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Abstract

Modal logics were formalized in the early to mid-20th century to pin down the notion

of truth qualified by modalities such as “necessity”, “possibility”, and “belief”, which

arise in philosophy and natural languages. They have since outgrown their philo-

sophical trappings and have found applications in type systems and as description

languages in many domains of computer science and artificial intelligence.

Although they frequently exhibit redundancies in their proof spaces, analytic

tableau systems in the style of Smullyan have emerged as popular proof formalisms

for modal logics. Inspired by previous work on matrix characterizations by Bibel,

Andrews, and Wallen, we propose a new characterization of validity for a family of

multimodal logics with interacting accessibility relations which avoids the redundan-

cies common in tableau systems. Our goal is not to produce a high-performance

theorem prover for multimodal logics, but to present a fresh way of understanding

and establishing multimodal logical validity.
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Résumé

Les logiques modales ont été formalisées vers le milieu du 20ième siècle avec le but de

comprendre la notion de vérité qualifiée par des modes tels que “la nécessité”, “la pos-

sibilité”, et “la croyance”, qui proviennent de la philosophie et des langages naturels.

Ces modes, depuis évolués au-delà de leurs origines philosophiques, trouvent plusieurs

applications dans la sémantique statique des langages de programmation et chez les

logiques de description de plusieurs domaines de l’informatique et de l’intelligence

artificielle.

Bien que leurs espaces démonstrationnels présentent des redondances, les systèmes

de tableaux analytiques sont un formalisme de démonstration populaire. Nous pro-

posons une nouvelle caractérisation de validité pour une famille de logiques multi-

modales définies avec des relations d’accessibilité interagissantes qui évite les redon-

dances présentes chez les systèmes de tableaux. Nos innovations sont inspirées par

les caractérisations matricielles présentées auparavant par Bibel, Andrews, et Wallen.

Notre but n’est pas de produire un démonstrateur automatique de théorèmes de haute

performance, mais de présenter une façon originale de comprendre et concevoir la va-

lidité logique multimodale.
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Chapter 1

Introduction

The study of modal logics as a mathematical discipline began in the early 20th century

with the work of MacColl [34] and Lewis [33] in formalizing notions of qualified truth

that arise in philosophy and natural languages, usually in the form of modal quali-

fiers or operators such as “necessarily”, “possibly”, “certainly”, “probably”, and so

on. Although modal logics are sometimes still characterized as logics of necessity and

possibility, they have since outgrown their philosophical trappings and have proved

themselves flexible tools for working with and reasoning about many kinds of rela-

tional structures. In particular, they have found applications in type systems and as

description languages in many domains of computer science and artificial intelligence,

some of which we will sketch later in this chapter.

Prior to the 1960s, the study of modal logics revolved mostly around axiomatic

Hilbert systems for formal languages of logic which had been extended by one or more

modal operators. Around the early 1960s, ideas developed by, amongst others, Kanger

[26], Hintikka [24], and Kripke [30, 31] rejuvenated the field with the introduction of

a relational semantics and model theory for modal logic. This relational semantics

is often called a Kripke semantics, and the idea that lies at its heart, which we will

review formally in chapter 2, is that modal formulas make statements whose truth can
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be seen as being relative to a particular world in a larger collection of possible worlds

which are accessible from each other in certain ways. Such a collection of worlds, along

with its accessibility relation, is sometimes called a Kripke structure. Multimodal logic

enriches the language of modal logic by more modal operators. Properties of possible

interactions between multiple modalities are also encoded by the Kripke semantics.

While the semantic and algebraic aspects of modal logics have generated interest

for some time, modal theorem proving and the proof theory of modal and multimodal

logics are still relatively young fields. Considering the increasing number of computer

science domains in which modal logics are finding use, a broader understanding of

proof systems for them, as well as the proof spaces they induce, seems worthwhile.

Analytic tableau systems in the style of Smullyan [44], along with their cousins, se-

quent calculi, are amongst the most common types of proof systems proposed for

modal logics, probably because they are concisely defined, relatively user-friendly,

and allow large families of logics to be characterized in a more or less uniform way

(see Goré [21] for an overview).

However, the proof spaces induced by tableau calculi exhibit several types of re-

dundancies which introduce undesirable nondeterminism to the task of constructing

a tableau proof. They can also cause tableau proofs to appear different from one an-

other when the reasoning underlying them is, in fact, the same. Wallen [48] identifies

several types of redundancies within the proof spaces of particular sequent calculi for

various modal logics and points out that these redundancies also appear in equivalent

tableau systems. We will discuss them in more detail later in this chapter and in

chapter 4. Based on previous work on connection-based theorem proving by Prawitz

[41], Bibel [6], and Andrews [2], Wallen goes on to describe a matrix characterization

of validity for some modal logics. His formalism induces an alternative proof space

in which the redundancies associated with sequent and tableau calculi are absent.

Similar matrix characterizations have been developed for multiplicative (exponential)
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linear logic by Kreitz et al. [28] and Kreitz and Mantel [27].

The key idea behind such matrix characterizations is that many of the choices

that need to be made during the construction of a traditional tableau or sequent

calculus derivation—attempting to establish the validity of a given query formula—

can be modularly abstracted out of the derivation. The structure of the query formula

dictates the order of many steps of the proof, and these steps are partially independent

of choices made regarding modal qualifiers or, in the case of first-order logics, first-

order quantifiers. Tableau systems can be concisely defined because all types of choices

made during a derivation are thrown into the same bag. The unfortunate side-effect

of this is that subtleties in the behaviours of the logics may be obscured, and the

different types of choices made during the construction of a tableau derivation become

inextricably intertwined.

Many of the domains in which modal logics are useful modelling tools require

fairly rich modal languages, so developing alternative proof formalisms, such as matrix

characterizations of validity, for a wider class of modal logics, in particular multimodal

logics with interacting accessibility relations, seems an obvious next step. The main

contribution of this thesis is the development of such an alternative characterization

of validity for a family of multimodal logics.

Our approach is rather different from Wallen’s, however, whose matrix character-

ization is inspired by Fitting’s prefixed tableaus [17]. In order to support multimodal

logics with richly interacting accessibility relations, which traditional prefixed tableau

systems struggle with, we use as a basis a tableau calculus similar to those of Nerode

[39] and Baldoni [4], in which modal accessibility relations are manipulated directly

rather than encoded implicitly in the structure of prefixes. The resulting characteriza-

tion has a flavour different from Wallen’s, and we shall call it a path characterization

of validity for reasons that will become clear in chapter 4.

Note that while proof search procedures may benefit from the cleaner proof space
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induced by a matrix or path characterization, our goal is not the development of a

high-performance theorem prover for multimodal logics based on a path characteri-

zation, but the characterization itself. We will touch on proof search only briefly in

chapter 5.

In the rest of this chapter, we will describe computer science applications of modal

logics, related work, and our contributions in more detail.

1.1 Applications

In this section, we will sketch some applications of multimodal logics in various do-

mains of computer science. Our discussion here is informal, our aim being only to

demonstrate some ways in which modal qualification of truth judgements is useful in

real applications.

Knowledge and belief in multiagent modelling The modalities of necessity and

possibility (called alethic modalities) are related to the modalities of knowledge and

belief (called epistemic and doxastic modalities, respectively). A judgement of truth,

such as “A is true”, can be augmented by judgements of knowledge or belief, such as

“I know A to be true” or “I believe A to be true”. The qualified truth judgements

typically also incorporate the identity of the agent doing the knowing or believing.

To wit, “agent i knows A to be true” or “agent i believes A to be true”.

The formal study of epistemic logic began with von Wright [46] and Hintikka [24],

who gave a Kripke semantics for knowledge and belief. Note that to correctly model

our intuitions regarding these modalities, the respective modal operators are required

to behave in particular ways. For instance, it is generally expected—as an inherent

property of knowledge, as opposed to belief—that if an agent knows something to be

true, then it must indeed be true. This axiom can be stated schematically as “if agent

i knows A to be true, then A is true”. Belief, on the other hand, does not have this
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property. Other properties of knowledge and belief may also be assumed, depending

on the domain. The axiom of positive introspection, for instance, states that “if agent

i knows A to be true, then he knows that he knows A to be true”.

In the context of artificial intelligence, multimodal epistemic logic can be used to

model multiagent reasoning, with interacting accessibility relations representing in-

teracting knowledge or belief amongst agents. For concrete examples, see for instance

Fagin et al. [14].

Program behaviour This category encompasses logics for reasoning explicitly

about program behaviour, as well as type systems based on multimodal logics.

Examples in the first class include temporal logic (see for instance Venema [45]

or Blackburn, de Rijke, and Venema [8]) and dynamic logic (see for instance Harel,

Kozen, and Tiuryn [22]), which can formalize statements about program states and

behaviour, as well as proofs of their truth or validity. The language of dynamic logic

is richer than what we will be covering in this thesis, but it is also modal in the

sense that truth is qualified, not by necessity, possibility, or belief, but by actions. To

wit, judgements may have the form “every execution of program i leads to a state in

which A is true” or “some execution of program i leads to a state in which A is true”.

Here, i is not necessarily simply an atomic program name, but could be a sequence

of instructions or more complex expressions: it could be a description of the program

itself.

