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Learning objectives

bootstrap for uncertainty estimation
bagging for variance reduction

e random forests
boosting
e AdaBoost

e gradient boosting
e relationship to L1 regularization



Bootstrap

a simple approach to estimate the uncertainty in prediction

non-parametric bootstrap
N

given the dataset D = {(z™,y™)},

subsample with replacement B datasets of size N

Dy = {(z™Y,yOINN b=1,...,B

train a model on each of these bootstrap datasets (called bootstrap samples)
produce a measure of uncertainty from these models

e for model parameters
e for predictions
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Recall: linear model with nonlinear Gaussian bases (N=100)

oo y™ =sin(z™) + cos(

our fit to data using 10 Gaussian bases

M se-c= Bootstrap: example

noise

lz(™)]) + €

W oo WM

#x: N

#y: N

plt.plot(x, y, 'b.")

phi = lambda x,mu: np.exp(-(x-mu)**2)

mu = np.linspace(0,10,10) #10 Gaussians bases
Phi = phi(x[:,None], mu[None,:]) #N x 10

w = np.linalg.lstsq(Phi, y)[0]

yh = np.dot(Phi,w)

plt.plot(x, yh, 'g-")
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Recall: linear model with nonlinear Gaussian bases (N=100)
using B=500 bootstrap samples

gives a measure of uncertainty of the parameters

100 A

80

60

40

201

|
each color is a different weight Wy

th\ |

= Bootstrap: example

000
B:
ws = np.zeros((B,D))
b range(B):
inds = np.random.randint(N, size=(N))

Phi b = Phi[inds,:]
y b = y[inds]

10 ws[b,:] = np.linalg.lstsq(Phi_b, y b[:,b])[0]
11
plt.hist(ws, bins=50)



Recall: linear model with nonlinear Gaussian bases (N=100)

using B=500 bootstrap samples

also gives a measure of uncertainty of the predictions
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Bootstrap: example

the red lines are 5% and 95% quantiles

(for each point we can get these across bootstrap model predictions)

y_hats = np.zeros((B, Nt))
b range(B):
wb = ws[b,:]
y_hats[b,:] = np.dot(Phi_test, wb)

11 y 5 = np.quantile(y_hats, .05, axis=0)
12 y 95 = np.quantile(y_hats, .95, axis=0)
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Bagging

use bootstrap for more accurate prediction (not just uncertainty)

variance of sum of random variables
Var(z1 + 22) = E[(21 + 22)%] — E[21 + 22)?
= E[2? + 22 + 22120] — (E[z1] + E[22])?
= E[2?] + E[22] + E[22122] — E[21]? — E[22)* — 2E[21]E[23]

= Var(z1) + Var(zz) + 2Cov(z1, 22)

for uncorrelated variables this term is zero

.



Bagging

use bootstrap for more accurate prediction (not just uncertainty)

average of uncorrelated random variables has a lower variance

Z21,...,2B areuncorrelated random variables with mean [/ and variance 0'2

= l _
the average 2z — B Zb Zh has mean [ and variance

Var(g >y 20) = gz Var(>, 2) = g Bo? = £0”

use this to reduce the variance of our models (bias remains the same)

regression: average the model predictions f(m) = % Do fb(x)

issue: model predictions are not uncorrelated (trained using the same data)

CET{A - (o JeJ =Tl Tl Elilelg)] use bootstrap samples to reduce correlation

.2



Bagging for classification

averaging makes sense for regression, how about classification?

.
>
21,...,2B € {0, 1} are IID Bernoulli random variables with mean g = .5 + €

for z = % > »2 wehave P(Z > .5) goesto1asBgrows

mode of iid classifiers that are better than chance is a better classifier
e use voting

crowds are wiser when

¢ individuals are better than random
e yotes are uncorrelated

LETL T A (T =R Ti={g Y=Yl Lise bootstrap samples to reduce correlation
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Original Tree
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setup

e synthetic dataset
e 5 correlated features
e st feature is a noisy predictor of the label

Bagging decision trees

Bootstrap samples create different decision trees (due to high variance)

compared to decision trees, no longer interpretable!

