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Learning objectives

bootstrap for uncertainty estimation
bagging for variance reduction

e random forests
boosting
e AdaBoost

e gradient boosting
e relationship to L1 regularization
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Bootstrap

a simple approach to estimate the uncertainty in prediction

non-parametric bootstrap

given the dataset D = {(z™,y™)}V_,

subsample with replacement B datasets of size N

Dy = {(z™?), "b)}n ,,b=1,...,B

train a model on each of these bootstrap datasets (called bootstrap samples)
produce a measure of uncertainty from these models

e for model parameters
e for predictions

.



Recall: linear model with nonlinear Gaussian bases (N=100)

24 | ..o<°._> y(n) — Sln(aj(n)) —+ COS(

our fit to data using 10 Gaussian bases

T sw ==  Bootstrap: example

noise

z]) + e

LCoOoJOoOU & WN R

#x: N

#y: N

plt.plot(x, y, 'b.")

phi = lambda x,mu: np.exp(-(x-mu)**2)

mu = np.linspace(0,10,10) #10 Gaussians bases
Phi = phi(x[:,None], mu[None,:]) #N x 10

w = np.linalg.lstsq(Phi, y)[0]

yh = np.dot(Phi,w)

plt.plot(x, yh, 'g-")



st Bootstrap: example

Recall: linear model with nonlinear Gaussian bases (N=100)
using B=500 bootstrap samples

gives a measure of uncertainty of the parameters

4 ws = np.zeros((B,D))
5 for b in range(B):
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st Bootstrap: example

Recall: linear model with nonlinear Gaussian bases (N=100)
using B=500 bootstrap samples

gives a measure of uncertainty of the parameters

100+

80 A

60 -

40

20 A

|
each color is a different weight w4

B =
ws = np.zeros((B,D))
b range(B):
6 inds = np.random.randint(N, size=(N))
7 Phi b = Phi[inds,:] #N x D
y b = y[inds]

ws[b,:] = np.linalg.lstsq(Phi b, y b[:,b])[

plt.hist(ws, bins=50)

M nn

]
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dp(x) =€ 7

Recall: linear model with nonlinear Gaussian bases (N=100)
using B=500 bootstrap samples

gives a measure of uncertainty of the parameters

1001 |
each color is a different weight w4
80

60 -

40

20 A

M nn

- Bootstrap: example

000
B =
ws = np.zeros((B,D))
b range(B):
inds = np.random.randint (N, size=(N))

Phi b = Phi[inds, ]
8 y_b = y[inds] #N
9 #fit the subsampled data
ws[b,:] = np.linalg.lstsq(Phi b, y b[:,b])]

plt.hist(ws, bins=50)

]
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sm-o= Bootstrap: example

Recall: linear model with nonlinear Gaussian bases (N=100)
using B=500 bootstrap samples

gives a measure of uncertainty of the parameters

100+

80 A

60 -

40

20 A

|
each color is a different weight w4

M nn

B =
ws = np.zeros((B,D))
b range(B):
inds = np.random.randint (N, size=(N))
Phi b = Phi[inds, ]
y b = y[inds]

10 ws[b,:] = np.linalg.lstsq(Phi b, y b[:,b])[0]
11
plt.hist(ws, bins=50)

3
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st Bootstrap: example

Recall: linear model with nonlinear Gaussian bases (N=100)
using B=500 bootstrap samples
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st Bootstrap: example

Recall: linear model with nonlinear Gaussian bases (N=100)
using B=500 bootstrap samples
also gives a measure of uncertainty of the predictions

#Phi: N x D

#Phi test: Nt x D

#y: N

#ws: B x D from previous code
y_hats = np.zeros((B, Nt))

(20— OV R NS
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Recall: linear model with nonlinear Gaussian bases (N=100)
using B=500 bootstrap samples
also gives a measure of uncertainty of the predictions

st Bootstrap: example

the red lines are 5% and 95% quantiles
(for each point we can get these across bootstrap model predictions)

6 for b in range(B):
7 wb = ws[b,:]
8 y_hats[b,:] = np.dot(Phi_test, wb)

e

3
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Recall: linear model with nonlinear Gaussian bases (N=100)
using B=500 bootstrap samples

also gives a measure of uncertainty of the predictions

Winter 2020 | Applied Machine Learning (COMP551)

-2t  Bootstrap:

example

the red lines are 5% and 95% quantiles
(for each point we can get these across bootstrap model predictions)

000
y _hats = np.zeros((B, Nt))
b range(B):
wb = ws[b,:]
y_hats[b,:] = np.dot(Phi test, wb)

11 y_5 = np.quantile(y_hats,
12 y_95 = np.quantile(y_hats,

.05, axis=0)
.95, axis=0)

e

3
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Bagging

use bootstrap for more accurate prediction (not just uncertainty)

variance of sum of random variables
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Bagging

use bootstrap for more accurate prediction (not just uncertainty)

variance of sum of random variables
Var(z1 + 22) = E[(21 + 22)%] — E[21 + 22)?
= E[2? + 23 + 22122] — (E[21] + E[22])?
= E[2?] + E[22] + E[22122] — E[21]* — E[22]? — 2E[21|E[2s]

