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Abstract. We present a multi-context focused sequent calculus whose
derivations are in bijective correspondence with normal natural deduc-
tions in the propositional fragment of the intuitionistic modal logic IS4.
This calculus, suitable for the enumeration of normal proofs, is the start-
ing point for the development of a sequent calculus-based bidirectional
decision procedure for propositional IS4. In this system, relevant de-
rived inference rules are constructed in a forward direction prior to
proof search, while derivations constructed using these derived rules
are searched over in a backward direction. We also present a variant
which searches directly over normal natural deductions. Experimental
results show that on most problems, the bidirectional prover is compet-
itive with both conventional backward provers using loop-detection and
inverse method provers, significantly outperforming them in a number of
cases.

1 Introduction

Intuitionistic modal logics are constructive logics incorporating operators of ne-
cessity (O) and possibility (). Fitch [8], Prawitz [17], Satre [19], and more
recently Simpson [20], Bierman and de Paiva [2], and Pfenning and Davies [16]
have investigated a broad range of proof-theoretical properties of various log-
ics of this kind. Recently, such logics have also found applications in hardware
verification [7] and proposed type systems for staged computation [4] and dis-
tributed computing [14]. A logic frequently used in these settings is either the
intuitionistic variant of the classical modal logic S4, which we will call IS4, or a
logic that can be expressed through IS4, such as Fairtlough and Mendler’s lax
logic [7] (see for instance [16] for the relationship between IS4 and lax logic).

In this light, it is surprising that proof search in IS4 has not received more
attention. Howe has investigated proof enumeration and theorem proving in lax
logic [13] and, coming closer to our work, has presented a backward decision
procedure for the fragment of propositional IS4 without the possibility modal-
ity [12]. His system performs loop-detection using a history mechanism, but is
encumbered by a large number of rules and related provisos (21 axioms and in-
ference rules). It would only grow with the addition of the possibility modality,
which would also require a different loop-detection mechanism.



Our contributions begin with a sequent calculus for propositional IS4 suit-
able for the enumeration of normal proofs. This forms the basis for the de-
velopment of a sequent calculus-based bidirectional IS4 decision procedure, in
which derived inference rules relevant to the query are constructed in a for-
ward direction prior to proof search, while derivations constructed using these
derived rules are searched over in a backward direction. We also demonstrate
that this approach corresponds very closely to an elegant bidirectional decision
procedure that searches directly over normal natural deductions. The key to our
theoretical justification of both of these decision procedures is a refinement of
the well-known subformula property, which we use to restrict nondeterminism
in focused proof search in the presence of multiple contexts. To evaluate our
approach empirically, we have put together a set of 50 benchmark formulas for
IS4. Experimental results show that on most problems, the bidirectional prover
is competitive with both conventional backward provers using loop-detection
and inverse method provers, significantly outperforming them in a number of
cases. Although we concentrate on propositional IS4 in this paper, we believe
that the techniques presented are general enough to find applications in other
constructive logics, such as the contextual modal logic of Nanevski, Pfenning,
and Pientka [15]. This paper is an extended version of [11].

In Sect. 2 we summarize the relevant background and introduce our core
natural deduction formalism, while Sect. 3 presents a corresponding Hilbert-
style axiomatization. In Sect. 4 we restrict our natural deduction system to allow
only normal natural deductions, and in Sect. 5 we give the corresponding sequent
calculus formulation that serves as the basis for our proof search strategies. A
more refined sequent calculus for forward proof search is developed in Sect. 6,
while Sects. 7 and 8 describe our bidirectional decision procedure in sequent
calculus and natural deduction settings, respectively. Experimental results are
given in Sect. 9, and Sect. 10 concludes with related and future work.

2 Natural Deduction

Formulas in the propositional fragment of IS4 are given by the grammar
A == P|L|ADA|ANA|AVA|OA|CA

where P is taken from a countable set of atomic propositional constants and
negation and truth are defined notationally in the usual way:

~AAS L TE L
Operator precedences are, from highest to lowest, O, O, A, V, D, while all binary
operators are considered right-associative. Our starting point is a multi-context
natural deduction formulation for IS4 similar to ones proposed by Pfenning and
Davies [16] and Bierman and de Paiva [2], featuring hypothetical judgements
of the form A; "+ A. Such a judgement asserts the provability of a formula A
under hypotheses A and I', where I' = Ay, ..., A, is a context of true hypotheses



AT E L

ATLALFA ™ A A Trra™: arralk
A;F7A1FA2 A;FFA1DA2 A;FFAl
ATFA DA © ATF A,

A; T Ay A;FFAQ A;FFAl/\AQ
AT AL A Ay A AT A

AE;

AT HA; vl A;THAIVA, A TVAEC A TVAEC
ATEA VA Y ATFC VE
A;-FA A -0A AATHEC
Arroa ATFC OE
A;THA A TEOA A AEOC
ATroA © ATFOC

je{l,2}
Fig.l.NJ[s4

and A = By,...,B,, is a modal context of valid hypotheses. Valid hypotheses
are hypotheses whose truth does not depend on the truth of other formulas, that
is, hypotheses that are in some sense “always” or necessarily true. We use - to
denote the empty context. Our base system differs from Pfenning and Davies’
natural deduction formulation for IS4 [16] in that we make no judgemental
distinction between truth and possibility. Instead, we internalize the possibility
judgement using the & operator. Interestingly, this gives rise to a system that is
essentially identical to Bierman and de Paiva’s multi-context natural deduction
formulation for IS4 [2]. This base calculus, which we will call NJg4, is shown
in Fig. 1.

Although the contexts of this system are formally ordered lists, we can afford
to be flexible with them, as NJ1s4 has the usual structural properties of weak-
ening, contraction, and exchange for both contexts. We formalize some of these
properties below. In the remainder, we will not always formally state structural
properties that are not required for the proofs of the main results. For conve-
nience, we will generally think of contexts in NJig4 as multisets, and will write
A € T to denote that I' has the form Iy, A, I's for some (possibly empty) I
and I5.

Lemma 1 (Weakening for NJig4).
D
]fA;Fl,Fg H C, then A;Fl,A,Fg FC.

Proof. By induction on the structure of D.! 0

! Whenever a proof is by a very simple induction, we will omit the cases.



Lemma 2 (Modal Weakening for NJig,).

]fAl,AQZ;)F FC, then A1, A, A T C.

Proof. By induction on the structure of D. a
Lemma 3 (Exchange for NJigy).

]fA;Fl,Al,F?, A9, I's = C, then A; Iy, As, Iy, Ay, I3 C.

Proof. By induction on the structure of D. ad
Lemma 4 (Modal exchange for NJigy).

IfAl,Al,AQ,EQ,Ag;F FC, then Ay, Ag, Ag, Ay, Ag; T'E C.

Proof. By induction on the structure of D. a

The system NJjs4 also has the following important substitution properties.
They encapsulate the intuitive notion of replacing uses of a hypothesis by sepa-
rate derivations of that hypothesis.

Lemma 5 (Substitution property for NJig4).
D &
]fA;Fl,A,FQ FC and A;Fl,Fg H A, then A;Fl,FQ FC.

Proof. By induction on the structure of D, using Lemmas 1 and 2 where needed.
O

Lemma 6 (Modal substitution property for NJig4).
D &
]fAl,A, AQ;F FC and Al, AQ;' H A, then Al,AQ;F FC.

Proof. By induction on the structure of D, using Lemmas 1 and 2 where needed.
O

The inference rules of NJigy4 are largely standard, but to glean some intuition
about the modal rules and the two contexts, it is useful to think of the modalities
as quantifying truth over worlds in some universe, with some reachability relation
defined on the worlds. To say that OA is true is to say that A is true in all worlds
reachable from the current one, while to say that ¢ A is true is to say that A is
true in some world reachable from the current one. The current world represents
the environment in which the provability of the succedent is to be established.
Under this interpretation, the hypotheses in the modal context can be used in
all reachable worlds, while those in the regular context can only be used in the
current world. This notion is formalized by the following results, which highlight
the relationship between global validity in the form of the modal context and
the local internalization of validity in the form of the necessity operator.

Theorem 1 (Globalizing necessity in NJig4).
D
]fAl,AQ;Fl, DA,FQ H C, then Al,A,AQ;Fl,FQ FC.



Proof.

1) Ay, A, Ag; I, 0A, I emma 2

A, A Aq T, 0A, I HC L D

(2) A, A, Ags - = A hyp,

(3) AlaAvAQ;FhFQ '7 DA DI (2)

(4) A1, A, A I, I - C Lemma 5 (1, 3)
O

Theorem 2 (Localizing validity in NJg4).
D
]fAl,A,AQ;Fl,FQ H C, then Al,AQ;Fl,DA,FQ FC.

Proof.

(1) A1, A, Ao I, 0A, I = C Lemma 1 (D)
(2) A1, Ao, 410, 0A, I HC Lemma 4 (1)
(3) A17A27F17DA7F2|_DA hypl
(4) A1, A9 I, 0A, I = C OE (3, 2)

a

Theorem 2 suggests that the contextual separation of truth and validity is
not strictly necessary, and that we can obtain an embedding of NJig4 into
a single-context system simply by providing every valid hypothesis with a O
operator and merging the two contexts. To obtain a single-context system of
natural deduction for IS4, however, those inference rules that depend on the
separation of the modal and regular contexts (such as Ol, OE, and <E) need
to be modified. The details of single-context natural deduction systems for IS4
have been explored in more detail by Bierman and de Paiva [2].

To lend support to our claim that NJig4 is indeed a formalism for a construc-
tive variant of the classical modal logic S4, we will next present a Hilbert-style
axiomatization of IS4 and show that NJig4 is equivalent to it.

3 Axiomatization

While several proposals for Hilbert-style axiomatic formulations of constructive
versions of S4 exist in the literature, we will use a standard system motivated by
applications discussed by Alechina et al. [1] and Pfenning and Davies [16]. In it,
a standard axiomatization of intuitionistic propositional logic (see for instance
[21]) is augmented by the six modal axioms

Ko D(Al D Ag) D OA; D OA, Ko : D(Al D Ag) D CA; D OA,
To:OAD A Te :ADCA
4p : 0OA D OOA 4o : OCADCA

and the necessitation rule “If A is a theorem, then OA is a theorem.” The com-
plete axiomatization, which we will call Arsy, is shown in Fig. 2. For consistency
with NJis4, we again consider contexts to be ordered lists, but an interpretation
of contexts as sets yields the same results. Note that we show general weakening
as an explicit rule w, while an alternative approach, followed by Bierman and de



Axioms:
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Paiva [2], is to incorporate weakening locally into the assumption, axiom, and
necessitation rules, and to prove its general form to be admissible. We will use
w* to denote zero or more applications of the weakening rule w, and ass* and
ax* to denote applications of the assumption rule ass and the axiom rule ax,
respectively, followed by zero or more applications of the weakening rule w.
The following common intermediate results hold for our axiomatization.

Lemma 7 (Reflexivity of D for Ajrgy).

I'H4 ADA.
Proof.
M I'Fa(AD(ADA)DA)DADADA)DADA ax* (D2)
(2)I'FaAD(ADA) DA ax* (D1)
B)IFA(ADADA)DADA mp (1, 2)
4 TI'taADADA ax* (D1)
5)I'FAaADA mp (3, 4)
O
Lemma 8 (Deduction theorem for Ajgy).
D
]fFl,Al,FQ Fa Ag, then I'y, I F4 A1 D As.
Proof. By induction on the structure of D.
Case:
(1)-FaADA Lemma 7



Case:

D,
I, Ioa A

I, Ay, I A A W

(1) Fl,FQ l_A A2 DAl DAQ
(2) Fl,FQ I—A Al DAQ

Case:

D1

D= I, IhFa A

I1.B.Thka Ay

() I, T3 -a Ay D Ay
(2) I, B, Iy Fa Ay D Ag

Case:

Dy
D:F17A1;F2|7ABDA2

(Al EFl,Fg)

Dy
F17A17F2 l7AB

I, AL I Fa A

IN,lbFa (A1 DBD>A) D(A1 DB)D A DA
Fl,FQFAAljBDAQ

Fl,FQ I—AAl OB

(1)
(2)
(3) I, 15 Fa (Al D) B) DA D A
(4)
()

In,Io -4 A1 D Ay

Lemma 9 (Transitivity of D for Ajig4).

D &
IfI'tg Ay D Ay and 'y As D As, then ' 4 A; D As.

FFA(AleQ)DAleg

(1

(2)
(3)F|—A(A1DAQDA3)D(A13A2)DA1:)A3
(4)

(5)

FFAAlDAg

Lemma 10 (Generalized necessitation for Ajrgy).

IfOA,, ..

D
.,0A, 4 C, then DA, ..

Proof. By induction on n.

Case: n =0.
(1) . I—A ac

.,0A4, k4 0OC.

mp

nec (D)



(1) DAl, Ce OA,_1Fa 04, D C Lemma 8 (D)
(2) OAy,...,04, 1Fa O(0A4, DC) ih. (1)
(3) 0A;,...,04,_; Fa O(0A, D C) D O0A, D> OC ax* (Kp)
(4) DAl, Ce 0OA,_1 Fa O0OA4, D OC mp (3, 2)
(5) 0Ay,...,0A,_1 Fa OA4,, D O0OA, ax* (4n)
(6) DAl, Ce 0OA,_1 Fa OA4,, D OC Lemma 9 (5, 4)
(7) DA,...,04,_,,04, s 04, >0OC w (6)
(8) OA,y,...,04,1,0A4, Fa OA, ass*
(9) OAy,...,04,_1,0A, Fa OC mp (7, 8)

O

Armed with these intermediate results, we can now prove the equivalence of
NJisq and Ajgss. As a shorthand, if A = A4,..., A,, then we will write OA to
denote OAq,...,04,.

Theorem 3 (Soundness of NJjg4 with respect to Ajrgy).
D
If A;T'H A, then OA T4 A.

Proof. By induction on the structure of D. We show the base cases and the cases
involving modalities.