In temporal logic, the program is fixed, so truth is qualified not by individual

programs, but by the time during the execution of the fixed program. Statements

of interest include ones such as “it will always be the case that A is true”, “it has,

at some point in the past, been the case that A was true”, “A is true now”, and so

on. Being able to reason temporally is naturally useful in formalizing and proving

properties related to program correctness.

An interesting related modal logic with applications in the formal verification of
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hardware is Fairtlough and Mendler’s lax logic [15]. Although lax logic enjoys only a

single modality, it can potentially be combined with others, such as temporal opera-

tors, and this is where the ability to define interactions between modalities becomes

interesting. Let us return briefly to multiagent knowledge and belief systems for

clearer intuition. Even if the agents in our domain are defined to know and believe

more or less independently, adding the ability to reason temporally, for instance,

makes it possible to define or specify useful interactions between the temporal, epis-

temic, and doxastic modalities, such as faithful stubbornness: “if agent i believes A

to be true, then he will always believe A to be true”.

The class of type systems inspired by modal logics is rich, since modalities can

encode a multitude of properties of interest to a programmer. If the possible worlds

of a Kripke structure are interpreted as physical locations in a network, then modal

formulas become types of mobile code in a distributed computing environment [37, 38],

and the type-correctness of such programs guarantees their mobility, taking local

resources into account. If possible worlds are treated as stages of a computation, then

what emerges is a type system for reasoning about staged computation, including

type-level correctness guarantees for runtime code generation and partial evaluation

[13]. In the domain of information flow, possible worlds can be interpreted as security

levels associated with confidential data, with an accessibility relation defining the

order or structure of the security hierarchy. Modal types then encode data at various

security levels, and the type system can ensure that high-security data does not leak

into low-security programs [36].

Description logics Descriptions logics (DLs) are a family of knowledge representa-

tion languages used to encode domain-specific knowledge and access and reason about

it in a structured and domain-independent way [3]. As such, they are of interest to

artificial intelligence researchers, who strive to develop generic reasoning algorithms

for description logics without being bound to particular domains. Emerging in the
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1980s as descendents of semantic networks and frame-based systems—in particular the

KL-ONE representation system of Brachman and Schmolze [9]—description logics lie

between propositional and first-order logics in that statements of DLs generally have

first-order equivalents, but the structure and constraints of the language and knowl-

edge base can make reasoning in DLs tractable and more efficient than full-fledged

first-order proof search.

Like description logics, many modal logics are also intermediate between propo-

sitional and first-order logics. In fact, the simplest description logic, called ALC,

is nothing more than a notational variant of the classical multimodal logic K [3].

While the expressiveness of DLs has grown far beyond ALC, they remain multimodal

languages with a more flexible syntax. Consequently, methods and representations

developed for multimodal logics may find applications in the field of description logics

and vice versa.

1.2 Related work

As we mentioned earlier in this chapter, the matrix or connection-based characteriza-

tion, pioneered for first-order logic by Prawitz [41] and developed further by Bibel [6]

and Andrews [2], was adapted to a class of modal logics, as well as to intuitionistic

logic, by Wallen [47, 48] and to multiplicative linear logics by Kreitz et al. [28] and

Kreitz and Mantel [27]. While the inspiration for our work comes from that of Wallen,

the details are rather different, owing to the different tableau calculi that underlie his

and our work.

Wallen motivates his matrix characterization by studying the redundancies of a

sequent calculus system in which modal information is maintained implicitly. Techni-

cally, his characterization is closely related to Fitting’s prefixed tableau calculus [18],

which is well-suited for the class of unimodal logics that Wallen considers. However,
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difficulties can arise when prefixed tableau systems such as Fitting’s or Massacci’s

[35] are extended to more expressive logics, in particular to multimodal logics with

interacting modalities. There are also potential complications in the unimodal case;

the frame condition of symmetry, for instance, is conspicuously absent in Wallen’s

treatment. Baldoni [4] discusses the issues in some detail and proposes an alternative

tableau system for multimodal logics, in which modal accessibility relations, encoded

syntactically by prefixes in Fitting’s systems, are represented and manipulated more

explicitly.

In both Fitting’s and Baldoni’s systems, accessibility relations exist as concrete

parts of tableau nodes, but the distinction between maintaining them as explicit

relations rather than ones whose structures are implied by prefixes has important

consequences. In a system of prefixes—or any system in which the structure of a

putative countermodel is represented by complex labels representing worlds—every

condition on the represented accessibility relation needs to be translated into a cor-

responding condition on the prefixes or complex labels, since some of the semantics

has been imported into the syntax. If the relation is explicitly maintained in tableau

nodes, then the “translation” is much more direct.

Moreover, since Wallen’s sequent calculus maintains modal information implicitly,

he must deal with non-permutability, the problem that modal rule applications cannot

be applied in any order, with the consequence that it may be necessary to backtrack

during proof construction because of previously made choices. This is one type of

redundancy that Wallen’s matrix characterization addresses: the sequent calculus

formalism cannot inspect the deep modal structure of the query formula, while the

matrix characterization can. Another type of redundancy is irrelevance, caused by

the inability of tableau and sequent calculi to inspect the deep syntactic structure of

the query formula without decomposing it one connective at a time. Our path char-

acterization is built on a different tableau system which avoids non-permutability by
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design, but the path characterization goes one step further by eliminating irrelevance

and separating the modal and structural choices made in a derivation.

Goré’s survey [21] provides a good overview of tableau methods for unimodal logics,

though the focus is on systems in which the accessibility relation is implicit. When

discussing systems where it is explicit, more time is spent on prefixed systems. The

calculi most similar to ours in spirit are those of Baldoni [4] and Nerode [39] (the former

of which was inpired by the latter), but our presentation also differs starkly from

theirs, since our tableau calculus is designed specifically to facilitate the subsequent

development of the path characterization. In some ways, our tableau calculus is a

“path characterization light” formulated expressly to lead to the path characterization

proper, and we will point out the parallels between our two formalisms as we develop

them.

1.3 Contributions and organization

The primary contribution of this thesis is the development and proof of correctness

of a path characterization of validity for a family of multimodal logics. The charac-

terization is reminiscent of Wallen’s matrix characterization [48], but is defined on

a different class of logics and in a way that is closer to the relational semantics of

the logics being considered. A secondary contribution is an alternative formulation

of a tableau system for the multimodal logics of interest, which we use to prove the

correctness of the path characterization.

The remainder of the thesis is organized as follows.

• Chapter 2 contains a brief overview of the syntax and semantics of the mul-

timodal logics we will be dealing with, some proof theoretic preliminaries and

notation, and several background results on relations and closures.

• Chapter 3 contains the development and proof of correctness of our tableau
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characterization of validity for multimodal logics.

• Chapter 4 contains the development and proof of correctness of our path char-

acterization of validity for multimodal logics.

• Chapter 5 concludes with some discussion of future work, including other logics

to which our approach may be extended.

This thesis contains no material which has been accepted for the award of any

other degree or diploma in any university or other institution. To the best of our

knowledge, except where due reference is made, material presented in chapter 4 is

original scholarship and a contribution to knowledge in the field.
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Chapter 2

Preliminaries

This chapter contains a brief overview of the syntax and semantics of the multimodal

logics we will be dealing with, some proof theoretic preliminaries and notation, and

several background results on relations and closures.

2.1 Syntax and semantics

Much of the material in this section is standard and included for the sake of com-

pleteness. For more background, history, and comprehensive bibliographies, see for

instance Blackburn, de Rijke, and Venema [8] or Hughes and Cresswell [25].

In this thesis, we will focus on propositional modal languages with a finite number

of unary modal operators. Given a number n ∈ {0, 1, 2, . . .}, we define the language

of propositional n-modal logic in the following way.

Definition 2.1.1 (Formulas). A formula is an expression constructed from propo-

sitional letters p1, p2, . . . , parentheses, and the logical operators ¬ (“negation”), ∧

(“conjunction”), ∨ (“disjunction”), ⊃ (“implication”), 21 (“1-box”), 22 (“2-box”),

. . . , 2n (“n-box”), 31 (“1-diamond”), 32 (“2-diamond”), . . . , and 3n (“n-diamond”).

Formulas are defined by the following rules.
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1. Every propositional letter is a formula.

2. If A is a formula, then so are ¬A, 21A, 22A, . . . , 2nA, 31A, 32A, . . . , and

3nA.

3. If A and B are formulas, then so are (A ∧B), (A ∨ B), and (A ⊃ B).

A formula is said to be atomic if it is a propositional letter. Otherwise, it is nonatomic.

Following a common convention, we will omit parentheses in formulas whenever

possible, using operator precedence rules for disambiguation. In particular, we will

let the unary operators ¬, 21, 22, . . . , 2n, 31, 32, . . . , and 3n all have higher

precedence than ∧, which in turn has higher precedence than ∨, which in turn has

higher precedence than ⊃. All binary operators will be considered right-associative,

meaning that p1 ⊃ p2 ⊃ p3, for instance, represents the formula (p1 ⊃ (p2 ⊃ p3)).

As seen in definition 2.1.1, n is the number of distinct pairs of identically labelled

box (2) and diamond (3) operators in our language. The “degenerate” modal lan-

guage with n = 0 has no modal operators; it is nothing more than the language of

propositional logic. The language with n = 1 has a single pair of modal operators; it

is sometimes called the language of unimodal logic, and the labels of its modal oper-

ators are generally omitted. For consistency, we will always show the labels of modal

operators, but will use i, j, and k to denote arbitrary elements of {1, 2, . . . , n}.