= Var(zl) + Var(22) + 2COV(217 z2)

for uncorrelated variables this term is zero

A



Bagging

use bootstrap for more accurate prediction (not just uncertainty)

average of uncorrelated random variables has a lower variance
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Bagging
use bootstrap for more accurate prediction (not just uncertainty)

average of uncorrelated random variables has a lower variance

Z1,...,2B areuncorrelated random variables with mean [l and variance o

= _ 1 .
the average 2z — B Zb Zh has mean [/ and variance

Var(% Doy ) = éVar(Zb zp) = %3‘72 — %‘72

use this to reduce the variance of our models (bias remains the same)

regression: average the model predictions JE(CU) = % Db fb(w)
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Bagging

use bootstrap for more accurate prediction (not just uncertainty)

average of uncorrelated random variables has a lower variance

Z1,...,2pB areuncorrelated random variables with mean [4 and variance 0'2

= _ 1 .
the average 2z — B Zb Zh has mean [/ and variance

Var(% Doy ) = éVar(Zb zp) = %3‘72 — %‘72

use this to reduce the variance of our models (bias remains the same)

regression: average the model predictions JE(CU) = % Db fb(w)

issue: model predictions are not uncorrelated (trained using the same data)

CET{d [ T M oJell =T o Tf TN [ola)] use bootstrap samples to reduce correlation

4.
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Bagging for classification

averaging makes sense for regression, how about classification?
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Bagging for classification

averaging makes sense for regression, how about classification?

>0

Z1y..-,2B € {0, 1} are D Bernoulli random variables with mean g = .5 + €

for Z= 3,2 wehave P(Z>.5) goesto1asB grows

mode of iid classifiers that are better than chance is a better classifier
e use voting

crowds are wiser when

¢ individuals are better than random
e yotes are uncorrelated

LETLd [ - (Tl ST il Cli e Ja )l USe bootstrap samples to reduce correlation
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Bagging decision trees

setup

e synthetic dataset
e 5 correlated features
e st feature is a noisy predictor of the label

4.
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N

Original Tree

x.1<0.395

b=3
x.2<0.285

x.1 < 0.555 x.2 < 0.205

Fit

b=4 b=5
x.3 < 0.985 x4 <~1.36

o

b=7 b=8
x1 <0395 x.3<0.985

B i 0
0 1 0o 0
0 1 0 1
b=10 b=11
x1 < 0.555 x1 <0555
1
1
’
0 1
1 ] 0 1

Bagging decision trees

setup

synthetic dataset
e 5 correlated features

e st feature is a noisy predictor of the label

Bootstrap samples create different decision trees (due to high variance)
compared to decision trees, no longer interpretable!

4.
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Bagging decision trees

Original Tree =
setup
: 7 L e synthetic dataset

0 10 0

1o . ]J_\ 0 ﬁ e 5 correlated features

vt v ° ' e st feature is a noisy predictor of the label
b=3 b=d b=s Bootstrap samples create different decision trees (due to high variance)
x.2<0.285 x.3 < 0.985 x4 <-1.36

compared to decision trees, no longer interpretable!

o

. bl 2 Consensus voting for the most probably class
o 0 1 o Probability averaging probabilities
! e 0 Original Tree

D
o

b=6 b=7 b=8

x.1<0.395 x.1<0.395 x.3<0.985 Sr |

(=] Bagged Trees

OH

T
a

o

b=9 b=10 b=11
x.1<0.395 x.1<0.555 x1 <0555

0.25
|

’_T—‘j 0 50 100 150 200




Random forests

further reduce the correlation between decision trees
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feature sub-sampling
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Random forests

further reduce the correlation between decision trees

feature sub-sampling
only a random subset of features are available for split at each step
J further reduce the dependence between decision trees

magic number? 4/ D

this is a hyper-parameter, can be optimized using CV
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o

Random forests

further reduce the correlation between decision trees

o feature sub-sampling
only a random subset of features are available for split at each step
J further reduce the dependence between decision trees

magic number? 4/ D

this is a hyper-parameter, can be optimized using CV

Out Of Bag (OOB) samples:

e the instances not included in a bootsrap dataset can be used for validation
e simultaneous validation of decision trees in a forest
* No need to set aside data for cross validation

.5



Example: spam detection

N=4601 emails

binary classification task: spam - not spam
D=57 features:
e 48 words: percentage of words in the email that match these words
m eg, business,address,internet, free, George (customized per user)

e 6 characters: again percentage of characters that match these
m ch;, ch(,ch[,ch!,ch$, ch#

e average, max, sum of length of uninterrupted sequences of capital letters:

= CAPAVE, CAPMAX, CAPTOT
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Example: spam detection

N=4601 emails

binary classification task: spam - not spam
D=57 features:
e 48 words: percentage of words in the email that match these words
m eg, business,address,internet, free, George (customized per user)

e 6 characters: again percentage of characters that match these
m ch;, ch(,ch[,ch!,ch$, ch#

e average, max, sum of length of uninterrupted sequences of capital letters:

= CAPAVE, CAPMAX, CAPTOT

average value of these features in the spam and non-spam emails

george you your hp free hpl ' our re edu remove
spam 0.00 226 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email 1.27 1.27 0.44 090 0.07 0.43 0.11 0.18 0.42 0.29  0.01

an example of
feature engineering

4.

6



Example: spam detec

decision tree after pruning

ch$<0.0555
e

remove<0.06

remove>>0.06

A80/1085., /812,
e \\ / \
ch!<0.191 N george<0.15 |
yd ch!=0.191 {
Y, X
/
£
!
/8078,

gcorgc{DﬂOE‘!