Case:
P=AT AL AP
() OA, I, A, To Fa A ass*
Case: :
D=A A AxTFA P
(1) DAl, DA, DAQ, I 'fA OA D A ax* (TD)
(2) DA, 0A, 04, "4 OA ass*
(3) DA, 0A,0A; "' A mp (1, 2)
Case:
D,
D= A;-FA
Arroa
(1)O0AFRA A ih. (Dy)
(2) OA 5 OA Lemma 10 (1)
(3)0A, ' OA w* (2)
Case
Dy Dy
D=A;I'r0B ABITFA
ATFA hE
(1) DA, OB, T4 A ih. (D2)
(2)0A, T’'FAa0OBD A Lemma 8 (1)
(3) OA, ' OB ih. (Dy)
(4)0A, T'HA A mp (2, 3)



Case:

D,
D= AT HA
AT oA
(1) DA, T'Fa A ih. (Dy)
(2) DA, T Fa AD OA ax* (Ts)
(3) OA, T'a A mp (2, 1)
Case:
Dy D,
P_ATFOB ABFGA
ATFOA ©E

(1) DA, B4 OA ih. (Dy)
(2) 0AFA BD CA Lemma 8 (1)
(3) DA Fa O(B S ©A) Lemma 10 (2)
(4) OAFA OB DCA) DOBDOCA ax* (Ko)
(5) A A OB D OCA mp (4, 3)
(6) DA, I'Fa OB S OOA w* (5)
(7)OA, T4 OB ih. (Dy)
(8) OA, I't4a OCA mp (6, 7)
(9) DA, T'Fp OOA D OA ax* (4o)
(10) OA, T4 A mp (9, 8)
O

Lemma 11 (Completeness of NJigy with respect to the axioms of

Agsa).
If A is an aziom of Ajsg, then -;- F A.

Proof. We show the cases involving modalities. The derivations are linearized to
save space.

Case: Kp
(1) BN D(Al D Ag), 0A, F D(Al D Ag) hyp;
(2) A1 D Ap;0(A; D Ap),0A; - 0OA, hyp,
(3) Aq DAQ,Al;-I—Al D Ay hyp2
(4) A1 D AQ, Al; - A hyp2
(5) Aq DAQ,Al;'FAQ DE (3, 4)
(6) A DAQ,Al;D(Al DAQ),DAl FOAs ol (5)
(7) A; D Ag;0(A; D Ap),0A; F0OAy OE (2, 6)
(8) i D(Al D Ag), 0A; F0OA, OE (1, 7)
(9) 5 0(AL D A2) - 0OA; D OAy Dl (8)
(10) ;- = O(A; D Ap) D OA; D OA, S1(9)



(1) 3 D(Al D A2)7<>A1 = D(Al D Ag) hypl

(2) A1 D AQ; D(Al D) AQ), QAL F Ay hypl

(3) A1 D AQ; A1 EA; D Ay hyp2

(4) A1 D AQ; Al A hypl

(5) Aq DAQ;Al F A, DE (3, 4)

(6) A1 D Ag; A FOA, <l (5)

(7) A1 D Ay; D(Al D AQ),OAl FOA, OE (2, 6)

(8) 5 D(Al D) A2)7<>A1 - <>A2 OE (1, 7)

(9) . D(Al D) AQ) FOA DA, Dl (8)

(10) o F D(Al D Ag) DA D OA, Dl (9)
Case: T

(1) sOAF OA hyp,

(2) A;0AF A hyps

(3) OAF A OE (1, 2)

(4)5-FOAD A ol (3)
Case: T,

(1) vA HA hypl

(2) s AF OA ol (1)

(3);-FADOCA ol (2)
Case: 4g

(1) ;O0AF OA hyp;

(2) A - A hyp,

(3) A;-+D0OA ol (2)

(4) A;0A - OOA ol (3)

(5) sOAFOOA OE (1, 4)

(6) :- - 0A > 004 S1(5)
Case: 4o

(1) s OCAE OCA hyp;

(2) s CAFCA hyp,

(3) s OOAF OA OE (1, 2)

(4) - FOOADCA ol (3)

O

Theorem 4 (Completeness of NJjg4 with respect to Ajrgy).
D
IfI't4 A, then ;T A.

Proof. By induction on the structure of D.

Case:
D=AFs 4 ass
(1) AF A hyp,
Case:
D=TFid ax
(1)4-FA Lemma 11

10



Case:
Dy
D= I, Inka A

FlaBaFQFAA W

(2) s I1,B, Ix A Lemma 1 (1)
Case:
D Dy
D=I'FaAaBDA FI—ABmp
I'a A
()sI'FBDA ih. (D)
(2)sI'FB ih. (Ds)
3)sI'FA DE (1, 2)
Case:
D,
D= -I—AA
TFaOA4 €
(1)-FHA ih. (D)
(2) ;-+HOA ol (1)
O

These results show that the system NJigy4 is equivalent to the axiomatization
Ajsy, so it is reasonable to choose NJjs4 as a foundation on which to develop
proof search strategies for 1S4.

While Girard, Lafont, and Taylor suggest that we should think of natural
deductions as the “true ‘proof’ objects” [10], natural deduction systems have
traditionally not seen much use as formalisms for proof search, mainly as a
result of their lack of syntax-directedness. The first step towards being able to
perform proof search over natural deductions is to restrict the proof space to
those natural deductions that are in normal form. We formalize this restriction
in the next section.

4 Normalized Natural Deduction

NJis4 is a possible starting point for proof search strategies, but a better idea
is to restrict the proof space described by NJig4 in such a way that only natural
deductions in normal form can be constructed. This is achieved by annotating
judgements with their intended direction of reasoning:

A THAT A has a normal proof under hypotheses A and I,
ATEA| A can be extracted from hypotheses in A and I" using

only elimination rules.

The resulting system, which we will call NJ }\é 4, is shown in Fig. 3. As in NJis4,
the contexts of this system are formally ordered lists, but NJI, also has the
structural properties of weakening, contraction, and exchange for both contexts.
Again, we will generally think of contexts in NJIY, as multisets.

11
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Fig. 3. NJX,

Lemma 12 (Weakening for NJIY,).

D

1. IfA;Fl,Fgl—CT, then A;Fl,A,FQI—CT.
£

2. IfA;Fl,Fgl—Cl, then A;Fl,A,FQI—Cl.

Proof. By simultaneous induction on the structure of the given derivation. 0O
Lemma 13 (Modal weakening for NJI,).

1. IfAl,AQ;DF FCT, then Ay, A, Ag; T'HC T

2. IfAl,AQ;EF FC |, then Ay, A, Ax; T'HC .

Proof. By simultaneous induction on the structure of the given derivation. 0O

The substitution properties of NJ }\é 4 are similar to those of NJg4, but take
the direction of reasoning into account.

Lemma 14 (Substitution property for NJX ).

D E

1. If AT, A T EC T and ATy, Io B AL then ATy, I HC T
F g

2. If AT, AT HC | and ATy, Is H AL then ATy, I = C .

12



Proof. By simultaneous induction on the structure of the first given derivation,
using Lemmas 12 and 13 where needed. ad

Lemma 15 (Modal substitution property for NJI,).

D &

1. If Ay, A, Ag; T'E C T and Ay, Agy- = A |, then Ay, Ag; T'HC T
F g

2. If A1, A, Ag; T'EC | and Ay, Ag; - A |, then Ay, Ag; T'HC .

Proof. By simultaneous induction on the structure of the first given derivation,
using Lemmas 12 and 13 where needed. ad

Note that while NJI¥, requires the principal formula of the coercion rule T
to be atomic, the following result shows that a corresponding unconstrained rule
is admissible.

Lemma 16 (Admissibility of nonatomic coercion for NJI,).
D
If AT A, then A;TH AT,

Proof. By induction on the size of A. We show the base cases and the cases
involving modalities.

Case: A is atomic.

(1) AT HAT 11 (D)
Case: A= 1.
A T'ELT LE (D)
Case: A=0A4;.
(1) A, Ay F 4y | hyp,
(2) A,Al;' - Al T i.h. (1)
(3) A A I'-DA T al (2)
(4) A;TFOA T OE (D, 3)
Case: A =CA;.
(1) A5A1 F Ay | hyp,
(3) A;Al - <>A1 T <l (2)
4) A TEOCALT OE (D, 3)
O

Before continuing, it is important to establish that NJINS 4 is equivalent, in
terms of provability, to NJig4. The soundness of NJINS4 with respect to NJisq
is easy to show.

Theorem 5 (Soundness of NJINS4 with respect to NJgy).

D

1. If A;T'H AT, then A; T A.
E

2. If AsTF A, then A; T A.

13



init (A is atomic) A, LT, = A L

A, A Ao TV A= C

A;F17A7F2=>A

ALA AT =0
A;F7A1$A2 A;F17A1DA27F2=>A1 A;F17A1DA27F27A2$C L
AT = A DA, ~ Ailv, AL D Ay I = C -
A;F:>A1 A;F:>A2 A;F17A1/\A27F27Aj=>0

L,
AT and, ™M Anasmnsc N

A;FﬁAj VR, A;F17A1\/A2,F2,A1:>O A;F1,A1VA2,F2,A2:>O\/L

A;F:>A1\/A2 J A;F17A1VA2,F2:>O
A= A AATLOA T, = C
AT=04A R AnoAn=C
A= A A A= OC
Ar=oa R Ancan=oc b
je{1,2}
Fig.4. LJ1sa

Proof. By simultaneous induction on the structure of the first given derivation.
O

The proof of the completeness of NJ INS 4 with respect to NJs4 is not as imme-
diate, but still routine. We will develop a number of intermediate results, giving
the final completeness result as Theorem 10. Our proof is by cut-elimination in
an unfocused sequent calculus system designed to be equivalent to NJyg4. This
system, which we call LJ1g4, is shown in Fig. 4 and features sequents of the the
form A;I" = A. Note that LJ1gy4 is very similar to a sequent calculus presented
by Nanevski, Pfenning, and Pientka for contextual modal logic [15], but is not
the sequent calculus system that we will use for proof search. It is purely a tech-
nical device that we introduce for the purpose of the proof of completeness of
NJ}\é4 with respect to NJis4. The cut rule

A;Fl,A,F2:>C A;Fl,l—b:}A
A;Fl,F2:>C

cut

is not part of LJig4, but we will refer to the system obtained by augmenting
LJis4 by the rule cut as LJfS4. To distinguish between sequents of LJig4 and

LJ;FS4, we will decorate the arrows of LJ;“S4 sequents with a + sign, viz. A; I &
Note that while the init rules of LJts4 and LJ ;rs 4 are required to have atomic

principal formulas, unconstrained variants are admissible, as shown by the fol-
lowing result.

14



Lemma 17 (Admissibility of nonatomic init for LJig4).
A;Fl,A,FQ = A.

Proof. By induction on the size of A. We show the base cases and the cases
involving modalities.

Case: A is atomic.

(1) A;Fl,A,F2:>A init
Case: A= 1.
(1)A;F1,J_,F2:>J_ 1L
Case: A=0A4;.
(1) A,Al;A1:>A1 i.h
(2) A,Al;' = A refl (1)
(3) A, Av; I, 0A, I = 04 OR (2)
(4) A;Fl,DAl,F2:>DA1 oL (3)
Case: A =CA;.
(2) A;Al = <>A1 OR (1)
(3) A;F1,<>A1,F2:><>A1 OL (2)
O

Lemma 18 (Admissibility of nonatomic init for LJ{g,).
AL AT, = A

Proof. By induction on the size of A. The cases are analogous to those in the
proof of Lemma 17. a

Another system we will introduce for this completeness proof is NJ INSZ, which
is obtained from NJI%, by augmenting it by the rule

A;THAT

A;THA| U

Unlike the regular coercion rule T, the principal formula of this rule need not
be atomic. To distinguish between the judgements of NJ i\éz and NJK,,, we will

decorate the turnstiles of NJFSZ judgements with a + sign, viz. A; ' F4 A. As

with NJL,, an unconstrained regular coercion rule is admissible for NI .

Lemma 19 (Admissibility of nonatomic coercion for NJ7}).
D
If AT L A then AT HL AT

Proof. By induction on the size of A. The cases are analogous to those in the
proof of Lemma 16. a

We can now prove the first intermediate result needed for the proof of com-
pleteness of NJ}\é4 with respect to NJisg.

Theorem 6 (Completeness of NJI, with respect to NJI,).
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D

1. If A;,T'E A, then AT AT
£

2. If As T A, then A;T'H AL

Proof. By simultaneous induction on the structure of the given derivation, using
Lemma 19 and the rule |T where needed. a

For the next few results, we require the usual structural properties of both
LJ154 and LJ;_S4'

Lemma 20 (Weakening for LJigy).

]fA;Fl,leg = C, then A; 11, A, I = C.

Proof. By induction on the structure of D. ad

Lemma 21 (Modal weakening for LJs4).

]fAl,Agl;)I’ = C, then A1, A, Ay ' = C.

Proof. By induction on the structure of D. ad

Lemma 22 (Exchange for LJigy4).

]fA;Fl,Al,FQD,AQ,Fg = C, then A; Iy, Ag, I5, A1, 15 = C.

Proof. By induction on the structure of D. a

Lemma 23 (Modal exchange for LJis4).

]fAl,Al,Ag,ADg,A3;F = C, then Aq, Ay, Ao, A1, As; ' = C.

Proof. By induction on the structure of D. a

Lemma 24 (Contraction for LJig4).

]fA;Fl,A,FQD,A,Fg = C, then A 14, A, I, I'5 = C.

Proof. By induction on the structure of D. ad

Lemma 25 (Modal contraction for LJigy).

If A A, Ag,/lD,Ag;F = C, then Ay, A, Ay, Ag; T = C.

Proof. By induction on the structure of D. ad
All of the structural properties also hold for LJ;FS 4

Lemma 26 (Weakening for LJ{5,).
D

If ATy, Ty =5 C, then AT, A Ty = C.

Proof. By induction on the structure of D. ad
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Lemma 27 (Modal weakening for LJ{g,).
D

If A, Ao; T 5 C, then Ay, A, Ay; T = C.