The box and diamond operators are sometimes called necessity and possibility

operators, respectively. We prefer “box” and “diamond”, since the interpretations

of the modalities in applications are not always the alethic ones of necessity and

possibility, as we saw in the previous chapter. Instead of 2 and 3, some authors

use L and M as modal operators [25]. In richer modal languages, such as those of

dynamic logic [22] or boolean modal logic [8], where the labels of modal operators

may be complex expressions rather than merely atomic identifiers, the labels are

often placed inside the operators. To wit, 2i and 3i might be written as [i] and 〈i〉,



13

respectively. Since the labels of our box and diamond operators are simple identifiers,

we prefer subscript labels.

If modal logic is regarded as an extension of classical logic, then the two types

of modal operators (box and diamond) are interdefinable in much the same way as

conjunction and disjunction and, in first-order logics, universal and existential quan-

tification. Consequently, some authors consider only modal operators of one type to

be primitive and define the others as notational abbreviations. If box operators are

taken to be primitive, for instance, then 3i can be defined as the dual of 2i, i.e., as

an abbreviation for ¬2i¬. When we discuss the semantics of multimodal logic later

in this section, the dual nature of the box and diamond operators will become more

evident. If modal logic is seen as an extension of intuitionistic logic, on the other

hand, then the modal operators are not interdefinable in this way. We will briefly

discuss intuitionistic modal logic in chapter 5, but until then, the foundations of our

logics will be strictly classical. However, for the sake of perspicuity, we will still define

both types of modal operators to be primitive.

To facilitate inductive proofs, we associate a degree with every formula. This is

the number of instances of logical operators in the formula and is defined as follows.

Definition 2.1.2 (Degrees of formulas). The degree of a formula A is a number

d ∈ {0, 1, 2, . . .} determined by the following rules.

1. Every propositional letter has degree 0.

2. If A is a formula with degree d, then ¬A, 2iA, and 3iA have degree d + 1.

3. If A and B are formulas with degrees d1 and d2, respectively, then A∧B, A∨B,

and A ⊃ B have degree d1 + d2 + 1.

Our definitions of subformulas and related concepts are standard.

Definition 2.1.3 (Subformulas). The set of subformulas of a formula A is the smallest

set of formulas that contains A and has the following properties.
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1. If ¬B, 2iB, or 3iB is a subformula of A, then so is B.

2. If B ∧ C, B ∨ C, or B ⊃ C is a subformula of A, then so are B and C.

A subformula B of a formula A is a proper subformula of A if it is not identical to

A. A proper subformula B of a formula A is an immediate subformula of A if there

is no proper subformula C of A such that B is a proper subformula of C. Within a

given formula, subformula occurrences are particular instances of subformulas. Note

that a formula can have multiple occurrences of the same subformula. Subformulas

of the form 2iB or 3iB are sometimes called modal subformulas.

Definition 2.1.4 (Positive and negative subformula occurrences). A subformula oc-

currence B of a formula A is said to be a positive subformula occurrence of A or

to occur positively in A if it is in the scope of an even number of negations in A.

Otherwise, it is a negative subformula occurence of A or occurs negatively in A.

Note that being on the left side of an implication is also considered being in the

scope of a negation, since a formula of the form A ⊃ B is classically equivalent to

¬A ∨ B.

Example 2.1.1 (Formulas and subformulas). A = 21p1 ⊃ 2121p1 ∧3232p1 ⊃ 32p1

is a formula equivalent to ((21p1 ⊃ 2121p1) ∧ (3232p1 ⊃ 32p1)). Its subformulas

are p1, 21p1, 2121p1, 21p1 ⊃ 2121p1, 32p1, 3232p1, 3232p1 ⊃ 32p1, and A itself.

There are four occurrences of p1, two of each of 21p1 and 32p1, and one of each

remaining subformula of A. All subformula occurrences on the left sides of the two

implications are negative subformula occurrences of A, while those on the right sides

are positive.

We are now ready to breathe some life and meaning into formulas. We do so, as

usual, by means of a Kripke semantics based on frames and models, which we define

as follows.



15

Definition 2.1.5 (Frames). A frame is a pair (W, R), where W is a nonempty set,

and R is a set of triples of the form (i, w, x), where i ∈ {1, 2, . . . , n} and w, x ∈ W .

The elements of W are called worlds, and those of R are called accessibility triples on

W . R itself is called an accessibility relation on W . If there is an (i, w, x) ∈ R, then

we say that w can i-see, i-reach, or i-access x, or that x is an i-successor of w.

The elements that we call worlds are sometimes called possible worlds [11], points

[48], states [8], or nodes [8].

Definition 2.1.6 (Models). A model is a triple (W, R, V ), where (W, R) is a frame,

and V is a function from propositional letters to subsets of W . V is called the valuation

of the model. If M = (W, R, V ) and F = (W, R), then M is said to be based on F ,

and F is called the underlying frame of M .

Our presentation of accessibility relations is slightly nonstandard. Usually, a mul-

timodal frame is defined as a pair (W, R), where W is a nonempty set of worlds, and

R is either a tuple (R1, R2, . . . , Rn) or set {R1, R2, . . . , Rn} of binary relations on W .

However, it is easy to translate between the various presentations. For instance, if

(R1, R2, . . . , Rn) is a tuple of binary relations on W , then
⋃n

i=1{(i, u, v) : (u, v) ∈ Ri} is

the corresponding set of accessibility triples on W . Conversely, if R is a set of accessi-

bility triples on W , then every component of the corresponding tuple (R1, R2, . . . , Rn)

of binary relations on W can be extracted as Ri = {(u, v) : (i, u, v) ∈ R}.

The standard presentations may lend themselves to more efficient implementations

of data structures for multimodal accessibility relations, since the binary relations

corresponding to different modalities are stored separately, which is not the case in

our “mixed bag” approach of accessibility triples. However, our proof systems make

extensive use of closures, which are discussed in section 2.3, and in this context, sets

of accessibility triples generate slightly less cumbersome notation.

Definition 2.1.7 (Truth). The truth relation 
 is a ternary relation on models M =

(W, R, V ), worlds w ∈W , and formulas defined by the following rules.
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1. For every propositional letter p, M, w 
 p if and only if w ∈ V (p).

2. M, w 
 ¬A if and only if M, w 6
 A (i.e., it is not the case that M, w 
 A).

3. M, w 
 A ∧ B if and only if M, w 
 A and M, w 
 B.

4. M, w 
 A ∨ B if and only if M, w 
 A or M, w 
 B.

5. M, w 
 A ⊃ B if and only if M, w 
 A implies that M, w 
 B (i.e., M, w 6
 A

or M, w 
 B).

6. M, w 
 2iA if and only if for every x ∈W such that (i, w, x) ∈ R, M, x 
 A.

7. M, w 
 3iA if and only if there is an x ∈ W such that (i, w, x) ∈ R and

M, x 
 A.

If M, w 
 A, then A is said to be true at w in M . Otherwise, A is false at w in M .

If M, w 
 A for every w ∈W , then A is said to be globally true in M .

The judgement M, w 
 A is sometimes read as A being satisfied [8] or forced

[48] at w in M . The truth relation formalizes the intuitive notion, mentioned in the

previous chapter, of formulas being locally true at particular worlds in a collection of

possible worlds (namely the worlds of the underlying frame).

Without further restrictions, frames and models typically encode domains that are

more general than necessary. In other words, if our aim is to use a modal language to

encode information in and reason about some domain, then it is often the case that

the accessibility relations amongst the worlds, states, or nodes in it are systematically

subject to some common restrictions or frame conditions, which we define as follows.

Definition 2.1.8 (Frame conditions). An accessibility relation R on a set W is said

to be

1. i-reflexive if for every w ∈W , (i, w, w) ∈ R.
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2. i, j-symmetric if (i, w, x) ∈ R implies that (j, x, w) ∈ R.

3. i, j, k-transitive if (i, w, x) ∈ R and (j, x, y) ∈ R together imply that (k, w, y) ∈

R, and

4. i, j, k-euclidean if (i, w, x) ∈ R and (j, w, y) ∈ R together imply that (k, x, y) ∈

R.

As a shorthand, R is said to be i-symmetric, i-transitive, or i-euclidean if it is i, i-

symmetric, i, i, i-transitive, or i, i, i-euclidean, respectively.

The frame conditions defined above are not the only interesting ones, of course,

but they are amongst the most fundamental and common. We will discuss other

frame conditions in chapter 5.

For a fixed n ∈ {0, 1, 2, . . .}, different modal logics are characterized by different

collections of frame conditions. If L is a name denoting a collection of frame condi-

tions, then a frame (W, R) is said to be an L-frame if R satisfies L’s frame conditions.

Similarly, a model is said to be an L-model if its underlying frame is an L-frame.

For instance, if n = 1, then a logic might be characterized by the frame conditions

of 1-reflexivity and 1-transitivity. These are the frame conditions of the well-known

unimodal logic S4 (see for instance Hughes and Cresswell [25]). Consequently, a frame

(W, R) is an S4-frame if and only if R is 1-reflexive and 1-transitive. Note that since

n = 1, the first component of every accessibility triple in R can only be 1. If n = 2,

then a logic might be characterized by 1, 2-symmetry and 2-transitivity, for instance.

We will use L to denote arbitrary logics, i.e., arbitrary collections of frame conditions.

