Applied Machine Learning

Bootstrap, Bagging and Boosting

Siamak Ravanbakhsh

COMP 551 (winter 2020)

Learning objectives

bootstrap for uncertainty estimation bagging for variance reduction

random forests

boosting

- AdaBoost
- gradient boosting
- relationship to L1 regularization

Bootstrap

a simple approach to estimate the uncertainty in prediction

non-parametric bootstrap

given the dataset $\; \mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N \;$ subsample **with replacement** B datasets of size N

$$\mathcal{D}_b = \{(x^{(n,b)}, y^{(n,b)})\}_{n=1}^N, b = 1, \dots, B$$

train a model on each of these bootstrap datasets (called *bootstrap samples*) produce a measure of uncertainty from these models

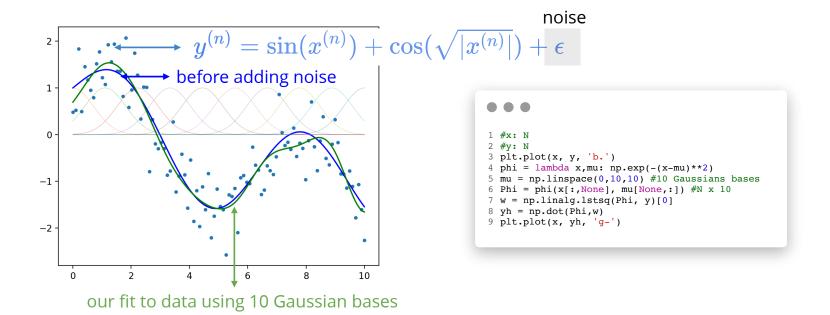
- for model parameters
- for predictions

¢

$$\phi_k(x)=e^{-rac{(x-\mu_k)^2}{s^2}}$$

Bootstrap: example

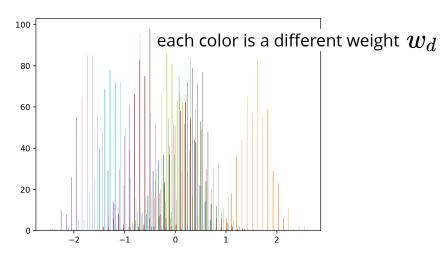
Recall: linear model with nonlinear Gaussian bases (N=100)



$$\phi_k(x)=e^{-rac{(x-\mu_k)^2}{s^2}}$$

Bootstrap: example

Recall: linear model with nonlinear Gaussian bases (N=100) using B=500 bootstrap samples gives a measure of uncertainty of the parameters

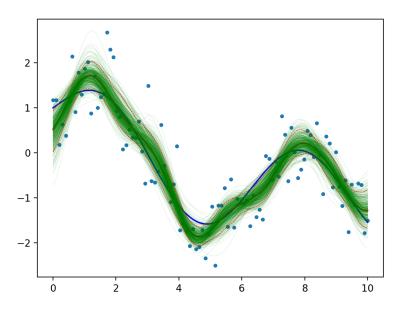


```
1 #Phi: N x D
2 #y: N
3 B = 500
4 ws = np.zeros((B,D))
5 for b in range(B):
6   inds = np.random.randint(N, size=(N))
7   Phi_b = Phi[inds,:] #N x D
8   y_b = y[inds] #N
9   #fit the subsampled data
10   ws[b,:] = np.linalg.lstsq(Phi_b, y_b[:,b])[0]
11
12 plt.hist(ws, bins=50)
```


$$\phi_k(x)=e^{-rac{(x-\mu_k)^2}{s^2}}$$

Bootstrap: example

Recall: linear model with nonlinear Gaussian bases (N=100) using B=500 bootstrap samples also gives a measure of **uncertainty of the predictions**



the red lines are 5% and 95% quantiles (for each point we can get these across bootstrap model predictions)

```
1 #Phi: N x D
2 #Phi_test: Nt x D
3 #y: N
4 #ws: B x D from previous code
5 y_hats = np.zeros((B, Nt))
6 for b in range(B):
7  wb = ws[b,:]
8  y_hats[b,:] = np.dot(Phi_test, wb)
9
10 # get 95% quantiles
11 y_5 = np.quantile(y_hats, .05, axis=0)
12 y_95 = np.quantile(y_hats, .95, axis=0)
```