Proof. By induction on the structure of D.

Lemma 28 (gxchange for LJ{g,).

If ATy, Ay o, Ag, Iy 2 €, then ATy, Ag, I, Ay, T3 = C.
Proof. By induction on the structure of D.

Lemma 29 (Modal exchange for LJ{g,).
D

IfAl,Al,AQ,AQ,Ag;Fi;O, then Al,AQ,AQ,Al,Ag;F$C.

Proof. By induction on the structure of D.

Lemma 30 (Contraction for LJjg,).
D

IfA T, A T A Ty = C, then ATy, A, T, T3 = C.
Proof. By induction on the structure of D.

Lemma 31 (Modal contraction for LJ{g,).
D

If Ay, A, Ay A, Agi T =5 O, then Ay, A, Ay, As; T = C.

Proof. By induction on the structure of D.

a

Moreover, the proofs of these structural properties for both LJ1g4 and LJ ;_s 4
show that applying any form of weakening, exchange, or contraction to a deriva-
tion does not affect its structure. This is an important observation that will be
used tacitly in the proof of the admissibility of the cut rule for LJ1g4, Lemma 33.

First, however, we can prove the next key result on the way to Theorem 10.

Theorem 7 (Completeness of L.]frS4 with respect to N

D +
1. If A;THy AT, then AT = A.
f

£
2. If AT, Ih by A and ATy, A, Iy =5 C, then A IV, b = C.

JN+

Proof. By simultaneous induction on the structure of the first given derivation.

We show the base cases and the cases involving modalities.

Case:
E=AM G AL WP (Aen, )

) AL, S C

17
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Case:

E=NALA Ay Iy, Iy FL A hyp,

(1) A1, A, Ag; Ty, T3, A2 C Lemma 28 (F)
(2) AL, A, Ay T4, T & C refl (1)
Case:
D,
D= 4;-FL A7
AT, o047~
(1) 455 A ih. (Dy)
(2) A;T 5 DA OR (1)
Case:
Dy D,
D—ATH,OB| ABTF; A
ATF AT DE
(1) AB T3 A h. (D)
(2) A,B;I,OB = A Lemma 26 (1)
(3) A;T,OB 3 A L(2)
HAaTS A (Dl, 3)
Case:
D,
D= ATHL AT
AT, o4t <
HAarsa ih. (Dy)
2) AT 5 0A OR (1)
Case:
D, D,
D—ATH,OB| A;Bt,OA1
ATH, OAT ©E
(1) ;B3 0A i.h. (Dy)
(2) A;T, 0B 5 ©A oL (1)
AT S 0A Lh. (D1, 2)
Case:
D
(1) AT, AS A init
2) AT 3 A ih. (Dy, 1)
Case
&

18



HAaTEA4 Lh. (&)

(2) AT S C cut (F, 1)
O

The following intermediate result will be used in the proof of the admissibility
of the cut rule for LJ1g4, Lemma 33. It effectively establishes the admissibility
of cut when used in a very particular way.

Lemma 32 (L-cutting for LJigy).
D
If A;T' = 1, then A T = A.

Proof. By induction on the structure of D. ad

We are now able to prove the fundamental cut-elimination result that we
need.

Lemma 33 (Admissibility of cut for LJigy).

D &
1. (C’Ltt) ]fA;Fl,A,F2:>C and A; 11,15 = A, then A; 17,15 = C.
F g
2. (Modal cut) If A1, A, Ag; I = C and Ay, Ay;- = A, then Ay, Ay T = C.

Proof. By simultaneous nested induction. Our induction variables are triples of
the form (size, case, height, + height,), where size is the size of the cut formula
A, computed inductively in the usual way, case is 1 or 2, depending on which
induction case (cut or modal cut) we are considering, and height, and height,
are the heights of the two given derivations. We let (v1,...,v,) < {wi,...,wy)
if there is an ¢ € {1,...,n} such that v; = w; for j < ¢ and v; < w;. We show
the base cases and the cases involving modalities.

At the top level, the cases of the proof are in two categories, those for cut and
those for modal cut. We first give the cases for cut, where we can only appeal
to the induction hypothesis for modal cut if the cut formula decreases in size.

Case: Either D or £ ends with an application of init, LL, or refl.

Subcase: o
D=ADN,AL=C ™M (4=0)
)AL ,=C Equality (€)
Subcase:
D=AT,AL=C ™M (A#C, Cel, )
)AL ,=C Lemma 17
Subcase: o
g:A;Fl,l—b:}Amlt (AeplvFQ)
)AL= C Lemma 24 (D)
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Subcase:

D=AT, AT, =C - (A=1)

W) A, = L Equality (€)
2) AN, = C Lemma 32 (1)
Subcase:

D=AT.AL=C L (A#L1 Le. D)

(1)A;F1,F2$O 1L
Subcase:

g:A;Fl,F2:>A iL (J-EF17F2)

(1)A;F1,F2:>C 1L
Subcase:
D,
D= AlaBaA2;F17A7F2uB = C

AluBuAQ;F17A7F2:>C refl
(1) A1, B, Ag; I, I3, B = A Lemma 20 (&)
(2) A1, B, Ay I, I, B=C ih. (Dq, 1)
(3) A1, B, Ay N, I = C refl (2)
Subcase:
&
g:Al,B,AQ;Fl,FQ,BjA :
Ay, B, Ag; I, Ip = A refl
(1) A1, B, Ao I, A, I, B=C Lemma 20 (D)
(2) AlvBaA2;F17F27B:>C i.h. (1, 61)
(3) A1, B, Ay I, I = C refl (2)

Case: The cut formula is the principal formula of the last inference of both D
and £.

Subcase:
D, &
D=A4AAT,04,=C - and £ = A= A OR
A, 0A T = C A1y, Iy = 0OA
(1) AJA; I, Ih = DA Lemma 21 (&)
(2) A,A;Fl,F2:>C i.h. (Dl, 1)
(3) A;F17F2:>C i.h. (2, 51)
Subcase:
D, &
D = A,A:><>C oL and £ = A;Fl,F2:>A OR
A;F1,<>A,F2:><>C A;Fl,F2:><>A
(1) A1y, I, A= OC Lemma 20 (Dy)
(2) A;Fl,FQ = OC i.h. (1, 51)

Case: The cut formula is not the principal formula of the last inference of D.
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Subcase:

Dy
D= A= C
OR
A1, A T, = 0O
(1) A Iy, Iy = 0OC OR (Dl)
Subcase:
Dy
D = A;Fl,A,F2:>C
ALAT = oC R
(1) A;F17F2:>O i.h. (Dl,g)
(2) A1, [ = OC OR (1)
Subcase:
D,
D=AB;I1,A I,=C L (OB e Iy, 1)
A;Fl,A,FQ = C
(W) ABIY,],= A Lemma 21 (&)
(2) A,B;F17F2:>C i.h. (Dl,l)
B)Aan,r=C oL (3)
Subcase:
Dy
A;Fl,A,F2:><>C
(1) A;F17F2:><>C OL (Dl)
Case: The cut formula is not the principal formula of the last inference of £.
Subcase:
&
E=AB;I, Iy = A L (DBEF1,F2)
A;Fl,Fg = A
(1) AB; N, A, Ih=C Lemma 21 (D)
(2) A,B;F17F2:>O i.h. (1, 51)
B)AanN,r=C oL
Subcase:
Dy
D= A A= OC
ATy O0A T, = oC “F
and
&
E= A;B=0OA (OB € I, Iy)
A;Fl,FQ = CA

Here, we require the last inference of D to have the cut formula A as
its principal formula. Our cases remain exhaustive since the cut formula
not being the principal formula of the last inference of D is covered by
the previous case.

(1) A;©A, B = OC oL (Dy)
(2) A;B = OC iLh. (1, &)
(3) ATy, [y = OC oL (2)
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Next, we give the cases for modal cut. Here, we can appeal to the induction
hypothesis for cut even if the size of the cut formula stays the same.

Case: o
f:A17A7A2;F1707F2:>C nit
(1) Ay, A 11, C T = C init
Case:
f:AlvAaAQ;Fle—7F2:>O L
(1) Al,AQ;Fl,J_,F2:>C 1L
Case:
F1
f:AlvAaAQ;FvBéo refl (BEAl,AQ)
Al,A,AQ;FéC'
(1) Ay, Ay I,B = C ih. (F1, G)
c (2) Al,AQ;F =C refl (1)
ase: ]:1
]—“:Al,A,AQ;F,AéC' :
ALA AT =
(1) Al,AQ;F,AéC’ i.h. (fl,g)
2 1 o ' = Lemma 20
(2) Ay, Az A (9)
c (3) Al,AQ;F =C i.h. (1, 2)
ase: fl
F = Al,A,Ag;':>C R
AL A Ayl =0C
(1) Al,AQ;' = C i.h. (.7:1, g)
c (2) Ay, Ay T'= 0OC OR (1)
ase:
Fi
f:A17A7A27B;F17DBup2:>C oL
AluAaAQ;FluljBuF2:>C
(1) Ay, A9,B;- = A Lemma 21 (G)
(2) Al,AQ,B;Fl,DB,Fgéc i.h. (.7:1, 1)
c (3) Al,AQ;Fl,DB,FQjO oL (2)
ase:
Fi
F = Al,A,Ag;F:>C o
AL A AT = oc OR
(1) Al,AQ;F = C i.h. (-7:1, g)
ase:
Fi
F = Al,A,AQ;B:><>O o
Al,A,AQ;Fl,OB,Ib:}OO L
(1) Al,AQ,B = oC i.h. (fl, g)
(2) Al,AQ,Fl,OB,F2:><>C OL (1)
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Theorem 8 (Completeness of LJig4 with respect to LJ;FS4).

D
]fA;F§>A, then A; T = A.

Proof. By induction on the structure of D, using Lemma 33 where needed. 0O

Theorem 9 (Completeness of NJX,, with respect to LJiss).

D
If A;T'= A, then A;TH AT

Proof. By induction on the structure of D. We show the base cases and the cases

involving modalities.

Case:

D=AT, AL =4 Mt
(1) A7F17A7F2'_Al
(2) A;Fl,A,FQFAT

Case:

D=AT, Lh=4t
(1) AaplaJ-aFQFJ—l
(2) A;Fl,J_,FQFAT
Case:
D
D=A41,B,A;;["B= A
Al,B,AQ;FéA

refl

(1) AlaBaAQ;FvBFAT
(2) A15B5A27FFB»L
(3) Al,B,AQ;FI—AT

Case:
Dy
D= A4;-= A
AT =oa R
(1) 4;-FAT
(2) A, 'FOAY
Case:
Dy

'D:A,B;Fl,DB,Ié:}A
A; I, O0B, I, = A

(1) A 1,0B, I, OB |
(2) AuB;F17D37F2|_AT
(3) A:T1,0B, Ty - A1

Case:
D,
D= AT=A
AT = o4 OR
(LA T'HEAT
(2) AT+ OAT

23

hyp,
T1(1)

hyp,
1E (1)

ih. (D))

hyp,
Lemma 14 (1, 2)

hyp;
ih. (Dy)
OE (1, 2)



Case:
D,
D= A;B= <A

ATLL.OB. I, = o4 b

(1) A1, 0B, I, FOB | hyp,
(2) A;BFOAT i.h. (Dy)
(3) A; Ty, OB, Iy - OA 1 OE (1, 2)

O

With this collection of intermediate results, the completeness of NJI, with
respect to NJyg4 follows in a step-by-step way.

Theorem 10 (Completeness of NJI., with respect to NJs4).
D
IFATFA, then A;TF AT

Proof.

(1)A;THL AT Theorem 6 (D)
2) AT S A Theorem 7 (1)
B)AT=A Theorem 8 (2)
(4) A;THATD Theorem 9 (3)

Theorem 10 is a weak normalization result: if a judgement is derivable in
our natural deduction system NJigq, then it has a normal natural deduction,
where the normal forms of natural deductions are defined by the restrictions
imposed by the arrow annotations in NJ INS 4- An alternative normalization proof
is to explicitly consider the normalization steps — (-conversions and commuting
(or permutative) conversions — arising from the rules of NJig4, and to show
that for any derivation, a sequence of normalization steps can be found that
terminates in a corresponding derivation in normal form. What then remains to
be shown is that a derivation can be constructed in NJX, if and only if it is
in normal form. We will not give the details of such an alternative proof, but
the conversions arising from the NJjg4 rules involving modalities are as follows,
while those for the remaing rules are standard (see for instance [10] or [21]).

1. B-conversion for Ol and OE:

D,
4;-FA D €
S A 2 ~p _
AT FOA AATHC ATHC
ATFC DE

where £ is obtained by applying Lemma 6 to Dy and D;.
2. (-conversion for <l and <E:

D,
A;THA D P
Y 2 g ,
A, TEOCA A;AEOC AT EOC
ATFoC E
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where £ is obtained by applying Lemma 1 to Ds to obtain A; I A F OC
and then applying Lemma 5 to this and D;.
3. Commuting conversion for OE:

Dy Dy
A;T'FOA AATEC
oe Ds
AT HC E
ATFD *
Do ;
D, AATEC - E
e ATFDA AJ&FFDD;
A;T'ED
where *E is any elimination rule, - - - denotes some number of minor premises

with derivations D;, i = 3,4, ..., and &; is obtained by applying Lemma 2 to
D; to add A to the modal context of the final judgement.
4. Commuting conversion for E:

Dy Dy
A TEOCA AAEOC Dy

ATFOC OE‘&CFODO

ATFOD E
D, Ds
Dy A AEOC A CHEOD
e AT HOA A AFOD
ATFOD

Since the succedent of the conclusion of an application of OE is of the form
&C and the only elimination rule whose major premise has a succedent of
the form ¢C' is OE, this is the only commuting conversion arising from the
< modality.

As a platform for proof search, NJINS4 is superior to NJigg4, since the proof
space is restricted to allow only normal natural deductions. However, NJ INS 4 still
suffers from a lack of syntax-directedness in the case of the elimination rules,
an issue that we will address by using techniques from forward proof search.
Although we will ultimately return to NJI, in our search for bidirectional
decision procedures, the relationship between introduction and elimination rules
and backward and forward proof search is perhaps most vividly demonstrated
in a focused sequent calculus setting, which we turn to next.