| george=0.005

CAP}\{AX(_lD‘E\ busines

CAPMAX>10.5 [ business>0.145

o B
I‘.‘zofas \ /571 aa,‘ 4789

receive<0.128 edu<0.045 |
| receive»0.125 [

eduz0.045

| george>0.15

gﬁ i
8007536
P

S
ch$>0.0555

hp<0.405

hp>0.405
\

\
G
[2er3at ‘

CAPAVE<2.807

| CAPAVE>2.907

/ \
G

1999<0.58 |

1999>0.58

8109
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Example: spam detection

decision tree after pruning gﬁ;?@

ch§<0.0555 ™~
ch$>0.0555

i am
807117 487359

remove<0.06 hp<0.405

/ remove>0.06 ;" llp)O 405
- Q@ @ E;
/fs'rms& e -26“3

ch!<0.191 AN george<0. 15- CAPAVE<2. ﬁm-/
S ch!>0.191 ; gcolgD)D 15 ," CAPAVE>2.907
// \
/ \
@ SRR
/807881, f204 6/109 ‘1 'ﬂa
gcorgc{o‘uﬂﬁl"‘ CAPA\ E\2.T‘.305 1999.<O 58 |
| george>0.005 | cAPAVE=2.7505 [ 1999>0.58
/ \ A \ i \
/80765, 07208 /367123 B
hp<0.03 | free<<0.065 |
," hp>0.03 | free>0.065
( 2 Lo G
/777423 w1§§4 o729
CAPMAX<10.5 \ '\)usllmss(ﬂ 145
/ CAPMAX>10.5 | business>0.145

CMQ ma “ * misclassification rate on test data

receive<0. 125. edu<0.045 |
[ receive>0.125 [ eduz0.045




Example: spam detection

decision tree after pruning ,,Cm;?@

ch§<0.0555 ™~
ch$>0.0555

e .
= G
807117 4%59

remove<0.06 Ilp(O 405 "-‘

/ remove>0.06 ;‘ llp)O 405
) Q@ @ E;
18071065, e
/ \,

ch!<0.191 \\ george<0. 15 CAPAVE(‘,Z,QEI'!
yd ch!>0.191 ,‘ gLolgD)D 15 | CAPAVE>2.907
/- / [ 3
/ \
= R Gl B G
/807881, f204 6/109 'ﬂa
george<0. 005} CAPAV E<2. 7“.305 1999<0.58 "‘.‘
.‘" goorg(}@ 005 ‘,"‘ CAF‘AVE >2.7505 ;‘ 1959;0 58

R R R
367T23 BIT09

hp<0.03 "-L free<0.065 ",
/' hp=0.03 ,-‘ free>0.065
G L Gy
Tz [emEa) 9729
CAPMAX<10.5 \ business <0, 145
/ CAPMAX>10.5 ; business>0.145
@i Eal [
[20723 57r1 aa
receive<0.125 edu<0.045 "a
," receive>0.125 ;’ edu>0.045
) B G
48_'T
our<1.2
ourz1.2

=L

Misclassification Rate

number of leaves (17) in optimal pruning

decided based on cross-validation error

0.4
1
ol

0.3

Cv error

H/H

0.1

0.0

Tree Size

misclassification rate on test data
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Example: spam detection

Bagging and Random Forests do much better
than a single decision tree!

0.070
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Random Forest
o —— Gradient Boosting (5 Node)
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8
o
o
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Example: spam detection

Bagging and Random Forests do much better
than a single decision tree!

o
= )
S Bagging
© Random Forest
o —— Gradient Boosting (5 Node)
[¥e)
g -
o
o
(5]
g -
o
g
= wn
L8 J
g © |
'_
(=]
wn
2
o
[Te]
<
g
3 %wmmmw
(=]
=
g
(=]

I | I | I |
0 500 1000 1500 2000 2500

Number of Trees
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Misclassification Error

Out Of Bag (OOB) error can be used for parameter tuning
(e.g., size of the forest)

[Te]

P~

5

< OOB Error
o Test Error

wn

w0

8

o

[Ty

[Ty)

8

o

[Ty

=

3

o T T T T T T

0 500 1000 1500 2000 2500

Number of Trees
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Summary so far...

e Bootstrap is a powerful technique to get uncertainty estimates
e Bootstrep aggregation (Bagging) can reduce the variance of unstable models



Summary so far...

e Bootstrap is a powerful technique to get uncertainty estimates
e Bootstrep aggregation (Bagging) can reduce the variance of unstable models
e Random forests:

Bagging + further de-corelation of features at each split

OOB validation instead of CV

destroy interpretability of decision trees

perform well in practice

can fail if only few relevant features exist (due to feature-sampling)



Adaptive bases

several methods can be classified as learning these bases adaptively

f(z) = Zd wypg(T;vq)

decision trees

boosting e

neural networks

y

A

in boosting each basis is a classifier or regression function (weak learner, or base learner)

create a strong learner by sequentially combining week learners

A



Forward stagewise additive modelling
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Forward stagewise additive modelling

f(w) = Z w{t} ¢(w, ’U{t}) a simple model, such as decision stump (decision tree with one node)
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Forward stagewise additive modelling

f(a:) = Z w{t} ¢(w, ’U{t}) a simple model, such as decision stump (decision tree with one node)

J({w, v18}) =3 L(y™, f(z™))

so far we have seen L2 loss, log loss and hinge loss

optimizing this cost is difficult given the form of f
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Forward stagewise additive modelling

f(a:) = Z w{t} ¢(w, ’U{t}) a simple model, such as decision stump (decision tree with one node)

J({w, v18}) =3 L(y™, f(z™))

so far we have seen L2 loss, log loss and hinge loss

optimizing this cost is difficult given the form of f

optimization 1s/==1 | add one weak-learner in each stage t, to reduce the error of previous stage

1. find the best weak learner
3 N n — n n
/U{t}’w{t} — arg mlnv,w anl L(y( ), f{t 1} (ag( )) _|_ w¢(w( ), ’U))
2. add it to the current model

Winter 2020 | Applied Machine Learning (COMP551)