Test Error
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1 Random forests

further reduce the correlation between decision trees

¢ feature sub-sampling
only a random subset of features are available for split at each step
J further reduce the dependence between decision trees

magic number? 4/ D

this is a hyper-parameter, can be optimized using CV

Out Of Bag (OOB) samples:

¢ the instances not included in a bootsrap dataset can be used for validation
e simultaneous validation of decision trees in a forest
* no need to set aside data for cross validation
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Example: spam detection

N=4601 emails

binary classification task: spam - not spam
D=57 features:
e 48 words: percentage of words in the email that match these words
® eg, business,address,internet, free, George (customized per user)

e 6 characters: again percentage of characters that match these
m ch;, ch(,ch[,ch!,ch$, ch#

e average, max, sum of length of uninterrupted sequences of capital letters:

= CAPAVE, CAPMAX, CAPTOT

average value of these features in the spam and non-spam emails

george you your hp free hpl ! our re edu remove
spam 0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email 1.27 1.27 044 0.90 0.07 0.43 0.11 0.18 0.42 0.29 0.01

an example of
feature engineering



Example: spam detection

decision tree after pruning -0
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Example: spam detection

Bagging and Random Forests do much better
than a single decision tree!

. Bagging
Random Forest
—— Gradient Boosting (5 Node)

Test Error
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!

T T T T T T
0 500 1000 1500 2000 2500

Number of Trees

Winter 2020 | Applied Machine Learning (COMP551)

Misclassification Erraor

Out Of Bag (OOB) error can be used for parameter tuning
(e.g., size of the forest)
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Summary so far...

e Bootstrap is a powerful technique to get uncertainty estimates
e Bootstrep aggregation (Bagging) can reduce the variance of unstable models
e Random forests:

Bagging + further de-corelation of features at each split

OOB validation instead of CV

destroy interpretability of decision trees

perform well in practice

can fail if only few relevant features exist (due to feature-sampling)



Adaptive bases

several methods can be classified as learning these bases adaptively

f(@) = > g widd(z; va)

decision trees

boosting e

neural networks

v
in boosting each basis is a classifier or regression function (weak learner, or base learner)
create a strong learner by sequentially combining week learners

.



Forward stagewise additive modelling

f(iB) = Z ’w{t}(b(m; ’U{t}) a simple model, such as decision stump (decision tree with one node)

J{w® v} =30 L™, f(2™))

so far we have seen L2 loss, log loss and hinge loss

optimizing this cost is difficult given the form of f

optimization {sl== add one weak-learner in each stage t, to reduce the error of previous stage
1. find the best weak learner
. N _
o1t wlt = argmin, , Y20, L(y™, F1 0 (M) + we(z™;v))
2. add it to the current model

F (@) = £ (@) 4wl g(@®; ot
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Lo loss & forward stagewise linear model

consider weak learners that are individual features gb{t}(:z:) = w{t}wd{t}

cost using L2 loss for regression

residual r™

2
atstaget argming,, %ZnNzl (y(n) — (F Y (™) + ’wdﬂfén))>

D 2 )
elolilgalP4Nie]s  recall: optimal weight for each d is wqg = ﬁ

(n
n wd

pick the feature that most significantly reduces the residual

t
the model at time-step t: f{t} (zc) = Zt ’wé{i I g{t}

is this related to L1-regularized linear regression?

1



L5 loss & forward stagewise linear model

using small learning rate

Coefficients
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L2 Boosting has a similar regularization path to lasso

boosting

Icavol

at each time-step only one feature 4{t} is updated / added

e

Ibph

= gleason

age

lep

50

100 150 200

e

we can view boosting as doing feature (base learner) selection in exponentially large spaces (e.g., all trees of size K)
the number of steps t plays a similar role to (the inverse of) regularization hyper-parameter
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Exponential loss &

loss functions for binary classification y € {—1,+1}
predicted label is § = sign(f(x))

misclassification loss L(y, f(z)) = I(yf(z) > 0)
(0-1 loss)

log-loss L(y, f(x)) = log (1 + e */¢))

(aka cross entropy loss or binomial deviance)