5 Sequent Calculi
Although we could use LJjg4, presented in Sect. 4, as a basis for proof search

in a backward direction, its refl rule is a source of inconvenient nondeterminism.
We will instead follow the approach of Dyckhoff and Pinto [6] and construct a
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AToASA M (Aisatomic) A 75 oA -
A;F17A7F2[>A—>C A17A7A2;FI>A—>C h
AT AL, —C M TALA AT —C
A;F7A1—>A2 A;F—>A1 A;FDA2—>C L
AT A >A ATbA >A = O °
A — A AT — A A;FDAJ-—>C

L.
AT And M Arcarsmoc M

AT — A AT AL —-C AT Ay — C

ATo A R ATsAva, o Vb
A;-— A AA T —C
AT o4 R Arsoasc BL
AT — A o A A — OC S
AT —oa R ATscasoc b
Jjef{L,2}
Fig. 5. MJisa

focused sequent calculus for propositional IS4 whose derivations are in bijective
correspondence with normal natural deductions. This system, which we will call
MJjs4, is shown in Fig. 5 and involves two forms of sequents:

AT — C C can be proved from assumptions A, I',

C can be proved from assumptions A, I, A, focusing on

4IrvAd—C the assumption A.

If a sequent is focused on a formula A, then the only applicable rules are those
with A as a principal formula. Following Girard [9], we will call the position of the
focused formula the stoup. As in the natural deduction formulations, contexts
in MJjg4 are technically ordered lists, but the usual structural properties of
weakening, contraction, and exchange hold here as well, so an interpretation of
contexts as multisets is reasonable.

Lemma 34 (Weakening for MJgy).

D
1. If AsTy, Ty — C, then A; 11, A Ty — C
&
2. IfA;Fl,FQDB g C, then A;Fl,A,FQDB — (.
Proof. By simultaneous induction on the structure of the given derivation. 0O

Lemma 35 (Modal weakening for MJgy).

D
1. If Ay, Ag; ' — O, then Ay, A, Ag; T — C.
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£
2. IfAl,AQ;FDB — C, then Al,A,AQ;FDB —C.
Proof. By simultaneous induction on the structure of the given derivation. 0O

Lemma 36 (Contraction for MJgy).

D
1. IfA;Fl,A,FQ,A,F3—>C, then A;Fl,A,FQ,F3—>C.
&
2. IfA;Fl,A,FQ,A,ngB—)O, then A;Fl,A,FQ,ngB—)O.

Proof. By simultaneous induction on the structure of the given derivation. 0O

Lemma 37 (Modal contraction for MJjgy).

D
1. IfAl,A,AQ,A,A3;F—>C, then Al,A,AQ,A3;F—>C.
&
2. IfAl,A,AQ,A,A3;FDB—>C, then Al,A,AQ,A3;FI>B—>C.

Proof. By simultaneous induction on the structure of the given derivation. 0O

Lemma 38 (Spanning contraction for MJgy).

D
1. IfAl,A,AQ;Fl,A,FQ—)O, then Al,A,AQ;Fl,FQHO.
£
2. IfAl,A,AQ;Fl,A,FQDB—)C, then Al,A,AQ;Fl,FQDB—)C.

Proof. By simultaneous induction on the structure of the given derivation, re-
placing applications of ch; by applications of chy where needed. ]

The key result of this section is that there is a very close correspondence
between MJg4 and NJIL, . In fact, derivations in one correspond bijectively to
derivations in the other. To show this, we will define functions that map MJisa
derivations to corresponding NJI%, derivations and vice versa.

More formally, we define a function f that takes an MJjg4 derivation of
A; ' — C and returns a corresponding NJIX, derivation of A; "+ C 1. It re-
quires an auxiliary function f’ which takes two arguments, an MJg4 derivation
of A;I'>A — C and an NJIY, derivation of A; "'+ A |. Given these arguments,
/! returns an NJINS4 derivation of A; I+ C' 1. The operational interpretation is
that f is the main generator function, traversing the unfocused segments of the
given MJig4 derivation in an upward direction, producing corresponding seg-
ments of T judgements of a partial NJ INS 4 derivation, also constructed in an up-
ward direction. When a formula is raised into the stoup in the MJjg4 derivation
being traversed, the auxiliary function f’ is called upon to continue traversing
the MJg4 derivation (the first argument to f’) in an upward direction, while the
corresponding segment of | judgements in the partial NJ i\é 4 derivation (the sec-
ond argument to f’) is constructed in a downward direction. When the focus in
the original MJg4 derivation blurs, the downward-constructed partial NJ}\é4
derivation meets the previously upward-constructed partial NJINS4 derivation,
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and the main function f is possibly called upon again to continue the traversal
of the next unfocused segment of the MJig4 derivation.
The function f is defined as follows.

Dy
. def
! (Afll’ﬂA;lFQFDA_(;C c 1) =7 (Dl’ A, AL AL hypl)
741, 2

Y (Pn A A AT AT VP2

f(Dy)

Dy
f (Al,A AQ,FDAHC
Al,A AQ,F—>C

e AT A Ay

ATFA S>A T

D, et f(D1) f(D2)
f AT — Ay AF—>A2 _CA,FI—AlT AT H AT

AF—>A1/\A2 AR ATFAAAT

)
)
)
)d_ef £ (D)
)
)

f(AFA1HA2
AF—>A13A2

! AF—>A ATH A1
VR; VI
AF—>A1\/A2 A T'HA VAT
we S D)
f A-—>A oR = A-FAT
AT - 04 Arroar o
we (D)
f AF—>A OR = A THAT
AT = oA ATroar <
e{1,2}
The function f’ is defined as follows.
def 4
f(mm't ]:) eAFI—ALTl
AT AT
- def 4
r(Ermroatt r)¥arcLiy
AFFAT
& f (&)
'l AADD—C , F EAFI—DAL AATHCT
ATs0A=C ATFCOT nE
& f (&)
f A A — OC <>L’]: def A FFOAL A AEOCT
ATo0A = o0 ATFOCT

& Es
1 <A;F—>A1 A T> Ay — C L ]—‘)
ATs A >A—C
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f (&)
L s, AFFAlegl ATEAT

ATF A, |

&
f’< AT Ay —C AL ]-‘)
AT AL NAy —C

def
arr4 ]

& &
f <A;F,A1—>C A;F,Ag—»C'vL, ]—")
A;T'> ALV Ay — C

o f (&) f (&)
_CAFFAl\/AQL ALAFCT ALARCT
ATEFCT

JefL2}

The functions g and ¢’ are similar to f and f’, but convert NJI¥, derivations
into MJs4 derivations. Formally, g takes an NJI,, derivation of A; I' = C' 1 and
returns a corresponding MJys4 derivation of A; I' — C. It requires an auxiliary
function ¢’ which takes two arguments, an NJX, derivation of A; " - A |
and an MJg4 derivation of A;I"'> A — C. Given these arguments, g’ returns
an MJrsy derivation of A;I" — C'. The interactions between g and g’ are very
similar to those between f and f’. ¢ is the main generator function that proceeds
upward along the T sequents of the given NJX,, derivation. The corresponding
MJ1s4 derivation is also constructed in an upward direction. If the direction of
reasoning in the original NJI, derivation reverses, ¢’ is called upon. Since the
corresponding segment of the derivation in MJyg4 is focused, the construction of
this focused MJ1g4 segment (the second argument to g') proceeds in a downward
direction, while ¢’ continues to traverse the original NJIX, derivation (the first
argument to ¢’) in an upward direction. The partial MJigs derivations meet
when the leaves of the NJ %\IS 4 derivation are reached.

The function g is defined as follows.

Dy
A;THA| ) ’Dl,minit
<AFI—AT” ( o )

Dy
9(% LE) Yy (D, Ao oA L)
ATFA]

Dl df (Dl)
gl A A A7 c AFA1—>A2 .

A;FFAlDAQTD A,F—>A13A2
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D, 9 (D2)
A;TEA T AF"AQTAI :CAF—>A1 AF—>A2
AFI—Al/\AQT AF—>A1/\A2

df )

g AFI—AT e AF—>A VR,
AFFAl\/AQT AF—>A1\/A2
<A FAT ) A-—>A
AFFDATDI AT S0OAC
Dy 9(D2)
AFFDAl AAFHJTDE e o | Dy, AAF—»O

ATHCT ATs0ASC -
<AFFAT I>d°fAF—>A
AFI—<>AT<> AT S04 C

D, 9(D2)
AT HOA| AAD—<>CT<>E df o Dy, AA—><>O
ATEOCT ATooA=oC ©

D4 Dy D3
ATFCT

et g (D2) g(Ds3)
of o Dl,AFA1—>C AFA2—>C ]
AToA VA —C v

jed{1,2}
The function ¢’ is defined as follows.

f
d:efA;Fl,A,FQDA—)O

J(amamra PP F) ATLAL=C
yLi1,A4,12 —

Ch1

, F
def AL A Ay T A— C
AlvAaAQ;F—)C

& F
. def . RN
gl (A, '+ Al N AQ l /\E]’ f) sl g/ <517 A, I'> AJ C /\LJ>

g (ALA, Ay T AL hyPQ7 _7:)

ChQ

A,FFAJL A;FDAl/\AQ—>O

& &
g/<A;F|—AlDA2l A,Fl_AlT E .7:>
ATFA | -

et g (&) F
= 81,AF—>A1 AT > Ay — C L
AToA >4y —C  °
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je{L,2}

Note that operationally, each call to any one of the functions f, f/, g, or
g’ terminates, since the size of the first argument decreases in every recursive
call. Finally, to establish a bijection between MJig4 and NJ}\é4 derivations, it
is sufficient to show that f and g are both invertible. In fact, it is perhaps not
surprising that g is the inverse of f and vice versa. The following two results
formalize this notion.

Lemma 39 (Invertibility of f and g (1)).

D
1. If A;T'HC 1, then f(g(D)) =D.
& F
2. IfA;,THA| and A;T'> A — C, then f(g'(E,F)) = f'(F,E).

Proof. By simultaneous induction on the structure of the first given derivation.
We show the base cases and the cases involving modalities.

Case:
h AT A lf A—-C
/ = ) -
(o @Eranrar . 7)) =r(ahAled 0
y 41,431,142
—f (}‘, AT, AT, > A hypl)

Case:

f (9’ (Al,A, T Al P f =f <AZAAA2F;A —éc Ch2>
1, 29 -

— (% Ay A AT — 4 MP2)

Case:
artiy N)es(s (o 3meT=a )
f(g(A;FFJ_l ))_f J (D TS TSA L
ArrAr LE
i.h -
:f/(A;FDJ_—)AJ_Lu Dl)
D,
AT 1]
Arrar LE
Case:

D, g(Dy)
f<g<A;-I—AT )):f A A
Arroaq © AT S04 "
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f (g (D))
— AFAT

Arroa;

HOALEAY

ATrroar -

Case:
o Do
A;T'FOA AA;THC
f (g( ) l 9 ) T DE))

A ECT
9(D2)
:f g/ Dla A,A,F—>O
A T'>0A— C oL

. g (D)
e A AT SO D
A T'>0A— C bL
D1 f (9 (D2))
=ATFOA| AATHCT
ATFC]
_ D Do
A TROA] AATHCT

A DECT

Case:
AT AT 1)
flyg ; =f| AT — A
ATroAt AT So4a OR

L ATEAD
Arroar ©

Case:

D, D,
f<g<A;FI—<>Al A AFOCT E))
ATFOCT ©
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9(D2)
=79 (P _4a—oC
A;T'>CA — OC

. g(D2)
ih o AA—><>C D
ATood=oc b

D, f(g(D2))
—ATHFOA| A AFOCT
AT HOCT
. Dl D2
M ATEOA| AAFOCT
ATFOC] OE

Case:

D
/et ) -1 o =)

i (7A;FDA—>A init Dl)
D
_ATHA]| |
A;FFATT

Lemma 40 (Invertibility of f and g (2)).
D
1. If A, T — C, then g(f(D)) =D.
£ F
2. IfA;,T>A— Cand A; T A then g(f'(E,F)) = ¢'(F,E).

Proof. By simultaneous induction on the structure of the first given derivation.
We show the base cases and the cases involving modalities.

Case:
( (@rea=a ™. 7)) - (841 )
~g (F ZTsA =4 ")
Case:

33



Case:

D
g<f <A;F1,A,F2DA—>C

A A D — C

Case:

)

o(F (o2 ZmATEAL ™))

i.h.

b (G AT AT P D)
D1
:A;F17A7F2DA_)O
A;Fl,A,Ib_)C

Ch1

Dy
g<.f (AlaAvAQ;FDA—)C
AlaAvAQ;F_)O

o))

o (/' (o0 B A AT AT M)

i.h.

by (A AT Al P D)
D

:Al,AvAQ;FDA—)C

AL A AT w0 M
Case:
(e ) (45
g|fl Ao =g|_ A-FAT
A1 o4 R Arroar ”
g (f (D))
A7F—>DA OR
. Dl
A7F—>DA OR
Case:
gl ]: f(gl)
g|f | AAL-C L F))=g|ATFOAL AATFCY
A;'>0A4—C A TECT DE

g(f (&)
~¢ |7 _air—c
A;'>0A4A—C

Y

&
ihe (}', AAT—-C )
AToOA=C Ot
Case:
D, f(D1)
glr| &0 —A R =g| A THAT
AT S 0A Arroar O



g(f(D1))
= AT — A
AT — OA OR
. D
A A

AT S o4 OR

Case:

AAgl o F f (&)
! ; = IO T AFEO
gl f — <>L’]: gl AT Al AA CT<>E

A;T>CA — OC A TEOCT
9 (f (&)
=g |F, AA-3C L
ATood=oC ©

. &
B <]—‘7 A; A — OC )
ATooAs o0 Ot

A function is bijective if and only if it is both left- and right-invertible. As
a result, the bijectivity of both f and g follows immediately from Lemmas 39
and 40. The soundness and completeness of MJ1g4 with respect to NJ FS 4 follow
directly from this result.