Bagging

use bootstrap for **more accurate prediction** (not just uncertainty)

variance of sum of random variables

$$egin{aligned} ext{Var}(z_1+z_2) &= \mathbb{E}[(z_1+z_2)^2] - \mathbb{E}[z_1+z_2]^2 \ &= \mathbb{E}[z_1^2+z_2^2+2z_1z_2] - (\mathbb{E}[z_1]+\mathbb{E}[z_2])^2 \ &= \mathbb{E}[z_1^2] + \mathbb{E}[z_2^2] + \mathbb{E}[2z_1z_2] - \mathbb{E}[z_1]^2 - \mathbb{E}[z_2]^2 - 2\mathbb{E}[z_1]\mathbb{E}[z_2] \ &= ext{Var}(z_1) + ext{Var}(z_2) + 2 ext{Cov}(z_1,z_2) \ & ext{for uncorrelated variables this term is zero} \end{aligned}$$

Bagging

use bootstrap for **more accurate prediction** (not just uncertainty)

average of uncorrelated random variables has a lower variance

 z_1,\dots,z_B are uncorrelated random variables with mean $\,\mu\,$ and variance $\,\sigma^2$

the average $\,ar{z}=rac{1}{B}\sum_{b}z_{b}\,$ has mean $\,\mu\,$ and variance

$$\operatorname{Var}(\frac{1}{B}\sum_b z_b) = \frac{1}{B^2}\operatorname{Var}(\sum_b z_b) = \frac{1}{B^2}B\sigma^2 = \frac{1}{B}\sigma^2$$

use this to reduce the variance of our models (bias remains the same)

regression: average the model predictions $\hat{f}(x) = rac{1}{B} \sum_b \hat{f}_b(x)$

issue: model predictions are not uncorrelated (trained using the same data)

bagging (bootstrap aggregation) use bootstrap samples to reduce correlation

Bagging for classification

averaging makes sense for regression, how about classification?

wisdom of crowds

$$\overline{z_1,\ldots,z_B}\in\{0,1\}$$
 are IID Bernoulli random variables with mean $\mu=.5+\epsilon^{>0}$ for $ar{z}=rac{1}{B}\sum_b z_b$ we have $p(ar{z}>.5)$ goes to 1 as **B** grows

mode of iid classifiers that are better than chance is a better classifier

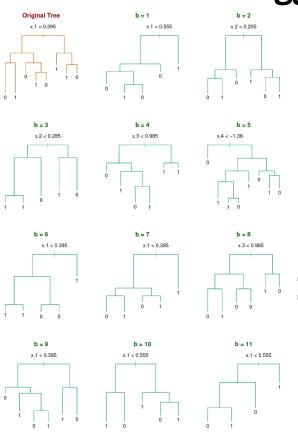
use voting

crowds are wiser when

- individuals are better than random
- votes are uncorrelated

bagging (bootstrap aggregation) use **bootstrap samples** to reduce correlation

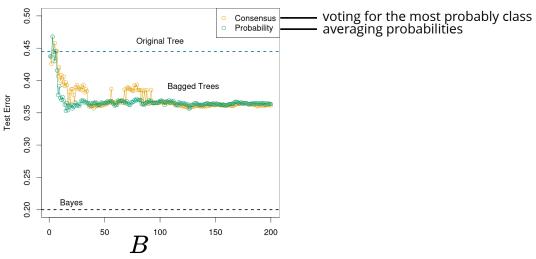
Example Bagging decision trees

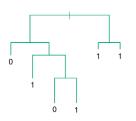


setup

- synthetic dataset
- 5 correlated features
- 1st feature is a noisy predictor of the label

Bootstrap samples create different decision trees (due to high variance) compared to decision trees, no longer **interpretable**!





Random forests

further reduce the correlation between decision trees

feature sub-sampling

only a random subset of features are available for split at each step further reduce the dependence between decision trees magic number? \sqrt{D} this is a hyper-parameter, can be optimized using CV

Out Of Bag (OOB) samples:

- the instances not included in a bootsrap dataset can be used for validation
- simultaneous validation of decision trees in a forest
- no need to set aside data for cross validation

Example: spam detection

Dataset

N=4601 emails

binary classification task: *spam - not spam*

D=57 features:

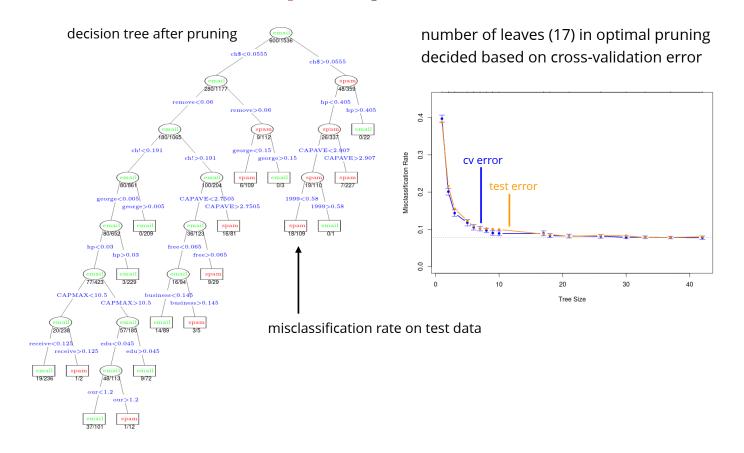
- **48** words: percentage of words in the email that match these words
 - *e.g.*, business,address,internet, free, George (customized per user)
- **6** characters: again percentage of characters that match these
 - ch; , ch(,ch[,ch! ,ch\$, ch#
- average, max, sum of length of uninterrupted sequences of capital letters:
 - CAPAVE, CAPMAX, CAPTOT

an example of **feature engineering**

average value of these features in the spam and non-spam emails

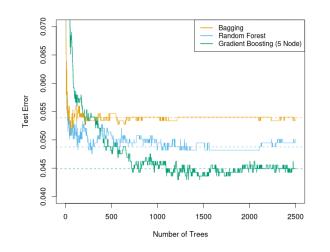
	george			_		-					
spam	0.00	2.26	1.38	0.02	0.52	0.01	0.51	0.51	0.13	0.01	0.28
email	1.27	1.27	0.44	0.90	0.07	0.43	0.11	0.18	0.42	0.29	0.01

Example: spam detection

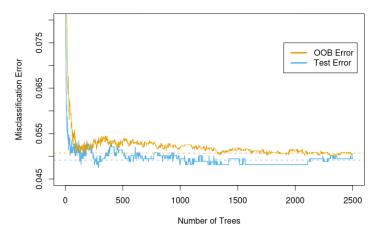


Example: spam detection

Bagging and Random Forests do much better than a single decision tree!



Out Of Bag (OOB) error can be used for parameter tuning (e.g., size of the forest)



Summary so far...

- Bootstrap is a powerful technique to get uncertainty estimates
- Bootstrep aggregation (Bagging) can reduce the variance of unstable models
- Random forests:
 - Bagging + further de-corelation of features at each split
 - OOB validation instead of CV
 - destroy interpretability of decision trees
 - perform well in practice
 - can fail if only few relevant features exist (due to feature-sampling)

Adaptive bases

several methods can be classified as *learning these bases adaptively*

decision trees

- generalized additive models
- boosting
- neural networks

 $f(x) = \sum_d w_d \phi_d(x; v_d)$

in boosting each basis is a classifier or regression function (**weak learner**, **or base learner**) create a *strong learner* by sequentially combining *week learners*

Forward stagewise additive modelling

$$ext{model} \ f(x) = \sum_{t=1}^T w^{\{t\}} \phi(x; v^{\{t\}}) \ ext{ a simple model, such as decision stump (decision tree with one node)}$$

cost
$$J(\{w^{\{t\}},v^{\{t\}}\}_t)=\sum_{n=1}^N L(y^{(n)},f(x^{(n)}))$$
 so far we have seen L2 loss, log loss and hinge loss

optimizing this cost is difficult given the form of f

optimization idea add one weak-learner in each stage t, to reduce the error of previous stage

1. find the best weak learner

$$m{v}^{\{t\}}, m{w}^{\{t\}} = rg\min_{m{v}, m{w}} \sum_{n=1}^{N} m{L}(y^{(n)}, m{f}^{\{t-1\}}(x^{(n)}) + m{w}\phi(x^{(n)}; m{v}))$$

2. add it to the current model

$$f^{\{t\}}(x) = f^{\{t-1\}}(x^{(n)}) + oldsymbol{w^{\{t\}}}\phi(x^{(n)};oldsymbol{v^{\{t\}}})$$