As n increases, the number of possible ways in which the n binary relations repre-

sented by an accessibility relation can interact grows rapidly, and it becomes infeasible

to study each multimodal logic separately. Unimodal logics, however, are easier to

classify and name, since their frame conditions can only refer to a single modality.

Table 2.1 assigns names to some standard unimodal logics and gives their frame con-
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L L’s frame conditions
Other common

names for L

K none
KT 1-reflexivity T

KB 1-symmetry
K4 1-transitivity
K5 1-euclideanness

KTB 1-reflexivity, 1-symmetry B

KT4 1-reflexivity, 1-transitivity S4

KB4 1-symmetry, 1-transitivity
K45 1-transitivity, 1-euclideanness

KTB4 1-reflexivity, 1-symmetry, 1-transitivity S5, KT5

Table 2.1: Some standard unimodal logics and their frame conditions.

ditions. These are, in fact, the only 10 distinct unimodal logics that can be obtained

from our frame conditions. They are a subset of what are sometimes called the 15

basic modal logics (see for instance Chellas [11] or Lemmon and Scott [32]).

Applications generally suggest or dictate suitable numbers of modalities for the

syntax, as well as which frame conditions are relevant for the semantics (though

it is by no means always obvious which frame conditions correctly model intuition

and reasoning in particular domains). With these parameters fixed, we are ready to

attempt to answer questions about the domain. Most proof systems, ours included,

attempt to answer questions regarding the satisfiability or validity of given formulas,

sometimes called query formulas.

Definition 2.1.9 (L-satisfiability, -falsifiability, and -validity). A formula A is said

to be satisfied by a frame F if A is true at some world in some model based on F . A

is said to be L-satisfiable if it is satisfied by some L-frame.

A formula A is said to be falsified or refuted by a frame F if A is false at some

world in some model based on F . A is said to be L-falsifiable if it is falsified by some

L-frame.

A formula A is said to be valid in a frame F if A is globally true in every model
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based on F . A is said to be L-valid if it is valid in every L-frame.

Notice that if a formula is L-falsifiable, then it is not L-valid. Contrapositively, if

a formula is L-valid, then it is not L-falsifiable.

Given a logic L, our proof systems will characterize, in several different ways,

when a query formula is L-valid. Other questions that many proof systems deal

with are ones of logical consequence, i.e., when does a formula “follow from” a set

of assumptions? Fitting and Mendelsohn [19] discuss some of the technicalities that

arise when considering logical consequence in a modal setting, but the systems we

will present in chapters 3 and 4 will focus solely on answering questions of validity.

2.2 Formula trees

In this section, we will define some of the notation and proof theoretic mechanisms

that our formalisms will use. Our proof systems, like most other tableau and matrix

characterizations, are based on refutation: given a logic L and a query formula A,

the L-validity of A is established from a failed attempt to find evidence of a counter-

model for A. How this countermodel construction proceeds depends naturally on the

structure of the query formula. The proof systems we will introduce in the following

chapters will make extensive use of representations of formulas that reveal their in-

ternal structure, all based, in one way or another, on the following notion of formula

trees.

Definition 2.2.1 (Formula trees). The formula tree of a formula A is an ordered tree

whose nodes are in one-to-one correspondence with the subformula occurrences of A.

Its structure, as well as the correspondence between its nodes and the subformula

occurrences of A, is defined by the following rules.

1. The root corresponds to the whole of A.



20

2. If a node corresponds to an atomic subformula occurrence, then it has no chil-

dren.

3. If a node corresponds to a subformula occurrence of the form ¬B, 2iB, or 3iB,

then it has one child, corresponding to the subformula occurrence B.

4. If a node corresponds to a subformula occurrence of the form B ∧C, B ∨C, or

B ⊃ C, then it has two children, corresponding to the subformula occurrences

B and C, in that order.

We will use symbols from the alphabet {a1, a2, . . .} to name nodes of formula trees

in the order in which they would be visited by a depth-first traversal of the tree, and

we will speak of nodes and their names interchangeably where no ambiguity arises.

A node is called atomic or nonatomic when the subformula occurrence it corresponds

to is atomic or nonatomic, respectively. The label of a node a, denoted by lab(a), is

the subformula of A that the node corresponds to. We will write ≪ to denote the

transitive tree ordering of the formula tree on its nodes.

Example 2.2.1 (Formula trees). The formula tree and label function of the formula

21(p1 ⊃ p2) ⊃ 22p1 ⊃ 23p2 are shown in figure 2.1. In the formula tree, a1 ≪ a4,

a6 ≪ a8, and a1 ≪ a6 ≪ a9 ≪ a10, for instance. On the other hand, a3 6≪ a1, since

a3 is a descendent of a1, a1 6≪ a1, since ≪ is irreflexive, and a7 6≪ a9 (and a9 6≪ a7),

since a7 and a9 are siblings.

As a shorthand, if A denotes a formula, then we will write A to also refer to its

formula tree. When we write, for instance, “the nodes of A”, we mean the nodes of

the formula tree of A.

One purpose of formally defining the formula tree is to be able to refer to individual

subformula occurrences of a formula and associate information with them. As part of

this program of associating information with subformula occurrences and nodes, we

introduce signed formulas as follows.
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a lab(a)
a1 21(p1 ⊃ p2) ⊃ 22p1 ⊃ 23p2

a2 21(p1 ⊃ p2)
a3 p1 ⊃ p2

a4 p1

a5 p2

a6 22p1 ⊃ 23p2

a7 22p1

a8 p1

a9 23p2

a10 p2

Figure 2.1: The formula tree and label function of 21(p1 ⊃ p2) ⊃ 22p1 ⊃ 23p2

(example 2.2.1).

Definition 2.2.2 (Signed formulas). A signed formula is a pair of the form (A, 0) or

(A, 1), where A is a formula. If (A, s) is a signed formula, then s is called its sign and

stands for either 0 or 1.

Just as formulas are associated with formula trees, so signed formulas are associ-

ated with signed formula trees. In such a signed formula tree, the sign of the signed

formula being represented determines a mapping of signs to the signed formula tree’s

nodes, which we will describe shortly. Like the sign of a signed formula, the sign of a

signed formula tree node determined in this way is either 0 or 1. These signs of signed

formula tree nodes in turn induce further information associated with the nodes in

the following way.

Definition 2.2.3 (Signed formula trees). The signed formula tree of a signed formula

(A, s) is an ordered tree whose nodes, structure, and labels are identical to those of
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the formula tree of A. In addition to labels, however, some of the nodes of the signed

formula tree of (A, s) are associated with further information, namely signs, primary

types, and secondary types, defined as follows.

The sign of a node a, denoted by sgn(a), is s if the subformula occurrence that a

corresponds to occurs positively in A, and (s + 1) mod 2 if it occurs negatively in A.

In other words, in the signed formula tree of the signed formula (A, 0), the sign of a

node a is 0 if the subformula occurrence that a corresponds to occurs positively in A,

and 1 otherwise. On the other hand, in the signed formula tree of the signed formula

(A, 1), the sign of a node a is 1 if the subformula occurrence that a corresponds to

occurs positively in A, and 0 otherwise.

The primary type of a nonatomic node a, denoted by ptype(a), is one of α, β, νi,

or πi and is determined by its sign and label in the following way.

1. If (lab(a), sgn(a)) has the form (¬B, 0), (¬B, 1), (B ∧C, 1), (B ∨C, 0), or (B ⊃

C, 0), then a has primary type α.

2. If (lab(a), sgn(a)) has the form (B ∧C, 0), (B ∨C, 1), or (B ⊃ C, 1), then a has

primary type β.

3. If (lab(a), sgn(a)) has the form (2iB, 1) or (3iB, 0), then a has primary type

νi.

4. If (lab(a), sgn(a)) has the form (2iB, 0) or (3iB, 1), then a has primary type

πi.

Atomic nodes do not have primary types.

The secondary type of a nonroot node a, denoted by stype(a), is one of α1, α2, β1,

β2, νi,1, or πi,1 and is determined by the primary type of a’s parent and by a’s position

with respect to its parent. Specifically, if a is the left child of a node of primary type

α (resp. β), then its secondary type is α1 (resp. β1). If a is the right child of a node

of primary type α (resp. β), then its secondary type is α2 (resp. β2). If a is the single
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a lab(a) sgn(a) ptype(a) stype(a)
a1 21(p1 ⊃ p2) ⊃ 22p1 ⊃ 23p2 0 α
a2 21(p1 ⊃ p2) 1 ν1 α1

a3 p1 ⊃ p2 1 β ν1,1

a4 p1 0 β1

a5 p2 1 β2

a6 22p1 ⊃ 23p2 0 α α2

a7 22p1 1 ν2 α1

a8 p1 1 ν2,1

a9 23p2 0 π3 α2

a10 p2 0 π3,1

Figure 2.2: The label, sign, and type functions of (21(p1 ⊃ p2) ⊃ 22p1 ⊃ 23p2, 0)
(example 2.2.2).

child of a node of primary type νi (resp. πi), then its secondary type is νi,1 (resp. πi,1).

The root does not have a secondary type.

Note that in this definition, we have tacitly assumed that nodes of primary types

α and β have two children each. This is always true for nodes of primary type β,

but a node a can have primary type α and only one child. This happens when

(lab(a), sgn(a)) has the form (s,¬B), for instance. In such a case, the secondary type

of the single child of a can be considered to be either α1 or α2.