Theorem 11 (Bijection between MJis4 and NJIL, derivations).
Derivations of unfocused sequents in MJ1sa correspond bijectively to derivations
of 1 judgements in NJIL,.

Proof. Functions f and g, defined above, map derivations of unfocused sequents
in MJs4 to derivations of | judgements in NJIL, and vice versa, respectively.
The fact that f and g are bijections follows immediate from Lemmas 39 and
40. a

Although MJjgy4 is suitable for proof search in a backward direction, a naive
approach still requires loop-detection to achieve a decision procedure. We will
not pursue this direction further here, but instead concentrate on forward proof
search, and on how we can combine ideas from backward and forward search to
perform bidirectional proof search.

6 Forward Proof Search

Constructing MJg4 proofs in a forward direction — from the top down — is
complicated by the presence of multiple contexts, making MJyg4 less than ideal
for forward proof search. All MJs4 derivations begin, at the leaves, with focused
sequents of the form A; I'> A — A, with A atomic. After a sequence of (possibly
zero) left-rule applications, the stoup formula is dropped from the stoup into one
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of the contexts by an application of ch; or chy. In a focused forward calculus
used as the basis for the inverse method [5], we would proceed in a similar way,
but it is not clear which context a stoup formula should be dropped into.

To address this uncertainty, we refine the idea of focusing and develop the
system M.J fs 4, Which is suitable for forward proof search and features sequents
of three kinds, involving both modal and nonmodal stoups:

A — C C can be proved using all assumptions in A, I',

C can be proved using all assumptions in A, I'; A, with

A assumed true,

ATobA e C C can be provgd using all assumptions in A, I', A, with
A assumed valid.

AT A C

Note that the forms of the focused sequents reveal which context the stoup
formula will drop into. For brevity, we write A; I'>* A — C, i € {1,2} for either
form of focused sequent.

The inference rules of MJJg,, shown in Fig. 6, are obtained by reinterpreting
the rules of MlJ1g4 in a forward fashion and by defining the ch; rules to behave
as sketched above. The contexts of MJ fs 4, however, are interpreted differently,
in that sequents A;I" — C and A;I'>* A — C, i € {1,2} assert that all
assumptions in A and I', as well as A if the sequent is focused, are needed to
prove C. General weakening, which holds in MJjgy4, is thus disallowed, but local
weakening is incorporated in the rule DRy. Contexts in MJJg, are treated as
sets rather than multisets, and we write I, I'5 and I', A for I3 U and I'U{A},
respectively. Note that a rule such as

AT, Av—= C Agy I, Ay — C
Al,AQ;Fl,FQDiAl\/AQ'—)C

VL;

could more pedantically be written

Ayl C Ay Iy C y
Al UAQ,(Fl\{Al})U(FQ\ {AQ}) l>i Al\/AQ — C

L; (A1€F1, AQEFQ)

but we use the former notation for readability and consistency with our previous
systems. No essential ambiguity is introduced by this convention.

In the following soundness and completeness results, we tacitly convert con-
texts from lists to sets and vice versa. More precisely, if A and I' are MJsq
contexts, then when used in MJ¥g, sequents A; ' — C or A; 't A C, they
are converted into the sets that contain all distinct formulas in the contexts A
and I'. Similarly, if A and I" are sets of formulas, that is, M.]fs4 contexts, then
when used in MJigy4 sequents A; ' — C or A; I'> A — C, they are converted
into lists containing all elements in the sets A and I'. As a shorthand, if I" is a
list and I is a set, then we write I/ C I" to mean that every element of I'' is
contained in I

Theorem 12 (Soundness of MJFS4 with respect to MJgy).
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initi J—Lz

bt A A (A is atomic) L A
AT A C A TppA—C

A TVA—C chy AAT —C chz

A; T AL — As R A; T — Ao
AT —AioA ~0 AT =45 A4,

DOR2

Al;F10—>A1 AQ;FQDiAQHC

- DL
Al,AQ;F17F2D1A13A20—>C

Ao Ay Al dy o0 ATV ASC

A17A2;F17F2'—>A1/\A2 A A;FDiA1/\A20—>C !

AT — Aj VR AT, A1 — C Ag [, A — C L,

AT — A1V As J A17A2;F17F2l>iA1VA20—>C ‘
A-— A AA T —C AT — A A; A OC
— R - 50 o OoR = ©L
A;-— OA A > 0A— C AT — OA At OA - OC

i,j €{1,2}

Fig. 6. MJig,

D
1. If A;T'— C, then A; T — C.
&
2. If A;Tot A CLi € {1,2}, then A; T A — C.

Proof. By simultaneous induction on the structure of the given derivation. We
show the base cases and the cases involving modalities.

Case: o
£ ———— iniy
DA A
1) 5 pA— A init
(1)
Case:
oD L= A
15 >l—A 1L
Case:
Dy
D:A;FDA»—»C’Ch (Ael)
ATA—C 1
AT A—-C ih. (D)
. 2)A T —-C ch; (1)
ase: D
D:A;FDA’—)OCh (AgT)
AT A—C 1
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() A T>A—-C ih. (Dy)
(2) A;TVABA— C Lemma 34 (1)
B)AaTA—-C ch; (2)
Case:
D,
D=4A;T>>rA—C h (A€ A)
AAT—C "
() A T>A—C ih. (Dy)
(2) AT — C chy (1)
Case:
D,
D=4A;T>rA—C ch (A¢ A)
AAT—C 7
() A T>A—C ih. (Dy)
(2) A, AT A—C Lemma 35 (1)
(3) A AT —C chs (2)
Case:
Dy
D= A4;-— A
A;-— OA bR
(1) 4;,-— A ih. (Dy)
(2) 4;- — OA OR (1)
Case:
&1
E= AAT—C aL.
AT OA—C
(1) A AT —C ih. (&)
(2) A;T'>0A— C oL (1)
Case:
Dy
D= A T— A
AT — o4 OR
(HAaTM—A ih. (Dy)
(2) AT — CA OR (1)
Case:
&

E= A A-OC
AP OA = OC
(1) A A — OC ih. (&)

(2) A;->OCA — OC oL (1)
0

oL,

The statement of the completeness result is slightly nonstandard. This has
two reasons, the first being that the focusing mechanism of MJyg4 has the role
of both types of focusing in MJkg,, so some of the behaviour of the MJ¥g,
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focusing mechanism needs to be extracted from the corresponding MJigy fo-
cused sequents. The second reason is that a derivation in MJig4 can contain
redundant focused segments, which add formulas to the contexts that are not
strictly necessary. Since the construction of such focused segments is not pos-
sible in MJJfg, (since all formulas in the contexts of a sequent are required to
prove its goal formula), we can ignore these redundant focusings completely in
converting MJg4 derivations into MJ Fs 4 derivations.

Theorem 13 (Completeness of MJL, with respect to MJis4).

D
1. If A;T — C, then A'; T — C for some A" C A, IV CT.
&

2. If AsT'vb A— C and A is a subformula of a formula in I', then either
AT — C or AT > A C for some A'C A, IV CT.
f
S If AsT'vb A— C and A is a subformula of a formula in A, then either
AT — Cor AT >bA— C for some A" CA, IV CT.

Proof. By simultaneous induction on the structure of the given derivation. We
show the base cases and the cases involving modalities.

Case:
E=ATr A=A init (4 is a subformula of a formula in I")
1) >A— A init,
Case:
F=ATrA— A init (A4 is a subformula of a formula in A)
(1) -ppA— A inity
Case:
E=ATs1L A LL (L is a subformula of a formula in I")
15 >l—A 1Ly
Case:
F=AT>r1l—A 1L (L is a subformula of a formula in A)
(1) 5-ppl— A 1Ly
Case:
D,
D=AT11,A Iy A—C h
ATLA L —C M
Subcase:
(AT - C ih. (D)
Subcase:
(A T'>A-C ih. (D)
(2) AT A C ch; (1)
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Case:
D,
D = Al,A,AQ;FDAH C

ALA AT —C
Subcase:
() AT - C ih. (D)
Subcase:
() A T"ppA—C ih. (D)
(2) A AT — C chs (1)
Case:
D
D= 4;-— A
ar—oa R
(1) A — A ih. (D)
(2) A’ — OA OR (1)
Case:
&
E= AALT=C oL (OA is a subformula of a formula in I)
A T'>0A4A—C
Subcase:
(AT —C (A¢gA) ih. (&)
Subcase:
(1) A AT — C ih. (&)
(2) A TM">0A C 0oLy (1)
Case:
F1
F= AAT-C oL (OA is a subformula of a formula in A)
A T'>04—C
Subcase:
(A IT"—C (A¢gA) ih. (F1)
Subcase:
() A AT — C ih. (Fp)
(2) A TM>pDA— C OL, (1)
Case:
D
= A TT— A o
AT o4 OR
(1) AT — A ih. (D)
(2) A T — OA OR (1)
Case:
&
E= A A-OC oL (©A is a subformula of a formula in I™)

AT>0A— OC
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Subcase:

(1) 45— OC ih. (&)
Subcase:
(1) A A OC ih. (&)
(2) A5 > OCA - OC Ly (1)
Case:
Fi
F=_4;A-0C oL (©A is a subformula of a formula in A)
A;T'>CA — OC
Subcase:
(1) A% = OC ih. (Fp)
Subcase:
(1) A A OC ih. (F1)
(2) 4% >pOA— OC Oly (1)
O

Note that the more fine-grained focusing mechanism of MJ¥;, could just as
well have been introduced in a sequent calculus suitable for backward reasoning,
such as MJ1g4. Indeed, the single type of focused sequent in MJg4 has the role
of both types of focused sequents in MJY;,, making the focusing mechanism of
MJis4 in some sense “overloaded”.

The forward calculus MJ¥g, suggests itself immediately as a basis for an
implementation of the inverse method [5], fundamental to which is the classifi-
cation of the subformulas of a query formula into positive and negative classes.
The sign of a subformula determines where in a sequent it may occur (for in-
stance as a goal formula or in the context) and restricts nondeterminism during
proof search. We will refine this notion by classifying subformulas as either

positive (+) subformulas, which may occur as goal formulas,

negative (—) subformulas, which may occur in the nonmodal context,
negative focused (~) subformulas, which may occur in the nonmodal stoup,
valid (=) subformulas, which may occur in the modal context, or

valid focused (=) subformulas, which may occur in the modal stoup.

e e

With this intended interpretation, it is straightforward to read the formal defi-
nition of refined signed subformulas directly from the inference rules of MJig,.

Definition 1 (Signed subformulas).
A signed subformula A* is a formula A with a sign x € {4+, —,~,=,~}. The
subformula relation < is the smallest reflexive and transitive relation between
signed subformulas satisfying the following.
A;,A; < (Al D A2)+ A;r < (Al /\A2)+ A;r < (Al \/A2)+
AT < (AT AT < (oAt AV <A
AT,A; < (Al D A2)N A;V < (Al N A2)N Az_ < (Al V A2)N
A= < (OA)Y A7 < (CA)~ AR < A=

41



init; 1L

LAY AT (A is atomic) m
AT I b A~ — CT AT I ppA® — CT X
A=A —ct Y AT AT ot O
A= I Af — AT A= T — A
SRy DRa

AT T (A D ADYT AT D™ (A D AD)T
AT T — AT AT Ty »' A3 CTF
AT, A5 I, Iy »P (AT D A3 — CF

oLy

AT;F{»—)AT A2:§F27’_’A; R A:;l—'7l>iA;»—>C+
A -
AT AT T, Iy v (AF AADYT AT I (AT ANAS) — CT

AL j

A:QFi’—’A;r VR AT I, AT = CT AT Ty Ay — CF
A= T = (AFvADY 7 AT AT I I s (AT VA;) O

VL;

AT = AT AT AT T —CT
— OR — - — oL,
AT (0AT)T AT, It (0AT) — Ot
AT — At AT AT — (<>C+)7L
- OR — OL;
AT T (OAT)T AT (OAT) = (OCT)T

i, € {1,2}, xis ~or & if i =1 or i = 2, respectively.

Fig. 7. Signed MJig,

AT,A; < (A1 D Ag)% A% < (A1 /\142)z A < (A1 \/142)z

A= < (OA) A7 < (0A)F
ie{1,2}

Note that for every negative subformula A~ of a signed formula C*, C*
also has, as a subformula, the corresponding negative focused subformula A™.
The converse, however, is not true in general. A signed formula C* may have
a subformula A~ without having a subformula A~. A similar relation holds for
valid and valid focused subformulas. The schematic formulas in the inference
rules of MJFg, can also be annotated with signs in a way that is consistent with
the intended interpretation. Such a signed version of MJ¥g, is shown in Fig. 7,
where we write I'~ and A~ for contexts of signed subformulas of the forms
Ar,...,A; and By,..., B, respectively. From these signed inference rules, it
is clear that the usual signed subformula property extends to encompass our
refined signing scheme.

Theorem 14 (Signed subformula property).
Every sequent in a signed MJfg, derivation

D &
A= I~ — CT or A= It A — CT, i e {1,2}
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where * is ~ or = if i =1 or i = 2, respectively, is of the form

1. DY,....D;Ef,...,E, — F*,
2. D1:7"'7D7T;E1_,...,E;LDENl—>F+7 or
3. Dfa---,D,T;El_,...,EnQDDD“»—>F+,

where all DT, E”, and E~, D=, and F* are signed subformulas of A=, I'™,
CT, and A*.

Proof. By simultaneous induction on the structure of the given derivation. 0O

Theorem 14 guarantees, for instance, that in any signed MJ¥g, derivation of

AT: '~ +— CT, all leaves are of the forms
A oA M e T g T ie{Ly

where A is atomic, * is ~ or ~ if 4 = 1 or i = 2, respectively, and A*, AT,
1*, and BT must be signed subformulas of A=, I'", and C*. In general, every
rule application considered by an implementation of the inverse method must
abide by the conditions set forth by the extended signed subformula property.
This provides a foundation for a focused inverse method prover for IS4 with
nondeterminism restricted more strongly than by the usual subformula property.