L_2 loss & forward stagewise linear model

model consider **weak learners** that are individual features $\,\phi^{\{t\}}(x) = w^{\{t\}} x_{d^{\{t\}}}$

cost using L2 loss for regression

at stage t
$$rg \min_{m{d}, m{w_d}} rac{1}{2} \sum_{n=1}^N \left(m{y^{(n)} - (f^{\{t-1\}}(x^{(n)})} + m{w_d} x_d^{(n)})
ight)^2$$

optimization recall: optimal weight for each d is $w_d = rac{\sum_n x_d^{(n)} r_d^{(n)}}{\sum_n x_d^{(n)^2}}$

pick the feature that most significantly reduces the residual

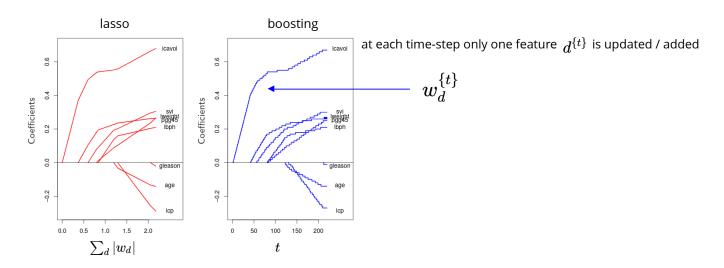
the model at time-step t: $f^{\{t\}}(x) = \sum_t rac{lpha}{d^{\{t\}}} x_{d^{\{t\}}}$

using a small $\,lpha$ helps with test error

is this related to L1-regularized linear regression?

L_2 loss & forward stagewise linear model

using small learning rate $\alpha = .01$ L2 Boosting has a similar regularization path to lasso



we can view boosting as doing feature (base learner) selection in exponentially large spaces (e.g., all trees of size K) the number of steps **t** plays a similar role to (the inverse of) regularization hyper-parameter

loss functions for **binary classification** $y \in \{-1, +1\}$

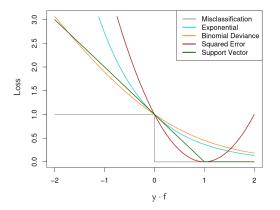
predicted label is
$$\hat{y} = \operatorname{sign}(f(x))$$

misclassification loss
$$L(y,f(x))=\mathbb{I}(yf(x)>0)$$
 (0-1 loss)

$$\log$$
-loss $L(y,f(x)) = \log \left(1 + e^{-yf(x)}\right)$ (aka cross entropy loss or binomial deviance)

Hinge loss
$$L(y, f(x)) = \max(0, 1 - yf(x))$$
 support vector loss

yet another loss function is exponential loss $L(y, f(x)) = e^{-yf(x)}$ note that the loss grows faster than the other surrogate losses (more sensitive to outliers)



useful property when working with additive models:

$$L(y,f^{\{t-1\}}(x)+w^{\{t\}}\phi(x,v^{\{t\}}))=L(y,f^{\{t-1\}}(x))\cdot L(y,w^{\{t\}}\phi(x,v^{\{t\}}))$$

treat this as a weight **q** for an instance

instances that are not properly classified before receive a higher weight

cost using exponential loss

$$J(\{w^{\{t\}},v^{\{t\}}\}_t) = \sum_{n=1}^{N} L(y^{(n)},f^{\{t-1\}}(x^{(n)}) + w^{\{t\}}\phi(x^{(n)},v^{\{t\}})) = \sum_{n} q^{(n)}L(y^{(n)},w^{\{t\}}\phi(x^{(n)},v^{\{t\}}))$$
 loss for this instance at previous stage
$$L(y^{(n)},f^{\{t-1\}}(x^{(n)}))$$

discrete AdaBoost: assume this is a simple classifier, so its output is +/- 1

optimization objective is to find the weak learner minimizing the cost above

$$\begin{split} J(\{w^{\{t\}},v^{\{t\}}\}_t) &= \sum_n q^{(n)} e^{-y^{(n)} w^{\{t\}}} \phi(x^{(n)},v^{\{t\}}) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \mathbb{I}(y^{(n)} = \phi(x^{(n)},v^{\{t\}})) \, + \, e^{w^{\{t\}}} \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \sum_n q^{(n)} + \, \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\$$

$$J(\{w^{\{t\}},v^{\{t\}}\}_t) = \sum_n q^{(n)}L(y^{(n)},w^{\{t\}}\phi(x^{(n)},v^{\{t\}}))$$