Hinge loss L(y, f(z)) = max(0,1 — yf(z))

support vector loss

yet another loss function is

note that the loss grows faster than the other surrogate losses (more sensitive to outliers)

useful property when working with additive models:

L(y, (@) + w (x,v')) = L(y, 11V (2)) - Ly, w p(z, o))

treat this as a weight q for an instance

Loss

Misclassification
Exponential
Binomial Deviance
Squared Error
Support Vector

instances that are not properly classified before receive a higher weight

1



AdaBoost

using exponential loss
J({w®, 0i}) = Zﬁ’zl L(y™, i1 (™) 4 B g (2™ o)) = S, g L(y™, w2 1)
loss for this instance at previous stage

discrete AdaBoost: assume this is a simple classifier, so its output is +/- 1

objective is to find the weak learner minimizing the cost above

J({'w{t}, it} }t) _ Zn q(n)e,y(n)w{tw(w(n) wlth
— e S ™Iy = ¢(z™, vith) + vt S qI(y™ £ ¢(z™, vit)

_ ef/w{/r} Z” q(n) + (ew{t} . e—w{t}) Zn q(n)H(y(n) 7£ (b(w(n),,v{t}))

assuming wit > (0 the weak learner should minimize this cost
this is classification with weighted intances



Exponential loss & AdaBoost

J({w{t}, ’U{t} }t) — Zn q(n)L(y(n), w{t}qb(z(”'), U{z‘}))

t it ‘
—e™ ) 32, aMI™ # ¢z, vit))
assuming w{t} > () the weak learner should minimize this cost
this is classification with weighted instances
this gives g1t}

— efuv{’} Z” q(n) + (ew{

still need to find the optimal ’w{t}

setting 3&{2} — () gives w{t} =
w

1 1—¢t8
5 log 5

since weak learner is better than chance ¢t} < .5 andso wth >0

we can now update instance weights q for next iteration ("), {t+1} — q(n)a{t}e—w{t}y(")¢(w(n) i)

(multiply by the new loss) since w > 0, the weight q of misclassified points increase and the rest decrease



AdaBoost

f(z) = sign( 3, w ¢(z;v1))

1 T

initialize (™ = ~ Vn w{T}¢(m;v{T})

overall algorithm for discrete AdaBoost

for t=1:T
fit the simple classifier ¢(m,v{t}) to the weighted dataset

e{t} — S q(")H(qS(x(") ;v{t})7&y("))

>, a™ e w0
_ it

w® := 3 log 7 T

g™ = g™ e—u YV g e wPe(z )

e f(2) = sign(5, wl? g(e;09)) o welmt)



each weak learner is a decision stump (dashed line)

n,{t}

circle size is proportional to q

AdaBoost

green is the decision boundary of f{t}
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AdaBoost

n n .
features :ch ), cee x§0) are samples from standard Gaussian

(n) _ (n) . .
label y'™ =103 ,z, > 9.34) notice that test error does not increase
N=2000 training examples AdaBoost is very slow to overfit

(S 0 |

- © Single Stump
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= E
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o . T oS |
o o
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Boosting Iterations Boosting lterations
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application: Viola-Jones face detection

Haar features are computationally efficient

| each feature is a weak learner
# AdaBoost picks one feature at a time (label: face/no-face)

{ Still can be inefficient:

1 ¢ use the fact that faces are rare (.01% of subwindows are faces)
e cascade of classifiers due to small rate

100% detection cumulative

Rrate 50% 20% Rate 29
IMAGE — —: —: 20 Features —ob F ACE
SUB-WINDOW
F F
J® } !