Lo loss & forward stagewise linear model

consider weak learners that are individual features gb{t} (z) = w{t}md{t}
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consider weak learners that are individual features gb{t} (z) = w{t}md{t}

cost using L2 loss for regression
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Loy loss & forward stagewise linear model

consider weak learners that are individual features gb{t} (z) = w{t}md{t}

cost using L2 loss for regression

residual r(®

2
atstaget argming,,, % Zivzl (y(”) — (U (2) + wdmg@)))

i " T
elolilpglb4zlile]aM  recall: optimal weight for each d is Wgq = Zz’;+n)‘é

pick the feature that most significantly reduces the residual
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Loy loss & forward stagewise linear model

consider weak learners that are individual features gb{t} (z) = w{t}md{t}

cost using L2 loss for regression

residual r(®

2
atstaget argming,,, % Zivzl (y(”) — (U (2) + wdmg@)))

T " T
optimization recall: optimal weight for each d is wWg — Zﬁ+n)‘é

pick the feature that most significantly reduces the residual

the model at time-step t: f{t} (a:) = Zt w;{ig I g{ty

is this related to L1-regularized linear regression?

1



Lo loss & forward stagewise linear model

using small learning rate

Coefficients

0.6

0.0 0.2 0.4

-0.2

lasso

Icavol

e

Ioph

<

gleason

age

Icp

0.0

T
0.5

T T T
1.0 1.5 2.0

Zd |wa

Coefficients

0.6

0.4

0.0 0.2

A

-0.2

L2 Boosting has a similar regularization path to lasso

boosting

Icavol

| at each time-step only one feature g{t} is updated / added

wlf

et

Ibph

= gleason

age

lcp

T
0

50

100 150 200

t
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Lo loss & forward stagewise linear model

using small learning rate L2 Boosting has a similar regularization path to lasso
lasso boosting
cavol wva | ateach time-step only one feature {t} is updated / added
t

g g 1 b ’w;{z )
o |9

3 Jieason 3 =gieason

T . i .

> g [wal t

we can view boosting as doing feature (base learner) selection in exponentially large spaces (e.g., all trees of size K)

the number of steps t plays a similar role to (the inverse of) regularization hyper-parameter

7.
Winter 2020 | Applied Machine Learning (COMP551)



Exponential loss

loss functions for binary classification y € {—1,+1}

predicted label is § = sign(f(x))
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predicted label is § = sign(f(x))

misclassification loss L(y, f(z)) = I(yf(z) > 0)
(0-1 loss)
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Exponential loss

loss functions for binary classification y € {—1,+1}

predicted label is § = sign(f(x))

misclassification loss L(y, f(z)) = I(yf(z) > 0)
(0-1 loss)
log-loss L(y, f(=)) = log (1 + & ¥/*))

(aka cross entropy loss or binomial deviance)
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Exponential loss

loss functions for binary classification y € {—1,+1}

predicted label is § = sign(f(x))

misclassification loss L(y, f(z)) = I(yf(z) > 0)
(0-1 loss)

log-loss L(y, f(=)) = log (1 + & ¥/*))

(aka cross entropy loss or binomial deviance)

Hinge loss L(y, f(z)) = max(0,1 — yf(z))

support vector loss

A



Exponential loss

loss functions for binary classification y € {—1,+1}

predicted label is § = sign(f(x))

3 Misclassification
E;ponlential ]
misclassification loss L(y, f(x)) = I(yf(z) > 0) o — SovmedEror
(0_1 |OSS) —— Support Vector

2.0

log-loss L(y, f(z)) = log (1 + e ¥/@)

(aka cross entropy loss or binomial deviance)

Loss
1.5

1.0

Hinge loss L(y, f(z)) = max(0,1 — yf(z))

support vector loss

0.5
1

0.0
|

yet another loss function is

note that the loss grows faster than the other surrogate losses (more sensitive to outliers)



Exponential loss

loss functions for binary classification y € {—1,+1}

predicted label is § = sign(f(x))

Misclassification

Exponential

Binomial Deviance
—— Squared Error
Support Vector

3.0

misclassification loss L(y, f(z)) = I(yf(z) > 0)
(0-1 loss)

2.5
!

2.0

log-loss L(y, f(z)) = log (1 + e ¥/@)

(aka cross entropy loss or binomial deviance)

Loss
1.5

1.0

Hinge loss L(y, f(z)) = max(0,1 — yf(z))

support vector loss

0.5
1

0.0
|

yet another loss function is

note that the loss grows faster than the other surrogate losses (more sensitive to outliers)

useful property when working with additive models:

L(y, 1 (z) + w(z,v19)) = L(y, 17V (2)) - Ly, w! ¢(z, v1))

treat this as a weight q for an instance
instances that are not properly classified before receive a higher weight



AdaBoost

«eoie| using exponential loss

(w0 }) = S0 L, £ @) + w (e, 0)) = 5, ¢ L™, w o), 01))

n=1

loss for this instance at previous stage
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AdaBoost

using exponential loss
I, 003, = S, Ly, 160 @) + 0l g(a), 00)) = 3, ¢ L, w0 o)

n=1

loss for this instance at previous stage

discrete AdaBoost: assume this is a simple classifier, so its output is +/- 1
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AdaBoost

using exponential loss

J({w{t}, rv{t} }t) — ZN L(y(n), f{t_l} (w(n)) + w{t}¢(x(n), 'U{t})) — Zn q(n)L(y(n), w{t}¢($(7L), U{t}))

n=1

loss for this instance at previous stage

discrete AdaBoost: assume this is a simple classifier, so its output is +/- 1

objective is to find the weak learner minimizing the cost above

J({’w{t}, it} }t) — Zn q(n)e_y(n)w{t}d,(z(n) ol

8
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AdaBoost

using exponential loss

J({wlth vit}}) = ZnN:1 L(y™, fit=1 (M) 4+ (2, v{t)) = > g™ L(y™, witt g (2 1)