$$= e^{-w^{\{t\}}}\sum_n q^{(n)} + \left(e^{w^{\{t\}}} - e^{-w^{\{t\}}}\right)\sum_n q^{(n)}\mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}}))$$
 assuming $w^{\{t\}} \geq 0$ the weak learner should minimize this cost this is classification with weighted instances this gives $v^{\{t\}}$

still need to find the optimal $w^{\{t\}}$

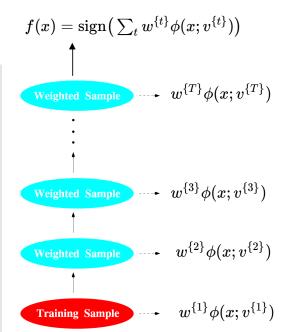
setting
$$\frac{\partial J}{\partial w^{\{t\}}}=0$$
 gives $w^{\{t\}}=rac{1}{2}\lograc{1-\ell^{\{t\}}}{\ell^{\{t\}}}$ weight-normalized misclassification error $\ell^{\{t\}}=rac{\sum_{n}q^{(n)}\mathbb{I}(\phi(x^{(n)};v^{\{t\}})\neq y^{(n)})}{\sum_{n}q^{(n)}}$

since weak learner is better than chance $\,\ell^{\{t\}} < .5\,$ and so $\,w^{\{t\}} \geq 0\,$

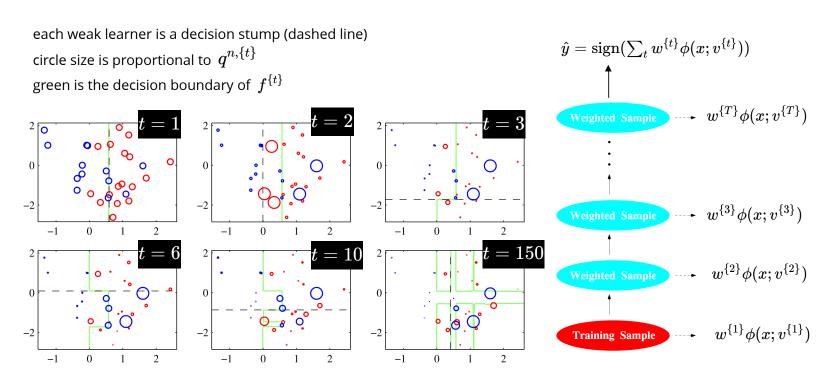
we can now update instance weights q for next iteration $q^{(n),\{t+1\}} = q^{(n),\{t\}}e^{-w^{\{t\}}y^{(n)}\phi(x^{(n)};v^{\{t\}})}$ (multiply by the new loss) since w > 0, the weight q of misclassified points increase and the rest decrease

overall algorithm for discrete AdaBoost

initialize
$$q^{(n)}:=rac{1}{N}$$
 $orall n$ for t=1:T fit the simple classifier $\phi(x,v^{\{t\}})$ to the weighted dataset $\ell^{\{t\}}:=rac{\sum_n q^{(n)}\mathbb{I}(\phi(x^{(n)};v^{\{t\}})
eq y^{(n)})}{\sum_n q^{(n)}}$ $w^{\{t\}}:=rac{1}{2}\lograc{1-\ell^{\{t\}}}{\ell^{\{t\}}}$ $q^{(n)}:=q^{(n)}e^{-w^{\{t\}}y^{(n)}\phi(x^{(n)};v^{\{t\}})}$ $orall n$ return $f(x)=\mathrm{sign}(\sum_t w^{\{t\}}\phi(x;v^{\{t\}}))$



example AdaBoost

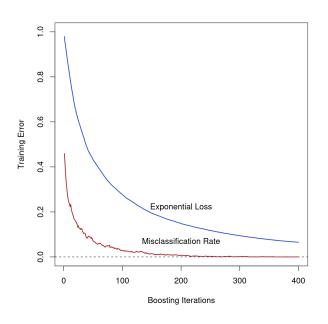


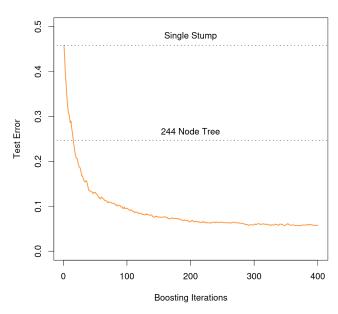
example AdaBoost

features $x_1^{(n)},\dots,x_{10}^{(n)}$ are samples from standard Gaussian label $y^{(n)}=\mathbb{I}(\sum_d x_d^{(n)}>9.34)$ notice that test

