(\Phi, w) \\
\text{plt.plot}(x, yh, 'g-')
\end{align*}
\]
Adaptive Sigmoid Bases

\[\phi_d(x) = \frac{1}{1 + e^{-d \cdot x}} \]

rewrite the sigmoid basis

\[\phi_d(x) = \sigma \left(\frac{x - \mu_d}{s_d} \right) = \sigma (v_d x + b_d) \]

each basis is the logistic regression model \(\phi_d(x) = \sigma (v_d^\top x + b_d) \)

model: \(f(x; w, v, b) = \sum_d w_d \sigma (v_d x + b_d) \) \(D = 3 \) adaptive bases

this is a neural network with two layers

optimize using gradient descent (find a local optima)

D=3 adaptive bases

D=3 fixed bases
Multilayer Perceptron (MLP)

suppose we have

- D inputs \(x_1, \ldots, x_D \)
- K outputs \(\hat{y}_1, \ldots, \hat{y}_K \)
- M hidden units \(z_1, \ldots, z_M \)

more compressed form

\[
\hat{y}_k = g \left(\sum_m W_{k,m} h \left(\sum_d V_{m,d} x_d \right) \right)
\]

non-linearity, activation function: we have different choices

for simplicity we may drop bias terms

\[
\hat{y} = g \left(W h(V x) \right)
\]

non-linearities are applied elementwise
Regression using Neural Networks

The choice of **activation function** in the final layer depends on the task.

Model: \(\hat{y} = g(W \ h(V \ x)) \)

Regression: \(\hat{y} = g(Wz) = Wz \)

We may have one or more output variables:
- Identity function + L2 loss: Gaussian likelihood

\[
L(y, \hat{y}) = \frac{1}{2} ||y - \hat{y}||^2 = \log \mathcal{N}(y; \hat{y}, \beta I) + \text{constant}
\]

More generally,
- We may explicitly produce a distribution at output - e.g.,
 - Mean and variance of a Gaussian
 - Mixture of Gaussians

The loss will be the log-likelihood of the data under our model:

\[
L(y, \hat{y}) = \log p(y; f(x))
\]

Neural network outputs the parameters of a distribution
Classification using neural networks

the choice of activation function in the final layer depends on the task

\[\hat{y} = g(W h(V x)) \]

binary classification \[\hat{y} = g(W z) = (1 + e^{-W z})^{-1} \]
scalar output C=1
logistic sigmoid + CE loss: Bernouli likelihood
\[L(y, \hat{y}) = y \log \hat{y} + (1 - y) \log(1 - \hat{y}) = \log \text{Bernouli}(y; \hat{y}) \]

multiclass classification \[\hat{y} = g(W z) = \text{softmax}(W z) \]
\(C \) is the number of classes
softmax + multi-class CE loss: categorical likelihood
\[L(y, \hat{y}) = \sum_k y_k \log \hat{y}_k = \log \text{Categorical}(y; \hat{y}) \]
Activation function

for **middle layer(s)** there is more freedom in the choice of activation function

- \[h(x) = x \text{ identity (no activation function)} \]

composition of two linear functions is linear

- \[WVx = W'x \]

so nothing is gained (in representation power) by stacking linear layers

exception: if \(M < \min(D, K) \) then the hidden layer is compressing the data (\(W' \) is low-rank)

this idea is used in dimensionality reduction (later!)
Activation function

for **middle layer(s)** there is more freedom in the choice of activation function

\[h(x) = \sigma(x) = \frac{1}{1+e^{-x}} \] logistic function

the same function used in logistic regression

used to be the function of choice in neural networks

away from zero it changes slowly, so the derivative is small (leads to vanishing gradient)

its derivative is easy to remember \(\frac{\partial}{\partial x} \sigma(x) = \sigma(x)(1 - \sigma(x)) \)

\[h(x) = 2\sigma(x) - 1 = \frac{e^x - e^{-x}}{e^x + e^{-x}} \] hyperbolic tangent

similar to sigmoid, but symmetric

often better for optimization because close to zero it similar to a linear function

(rather than an affine function when using logistic)

similar problem with vanishing gradient

\[\frac{\partial}{\partial x} \tanh(x) = 1 - \tanh(x)^2 \]
Activation function

for **middle layer(s)** there is more freedom in the choice of activation function

\[h(x) = \max(0, x) \] \textbf{Rectified Linear Unit (ReLU)}

replacing logistic with ReLU significantly improves the training of deep networks

zero derivative if the unit is "inactive"

initialization should ensure active units at the beginning of optimization

leaky ReLU \(h(x) = \max(0, x) + \gamma \min(0, x) \)

fixes the zero-gradient problem

parameteric ReLU:
make \(\gamma \) a learnable parameter

\[h(x) = \log(1 + e^x) \] \textbf{Softplus} (differentiable everywhere)

it doesn't perform as well in practice
Network architecture

architecture is the overall structure of the network

feedforward network (aka multilayer perceptron)

- can have many layers
- # layers is called the **depth** of the network
- each layer can be **fully connected** (dense) or sparse