loss for this instance at previous stage

discrete AdaBoost: assume this is a simple classifier, so its output is +/- 1

objective is to find the weak learner minimizing the cost above

J({w{t}, it }t) — Zn q(n)e_y(n)w{t}¢(z(n) ot

=" Y, ¢y = gz, vith) + e 3, g™ # g™, vlth))
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AdaBoost

using exponential loss
I, 003, = S, Ly, 160 @) + 0l g(a), 00)) = 3, ¢ L, w0 o)

n=1

loss for this instance at previous stage

discrete AdaBoost: assume this is a simple classifier, so its output is +/- 1

objective is to find the weak learner minimizing the cost above

J({’w{t}, it} }t) — Zn q(n)e_y(n)w{t}d,(z(n) ol

=" 3, ¢ = ¢, o) + e T, ¢WIE" # (a0l

= "3, 0" 4 (@ e )T, ¢ # g, o)

assuming with > () the weak learner should minimize this cost
this is classification with weighted intances

8
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Exponential loss & AdaBoost

J({w{t}, 'U{t} }t) = Zn q(n)L(y(n), w{t}(b(x(TL), ,U{t}))

=e "0+ @ — e, g™ # g, v))

does not depend on assuming it > () the weak learner should minimize this cost
the weak learner this is classification with weighted instances
this gives o1t}
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Exponential loss & AdaBoost

J({ul,o®}) = ¥ g Ly™, witho(a), o))

— e—w{f} Zn q(n) + (ew{t} . e—w{t}) Zn q(n)]l(y(n) # ¢(w(n),v{t}))

assuming w{t} > () the weak learner should minimize this cost
this is classification with weighted instances
this gives o1t}

still need to find the optimal ’w{t}
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Exponential loss & AdaBoost

J({ul,o®}) = ¥ g Ly™, witho(a), o))

it} {t} _apith
=Y g (@ =) S, gy £ ga, i)
assuming w{t} > () the weak learner should minimize this cost

this is classification with weighted instances
this gives ¢ {t}

still need to find the optimal ’w{t}

. . _plt}
setting % — () gives witt = %log 15{5}
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-xponential loss & AdaBoost

T({w®,0}) = 3 g Ly™, wb o (20 o1
= e—w“} Zn q(n) + (ew{t} _ e_w{t}) Zn q(n)H(y(n) = ¢(w(n),v{t}))

assuming w{t} > () the weak learner should minimize this cost
this is classification with weighted instances
this gives ¢ {t}

still need to find the optimal ’w{t}

: oJ t} 1
setting BT = — 0 gives with = 5 log Wi

since weak learner is better than chance E{t} < .5 andso with >0



-xponential loss & AdaBoost

J({wit, v}) = Yon g™ L(y™, witt g (200 1)

— e—w{f} Zn q(n) + (ew{t} . e—w{t}) Zn q(n)H(y(n) # ¢(w(n),v{t}))

assuming w{t} > () the weak learner should minimize this cost
this is classification with weighted instances
this gives ¢ {t}

still need to find the optimal ’w{t}

setting % — () gives w{t} —
w

1 1—ptt
5 log At

since weak learner is better than chance E{t} < .5 andso with >0

we can now update instance weights q for next iteration (") {t+1} — q(n),{t}e—w{t}y(”)¢(a;(”) i)

(multiply by the new loss)
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Exponential loss & AdaBoost

J({ul,o®}) = ¥ g Ly™, witho(a), o))

— e—w{f} Zn q(n) + (ew{t} . e—w{t}) Zn q(n)H(y(n) # ¢(w(n),v{t}))

assuming w{t} > () the weak learner should minimize this cost
this is classification with weighted instances
this gives ¢ {t}

still need to find the optimal ’w{t}

: : _pf{t}
setting % — () gives witr = %log %

since weak learner is better than chance E{t} < .5 andso with >0

we can now update instance weights q for next iteration (7):{t+1} — (n)a{t}e—w{t}y(n)¢(w(n)W{t})
p ghts q q q

(multiply by the new loss) since w > 0, the weight q of misclassified points increase and the rest decrease

8
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-xponential loss & AdaBoost

overall algorithm for discrete AdaBoost T

!
!

Training Sample JEEES

\J
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-yxponential loss & AdaBoost

overall algorithm for discrete AdaBoost T

|

Training Sample JEEES

wil ¢(a; vl1)
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-yxponential loss & AdaBoost

overall algorithm for discrete AdaBoost T

|

Training Sample JEEES

wl?) (a; v)

wil ¢(a; vl1)
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-yxponential loss & AdaBoost

overall algorithm for discrete AdaBoost T

|

Training Sample JEEES

'

Wl (3 01T)

wl® (z; v)

wl?) (a; v)

wil ¢(a; vl1)

8
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. a2 B 4R ’j "77’ Ny o
Exponential loss
y q O " 4 |

overall algorithm for discrete AdaBoost

2 AdaBoost

f(z) = sign( 3, w ¢(a; v1*))

T

o w T (s o™

T
- wig(z;0i3)

T
. w{2}¢(w; U{2})

T

> - )

8.4



AdaBoost

f(z) = sign( 3, w ¢(a; v1*))

overall algorithm for discrete AdaBoost T
initialize ¢ := & Vn w0l
for t=1:T

fit the simple classifier ¢($,U{t}) to the weighted dataset

) (™ (8 )y ™
£ = St S - w(z; v
_ptt}
witt := 2 log —1£{f} T
q(n) - q(n)e—w{t}y(”)gb(:c(”) it vn . ’LU{2}(]5(£L’;’U{2})

oM (2) = sign($3, w g(z;01)) o we(e )