N=2000 training examples

notice that test error does not increase AdaBoost is very slow to overfit

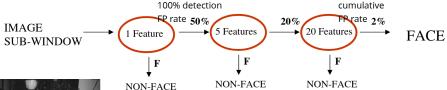




application: Viola-Jones face detection

Haar features are computationally efficient each feature is a weak learner AdaBoost picks one feature at a time (label: face/no-face) Still can be inefficient:

- use the fact that faces are rare (.01% of subwindows are faces)
- cascade of classifiers due to small rate



cascade is applied over all image subwindows fast enough for real-time (object) detection

image source: David Lowe slides

Gradient boosting

fit the weak learner to the gradient of the cost

let
$$\mathbf{f}^{\{t\}} = \left[f^{\{t\}}(x^{(1)}),\ldots,f^{\{t\}}(x^{(N)})
ight]^ op$$
 and true labels $\mathbf{y} = \left[y^{(1)},\ldots,y^{(N)}
ight]^ op$

ignoring the structure of **f**

if we use gradient descent to minimize the loss $\hat{\mathbf{f}} = \arg\min_{\mathbf{f}} L(\mathbf{f}, \mathbf{y})$

$$\hat{\mathbf{f}} = \arg\min_{\mathbf{f}} L(\mathbf{f}, \mathbf{y})$$

write $\hat{\mathbf{f}}$ as a sum of steps

$$\hat{\mathbf{f}} = \mathbf{f}^{\{T\}} = \mathbf{f}^{\{0\}} - \sum_{t=1}^T w^{\{t\}} \mathbf{g}^{\{t\}}$$
 $\mid \quad \mid \quad \mid$ $w^{\{t\}} = rg \min_w L(\mathbf{f}^{\{t-1\}} - w\mathbf{g}^{\{t\}}) rac{\partial}{\partial \mathbf{f}} L(\mathbf{f}^{\{t-1\}}, \mathbf{y})$ we can look for the optimal step size gradient vector its role is similar to residual

so far we treated **f** as a parameter vector

fit the weak-learner to negative of the gradient $v^{\{t\}} = rg \min_v rac{1}{2} || m{\phi}_v - (-m{g}) ||_2^2$ we are fitting the gradient using L2 loss regardless of the original loss function

Gradient tree boosting

apply gradient boosting to CART (classification and regression trees)

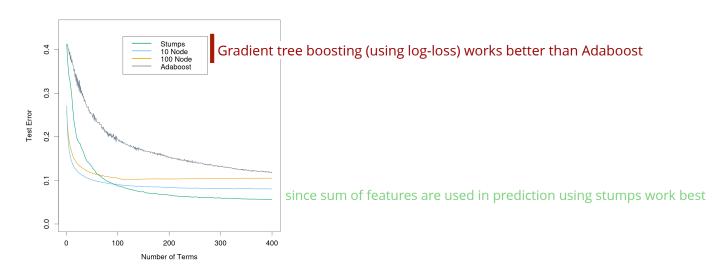
```
initialize \mathbf{f}^{\{0\}} to predict a constant for t=1:T decide T using a validation set (early stopping) calculate the negative of the gradient \mathbf{r} = -\frac{\partial}{\partial \mathbf{f}} L(\mathbf{f}^{\{t-1\}}, \mathbf{y}) fit a regression tree to \sum_{N \times D} \mathbf{r} and produce regions \mathbb{R}_1, \dots, \mathbb{R}_K shallow trees of K = 4-8 leaf usually work well as weak learners re-adjust predictions per region w_k = \arg\min_w \sum_{x^{(n)} \in \mathbb{R}_k} L(y^{(n)}, f^{\{t-1\}}(x^{(n)}) + w_k) this is effectively the line-search update f^{\{t\}}(x) = f^{\{t-1\}}(x) + \alpha \sum_{k=1}^K w_k \mathbb{I}(x \in \mathbb{R}_k) using a small learning rate here improves test error (shrinkage)
```