Example 2.2.2 (Signed formula trees). The signed formula tree of (21(p1 ⊃ p2) ⊃

22p1 ⊃ 23p2, 0) has the same structure as shown in figure 2.1. Its label, sign, and

type functions are shown in figure 2.2. Note that the label function is identical to the

one shown in figure 2.1.

Nodes of (signed) formula trees that correspond to modal subformula occurrences

will play an important role in the sequel, so we will give them special names. In

particular, we will call nodes of a signed formula tree with secondary type νi,1 ν-nodes

and nodes with secondary type πi,1 π-nodes. The root is a special case. Although

it has no secondary type, we will, for technical reasons that will become clear in

chapters 3 and 4, also consider it a π-node. We will also use terms such as nearest
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π-ancestor to refer to a node’s nearest ancestor that is the root or has secondary type

πi,1, and ν-child to refer to a node’s child with secondary type νi,1.

Also, as a shorthand, we will sometimes speak of the modality of a ν-node or a

nonroot π-node. This refers to the label of the top-level box or diamond operator of

the subformula occurrence that the parent of the modal node corresponds to. In other

words, the modality of a node of secondary type νi,1 or πi,1 is i. In example 2.2.2, for

instance, the modality of a3 is 1, and that of a10 is 3.

As with formulas and formula trees, if X denotes a signed formula, then we will

write X to also refer to its signed formula tree. “The π-nodes of X”, for instance,

refers to the set of nodes of the signed formula tree of X containing the root and every

node with secondary type πi,1.

The purpose of signs and types of signed formula tree nodes is, informally, to make

explicit information on how the nodes “behave” or what information they provide.

If a node a of a signed formula (A, s) has primary type α, for instance, then the

signed formula (lab(a), sgn(a)) is conjunctive in character. This turn of phrase is best

demonstrated by example.

Suppose (lab(a), sgn(a)) has the form (B ∨ C, 0). Suppose furthermore that this

signed formula represents or encodes the falsehood of the formula B∨C. Now suppose

there is a model M = (W, R, V ) and a world w ∈ W such that M, w 6
 B ∨ C. By

definition 2.1.7, we can conclude that both M, w 6
 B and M, w 6
 C. Now notice

that since a corresponds to a subformula occurrence of the form B ∨ C, it has two

children, say b and c, which correspond to the subformula occurrences B and C,

respectively. Moreover, since B and C occur positively in A if and only if B∨C does,

their signs are the same as that of a. Consequently, (lab(b), sgn(b)) = (B, 0) and

(lab(c), sgn(c)) = (C, 0). These signed formulas can be throught of as representing

or encoding the falsehood of B and C, respectively, exactly what M, w 6
 B and

M, w 6
 C assert.
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To formalize this intuition a little further, let us say that a node with label B and

sign 0 holds at a world w in a model M if M, w 6
 B, and one with label B and sign 1

holds at w in M if M, w 
 B. We can now express the idea in the previous paragraph

more succinctly: if a node a of primary type α and with children b and c holds at

a world w, then b and c hold at w. Node a is conjunctive because the conclusion of

this implication is a conjunction. A node of primary type β, on the other hand, is

disjunctive in character: if a node a of primary type β and with children b and c holds

at a world w, then either b or c holds at w. Note that no modal information was used

or needed in either of these implications. We introduced the world w only because a

formula needs somewhere to be true or false.

Primary types νi and πi, meanwhile, encode behaviour that is conjunctive (trivially

so, since nodes of these primary types have only one child each) but depends on modal

information. If a node a of primary type νi and with child b holds at a world w, then

b holds at any world i-accessible from w. If a node a of primary type πi and with

child b holds at a world w, then there is a world i-accessible from w at which b holds.

Where does the model come from in which these worlds and accessibilities exist? It is

exactly the putative countermodel constructed by a derivation in a proof formalism.

These derivations will be the focus of chapters 3 and 4.

2.3 L-closures

Recall that an accessibility relation on a set W is a set of accessibility triples, i.e.,

triples of the form (i, w, x), where i ∈ {1, 2, . . . , n} and w, x ∈W . Our proof systems

will make extensive use of L-closures of accessibility relations, which we will define

and discuss in this section. Conceptually, these closures are a generalization of the

familiar reflexive, symmetric, and transitive closures of binary relations on sets, with

frame conditions serving as closure properties. We have collected all basic results
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on L-closures in this section, as they will be used in various places throughout the

remainder of the thesis.

Definition 2.3.1 (L-closures). The L-closure of an accessibility relation R on a set

W , denoted by clL(R), is the smallest accessibility relation on W containing R and

satisfying L’s frame conditions. Formally, an accessibility relation Q on W is said to

have the L-closure property of R if R ⊆ Q and Q satisfies L’s frame conditions. The

L-closure of R is then defined as follows.

clL(R) =
⋂
{Q : Q is an accessibility relation on W

with the L-closure property of R}

Since clL(R) is defined as the intersection of accessibility relations, each of which

contains R, clL(R) itself contains R. It is also easy to show that clL(R) satisfies L’s

frame conditions. This confirms that clL(R) itself has the L-closure property of R,

making clL(R) the accessibility relation on W with the L-closure property of R that

all other such accessibility relations contain.

The above definition of L-closures is slightly cumbersome for inductive proofs and

actually computing them, so we will now characterize L-closures in an alternative,

more constructive way using the notion of L-closure sequences.

Definition 2.3.2 (L-closure sequences). The L-closure sequence of an accessibility

relation R on a set W is an infinite sequence R1, R2, . . . of accessibility relations on

W , where R1 = R, and for every l ∈ {2, 3, . . .}, Rl is the smallest accessibility relation

on W with the following properties.

1. If L is i-reflexive and w ∈W , then (i, w, w) ∈ Rl.

2. If L is i, j-symmetric and there is an l′ ∈ {1, 2, . . . , l−1} such that (i, w, x) ∈ Rl′,

then (j, x, w) ∈ Rl.



27

3. If L is i, j, k-transitive and there are l′, l′′ ∈ {1, 2, . . . , l−1} such that (i, w, x) ∈

Rl′ and (j, x, y) ∈ Rl′′ , then (k, w, y) ∈ Rl.

4. If L is i, j, k-euclidean and there are l′, l′′ ∈ {1, 2, . . . , l− 1} such that (i, w, x) ∈

Rl′ and (j, w, y) ∈ Rl′′ , then (k, x, y) ∈ Rl.

Definition 2.3.3 (Constructive L-closures). The constructive L-closure of an accessi-

bility relation R on a set W with L-closure sequence R1, R2, . . . , denoted by cclL(R),

is defined as follows.

cclL(R) =

∞⋃

l=1

Rl

The following important result establishes the equivalence of L-closures and con-

structive L-closures and allows us to prove properties of L-closures via constructive

L-closures.

Lemma 2.3.1 (L-closure equality). For any logic L and accessibility relation R,

clL(R) = cclL(R).

Proof. Let R be an accessibility relation on a set W with L-closure sequence R1, R2,

. . . . We first observe that for every l ∈ {1, 2, . . .}, Rl is contained in clL(R). To

see this, assume otherwise: let Rl be the first accessibility relation in the L-closure

sequence of R that is not contained in clL(R). In particular, let (i, w, x) ∈ Rl be an

accessibility triple such that (i, w, x) /∈ clL(R). If l = 1, then Rl = R, so (i, w, x) ∈ Rl

means that (i, w, x) ∈ R, which implies that (i, w, x) ∈ clL(R). This is a contradiction.

So l ∈ {2, 3, . . .} and (i, w, x) ∈ Rl because of one of rules 1–4 of definition 2.3.2. We

proceed by case analysis on each of these rules.

1. If L is i-reflexive and (i, w, x) ∈ Rl because of rule 1, then w = x, but (i, w, x) /∈

clL(R), contradicting clL(R)’s i-reflexivity.

2. If L is j, i-symmetric and (i, w, x) ∈ Rl because of rule 2, then there is an

l′ ∈ {1, 2, . . . , l − 1} such that (j, x, w) ∈ Rl′ . Since Rl′ is contained in clL(R),
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(j, x, w) ∈ clL(R), but (i, w, x) /∈ clL(R), contradicting clL(R)’s j, i-symmetry.

3. If L is k, j, i-transitive and (i, w, x) ∈ Rl because of rule 3, then there are

l′, l′′ ∈ {1, 2, . . . , l−1} such that (k, w, y) ∈ Rl′ and (j, y, x) ∈ Rl′′ . Since Rl′ and

Rl′′ are contained in clL(R), (k, w, y), (j, y, x) ∈ clL(R), but (i, w, x) /∈ clL(R),

contradicting clL(R)’s k, j, i-transitivity.

4. If L is k, j, i-euclidean and (i, w, x) ∈ Rl because of rule 4, then there are

l′, l′′ ∈ {1, 2, . . . , l−1} such that (k, y, w) ∈ Rl′ and (j, y, x) ∈ Rl′′ . Since Rl′ and

Rl′′ are contained in clL(R), (k, y, w), (j, y, x) ∈ clL(R), but (i, w, x) /∈ clL(R),

contradicting clL(R)’s k, j, i-euclideanness.

For every l ∈ {1, 2, . . .}, Rl ⊆ clL(R), so cclL(R) ⊆ clL(R). Next, we show that

cclL(R) satisfies L’s frame conditions. Since R ⊆ cclL(R) (as R1), this will show that

cclL(R) has the L-closure property of R. Again, we refer to the rules of definition 2.3.2.