![Diagram of fully connected and sparsely connected networks](image.png)
Network architecture

Architecture is the overall structure of the network

feed-forward network (aka multilayer perceptron)

- can have many layers
- # layers is called the **depth** of the network
- each layer can be **fully connected** (dense) or sparse
- layers may have **skip layer connections**
 - helps with gradient flow
- units may have different **activations**
- parameters may be shared across units (e.g., in conv-nets)

More generally, a directed acyclic graph (DAG) expresses the feed-forward architecture.
Expressive power

universal approximation theorem

an MLP with single hidden layer can approximate any continuous function with arbitrary accuracy

for 1D input we can see this even with fixed bases $M = 100$ in this example

the fit is good (hard to see the blue line)

however # bases (M) should grow exponentially with D (curse of dimensionality)
Depth vs Width

universal approximation theorem

an MLP with single hidden layer can approximate any continuous function on with arbitrary accuracy

Caveats

- we may need a very wide network (large M)
- this is only about training error, we care about test error

Deep networks (with ReLU activation) of bounded width are also shown to be universal

empirically it is observed that increasing depth is often more effective than increasing width (#parameters per layer)
assuming a compositional functional form (through depth) is a useful inductive bias
Depth vs Width

universal approximation theorem

an MLP with single hidden layer can approximate any continuous function on with arbitrary accuracy

Caveats

- we may need a very wide network (large M)
- this is only about training error, we care about test error

Deep networks (with ReLU activation) of bounded width are also shown to be universal

number of regions (in which the network is linear) grows exponentially with depth

simplified demonstration \(h(W^{(ℓ)} x) = |W^{(ℓ)} x| \)
Regularization strategies

Universality of neural networks also means they can overfit. Strategies for variance reduction:

- L1 and L2 regularization (weight decay)
- Data augmentation
- Noise robustness
- Early stopping
- Bagging and dropout
- Sparse representations (e.g., L1 penalty on hidden unit activations)
- Semi-supervised and multi-task learning
- Adversarial training
- Parameter-tying
Data augmentation

a larger dataset results in a better generalization

example: in all 3 examples below training error is close to zero
however, a larger training dataset leads to better generalization
Data augmentation

a larger dataset results in a better generalization

increase the size of dataset by adding reasonable transformations $\tau(x)$ that change the label in predictable ways; e.g., $f(\tau(x)) = f(x)$

special approaches to data-augmentation

- adding noise to the input
- adding noise to hidden units
 - noise in higher level of abstraction

- learn a generative model $\hat{p}(x, y)$ of the data
 - use $x^{(n')}, y^{(n')} \sim \hat{p}$ for training

sometimes we can achieve the same goal by designing the models that are invariant to a given set of transformations

image: https://github.com/aleju/imgaug/blob/master/README.md
Noise robustness

make the model robust to noise in

input (data augmentation)

hidden units *(e.g., in dropout)*

weights the loss is not sensitive to small changes in the weight (flat minima)

output (avoid overfitting, specially to wrong labels)

a heuristic is to replace hard labels with "soft-labels" **label smoothing**

\[
[0, 0, 1, 0] \rightarrow [\frac{\epsilon}{3}, \frac{\epsilon}{3}, 1 - \epsilon, \frac{\epsilon}{3}]
\]

flat minima generalize better

good performance of SGD using small minibatch is attributed to flat minima

in this case, SGD regularizes the model due to **gradient noise**
Early stopping

- The test loss vs time step is "often" U-shaped.
- Use validation for early stopping.
- Also saves computation!

Early stopping bounds the region of the parameter-space that is reachable in T time-steps assuming bounded gradient.

Starting with a small w, it has an effect similar to L2 regularization.

We get the regularization path (various λ).

We saw a similar phenomena in boosting.
Bagging

several sources of variance in neural networks, such as
 - optimization
 - initialization
 - randomness of SGD
 - learning rate and other hyper-parameters
 - choice of architecture
 - number of layers, hidden units, etc.

use bagging or even averaging without bootstrap to reduce variance

issue: computationally expensive
Dropout

idea

randomly remove a subset of units during training as opposed to bagging a single model is trained

can be viewed as exponentially many subnetworks that share parameters is one of the most effective regularization schemes for MLPs

Base network

Ensemble of subnetworks
During training

for each instance (n):
randomly dropout each unit with probability p (e.g., p=.5)
only the remaining subnetwork participates in training

At test time

ideally we want to average over the prediction of all possible sub-networks
this is computationally infeasible, instead

1) Monte Carlo dropout: average the prediction of several feed-forward passes using dropout
2) weight scaling: scale the weights by p to compensate for dropout
 e.g., for 50% dropout, scale by a factor of 2
 in general this is not equivalent to the average prediction of the ensemble
Summary

Deep feed-forward networks learn **adaptive bases** more complex bases at higher layers. Increasing **depth** is often preferable to width. Various choices of **activation function** and **architecture** result in **universal** approximation power. Their expressive power often necessitates using **regularization** schemes.