8
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AdaBoost

each weak learner is a decision stump (dashed line) ) an (5" @ : {t}))
= sign w T;v
circle size is proportional to g™t} Yy gn(p, we
green is the decision boundary of f{t} T
o T} . {7}
2fo IOO =1 2F, I O = 2 21 " =3 w ¢((E,’U )
o oo p Q) o qOo . o e 0
o0 8.9 ©° ° o . O o . O
f %@O © °°G|b° ob, ° ° T
o Q ° 9
-2 0Yo© ) O
o] | ° e w{3}¢(33,/v{3})
-1 0 1 2 1 0 T
e —
*0 . . ® o . w{2}¢(w; v{2})
oF — — = — g @— - 0 3
o..,° |  F--=- T
° O O
) 0 Q 5 8 e (s )
-1 0 1 2 -1 0
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features =«

(n)
1

9 0 e

(n)

.7m10

AdaBoost

are samples from standard Gaussian
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AdaBoost
(n) (n)

features z;’,...,x;) aresamples from standard Gaussian
label ™ =I(3, 2™ > 9.34)
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AdaBoost
(n) (n)

features z;’,...,x;) aresamples from standard Gaussian
label ™ =I(3, 2™ > 9.34)
N=2000 training examples
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Training Error

1.0

0.8

0.6

0.4

0.2

0.0

AdaBoost

features x&"), e ,m%) are samples from standard Gaussian

label ™ =I(3, 2™ > 9.34)
N=2000 training examples

Exponential Loss

Misclassification Rate

0 100 200 300 400

Boosting lterations
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AdaBoost

features x&"), e ,m%) are samples from standard Gaussian
2
label y(n) = H(Zd w(n)d > 9.34) notice that test error does not increase
N=2000 training examples AdaBoost is very slow to overfit
SI o |
- © Single Stump
o _| < |
o o
s @ o |
g o =6 o
'-'; U‘EJ 244 Node Tree
E e
©
s 3 SR
o Exponential Loss -
o o
Misclassification Rate
o | T ——— _ B oS |
o o
T T T T T | T T I I
0 100 200 300 400 0 100 200 300 400
Boosting lterations Boosting lterations
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application: Viola-Jones face detection

Haar features are computationally efficient

W) each feature is a weak learner

d AdaBoost picks one feature at a time (abel: face/no-face)
A Still can be inefficient:

% ¢ use the fact that faces are rare (.01% of subwindows are faces)
| ° cascade of classifiers due to small rate

image source: David Lowe slides



application: Viola-Jones face detection

Haar features are computationally efficient

W) each feature is a weak learner

Ada Boost picks one feature at a time (abel: face/no-face)
V’ ‘ Still can be inefficient:

! e use the fact that faces are rare (.01% of subwindows are faces)
e cascade of classifiers due to small rate

100% detection cumulative

R rate 509, 20% Aate 2%
IMAGE — - > —>{ 20 Features) —— R ACE
SUB-WINDOW
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image source: David Lowe slides



application: Viola-Jones face detection

Haar features are computationally efficient

W) each feature is a weak learner

) AdaBoost picks one feature at a time (abel: face/no-face)
V’ \ Still can be inefficient:

! e use the fact that faces are rare (.01% of subwindows are faces)
e cascade of classifiers due to small rate

100% detection cumulative

R rate 509, 20% Aate 2%
IMAGE — - > —>{ 20 Features) —— R ACE
SUB-WINDOW
¥ ¥ Ir

NON-FACE NON-FACE NON-FACE

cascade is applied over all image subwindows

image source: David Lowe slides



application: Viola-Jones face detection

Haar features are computationally efficient

'\ each feature is a weak learner

| AdaBoost picks one feature at a time (abel: face/no-face)
StiII can be inefficient:

‘ e use the fact that faces are rare (.01% of subwindows are faces)
e cascade of classifiers due to small rate

100% detection cumulative

R rate 509, 20% Aate 2%
IMAGE ., - > —>{ 20 Features) —— R ACE
SUB-WINDOW
¥ ¥ Ir

NON-FACE NON-FACE

NON-FACE

cascade is applied over all image subwindows

fast enough for real-time (object) detection

image source: David Lowe slides




Gradient boosting

fit the weak learner to the gradient of the cost



Gradient boosting

fit the weak learner to the gradient of the cost

let £t} — [f{t}(w(l))7 - .,f{t}(m(N))}T

andtrue labels y = [y(l)

IR

,yuv)f
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Gradient boosting

fit the weak learner to the gradient of the cost

et £ = [ (), ..

, fit (x(N))}T and true labels y = [y(l), e ,y(N)} !

ignoring the structure of f
if we use gradient descent to minimize the loss ~ f = arg ming L(f, y)
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Gradient boosting

fit the weak learner to the gradient of the cost

et fi = [l (W), ., fl (:B(N))}T and true labels y = [y1),... ,y(N)}T

ignoring the structure of f
if we use gradient descent to minimize the loss ~ f = arg ming L(f, y)

write f as a sum of steps f=fT = £l0} _ fo—l glt}

gradient vector
its role is similar to residual
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Gradient boosting

fit the weak learner to the gradient of the cost

let £it} = [f{t}(:c(l)),...,f{t}(x(N))}T and true labels y = [y(l),...,y(N)}T

ignoring the structure of f
if we use gradient descent to minimize the loss ~ f = arg ming L(f, y)

write f as a sum of steps f=fT = £l0} _ fo—l glt}

gradient vector
its role is similar to residual
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Gradient boosting

fit the weak learner to the gradient of the cost

let £it} = [f{t}(:c(l)),...,f{t}(x(N))}T and true labels y = [y(l),...,y(N)}T

ignoring the structure of f
if we use gradient descent to minimize the loss ~ f = arg ming L(f, y)