However, pure forward proof search techniques such as the inverse method
also have shortcomings. For instance, the existence of two DR rules is a con-
cession to the need for localized weakening, something usually handled more
elegantly in backward decision procedures by general weakening. Also, the re-
fined focusing we have introduced strongly restricts what rules are applicable,
something that a decision procedure should be able to exploit in order to gener-
ate fewer intermediate sequents. These issues are addressed in the next section
by combining ideas from forward and backward proof search.

7 Bidirectional Proof Search in Sequent Calculus

The idea behind the bidirectional sequent calculus method is that given a query
formula A, we can, by exploiting forward proof search techniques, but before per-
forming proof search itself, construct a set of derived inference rules for MJigy4
which conceal all left-rule applications that could be needed in a proof of A. We
then carry out backward proof search over these relevant derived rules and the
usual right-rules of MJis4. By design, our derived inference rules will correspond
exactly to the notion of focused threads in MJ¥g, derivations, defined as follows.

Definition 2 (Focused threads).

A focused thread of an MJ{g, derivation is a segment of the derivation that
begins, at the top, with an application of init;, LL;, VL;, OL;, or OL;, i € {1,2}
(raising a formula into a stoup), includes only focused sequents, and ends with
an application of ch; (dropping a formula from the stoup).
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In any MJ Fs 4 derivation of an unfocused sequent, left-rule applications must
occur in focused threads, so we can think of derivations as consisting of focused
threads strung together using right-rule applications. The key insight is that
all focused threads possibly needed in an MJ, proof of a formula A can be
deterministically constructed prior to proof search by inspecting the structure
of A. To justify this claim, we will use our refined subformula property.

First note that it is straightforward to uniquely label subformula occurrences
of a formula to be proved, and that the definition of signed subformulas, the
signed subformula property, and the inference rules of MJ¥g, can be adjusted to
operate on labels rather than formulas, thus differentiating between subformula
occurrences.

To give some intuition as to how to construct all the focused threads possibly
needed for a proof of a formula, we will illustrate the approach on the following
small example:

Lg

L;)LlN L;;

Ly, L5 LY
—_——N— —_—
Ly LY Lo, Ly Lg
AN = =~ =~

OCA D B)D<o( A D B)

with signed subformula occurrences
L, Ly, Ly LY, LY, Ly, L, T, L7, Ly, and LT, LY.

The signed subformula property guarantees that in a proof of the sequent ;- +—
L(J{ , the only axioms we require are

— inity ———— inity

5> Ly s LT and 5obbLY — LY
Consider the first of these axioms. Every applicable left-rule either drops the
stoup formula occurrence into a context or expands it. The immediate parent
of L% in the subformula tree is L., indicating that dropping the stoup formula
occurrence into the context is a permissible operation. In fact, it is the only
operation permitted by the signed subformula property operating on labels. We
can collapse this short focused thread into a single derived inference rule:

initl

o L — LT -
’ 7 3 —
— chy ~ -;L7»—>L§r

-;L7_|—>L§’_

(1)

Considering the second axiom, we notice that the parent subformula occurrence
of LT is L5, also a focused subformula occurrence. The next rule application
should then be DLy, with L5 as the principal formula occurrence. In fact, it is
not difficult to see that since every subformula occurrence has a unique parent
subformula occurrence, the signed subformula property operating on labels al-
ways uniquely dictates which rule (either a left-rule or ch;, i € {1,2}) may be
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applied. This game continues until the end of the focused thread. In the case of
the second axiom, the immediate parent of L5 is L3, signalling an application
of chy and the end of the thread:

initg

Sl A= — L;r

~ 2
A= L7 T~ — LT @

A:;F7|—>L§_ ';'DDLTI—)L;_
A:;F’>>L§HL§'
A:,L2:;F7|—>L§_

Ch2

Note that this derived rule, unlike (1), has a premise and is parametric in the
contexts A and [I'. Finally, the signed subformula property allows one more
focused thread, starting with

A= LT T~ — M™T

A= "> LY — M™T

OL4

The immediate parent subformula occurrence of L] is L, so this thread ends
here, yielding the derived rule

A= LT = MY o

—= OLy A= L3 T — MT
A= "> LY — M* ~> — — (3)
- - chy A=, LT — M™*
A= I, L] — Mt

Notice that this derived rule is schematic not only in the contexts A and I,
but also in the goal formula occurrence M. Such schematic representations of
threads are not technically focused threads, according to our definition, but their
concrete instantiations, when appearing in a derivation with concrete contexts
and a goal formula, are the true focused threads corresponding to these schematic
threads. To emphasize this distinction, we will occasionally refer to concrete
focused threads or derived rules as focused thread instances or derived rule
instances, respectively. Since the signed subformula property allows no other
focused threads, the remainder of the proof, if one exists, may only chain the
derived rules (1), (2), and (3) together with right-rule applications. In this case,
completing the proof is straightforward:

(1)
(2)
SR

OR

(3)

SR

N

Ly — L3
Ly; Ly w— LY

Ly — Lg

Ly — L;

Ly — L;

. Lar
In general, to cover all focused threads that might be needed in a proof of the
query formula, the construction of (possibly schematic) derived rules must begin

with focused sequents of the following kinds, where % is ~ or =, depending on
whether ¢ = 1 or ¢ = 2:
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et Ly — Lg, where L; and Lj, denote the same atomic formula,

cept L} — M, where L; denotes L and M is schematic,

AT Tt L — M, where L; denotes some Ay V Ay and M is schematic,
A= Dt L — M, where L; denotes some OA and M is schematic, and

AT TR L — M, where L; denotes some ¢A and M is schematic, but
denotes some <C.

S I N

Moreover, the constructed derived rules must end with a stoup formula occur-
rence being dropped into one of the contexts.

The question now is how these forward-constructed derived rules can comple-
ment backward proof search. The key observation is that every focused thread
of an MJJg, derivation (schematic or concrete) can be converted into a focused
thread of an MJys4 derivation by applying weakening, reducing valid focused
sequents to focused sequents, and omitting the now unnecessary signs of subfor-
mula labels. As one would expect, MJg4 focused threads are defined exactly
like their MJFS4 counterparts: they begin with applications of init, 1L, VL, OL,
or OL, include only focused sequents, and end with applications of ch;, i € {1, 2}.
For instance,

—— inity

A:;F7»—>L;' ~;~I>DLf»—>Lg_ L

A= I~ >pLly — Ly o
A= Ly I — Lg‘

Ch2

can be converted into the MJis4 focused thread

Ay, Ly, Ags I — Ly Ay, Ly, Ag; I'> Ly — Lg |n||:c
Ay, Ly, Ay I'> Ly — Lg -
Ay, Ly, Ag; I' — Lg

Ch2

where we have weakened some sequents, used MJ1g4’s single focusing mechanism
to perform the duties of both focusing mechanisms of MJJg,, and dropped the
subformula signs. We will, however, continue to treat formulas as labels, in order
to distinguish between subformula occurrences.

This makes it possible to construct derived rules for MJys4, which will, in
generally, be schematic. Note, however, that backward proof search over MJigy
with schematic derived rules is still not guaranteed to terminate, since right-
rules and derived rules may be applied many times along a branch of a proof.
There are several ways to overcome this problem. One appealing, if slightly
naive approach, is to restrict the number of applications of schematic derived
rules along a branch. In many cases, very short proofs are found by limiting the
number of applications of derived rules along a branch to at most one. This also
gives an immediate termination guarantee, since every rule application either
reduces the number of available derived rules, or leaves the number of available
derived rules unchanged, but reduces the complexity of the goal formula. This
approach also does away with conventional loop-detection entirely. All that is
needed is a way of keeping track of which schematic derived rules have been
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applied along a branch. While this bookkeeping apparatus is reminiscent of a
history mechanism, we expect it to be far more lightweight than maintaining
histories of previously encountered sequents or goal formulas, as is common in
standard loop-detection schemes. Our expectations will, for the most part, be
vindicated by our experimental results.

However, certain provable formulas, such as (AV(AD>D BV (C) D> BVC) D
B Vv C, do not have derivations where every schematic derived rule occurs at
most once along a branch. In such a case, we can relax our restriction slightly,
counting as derived rules not schematic focused threads, but particular focused
thread instances, characterized by the identity of the schematic derived rule and
the concrete goal formula occurrence, if applicable. The possible goal formulas
potentially needed in a proof are simply the positive subformula occurrences of
the query formula. While this may generate a large number of almost identical
derived rule instances, the availability of these rules remains very simple to
express: a rule instance is either available on a branch or not, and the bookeeping
apparatus for available rule instances could be efficiently implemented as a bit
vector, for instance.

It is possible to develop more fine-grained estimates of how many times a
derived rule might be needed, and we have followed this approach in our im-
plementation (see Sect. 9). Here, we will instead turn MJigs with forward-
constructed derived rules into a decision procedure using techniques familiar
from loop-detection schemes using histories. As hinted at near the end of Sect. 5,
it is possible to equip MJ1g4 with a history mechanism much like Howe’s [12].
A different approach which we will investigate here, related to the discussion
above, is to precompute possible derived rule instances — schematic derived
rules with all possible concrete goal formula occurrences — and, during proof
search, to maintain lists or sets of which rule instances are still available. Unlike
in the simple approach sketched above, however, the restrictions on how and
how many times each rule instance can be applied along a branch are slightly
more involved, in order to guarantee completeness.

To gain some more intuition regarding derived rule instances, recall that every
MJg4 focused thread begins with an application of init, LL, VL, OL, or <L,
includes only focused sequents, and ends with an application of ch;, i € {1,2}.
Fixing the goal formula occurrence C' and the stoup formula occurrence A at
the topmost rule application of the thread? uniquely determines the shape of the
focused thread, as justified by the signed subformula property in MJ¥;, and the
fact that the derived rule instances in MJig4 are constructed as in M.J fs 4- The
goal formula occurrence of a focused thread instance does not change throughout
the thread, since left-rule applications are independent of the goal formula. If
the focused thread begins with an application of a rule that has premises (VL,
OL, or OL), we will call these premises, which still have C as a goal formula
occurrence, but whose contexts may differ from contexts in the focused thread,
trunk premises or trunks. On the other hand, a focused thread can have open

2 Although we will continue to think of formula occurrences as labels, we will use the
metavariables A, B, C, etc. for readability.
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premises induced by applications of DL. These premises, which we will call twig
premises or twigs, have the same contexts as sequents in the focused thread, but
different goal formula occurrences. If a focused thread begins with an application
of a rule without premises (init or LL), then it has no trunks.

Note that a focused thread instance need not have any twigs or trunks. The
MJs4 focused thread shown above (which corresponds to the M.]fs4 derived
rule (2) in the example shown previously) has one twig, Ay, Lo, Ag; I" — L,
and no trunks. The MJig4 focused thread corresponding to the MJ Fs 4 derived
rule (1) in the example has no twigs and no trunks, while every MJg4 focused
thread instance corresponding to schematic derived rule (3) has one trunk and
no twigs.

The general form of a VL derived rule instance — that is, a derived rule
instance concealing a focused thread starting with an application of VL — for
example, is

twigs trunks
A—B - AT — B, ATVA —-C AT Ay — C
AT — C

while that of a OL rule instance is
twigs trunk
A — By -+ A T'— B, AA —OC
AT — OC

Building on MJ1g4, we will describe the system MJ F’s 4, Whose inference rules
consist of derived rule instances — generated prior to proof search from a query
formula as shown previously — and the usual right rules of MJjg4. However, to
guarantee completeness and termination of proof search in MJIBS4, we require
some additional provisos on the rules, inspired by loop-detection schemes using
history mechanisms. Moreover, the treatment of some right rules of MJE, is
not quite identical to that of MJigs. As a preliminary overview, the general
approach of proof search in MJE,, is to

1. precompute all derived rule instances (all focused threads, with schematic
goal formulas instantiated with all suitable goal formula occurrences),

2. precompute all required instances of OR applications (applications of OR,
with schematic goal formulas instantiated with all suitable goal formula oc-
currences),

3. perform backward proof search over these rule instances and schematic in-
ference rules for DR, AR, VR, and OR.

The intuition behind this approach is that we can statically control the avail-
ability of rule instances with conrete goal formulas while performing backward
proof search, while the availabilities of the rules that we maintain in a schematic
form (DR, AR, VR, and OR) need not be controlled.

A sequent in MJE;, consists not only of the two contexts and a goal formula,
but also comprises a collection of available rule instances, as well as a collection of
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previously applied rule instances that may become available again if the contexts
are modified along the current branch. More formally, an MJE;, sequent has the

form
AT — C || LR oLR vILR; 1L init®; OR® oL oL

where each %™ and %7 is a set of rule instances characterized by an application
of x. We will assume that in the rule instance precomputation phase, unam-
biguous names or labels have been generated for rule instances, and that the
complete sets of rules of each type (e.g. all derived rules starting with VL or OL
applications, etc.) are readily available. The *™ sets contain rule instances that
are available for application along the current branch, while the %7 sets contain
rule instance labels indicating which rule instances’ twigs this sequent is located
on. Although a rule instance will generally not immediately be available along
its twigs, modifications to the contexts along the derivations rooted at the twigs
can cause these rule instances to become available again. We will refer to the
+® and *7 sets associated with a sequent collectively as the sequent’s bookkeep-
ing sets. To avoid further cumbersome notation, we will provide an operational
description of how the rule instances and schemas of MJ IBS 4 are applied.

1. For a OL derived rule instance

twigs trunk
A —By - AT — B, AATDT—C
AT —C !

with label ¢ to be applicable, the OL*® set of the conclusion must contain i.

The bookkeeping rules of an application of rule instance ¢ are as follows.

(a) Copy the bookkeeping sets from the conclusion to each of the premises.

(b) Refill the OLR, oR®, vL*, LLR, and init® sets of the trunk — that is,
let them be the full sets of precomputed rule instances of the appropriate
types.