NON-FACE NON-FACE NON-FACE

cascade is applied over all image subwindows

fast enough for real-time (object) detection

image source: David Lowe slides



Gradient boosting

fit the weak learner to the gradient of the cost

let £t} = [f{t}(w(l)),...,f{t}(m(N))}T and true labels y = [y(l),...,y(N)]T

ignoring the structure of f
if we use gradient descent to minimize the loss £ = arg ming L(f,y)

write f as asum of steps f =T = £l0} Zf gt}

SL(F D y)

gradient vector

its role is similar to residual
so far we treated f as a parameter vector

fit the weak-learner to negative of the gradient ~ v{"} = arg min, 1||¢, — (—g)|[3

we are fitting the gradient using L2 loss regardless of the original loss function |

10.
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Gradient tree boosting

apply gradient boosting to CART (classification and regression trees)

initialize f{O} to predict a constant

for t=1:T (ecide T using a validation set (early stopping)

lcul h ' £ th i _ _ 0 t—1
calculate the negative of the gradient r — _WL(f{ },y)

fit a regression tree to X and produce regions Rl RK shallow trees of K = 4-8 |eaf usually
9000

Y work well as weak learners

N

re-adjust predictions per region wi = argminw Zz(”)GR L(y(n),f{t_l}(.’l,‘(n)) +wk)
k

update f{t}(w) — f{tfl}(x) + « Zle wil(z € Ry)

return f{T} (m) using a small learning rate here improves test error (shrinkage)

stochastic gradient boosting

e combines bootstrap and boosting
e use a subsample at each iteration above
e similar to stochastic gradient descent

10.



Test Error

0.4
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Gradient tree boosting

recall the synthetic example:

features a:i"), ceey w%) are samples from standard Gaussian
label y™ =1(>", 2" > 9.34)

N=2000 training examples

\ — féz&"ﬁffge IGradient tree boosting (using log-loss) works better than Adaboost
\ —— Adaboost

T T T T
0 100 200 300 400

Number of Terms

10.
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Test Set Deviance

Gradient tree boosting

recall the synthetic example:
features mﬁ"), e ,x%’) are samples from standard Gaussian

label y™ = I(> 24 xén) > 9.34) (K=2) stumpls
[ J

N=2000 training examples

[ ]
[ ]
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< © [ ] o
o~ o |
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°© T T T T T e T T T T T . e T T T T
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in both cases using shrinkage o = .2 helps
while test loss may increase, test misclassification error does not

Test Set Misclassification Error

0.1 0.2 0.3 0.4 0.5

0.0

6-Node Trees
Misclassification Error

— No shrinkage
— Shrinkage=0.6

500 1000 1500

Boosting lterations

2000
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Gradient tree boosting

recall the synthetic example:
(n) (n)

features =, ’,..., T

Deviance

12 14

1.0

Test Set Deviance

0.6

a=.
and stochastic

stochastic
batch size 5

ith
0%

0 200 400 600 800

Boosting lterations

1000

Test Set Absolute Error

4-Node Trees

0.35 0.40 0.45 0.50

0.30

Absolute Error

are samples from standard Gaussian
label y™ =1(>", 2" > 9.34)
N=2000 training examples

stochastic with
batch size 50%

No shrinkage
Shrink=0.1
—— Sample=0.5

—— Shrink=0.1 Sample=0.5

Boosting lterations

both shrinkage and subsampling can help
more hyper-parameters to tune

a=.1

and stochastic

10.



Gradient tree boosting

ilcll-RoiEcMe
HleBlocEodle e

..- HecEoEolRotlo
=°.":--T 5 ) floklolflloeffefie

predictions of GB (all 200 trees)
IQ_-QﬂQI IG I'F [+

train loss: 0.269 test loss: 0.338
e — ol o[SoEoTle

see the interactive demo: https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
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https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html

Summary

two ensemble methods

e bagging & random forests (reduce variance)

m produce models with minimal correlation
= use their average prediction

° boosting (reduces the bias of the weak learner)

models are added in steps

a single cost function is minimized

for exponential loss: interpret as re-weighting the instance (AdaBoost)
gradient boosting: fit the weak learner to the negative of the gradient
interpretation as L1 regularization for "weak learner"-selection

also related to max-margin classification (for large number of steps T)

e random forests and (gradient) boosting generally perform very well
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Gradient boosting

Gradient for some loss functions  f = £17} = £{0} — Zle with %L(f{t_l}7 y)

setting loss function - %L(f{t_l}, y)
regression %Hy . fH% y — f

regression ||y _ f‘ ‘1 sign(y — f)

binary

classification exp(—yf) -y exp(—yf)

exponential loss

multiclass
classification multi-class cross-entropy — P
NxC
one-hot coding for C-class classification