write f as a sum of steps f=fT = £l0} _ fo glt}
|
s L (01, y)

gradient vector

its role is similar to residual
so far we treated f as a parameter vector
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Gradient boosting

fit the weak learner to the gradient of the cost

et fi = [l (W), ., fl (:B(N))}T and true labels y = [y1),... ,y(N)}T

ignoring the structure of f
if we use gradient descent to minimize the loss ~ f = arg ming L(f, y)

write f as a sum of steps f=fT = £l0} _ Zz;l glt}
|

S (£t y)

gradient vector

its role is similar to residual
so far we treated f as a parameter vector

fit the weak-learner to negative of the gradient  v{*} = arg min, o, — (—8)|3
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Gradient boosting

fit the weak learner to the gradient of the cost

et fi = [l (W), ., fl (:B(N))}T and true labels y = [y1),... ,y(N)}T

ignoring the structure of f
if we use gradient descent to minimize the loss ~ f = arg ming L(f, y)

write f as a sum of steps f=fT = £l0} _ fo glt}

S (£t y)

gradient vector

its role is similar to residual
so far we treated f as a parameter vector

fit the weak-learner to negative of the gradient  v{*} = arg min, o, — (—8)|3

we are fitting the gradient using L2 loss regardless of the original loss function |

10.

1



Gradient tree boosting

apply gradient boosting to CART (classification and regression trees)

initialize {0} +to predict a constant
for t=1:T
calculate the negative of the gradient — _Q ( {t—l} )

fit a regression tree to X and produce regions Rl RK
SRSl

Y
N

re-adjust predictions per region 4, — arg min,, Zz(”)ERk L(y("),f{t_l}(a:(”)) ‘|‘wk)

update f{t}(a:) = flt=13 (z) + Zle wil(z € Ry)

return f{T}(CE)
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Gradient tree boosting

apply gradient boosting to CART (classification and regression trees)

initialize {0} +to predict a constant

for t=1:T (ecide T using a validation set (early stopping)

lculate th t f th dient _ 0 t—1
calculate e negative o e gradient p — 8fL(f{ }’y)

fit a regression tree to X and produce regions Rl RK
SRSl

Y
N

re-adjust predictions per region 4, — arg min,, Zz(”)ERk L(y("), f{t—l} (x(n)) + wk)

update f{t}(a:) = flt=13 (z) + Zle wil(z € Ry)

return f{T}(CE)
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Gradient tree boosting

apply gradient boosting to CART (classification and regression trees)

initialize {0} +to predict a constant

for t=1:T (ecide T using a validation set (early stopping)

lculate th t f th dient _ 0 t—1
calculate e negative o e gradient p — 8fL(f{ }’y)

fit a regression tree to X and produce regions Rl shallow trees of K = 4-8 leaf usually
3o

work well as weak learners

, . Rg

re-adjust predictions per region 4, — arg min,, Zz(”)ERk L(y("), f{t—l} (x(n)) + wk)

update f{t}(a:) = flt=13 (z) + Zle wil(z € Ry)

return f{T}(CE)
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Gradient tree boosting

apply gradient boosting to CART (classification and regression trees)

initialize {0} +to predict a constant

for t=1:T (ecide T using a validation set (early stopping)

lculate th t f th dient _ 0 t—1
calculate e negative o e gradient p — 8fL(f{ }’y)

fit a regression tree to X and produce regions Rl shallow trees of K = 4-8 leaf usually
3o

work well as weak learners

, . Rg

re-adjust predictions per region 4, — arg min,, Zz(”)ERk L(y("), f{t—l} (x(n)) + wk)

update f{t}(a:) = flt=13 (z) + Zle wil(z € Ry)

return f{T}(CE)
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Gradient tree boosting

apply gradient boosting to CART (classification and regression trees)

initialize {0} +to predict a constant

for t=1:T (ecide T using a validation set (early stopping)

lculate th t f th dient _ 0 t—1
calculate e negative o e gradient p — 8fL(f{ }’y)

shallow trees of K = 4-8 leaf usually

fit a regression tree to X
work well as weak learners

: andl peodiee ceglons oo TR
N

re-adjust predictions per region 4, — arg min,, Zz(”)ERk L(y("), f{t—l} (x(n)) + wk)

update  £{t}(g) = ft-U(g) + & X | wyl(z € Ry)

et f{T}(:B) using a small learning rate here improves test error (shrinkage)
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Gradient tree boosting

apply gradient boosting to CART (classification and regression trees)

initialize {0} +to predict a constant

for t=1:T (ecide T using a validation set (early stopping)

lculate th t f th dient _ 0 t—1
calculate e negative o e gradient p — 8fL(f{ }’y)

shallow trees of K = 4-8 |eaf usually

fit a regression tree to X
work well as weak learners

: andl peodiee ceglons oo TR
N

re-adjust predictions per region 4, — arg min,, Zz(”)ERk L(y("), f{t—l} (x(n)) + wk)

update f{t}(a:) = flt=13 (z) + Zle wil(z € Ry)

et f{T}(:B) using a small learning rate here improves test error (shrinkage)

stochastic gradient boosting

e combines bootstrap and boosting
e use a subsample at each iteration above
e similar to stochastic gradient descent
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Gradient tree boosting

recall the synthetic example:

features xg"), cee :c%) are samples from standard Gaussian

label y™ =1(3, 2 > 9.34)
N=2000 training examples
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Test Error
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Gradient tree boosting

recall the synthetic example:

features xgn), cee w%) are samples from standard Gaussian
label y™ =1(3, 2 > 9.34)
N=2000 training examples