1. If L is i-reflexive and w ∈W , then for every l ∈ {2, 3, . . .}, by rule 1, (i, w, w) ∈

Rl, so (i, w, w) ∈ cclL(R).

2. If L is i, j-symmetric and (i, w, x) ∈ cclL(R), then there is an l ∈ {1, 2, . . .} such

that (i, w, x) ∈ Rl. By rule 2, (j, x, w) ∈ Rl+1, so (j, x, w) ∈ cclL(R).

3. If L is i, j, k-transitive and (i, w, x), (j, x, y) ∈ cclL(R), then there are l, l′ ∈

{1, 2, . . .} such that (i, w, x) ∈ Rl and (j, x, y) ∈ Rl′. Suppose that l ≥ l′ (the

other case is analogous). By rule 3, (k, w, y) ∈ Rl+1, so (k, w, y) ∈ cclL(R).

4. If L is i, j, k-euclidean and (i, w, x), (j, w, y) ∈ cclL(R), then there are l, l′ ∈

{1, 2, . . .} such that (i, w, x) ∈ Rl and (j, w, y) ∈ Rl′ . Suppose that l ≥ l′ (the

other case is analogous). By rule 4, (k, x, y) ∈ Rl+1, so (k, x, y) ∈ cclL(R).

Since clL(R) is contained in every accessibility relation with the L-closure property

of R, clL(R) ⊆ cclL(R). We can conclude that clL(R) = cclL(R).
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Notice that although constructive L-closures are defined as infinite unions, the

L-closure sequence of an accessibility relation R on a set W repeats itself if W and

the number of modalities are finite. In the context of this thesis, the number of

modalities, n, is indeed finite, and we will only be constructing countermodels with

finite underlying frames for our finite (propositional) query formulas. Consequently,

we will be able to compute L-closures in finite time and will present a simple algorithm

to do so at the end of this section.

The next few technical results are used throughout the thesis to prove the correct-

ness of our various proof systems. It is perhaps best to skim them at first and refer

back to them as needed.

Lemma 2.3.2 (L-closure sequence subsets). If (W, R) and (W ′, R′) are frames, R1,

R2, . . . and R′

1, R′

2, . . . are the L-closure sequences of R and R′, respectively, W ⊆ W ′,

and R ⊆ R′, then for every l ∈ {1, 2, . . .}, (i, w, x) ∈ Rl implies that (i, w, x) ∈ R′

l.

Proof. By induction on l.

1. If l = 1, then Rl = R and R′

l = R′, and R ⊆ R′ is given.

2. If l ∈ {2, 3, . . .}, then every (i, w, x) ∈ Rl because of one of rules 1–4 of defini-

tion 2.3.2. We proceed by case analysis on each of these rules.

(a) If L is i-reflexive and (i, w, x) ∈ Rl because of rule 1, then w = x, so by

rule 1 and since W ⊆W ′, (i, w, x) ∈ R′

l.

(b) If L is j, i-symmetric and (i, w, x) ∈ Rl because of rule 2, then there is an

l′ ∈ {1, 2, . . . , l− 1} such that (j, x, w) ∈ Rl′ . By the induction hypothesis,

(j, x, w) ∈ R′

l′, so by rule 2, (i, w, x) ∈ R′

l.

(c) If L is k, j, i-transitive and (i, w, x) ∈ Rl because of rule 3, then there are

l′, l′′ ∈ {1, 2, . . . , l − 1} such that (k, w, y) ∈ Rl′ and (j, y, x) ∈ Rl′′. By

the induction hypothesis, (k, w, y) ∈ R′

l′ and (j, y, x) ∈ R′

l′′, so by rule 3,

(i, w, x) ∈ R′

l.
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(d) If L is k, j, i-euclidean and (i, w, x) ∈ Rl because of rule 4, then there are

l′, l′′ ∈ {1, 2, . . . , l − 1} such that (k, y, w) ∈ Rl′ and (j, y, x) ∈ Rl′′. By

the induction hypothesis, (k, y, w) ∈ R′

l′ and (j, y, x) ∈ R′

l′′ , so by rule 4,

(i, w, x) ∈ R′

l.

Corollary 2.3.1 (L-closure subsets). If (W, R) and (W ′, R′) are frames, W ⊆ W ′,

and R ⊆ R′, then (i, w, x) ∈ clL(R) implies that (i, w, x) ∈ clL(R′).

Proof. Let R1, R2, . . . and R′

1, R′

2, . . . be the L-closure sequences of R and R′, re-

spectively. By lemma 2.3.1, (i, w, x) ∈ clL(R) implies that (i, w, x) ∈ cclL(R), so

there is an l ∈ {1, 2, . . .} such that (i, w, x) ∈ Rl. By lemma 2.3.2, this implies

that (i, w, x) ∈ R′

l, so (i, w, x) ∈ cclL(R′), which by lemma 2.3.1 again, implies that

(i, w, x) ∈ clL(R′).

Lemma 2.3.3 (Faithfulness of L-closure sequences). If (W, R) is a frame, R1, R2,

. . . is the L-closure sequence of R, (W ′, R′) is an L-frame, and I is a function from

W to W ′ such that (i, w, x) ∈ R implies that (i, I(w), I(x)) ∈ R′, then for every

l ∈ {1, 2, . . .}, (i, w, x) ∈ Rl implies that (i, I(w), I(x)) ∈ R′.

Proof. By induction on l.

1. If l = 1, then Rl = R, so (i, w, x) ∈ Rl means that (i, w, x) ∈ R. (i, I(w), I(x)) ∈

R′ then follows from the assumption on I.

2. If l ∈ {2, 3, . . .}, then (i, w, x) ∈ Rl because of one of rules 1–4 of definition 2.3.2.

We proceed by case analysis on each of these rules.

(a) If L is i-reflexive and (i, w, x) ∈ Rl because of rule 1, then w = x, so

I(w) = I(x). Since R′ is i-reflexive, (i, I(w), I(x)) ∈ R′.

(b) If L is j, i-symmetric and (i, w, x) ∈ Rl because of rule 2, then there is an

l′ ∈ {1, 2, . . . , l− 1} such that (j, x, w) ∈ Rl′ . By the induction hypothesis,

(j, I(x), I(w)) ∈ R′, and since R′ is j, i-symmetric, (i, I(w), I(x)) ∈ R′.
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(c) If L is k, j, i-transitive and (i, w, x) ∈ Rl because of rule 3, then there are

l′, l′′ ∈ {1, 2, . . . , l − 1} such that (k, w, y) ∈ Rl′ and (j, y, x) ∈ Rl′′. By

the induction hypothesis, (k, I(w), I(y)) ∈ R′ and (j, I(y), I(x)) ∈ R′, and

since R′ is k, j, i-transitive, (i, I(w), I(x)) ∈ R′.

(d) If L is k, j, i-euclidean and (i, w, x) ∈ Rl because of rule 4, then there are

l′, l′′ ∈ {1, 2, . . . , l − 1} such that (k, y, w) ∈ Rl′ and (j, y, x) ∈ Rl′′. By

the induction hypothesis, (k, I(y), I(w)) ∈ R′ and (j, I(y), I(x)) ∈ R′, and

since R′ is k, j, i-euclidean, (i, I(w), I(x)) ∈ R′.

Corollary 2.3.2 (Faithfulness of L-closures). If (W, R) is a frame, (W ′, R′) is an

L-frame, and I is a function from W to W ′ such that (i, w, x) ∈ R implies that

(i, I(w), I(x)) ∈ R′, then (i, w, x) ∈ clL(R) implies that (i, I(w), I(x)) ∈ R′.

Proof. Let R1, R2, . . . be the L-closure sequence of R. By lemma 2.3.1, (i, w, x) ∈

clL(R) implies that (i, w, x) ∈ cclL(R), so there is an l ∈ {1, 2, . . .} such that (i, w, x) ∈

Rl. By lemma 2.3.3, this implies that (i, I(w), I(x)) ∈ R′.

Lemma 2.3.4 (L-closure sequences of accessibility relation unions). If (W1, R1),

(W2, R2), . . . is a sequence of frames such that W1 ⊆ W2 ⊆ · · · and R1 ⊆ R2 ⊆ · · · ,

W ′ =
⋃

∞

m=1 Wm, R′ =
⋃

∞

m=1 Rm, and R′

1, R′

2, . . . is the L-closure sequence of R′, then

for every l ∈ {1, 2, . . .}, if (i, w, x) ∈ R′

l, then there is an m ∈ {1, 2, . . .} such that

(i, w, x) ∈ clL(Rm).

Proof. By induction on l.

1. If l = 1, then R′

l = R′, so (i, w, x) ∈ R′

l means that (i, w, x) ∈
⋃

∞

m=1 Rm. This

means that there is an m ∈ {1, 2, . . .} such that (i, w, x) ∈ Rm, which implies

that (i, w, x) ∈ clL(Rm).

2. If l ∈ {2, 3, . . .}, then (i, w, x) ∈ R′

l because of one of rules 1–4 of definition 2.3.2.

We proceed by case analysis on each of these rules.
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(a) If L is i-reflexive and (i, w, x) ∈ R′

l because of rule 1, then w = x, and

w ∈
⋃

∞

m=1 Wm, so there is an m ∈ {1, 2, . . .} such that w ∈ Wm. Since

clL(Rm) is i-reflexive, (i, w, x) ∈ clL(Rm).