(¢) Move the contents of the OL” set of the trunk into the OL® set of the
trunk — that is, let the OL™ set of the trunk be OL® UOL? and empty
the OL7 set of the trunk. Empty the OLT set of the trunk.

(d) Add i to the OL7 set of each of the twigs.

(e) Remove i from the OL™ set of each of the premises (both twigs and
trunks).

2. For a OL derived rule instance

twigs trunk
A — By - A T— B, A A—-OC
AT — OC !

with label ¢ to be applicable, the OLR set of the conclusion must contain .
The bookkeeping rules of an application of rule instance ¢ are as follows.
(a) Copy the bookkeeping sets from the conclusion to each of the premises.
(b) Refill the VL™, LL®, and init® sets of the trunk.
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(¢) Move the contents of the OL7 and OL7 sets of the trunk into, respec-
tively, the OL® and OL™ sets of the trunk.

(d) Add i to the OLT set of each of the twigs.

(e) Remove i from the OL™ set of each of the premises.

. For a VL derived rule instance

twigs trunks
A —By - AT — B, ATVA —-C AT A, —C
AT — C !

with label 7 to be applicable, the VLT set of the conclusion must contain i,

and the context extensions in the trunks must be proper, that is, Ay, Ay ¢ I

The bookkeeping rules of an application of rule instance i are as follows.

(a) Copy the bookkeeping sets from the conclusion to each of the premises.

(b) Refill the VL™, LL®, and init® sets of the trunks.

(¢) Move the contents of the OL7 and OL7 sets of the trunks into, respec-
tively, the OL® and OL™ sets of the trunks.

(d) Remove i from the VL™ set of each of the premises.

. For an init derived rule instance

twigs

A — By - AT — B,
AT = C !

with label i to be applicable, the init™ set of the conclusion must contain 4.
The bookkeeping rules of an application of rule instance ¢ are as follows.
(a) Copy the bookkeeping sets from the conclusion to each of the premises.
(b) Remove i from the init” set of each of the premises.

. For a 1L derived rule instance

twigs

A —- By - AT — B,
AT —C !

with label ¢ to be applicable, the 1L set of the conclusion must contain 1.
The bookkeeping rules of an application of rule instance i are as follows.
(a) Copy the bookkeeping sets from the conclusion to each of the premises.
(b) Remove i from the LL™ set of each of the premises.

. For a OR rule instance
A — A

AT SOA !

with label ¢ to be applicable, the OR™ set of the conclusion must contain .

The bookkeeping rules of an application of rule instance ¢ are as follows.

(a) Copy the bookkeeping sets from the conclusion to the premise.

(b) Refill the VL™, 1L and init™ sets of the premise.

(¢) Move the contents of the OL7 and OL7 sets of the premise into, respec-
tively, the OL® and OL” sets of the premise.
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(d) Remove i from the OR set of the premise.
7. When applying the rule DR, the behaviour of the rule is different depending

on whether or not the premise of the implication that is the principal formula
is contained in the nonmodal context. If it is, then the variant

A; T — Ay
AT A, >4,

is applied. If it is not, then the variant

A;F,Al —>A2
AT A oA~

is applied. In both cases, bookkeeping sets are copied from the conclusion
to the premise, but in the case of DRy, the following additional bookkeeping
steps are required.
(a) Refill the VL™, LL®, and init® sets of the premise.
(b) Move the contents of the OL7 and OL7 sets of the premise into, respec-
tively, the OL® and OL” sets of the premise.
8. The behaviour of the remaining schematic inference rules (AR, VR;, OR) is

unchanged from MJgg. In all cases, bookkeeping sets from conclusions are
simply copied into premises.

R1 (A1€F)

Ry (A1 ¢1)

To show that MJ IBS 4 provides a decision procedure for MJs4, we must show
that backward proof search in it terminates, and that it is sound and complete
with respect to MJis4.

Theorem 15 (Termination of Backward Proof Search in MJE,,).
Backward proof search in MJE, is guaranteed to terminate.

Proof. Every premise of every rule application is measurably smaller than the
conclusion, according to a particular size function defined on MJIBS4 sequents.
In particular, we will associate, with every sequent

AT — C || LR oLR vLR; 1L init®; OR® oL oL

the 10-tuple (s1,...,s10), where s1,...,s10 are defined as follows.
51 = DLRUDLT’ Sy = <>LRU<>LT’
53:DRR‘ sa=f— 1T
S5 = DLR’ S¢ = OLR‘
s7 = \/LR’ 58 = J-LR’
Sg = ‘initR’ s10 = size(C)

where f is the number of distinct negative subformula occurrences in A=, I'~|
and C*, |I'| is the number of distinct formula occurrences in the context I,
and size(C) is the size of the formula occurrence C, computed inductively in the
usual way. As in the proof of Lemma 33, (v1,...,v,) < (w1,...,w,) if there is
an i € {1,...,n} such that v; = w; for j < i and v; < w;. O
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Theorem 16 (Soundness of MJIBS4 with respect to MJgy).

D
If A; T — A in MIJE,, with full ¥ and empty «T sets generated from the query
formula A, then A;T" — A in MJsg.

Proof. By induction on the structure of D. The inference rules of MJE;, function
identically to those of MJjg4, only equipped with additional side conditions.
This means that the proof space of MJIBS4 is simply a restricted version of
MJiss. O

Theorem 17 (Completeness of MJIBS4 with respect to MJgy).

D
If ;- — A in MJisa, then ;- — A in MJI,, with full x™ and empty «T sets,
generated from the query formula A.

Proof. We will show that if an application of a rule in an MJg4 derivation with
derived rules violates a side condition of the corresponding rule in MJ IBS 4, then
the offending application can be removed or modified so as to not violate the
side conditions of the corresponding MJE;, rule. Showing that the process of
removing such violations terminates then shows that every MJigy derivation
can be transformed into one without violations, and thus into a valid MJIBS4
derivation.

Case: An application of the OL derived rule instance

Dy D, &
AT — By - A T'— B, AAT—-C
AT — C !
f

violates a side condition of the corresponding rule in MJE,,. Then the OL®
set of the conclusion does not contain i, so ¢ must have been removed from
the branch’s OL™ set by an application of i in F. Consider the closest such

application.
Subcase:
A —C
A F; Fn g
F=AT"-B1 --- A3I"—=B; --- A;I"—-B, AAI"'-C
AT — C ’

H

Every rule that changes either context moves the rules in oOL? to oLR®,
and the application of ¢ in F adds i to the OL7 set of each twig. So
F; cannot contain any rules that change either context, as otherwise, ¢
would be in the OL™ set of the conclusion of the upper application of i.
So A’ = A, I'" =T, and we can collapse the violating segment into

-7:1 ,Dj —7:11 g
A1 —-pB, - AT —B; - AT — B, AAT-C
AT — C !
H
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Subcase:

A —C
—7:1 —7:11 g
F=AT"—-B --- A I"—B, A AI'—-C
AT = C !
H

Since no rule reduces the size of the modal context, A € A, so we can
collapse the violating segment into

g/
A —C
-7:1 —7:11 g
AT =By - AT — B, AAT —C
AT = C !
H
where £’ is obtained by applying Lemma 37 to €.
Case: An application of the OL derived rule instance
Dl Dn £
AT — By - AT — B, AA—OC
AT — OC !
f

violates a side condition of the corresponding rule in MJE,,. Then the OL®
set of the conclusion does not contain ¢, so ¢ must have been removed from
the branch’s OL” set by an application of ¢ in F. Consider the closest such

application.
Subcase:
AT — OC
F F; Fn g
f:AI;FIHBl A/;F’_>Bj A’;["—)Bn AI;A—><>C .
AT — oC '
H

Every rule that changes either context moves the rules in OLT to oLR
or refills OL™, and the application of i in F adds i to the OLT set of
each twig. So F; cannot contain any rules that change either context,
as otherwise, i would be in the OL™ set of the conclusion of the upper
application of i. So A = A, I'" = I', and we can collapse the violating
segment into

—7:1 ,Dj —7:11 g
A1 —-B - AT —-B; - AT — B, AA-OC
AT — OC !
H
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Subcase:

AT — OC
F1 Fn g
F=A4"T"—-B - A;I"—=B, A;A-3C
AT — OC !
H

Every rule that changes the modal context refills OL™, so G cannot
contain any rules that change the modal context, as otherwise, ¢ would
be in the OL® set of the conclusion of the upper application of i. So
A’ = A, and we can collapse the violating segment into

-7:1 Fn &
AT =By - AT — B, AA—OC
AT — OC !
H

Case: An application of the VL derived rule instance

Dl Dn 51 52
AT — By - A T— B, ATVA —-C ATVA, — C
AT —C !
f

violates a side condition of the corresponding rule in MJE,. Then either

1. Ay €T,

2. As €I, or

3. The VL™ set of the conclusion does not contain .

In the first two cases, Lemma 36 can be applied to obtain a derivation of
A; ' — C from & or &, eliminating the offending application of 4. In the
third case, i must have been removed from the branch’s VL™ set by an
application of ¢ in F. Consider the closest such application.

Subcase:
A;T0 — C
F1 Fj Fn G1 ]
F=ar" - By --- A/;F'HBJ- ... aAlir’ - B, A’ A -cC A;r' Ay - C
3
Al - cC
H

Every rule that changes either context refills VL™, so JF; cannot contain

any rules that change either context, as otherwise, ¢ would be in the VLR
set of the conclusion of the upper application of i. So A"’ = A, IV =T,
and we can collapse the violating segment into

F1 Dj Fn g1 G2
Al - By - AI;F,HB]' ... aAlir’ - B, Ar’', Ay -c A1’ Ay - C

i
aAlsr’ - c
H
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Subcase:

AT —C
F1 Fn G1 G2
F=AT"—-B - A;I"—-B, AI'" A —-C AT A —C
AT = C '

H

Every rule that changes either context refills VLT, so Gi cannot contain
any rules that change either context, as otherwise, ¢ would be in the
VLT set of the conclusion of the upper application of i. So A’ = A,
I'",A; =TI, and we can collapse the violating segment into

&
A —C

F1 Fn G Go
AT —-By .- AT — B, AT A —-C AT, Ay — C
AT —C !

H
where & is obtained by applying Lemma 36 to &;.
Subcase:
AT —C

Fi Fn G1 G2
F=AT"—-B - A;I"—=B, A" A —-C A" A —C
AT = C ‘

H

Every rule that changes either context refills VLR, so G, cannot contain
any rules that change either context, as otherwise, ¢ would be in the
VLT set of the conclusion of the upper application of i. So A’ = A,
I'",Ay = I', and we can collapse the violating segment into

&
AT — C
Fo Fi Fn G G2
AT B - AT — B, AT A —-C AT, Ay —C
AT C ‘
H

where &) is obtained by applying Lemma 36 to &s.
Case: An application of the 1L derived rule instance

D, Dh
A — By - AT — B,
AT —C !
f

violates a side condition of the corresponding rule in MJE,,. Then the LL*
set of the conclusion does not contain ¢, so ¢ must have been removed from
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the branch’s LL% set by an application of ¢ in F. Consider the closest such

application.
AT — C
—7:1 fj -7:n
F=A"1"-B - AI"—B; --- AI"—B,
AT — C !
H

Every rule that changes either context refills 1L® so JF; cannot contain any
rules that change either context, as otherwise, ¢ would be in the LL” set of
the conclusion of the upper application of i. So A’ = A, I = I', and we can
collapse the violating segment into
Fl Dj Fn
A" —-B, - AT —B; - AT — B,
AT = C !
H

Case: An application of the init derived rule instance
D1 Dn,
A — By - AT — B,
AT — C !
].'

violates a side condition of the corresponding rule in M.J }35 4- Then the init™
set of the conclusion does not contain i, so ¢ must have been removed from
the branch’s init™ set by an application of 7 in F. Consider the closest such

application.
AT — C
-7:1 fj Fn
F=A"1"—-B - AI"—-B; --- AI"—=B,
AT = C ‘
H

Every rule that changes either context refills init”, so F. j cannot contain any
rules that change either context, as otherwise, ¢ would be in the init™ set of
the conclusion of the upper application of i. So A’ = A, I = I', and we can
collapse the violating segment into

.7:1 Dj -7:n
AI;F/—>Bl A/;F/—>Bj AI;FI—>Bn'
AT — C v
H
Case: An application of the OR rule instance
D,
A;-— 0OA
AT — A !
].'
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violates a side condition of the corresponding rule in MJE,. Then the OR®
set of the conclusion does not contain ¢, so ¢ must have been removed from
the branch’s OR™ set by an application of ¢ in F. Consider the closest such
application.
AT — A
F1
F = A/;- — OA .
AT — A !
H
Every rule that changes the modal context refills OR%, so F; cannot contain
any rules that change the modal context, as otherwise, ¢ would be in the
OR™ set of the conclusion of the upper application of i. So A’ = A, and we
can collapse the violating segment into
D,
A/; — .
AT — A !
H
Applications of schematic rules in MJ IBS 4 have no side conditions, and can
thus not cause any violations. Each conversion shown above eliminates one vio-
lating application of a rule instance application from an MJjg4 derivation, and
since there can be only finitely many violations in such a derivation, the proce-
dure above shows how to obtain an MJ F‘s 4 derivation from an MJ1g4 derivation.
O

These results show that MJIBS4 is a sound and complete decision procedure
for propositional IS4. Although the bookkeeping needed to guarantee termina-
tion and completeness is slightly cumbersome, it turns out that it is rarely nec-
essary. If a query formula is provable, then in almost all cases, simply restricting
the number of derived rule instances used along a branch is a sufficiently lax
condition to allow a proof to be found. Only if a proof is not found is it neces-
sary to perform some bookkeeping to guarantee that the search space has been
exhausted.

Note that the idea of constructing relevant derived rules prior to proof search
can also be exploited in forward proof search, where the derived rules described
above can take the place of left rules in the inverse method. The main advan-
tages here are that the derived rules are more relevant to proof search for the
given query formula, and that the number of intermediate sequents added to
the knowledge base during proof search is reduced, since no focused sequents
need to be maintained. Naturally, in a forward direction, no bookkeeping is re-
quired. Instead, proof space saturation needs to be monitored to identify when
to terminate parts of the search.