—— Stumps

10 Node I Gradient tree boosting (using log-loss) works better than Adaboost

100 Node
—— Adaboost

T T T T T
0 100 200 300 400

Number of Terms
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Test Error
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Gradient tree boosting

recall the synthetic example:

features xgn), cee w%) are samples from standard Gaussian
label y™ =1(3, 2 > 9.34)
N=2000 training examples

—— Stumps

10 Node I Gradient tree boosting (using log-loss) works better than Adaboost

100 Node
—— Adaboost

T T T T T
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Number of Terms
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Gradient tree boosting

recall the synthetic example:

features a:gn), cee w%) are samples from standard Gaussian

label y™ =13,z > 9.34)
N=2000 training examples
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Test Set Deviance

Gradient tree boosting

recall the synthetic example:

features a:gn), cee w%) are samples from standard Gaussian

label y™ =13,z > 9.34)

o (K=2) stump
N=2000 training examples
Stumps Stumps
Deviance Misclassification Error
o w
o — No shrinkage e — No shrinkage
—— Shrinkage=0.2 — Shrinkage=0.2

S «

w | G o ]

- [ =
=]
g o
= o

o | &

2 =
82 o
E o
]

w | 7]

© a =
R

o | e

© T T T T © T T T T

0 500 1000 1500 2000 0 500 1000 1500 2000
Boosting lterations Boosting lterations
a=.2
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Test Set Deviance

Gradient tree boosting

recall the synthetic example:
features a:gn), cee w%) are samples from standard Gaussian

() — ) - 9.34
abel ¥ =1(2qa > 9-34) ey « re—

N=2000 training examples

(]
{ ]
DStu.mps Miscl S!fl.‘mp.s E () 6-Node Trees 6-Node Trees
eviance isclassification Error ° Deviance Misclassification Error
o | w ] = 0
(8] P . o P . o d -
No shrinkage No shrinkage o ——  No shrinkage ——  No shrinkage
— Shrinkage=0.2 . — Shrinkage=0.2 ——  Shrinkage=0.6 ——  Shrinkage=0.6
g = | ® 5 «
i TS PY 0 5 o 7
S o & s
S o | 8 T o
= o [ ‘S 2 S
e % . 8 < | g
" g o g i <_§ Y]
S o ® g S o |
0 ® ® = ) *
o = o = -
{ ]
o o [ ] o | o |
c L : : - - ° 1 : - - , Y e T T T : A : - - .
0 500 1000 1500 2000 0 500 1000 1500 2000 Y 0 500 1000 1500 2000 0 500 1000 1500 2000
Boosting Iterations Boosting lterations [ ) Boosting Iterations Boosting lterations
a=.2
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Test Set Deviance

Gradient tree boosting

recall the synthetic example:
features a:gn), cee w%) are samples from standard Gaussian

() — ) - 9.34
abel ¥ =1(2qa > 9-34) ey « re—

N=2000 training examples

(]
{ ]
DStu'mpS Miscl S!ft_lmps £ Y 6-Node Trees
eviance isclassification Error ° Deviance
o | R ([ J o
R - . =] _ - ~ 1
No shrinkage No shrinkage () —— No shrinkage
— Shrinkage=0.2 —— Shrinkage=0.2 —— Shrinkage=0.6
S « | 1
0 | w © °® w0 |
§ o b
= o [ ] >
o @ 8 <
- a ® - -
[5] (]
2 N o
s o o 3
0 ® ® = 5
pd - - o
g5 .
{ ]
o | o | ® o |
o o o
T T T T T T T T . T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000 ° 0 500 1000 1500 2000
Boosting Iterations Boosting Iterations ] Boosting lterations

in both cases using shrinkage o = .2 helps
while test loss may increase, test misclassification error does not

Test Set Misclassification Error

0.1 0.2 0.3 0.4 0.5

0.0

6-Node Trees
Misclassification Error

— No shrinkage
—— Shrinkage=0.6

500 1000 1500

Boosting Iterations

2000
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Gradient tree boosting

recall the synthetic example:

Test Set Deviance

(n) (n)

features x;’,...,x, aresamples from standard Gaussian

label y™ =1(32, z( > 9.34)

N=2000 training examples

06 08 10 12 14

0.4

4-Node Trees

Deviance

stochastic with
batch size 50%

a =.
and stochastic

f I I I I I
0 200 400 600 800 1000

Boosting lterations

Test Set Absolute Error

0.35 0.40 0.45 0.50

0.30

Absolute Error

stochastic with
batch size 50%

No shrinkage
Shrink=0.1

—— Sample=0.5

—— Shrink=0.1 Sample=0.5

Boosting lterations

both shrinkage and subsampling can help

more hyper-parameters to tune
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Gradient tree boosting
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train loss: 0.269 test loss: 0.338
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see the interactive demo: https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
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for exponential loss: interpret as re-weighting the instance (AdaBoost)
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Summary

two ensemble methods

e bagging & random forests (reduce variance)

= produce models with minimal correlation
= use their average prediction

° boosting (reduces the bias of the weak learner)

models are added in steps

a single cost function is minimized

for exponential loss: interpret as re-weighting the instance (AdaBoost)
gradient boosting: fit the weak learner to the negative of the gradient
interpretation as L1 regularization for "weak learner"-selection

also related to max-margin classification (for large number of steps T)

e random forests and (gradient) boosting generally perform very well
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Gradient boosting

Gradient for some loss functions £ = £t = £{0} _ Z’le w{t}%L(f{t—l}, y)

setting loss function — %L(f{t_l}a y)
regression %Hy o fH% y — f

regression lly — f||1 sign(y — f)

binary

classification exp(—yf) -y exp(—yf)

exponential loss

multiclass

classification multi-class cross-entropy —P
N xC
one-hot coding for C-class classification
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