(b) If L is j, i-symmetric and (i, w, x) ∈ R′

l because of rule 2, then there is an

l′ ∈ {1, 2, . . . , l− 1} such that (j, x, w) ∈ R′

l′ . By the induction hypothesis,

this implies that there is an m ∈ {1, 2, . . .} such that (j, x, w) ∈ clL(Rm),

and since clL(Rm) is j, i-symmetric, (i, w, x) ∈ clL(Rm).

(c) If L is k, j, i-transitive and (i, w, x) ∈ R′

l because of rule 3, then there are

l′, l′′ ∈ {1, 2, . . . , l− 1} such that (k, w, y) ∈ R′

l′ and (j, y, x) ∈ R′

l′′ . By the

induction hypothesis, this implies that there are m, m′ ∈ {1, 2, . . .} such

that (k, w, y) ∈ clL(Rm) and (j, y, x) ∈ clL(Rm′). If m ≥ m′ (the other

case is analogous), then Wm′ ⊆ Wm and Rm′ ⊆ Rm, so by corollary 2.3.1,

clL(Rm′) ⊆ clL(Rm). This means that (k, w, y), (j, y, x) ∈ clL(Rm), and

since clL(Rm) is k, j, i-transitive, (i, w, x) ∈ clL(Rm).

(d) If L is k, j, i-euclidean and (i, w, x) ∈ R′

l because of rule 4, then there are

l′, l′′ ∈ {1, 2, . . . , l− 1} such that (k, y, w) ∈ R′

l′ and (j, y, x) ∈ R′

l′′ . By the

induction hypothesis, this implies that there are m, m′ ∈ {1, 2, . . .} such

that (k, y, w) ∈ clL(Rm) and (j, y, x) ∈ clL(Rm′). If m ≥ m′ (the other

case is analogous), then Wm′ ⊆ Wm and Rm′ ⊆ Rm, so by corollary 2.3.1,

clL(Rm′) ⊆ clL(Rm). This means that (k, y, w), (j, y, x) ∈ clL(Rm), and

since clL(Rm) is k, j, i-euclidean, (i, w, x) ∈ clL(Rm).

Corollary 2.3.3 (L-closures of accessibility relation unions). If (W1, R1), (W2, R2),

. . . is a sequence of frames such that W1 ⊆ W2 ⊆ · · · and R1 ⊆ R2 ⊆ · · · , W ′ =
⋃

∞

m=1 Wm, and R′ =
⋃

∞

m=1 Rm, then if (i, w, x) ∈ clL(R′), then there is an m ∈

{1, 2, . . .} such that (i, w, x) ∈ clL(Rm).

Proof. Let R′

1, R′

2, . . . be the L-closure sequence of R′. By lemma 2.3.1, (i, w, x) ∈



33

clL(R′) implies that (i, w, x) ∈ cclL(R′), which means that there is an l ∈ {1, 2, . . .}

such that (i, w, x) ∈ R′

l. By lemma 2.3.4, this implies that there is an m ∈ {1, 2, . . .}

such that (i, w, x) ∈ clL(Rm).

In addition to facilitating the inductive proofs of various results concerning L-

closures, constructive L-closures suggest a means to compute L-closures of accessibil-

ity relations on finite sets. Since all the accessibility relations that our proof systems

need to manipulate are finite, this is sufficient. Given an accessibility relation R on a

finite set W , the following procedure computes the constructive L-closure of R.

1 Q← R

2 Q′ ← ∅

3 do

4 Q← Q ∪Q′

5 Q′ ← ∅

6 for every frame condition c of L do

7 if c = i-reflexivity then

8 for every w ∈W do

9 Q′ ← Q′ ∪ {(i, w, w)}

10 else if c = i, j-symmetry then

11 for every (i, w, x) ∈ Q do

12 Q′ ← Q′ ∪ {(j, x, w)}

13 else if c = i, j, k-transitivity then

14 for every (i, w, x), (j, x, y) ∈ Q do

15 Q′ ← Q′ ∪ {(k, w, y)}

16 else if c = i, j, k-euclideanness then



34

17 for every (i, w, x), (j, w, y) ∈ Q do

18 Q′ ← Q′ ∪ {(k, x, y)}

19 while Q′ 6⊆ Q

20 return Q

Notice that if R1, R2, . . . is the L-closure sequence of R, then for every m ∈ {1, 2, . . .},

at the end of the mth iteration of the do . . .while loop, Q =
⋃m

l=1 Rl and Q′ = Rm+1.

This can be shown by straightforward induction on m. The procedure terminates

when Q′ ⊆ Q, or in other words, after the first iteration m for which Q =
⋃m

l=1 Rl =
⋃m+1

l=1 Rl. If W is finite, then so is every accessibility relation on W (since we also

have finitely many modalities). Consequently, the procedure must terminate, as it

would otherwise describe an arbitrarily large accessibility relation on W .

To prove the correctness of our procedure, we must show that if it terminates

after the mth iteration, then Q =
⋃m

l=1 Rl =
⋃

∞

l=1 Rl. To do this, it suffices to

show that if
⋃m

l=1 Rl =
⋃m+1

l=1 Rl, then for any m′ ∈ {1, 2, . . .},
⋃m

l=1 Rl =
⋃m+m′

l=1 Rl.

Expressed differently, this is equivalent to showing that if Rm+1 ⊆
⋃m

l=1 Rl, then for

any m′ ∈ {1, 2, . . .}, Rm+m′ ⊆
⋃m

l=1 Rl, which we prove as follows.

Lemma 2.3.5. If m ∈ {1, 2, . . .} and Rm+1 ⊆
⋃m

l=1 Rl, then for any m′ ∈ {1, 2, . . .},

Rm+m′ ⊆
⋃m

l=1 Rl.

Proof. By induction on m′.

1. If m′ = 1, then Rm+m′ = Rm+1, and Rm+1 ⊆
⋃m

l=1 Rl is given.

2. If m′ ∈ {2, 3, . . .}, then every (i, w, x) ∈ Rm+m′ because of one of rules 1–4 of

definition 2.3.2. We proceed by case analysis on each of these rules.

(a) If L is i-reflexive and (i, w, x) ∈ Rm+m′ because of rule 1, then w = x, so

for every l′ ∈ {2, 3, . . .}, (i, w, x) ∈ Rl′. m + 1 ∈ {2, 3, . . .}, so by rule 1,

(i, w, x) ∈ Rm+1, and since Rm+1 ⊆
⋃m

l=1 Rl, (i, w, x) ∈
⋃m

l=1 Rl.
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(b) If L is j, i-symmetric and (i, w, x) ∈ Rm+m′ because of rule 2, then there

is an l′ ∈ {1, 2, . . . , m + m′ − 1} such that (j, x, w) ∈ Rl′ . Either l′ ∈

{1, 2, . . . , m} or l′ ∈ {m + 1, m + 2, . . . , m + m′ − 1}, but in either case,

(j, x, w) ∈
⋃m

l=1 Rl (using the induction hypothesis in the latter case). By

rule 2, (i, w, x) ∈ Rm+1, and since Rm+1 ⊆
⋃m

l=1 Rl, (i, w, x) ∈
⋃m

l=1 Rl.

(c) If L is k, j, i-transitive and (i, w, x) ∈ Rm+m′ because of rule 3, then there

are l′, l′′ ∈ {1, 2, . . . , m+m′−1} such that (k, w, y) ∈ Rl′ and (j, y, x) ∈ Rl′′.

Either l′ ∈ {1, 2, . . . , m} or l′ ∈ {m + 1, m + 2, . . . , m + m′ − 1}, but in

either case, (k, w, y) ∈
⋃m

l=1 Rl (using the induction hypothesis in the latter

case). Similarly, (j, y, x) ∈
⋃m

l=1 Rl. By rule 3, (i, w, x) ∈ Rm+1, and since

Rm+1 ⊆
⋃m

l=1 Rl, (i, w, x) ∈
⋃m

l=1 Rl.

(d) If L is k, j, i-euclidean and (i, w, x) ∈ Rm+m′ because of rule 4, then there

are l′, l′′ ∈ {1, 2, . . . , m+m′−1} such that (k, y, w) ∈ Rl′ and (j, y, x) ∈ Rl′′.

Either l′ ∈ {1, 2, . . . , m} or l′ ∈ {m + 1, m + 2, . . . , m + m′ − 1}, but in

either case, (k, y, w) ∈
⋃m

l=1 Rl (using the induction hypothesis in the latter

case). Similarly, (j, y, x) ∈
⋃m

l=1 Rl. By rule 4, (i, w, x) ∈ Rm+1, and since

Rm+1 ⊆
⋃m

l=1 Rl, (i, w, x) ∈
⋃m

l=1 Rl.

Although we have not designed our proof systems with high-performance proof

search in mind (something we will briefly discuss in chapter 5), it is nevertheless

satisfying if proof search is feasible. In this light, the ability to compute L-closures of

accessibility relations on finite sets is important, even if the procedure shown above

is naive and, depending on the implementation, not particularly efficient.
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Chapter 3

Tableau characterization

The family of proof systems called analytic tableaus has its roots in the sequent

calculus of Gentzen [20], but was developed into a distinct class of formalisms by

Beth [5] and Hintikka [23] in the 1950s and refined by Smullyan [44] in the 1960s.