stochastic gradient boosting

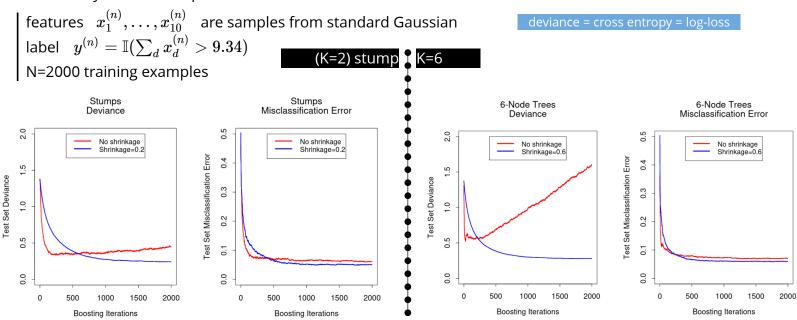
- combines bootstrap and boosting
- use a subsample at each iteration above
- similar to stochastic gradient descent

recall the synthetic example:

features $x_1^{(n)},\dots,x_{10}^{(n)}$ are samples from standard Gaussian label $y^{(n)}=\mathbb{I}(\sum_d x_d^{(n)}>9.34)$ N=2000 training examples



recall the synthetic example:

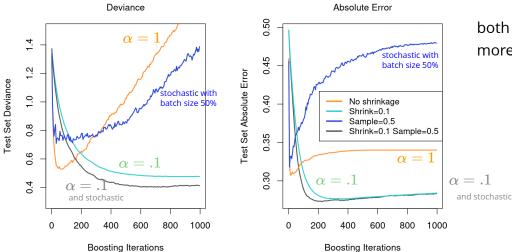


in both cases using shrinkage $~\alpha=.2~$ helps while test loss may increase, test misclassification error does not

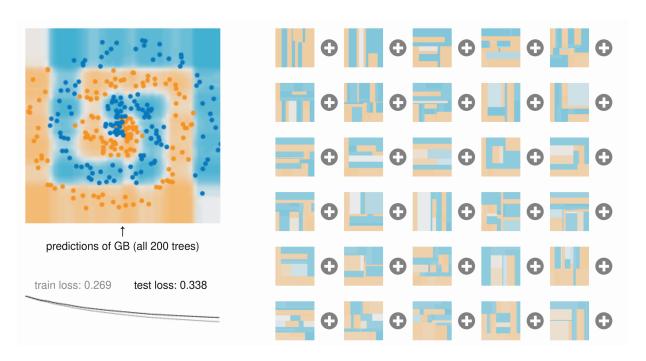
recall the synthetic example:

features $x_1^{(n)},\dots,x_{10}^{(n)}$ are samples from standard Gaussian label $y^{(n)}=\mathbb{I}(\sum_d x_d^{(n)}>9.34)$ N=2000 training examples

4-Node Trees



both shrinkage and **subsampling** can help more hyper-parameters to tune



see the interactive demo: https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html

Summary

two ensemble methods

- bagging & random forests (reduce variance)
 - produce models with minimal correlation
 - use their average prediction
- boosting (reduces the bias of the weak learner)
 - models are added in steps
 - a single cost function is minimized
 - for exponential loss: interpret as re-weighting the instance (AdaBoost)
 - gradient boosting: fit the weak learner to the negative of the gradient
 - interpretation as L1 regularization for "weak learner"-selection
 - also related to max-margin classification (for large number of steps T)
- random forests and (gradient) boosting generally perform very well

Gradient boosting

Gradient for some loss functions
$$\hat{\mathbf{f}} = \mathbf{f}^{\{T\}} = \mathbf{f}^{\{0\}} - \sum_{t=1}^T w^{\{t\}} \frac{\partial}{\partial \mathbf{f}} L(\mathbf{f}^{\{t-1\}}, \mathbf{y})$$

setting	loss function	$-rac{\partial}{\partial \mathbf{f}}L(\mathbf{f}^{\{t-1\}},\mathbf{y})$
regression	$rac{1}{2} \mathbf{y}-\mathbf{f} _2^2$	$\mathbf{y} - \mathbf{f}$
regression	$ \mathbf{y}-\mathbf{f} _1$	$\operatorname{sign}(\mathbf{y}-\mathbf{f})$
binary classification	$\exp(-\mathbf{yf})$ exponential loss	$-\mathbf{y}\exp(-\mathbf{y}\mathbf{f})$
multiclass classification	multi-class cross-entropy	$egin{array}{c} \mathbf{Y} - \mathbf{P} \ _{N imes C} \end{array}$
	one-hot coding for C-class	s classification $\mathbf{P}_{c,:} = \operatorname{softmax}(f_{[c]})$