8 Bidirectional Proof Search in Natural Deduction

In the bidirectional sequent calculus method, we construct derived rules to con-
ceal all required focused threads. Notice that the focused threads of MJ%:S4
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correspond naturally to segments of NJX, proofs consisting of elimination rule
applications, that is, | judgements. The beginnings of focused threads, where for-
mulas are placed into the stoup, correspond to reversing rules in NJFSLL. These
are the T rule, as well as all elimination rules with T judgements as their conclu-
sions. The ends of focused threads, on the other hand, where the stoup formula
is dropped into a context, correspond to using a hypothesis with applications of
hyp, or hyp,.

This means that the process of building a derived MJ Fs 4 rule in a top-down
way corresponds to building a natural deduction derived rule by beginning with
an application of a reversing rule, and growing it upwards until we reach a leaf.
Just as the construction of derived rules in the sequent calculus is determined
uniquely by the form of the query formula, so these natural deduction derived
rules can be deterministically constructed before proof search even begins.

This approach is best demonstrated by an example such as the one given in
Sect. 7. For instance, given the pair L7 and Lgr from that example, we begin
with the coercion

A= I~ FLY | |

A= I~ F LT f
Since the immediate parent of L7 in the signed subformula tree is L5, denoting
A D B, the rule application above this coercion must be an application of DE:

A= I~ FLyE | A5 T FLIT
A= I F LY |
A= - FLT

Tl

The focused thread continues along the first premise, but the parent of L5 is
L5, indicating the end of this focused thread by an application of hyp,:

Ly € A=
i asrrrg S L5 A5 L
) zl ) STDE s A17L27A2§F FL?,T(2)
A= T LY " AT, L7, A7~ H LT
A= D FLETT

In similar constructions, the pair L7, L;{ and L7, the latter denoting O(A D B),
produce, respectively, the natural deduction derived rules

L, el
A= o] P 1)
; 71 i o AS I Ly Iy R L
A=+ LT
and
Ly eI™
-—F———— hyp, — = 4
A= T LY | A= L3I~ M T o
A= T~ F Mt
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A:7L2:;F1_7L1_7F2_ |_M+T
~ )

A= Iy, Ly, Iy EMT Y

The rest of the proof then uses only these derived rules and introduction rules:

(1)
(2)
ol
ol
(3)
ol

Ly;Ly, Ly - L3 1

Ly;Ly, Ly - L3 1
Ly; Ly FLg T
Ly ELE T
5B Lyt

In general, the approach for constructing natural deduction derived rules is anal-
ogous to the method for the bidirectional sequent calculus, only turned upside-
down, in the sense that the rule at the beginning of an MJ¥, focused thread
determines the reversing rule at the bottom of the natural deduction focused
thread, while the final application of hyp, dictates the “principal formula” of the
ensuing derived natural deduction rule.

Proof search over natural deductions can then be performed in a backward
direction. The only nondeterminism is in whether to apply a derived rule or an
introduction rule, the premises of which are uniquely determined by their conclu-
sions. Note that to guarantee termination, we can again restrict or incrementally
increase the number of allowed derived rule instances along a branch of a proof.
Sound and complete bookkeeping systems equivalent to the one presented in
Sect. 7 can also be designed for the natural deduction setting.

9 Experimental Results

While benchmark formulas are available for intuitionistic propositional logic and
classical modal logics, we are not aware of any benchmark libraries specific to
propositional IS4. In order to evaluate the performance of our bidirectional ap-
proach, we put together a benchmark set of 50 formulas for IS4, mostly problems
from Raths et al.’s Intuitionistic Logic Theorem Proving (ILTP) library [18] to
which we introduced modalities. Our full benchmark set is given in Appendix A.

We implemented three IS4 decision procedures in SML: (1) an MJg4-based
backward prover with a conventional history mechanism for loop-detection, (2)
an MJJg,-based inverse method prover without derived rules, and (3) our bidi-
rectional natural deduction prover. The loop-detection prover maintains two
histories to detect repeated modal and nonmodal rule applications, respectively.
This approach is a generalization of Howe’s decision procedure [12] extended to
full IS4. Note that the behaviour of our bidirectional sequent calculus prover
corresponds exactly to that of the bidirectional natural deduction prover, so we
have only implemented the more elegant natural deduction prover. In the bidi-
rectional prover, we first restrict the number of derived rule instances to at most

59



Table 1. Selection of experimental results

Histories Inverse Bidirectional
Formula Size Modalities Provable Time Time Rules Time Rules

32 49 0 N > 1000 1.36 33 0.01 33
36 175 0 Y 0.08 > 1000 159 > 1000 592
37 68 9 Y 84.79 1.18 60 <0.01 28
39 42 3 N 8.46 1.83 31 < 0.01 15
44 49 14 Y 75.13 > 1000 51 37.11 21
50 44 7 Y 7.38 > 1000 49 48.76 25

one schematic derived rule per branch, then relax this constraint if no proof is
found. In most cases, this allows proofs to be found significantly faster, if they
exist. In fact, this approach makes much of the bookkeeping presented in Sect. 7
redundant if the query formula is provable.

On many of the smaller problems, there was little measurable difference in
the performance of the provers, but some of the problems that did elicit notice-
ably different performances are highlighted in Table 1. The size column shows
the complexity of each formula, computed inductively in the usual way, while
the modalities column shows the number of modal operators. Times are in sec-
onds.? For the inverse method and bidirectional provers, we show the number of
inference rules generated (derived rules in the case of the bidirectional prover).

As the results demonstrate, the bidirectional natural deduction prover is a
competitive alternative to the more conventional provers, equalling or outper-
forming them on most problems. Comparing the average proving time for prob-
lems that were solved, it is noticeably superior, although we found two formulas
on which it was significantly outperformed (formulas 36 and 50 in Table 1). In-
terestingly, there is not always a clear connection between the number of derived
rules generated and the time required to solve a problem. Presumably, the prob-
lematic cases were those whose derived rules were the shortest and least useful.
Note also that as derived rules are associated with subformula occurrences, those
formulas with many repeated subformulas (e.g. formula 36) caused a very large
number of duplicate derived rules to be generated.

10 Related and Future Work

Although IS4 has undergone thorough proof-theoretical studies, there has been
little work in developing proof search strategies specific to it. We have presented a
comprehensive study of proof search formalisms for IS4, highlighting the duality
between backward and forward search. Moreover, we have demonstrated how to
combine the benefits of both to yield bidirectional decision procedures based

3 All timing results were obtained on a Pentium III 850 MHz with 256 MB of RAM,
running SML/NJ version 110.60.
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on sequent calculi and natural deduction. Our experimental results reveal that
combining the two traditionally disparate paradigms can be fruitful. Although
our implementations are naive and unoptimized, we hope that our results might
encourage further study of bidirectional proof search, particularly in other logics.

For instance, in the contextual modal logic of Nanevski, Pfenning, and Pien-
tka [15], structural modality is generalized by relativizing the validity judge-
ment and the modal operators. The techniques discussed in this paper extend
very naturally to contextual modal logic, yielding sequent calculi suitable for
backward and forward proof search, but the exact nature of how such a gener-
alization affects proof search is yet to be explored. The reconciliation of forward
and backward proof search has recently also been investigated by Chaudhuri
and Pfenning [3], who, in the context of linear logic, propose a focusing inverse
method prover incorporating derived rules constructed in a backward way and
searched over in a forward direction, precisely opposite to our approach.

In the future, we plan to explore extensions to the first-order case. Although
the idea of derived rules extends, in principle, to first-order quantifiers, the con-
structed derived rules become parametric in terms. The characterization of a
derived rule instance now also includes the parameter instantiations, introduc-
ing another layer of bookkeeping. How to efficiently overcome this problem and
what the proof-theoretical relationship between first-order bidirectional decision
procedures and natural deduction provers is remains to be investigated.

Acknowledgements. We would like to thank Daniel Pomerantz for discussions
on forward proof search and for the implementation of the inverse method prover,
and the reviewers of the conference version of this paper [11] for their insightful
comments and suggestions.
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A

Benchmark Formulas

Our 50 benchmark formulas are shown below. The equivalence operator =, used
in some of the formulas, is defined notationally in the usual way:

Al = A2 d:ef (A1 D AQ) A\ (AQ D Al)

Its precedence is lower than that of all other connectives.

PN O WD

(AVB)vC=(CVB)VA

OAvV (OBvOC) D OCV (OBVCOA)
AN(BAC)=(CANA)AB
CAN(@OBVCO)=(CAANOB)V (CANC)
(D(A > B)) > ((04) > (OB))

(0DA) D A

(04) > (0(0A))

A D (CA)

O(CA)) D (CA)

O(A D B)) D ((CA) D (©OB))
(OC)D>E)D>A) D (((OC) D E)D A)
((¢®D)D> E)D B) D (((¢D) D> E) D B)
not provable)

(OA)) (not provable)
(CA)) (not provable)
(not provable)
)

)

::’>::’>/—\

D ((©A) D (¢B))
> (¢B)) D (¢B))

(
. ((b=c) D (anbAce))A((e = a) D (anbAc))A((a = b) D (aAbAc)) D (aAbAC)
- mm(=p1 Vo p2 V ops Vo (pr Ap2 Aps))

(al = a2) =a3) = (a3 = (a2 = al))

- =(p1 D p2) D (P2 2 p1)
- (p1 Dp2) A2 D (p3Ap1)) A(ps D (p1Vp2)) D (ps =p1)

(p1V (p2 Ap3)) = ((p1 Vp2) A (p1Vp3))

. ==(p1 V1)

- 77((pr Ap2) V (=1 V p2))

- = =((p1 A (p2 Ap3)) V (=p1 V (=p2 V —p3)))

- ((p1 2 p2)) A ((((=(=p3)) 2 pa) D ps)) A ((((=(=p4)) D ps) D p1)) D (p2)

(not provable)

- ((=(=p1))) A (P2 D (P2 D p3))) A (P4 D (pa D p2))) A(ps D (p5 D pa))) A

((pe O (P D p5))) A ((pr D (p7 D p6))) A ((ps D (P8 D 7)) A((pr D (p1 D
ps))) D (p3) (not provable)

() A (1 D (p1 D p2))) D (p2) (not provable)
- (=0(=0p1)) A (~(-00ps))) > ((Op1 V Opz)) (not provable)
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35.
36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

(((Bp1 = p2) D (p1 Ap2))) A (((p2 = Op1) D (p1 Ap2)) D ((p3 V ((p1 Ap2) V

(—p3)))) (not provable)

((((p1 =p2) =p3) =pa) = (pa = (p3 = (p2 =p1)))))

(((((Op1 2 p2) A (((Op3 D Opa) D ps) A (((Cps D Ops) D p1) A (((Opr D

Ops) D pe) A ((pe D ps) D ps))))) D p2) A((((pe D ps) D ps) A (((Opr D

Ops) D ps) A(((a D ps) D p1) A (((p3 D pa) D ps) A(pr Dp2))))) Dp2)))

(((((p1 2 p2) A(((p3 D pa) D ps) A(((pa D ps) D p1) A (((pr D ps) D
p6) A (((po D p1o) D p8) A (P11 D ps) D p10)))))) D p2) A ((((p11 D ps) D

plO) (((po D p10) D p8) A (((p7 D pg) D ps) A (((pa D ps) D p1) A (((p3 D

pa) D ps) A (p1 D p2)))))) D p2)))
C(p1)AB((p2 O (p2 D p3))) A(p
(ps D ps))) A ((p7 O (p7 D pe)))

1) A ((p2 D (p2 D p3))) A ((pa
pe O ps))) A ((pr O (pr D ps)))

(p

oy

(OD=(C>CA)=CR)D (OCR=((C D CA)) =0D)

((DAVOB) D (OCAOOD) D (CBACOC) DOE)VOF) D (OFV ((DAV
OB) D (BC AOOD) D (CBAOOC) D OF))

((p1 Vp2)) A3V pa)) A5 Vps)) D (((pr Ap3) V ((p1 Aps) V ((p3s Aps) V
((p2 Apa) V ((p2 Aps) V (pa A ps)))))))

(A(p1 V p2)) A (O(Bps vV Opa)) A ((Aps vV Ops)) D (((Op1 A Op3) V ((Op1 A

Pa D (pa 2 p2)))A((ps O (ps D pa))) A((ps D
A ((p1 D (p1 D p7))) D O(ps) (not provable)
D (pa 2 p2))) A(ps 2 (ps D pa))) A ((ps D
A((ps D (ps D p7))) A(p1 D (p1 D ps))) D

ps) V ((Op3 Aps) V ((Op2 ACpa) V ((Cp2 Aps) V (Opa Aps)))))))
((((p1 A (p2 A (p3 A (pa A (s A ps))))) V ((p1 D pr) V ((p2 D p7) V ((ps D
p7) V ((pa D p7) V ((ps D p7) V(ps D p7))))))) D p7)) D (P7)

pr

(((Cp1 A(@p2 A(Cp3 A(Opa AOps)))) V ((Op1 D pe) V ((Op2 D ps) V ((Ops D
p6) V ((Opa D ps) V (Ops D p6)))))) D ps)) D (pe)

(1) A((p2 2 ((P3Vpa) Vp3))) A((ps D ((p2Vps) Vp2))) A(((ps Vpr) Vps)) D
((p7 vV ((p5s Aps) V ((p2 Apa) V (3 Ap1)))))

(((B0p1) D ((=(=0Cp1)))) 2 ((p1) 2 (=(=Cp1))))) 2 ((BOp1) D ((—(=
©0p1)))) O ((p1) 2 ((=(=Cp1)))))

(=0p1) V (=Cp2))) D ((O=p2) V (©=p1)))

(p1) AO((p2 D ((Bps vV Opa) V Op3))) AD((ps O ((p2 V pe) V p2))) A (((p5 V

p7) Vps5)) D O((pr V ((Ops Ape) V ((p2 Apa) V (p3 A 1))
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