Various adaptations of tableau systems to modal logics were subsequently proposed

and studied by, amongst others, Kripke [30], Zeman [50], Kanger [26], and Fitting [16,

17], who developed the popular notion of prefixed tableaus for modal logics. Together

with sequent calculi and systems of natural deduction [42], tableau formalisms are

amongst the most intuitive and user-friendly proof systems, so it is no surprise that

all manner of tableau systems have been devised for modal logics.

Most tableau systems for modal logics differ in presentation and details, but share

the underlying idea of attempting to refute a query formula. More concretely, for a

given logic L, they try to find a countermodel for the query formula, i.e., an L-model

in which the formula is false. If this attempt leads to contradictions, then the query

formula is not L-falsifiable. In other words, there is no L-model in which the formula is

false, meaning that it is L-valid. If the refutation attempt succeeds, then the tableau

proof exhibits a concrete L-model and world in it at which the query formula is false.

Tableau systems for modal logics generally treat the classical part of the language
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in the same way, but differ in how modal information is represented and used. In

general, these systems for modal logics can be classified according to whether they

manipulate accessibility relations explicitly or implicitly. Goré [21] provides an acces-

sible survey of various methods of this kind, concentrating on modal tableau systems

with implicit accessibility relations. Systems with explicit accessibility relations, in-

spired by Fitting’s prefixed tableaus, are touched on only briefly. The tableau system

we will describe in this chapter differs markedly from Fitting’s popular modal tableau

systems in that it does not use prefixes to encode modal accessibility information.

Instead, we will encode and manipulate accessibility relations directly. This approach

is closest in spirit to Nerode’s [39] tableau formalism, which also inspired Baldoni’s

[4] calculus. By doing so, our system (along with those of Baldoni and Nerode) is

closer to the relational semantics of the logics being treated than prefixed or labelled

systems like Fitting’s and Massacci’s [35], which are more syntactic in nature.

Unlike the systems of Baldoni and Nerode, however, ours represents worlds in the

putative countermodel using a special notation based on the nodes of the formula

tree. The motivation for such a representation is to facilitate the adaptation of our

tableau proofs to proofs in our new path characterization. We do this in order to

illuminate the similarities between the two systems and to prove the correctness of

the path characterization. Consequently, some features of our tableau system might

appear unnecessary or redundant, and the presentation could indeed be streamlined

and simplified. Rather than having to return to and augment tableaus for the purpose

of proving properties of the path characterization, however, we have chosen to design

the tableau system from the start with the path characterization in mind.

It should also be mentioned that our presentation of tableaus is similar to what

Smullyan calls block tableaus [44], in which nodes of tableaus are not single formulas or

pieces of information, but collections of them. In our case, tableau nodes incorporate

representations of entire partial putative countermodels. In this light, our tableau



39

calculus could just as well be called a sequent calculus.

3.1 Definitions

We will call the nodes of our tableaus frame images. Defined as follows, they are repre-

sentations of partial potential countermodels for the query formula, an interpretation

we will explore in more detail shortly.

Definition 3.1.1 (Frame images). A frame image of a signed formula X is a triple

(U, Q, S), where U is a set of expressions of the form aι, where a is the name of a

π-node of X, and ι is a sequence of positive integers, Q is an accessibility relation on

U , and S is a set of pairs of the form (u, aι), where u ∈ U , a is the name of a node of

X, and ι is a sequence of positive integers.

A frame image (U, Q, S) is said to be closed if S contains pairs (u, aι) and (u, bκ)

such that lab(a) = lab(b) and sgn(a) 6= sgn(b). If lab(a) and lab(b) are atomic, then

(U, Q, S) is said to be atomically closed. Otherwise, it is (atomically) open.

Where no ambiguity arises, we will write a sequence l1, l2, . . . , lm of positive integers

in concatenated form: “l1l2 · · · lm”. We will denote the empty sequence by a single

dot, “·”. If ι is a sequence of positive integers and l is a positive integer, then ι, l

denotes the sequence obtained by extending ι by l. Again, we will usually write this

as simply “ιl”.

The intuition behind a frame image (U, Q, S) is that it represents information

about a potential countermodel. The elements of U name worlds in the underlying

frame, Q is the accessibility relation on them, and S provides information about

which formulas are true and false at which worlds. The formulas and their respective

truth or falsehood are encoded by the labels and signs of the node names, while the

names of the worlds at which they are true or false are carried with them explicitly.

For instance, a pair (u, aι) contained in S encodes the truth—if sgn(a) = 1—or
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falsehood—if sgn(a) = 0—of the subformula lab(a) at the world named by u. Notice

that the names of the worlds are all names of π-nodes of the query formula. This

is deliberate; it is one way in which we prepare for the adaptation of the tableau

characterization to the path characterization in the next chapter.

Another way in which we prepare for this translation is the presence of the se-

quences of positive integers we associate with node names in the tableau characteri-

zation. They are not strictly necessary for the correctness of the tableau calculus, but

they will correspond exactly to bookkeeping devices called indices, which will play

an important role in the path characterization. As a hint of things to come, indices

are a way of keeping track of different concrete worlds at which modal subformula

occurrences of the query formula are assumed to hold in the countermodel being con-

structed. Every time a modal subformula occurrence is instantiated at a world in a

tableau derivation, a new sequence of integers is generated for it, making it possible

to distinguish multiple instantiations of the same subformula occurrence.

Recall that rather than manipulating subformula occurrences, however, we deal

only with nodes of the query formula. Furthermore, in the case of tableaus, the query

formula is, in fact, a query signed formula. If we are interested in the L-validity of

a formula A, then we will attempt to construct an L-tableau for the signed formula

(A, 0). Recall from the previous chapter that signed formulas can be thought of

as encoding the truth or falsehood of their component formulas, so the reason we

construct an L-tableau for (A, 0) is that we are attempting to refute A, or build a

model in which it is false. The construction of tableaus themselves proceeds according

to the following definition.

Definition 3.1.2 (L-tableaus). An L-tableau for a signed formula X is an ordered

tree of frame images of X. Every L-tableau for X is constructed from the root

({a·

1}, ∅, {(a·

1, a
·

1)}) using the following L-tableau rules.

1. If (U, Q, S) is the leaf of a branch of an L-tableau, S contains a pair (u, aι),
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where a has primary type α and left child b, and (u, bι) /∈ S, then the (α1)

rule may be applied to extend the branch by (U, Q, S ∪{(u, bι)}). This is called

α1-decomposing (u, aι) to (u, bι) and can be represented schematically as follows.

(U, Q, S ∪ {(u, αι
1)})

(U, Q, S)
(α1) ((u, αι) ∈ S)

Here, α denotes an arbitrary node of primary type α, and α1 denotes its left

child. We will use a similar notation when presenting schematic forms of the

remaining rules.

2. If (U, Q, S) is the leaf of a branch of an L-tableau, S contains a pair (u, aι) ∈ S,

where a has primary type α and right child c, and (u, cι) /∈ S, then the (α2)

rule may be applied to extend the branch by (U, Q, S ∪{(u, cι)}). This is called

α2-decomposing (u, aι) to (u, cι) and can be represented schematically as follows.

(U, Q, S ∪ {(u, αι
2)})

(U, Q, S)
(α2) ((u, αι) ∈ S)

Notice that if a has only one child, then the rules (α1) and (α2) are effectively

the same. As in the previous chapter, we will systematically assume that nodes

of primary type α have two children each. When they have only one, the two

separate cases—one for each child—generally collapse into one.

3. If (U, Q, S) is the leaf of a branch of an L-tableau, S contains a pair (u, aι), where

a has primary type β and children b and c, (u, bι) /∈ S, and (u, cι) /∈ S, then the

(β) rule may be applied to fork and extend the branch by (U, Q, S ∪ {(u, bι)})

and (U, Q, S∪{(u, cι)}). This is called β-decomposing (u, aι) to (u, bι) and (u, cι)

and can be represented schematically as follows.

(U, Q, S ∪ {(u, βι
1)}) (U, Q, S ∪ {(u, βι

2)})

(U, Q, S)
(β) ((u, βι) ∈ S)
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4. If (U, Q, S) is the leaf of a branch of an L-tableau, S contains a pair (u, aι),

where a has primary type νi and child b, and (i, u, v) ∈ clL(Q), then the (ν)

rule may be applied to extend the branch by (U, Q, S∪{(v, bιl)}), where l is the

smallest positive integer such that bιl does not yet occur in the tableau, meaning

that the L-tableau does not contain a frame image (U ′, Q′, S ′) where S ′ contains

a pair of the form (u′, bιl). This is called ν-decomposing (u, aι) to (v, bιl) and

can be represented schematically as follows.

(U, Q, S ∪ {(v, νιl
i,1)})

(U, Q, S)
(ν) ((u, νι

i) ∈ S and (i, u, v) ∈ clL(Q))

5. If (U, Q, S) is the leaf of a branch of an L-tableau, S contains a pair (u, aι),

where a has primary type πi and child b, and bι /∈ U , then the (π) rule may be

applied to extend the branch by (U ∪ {bι}, Q ∪ {(i, u, bι)}, S ∪ {(bι, bι)}). This

is called π-decomposing (u, aι) to (bι, bι) and can be represented schematically

as follows.

(U ∪ {πι
i,1}, Q ∪ {(i, u, πι

i,1)}, S ∪ {(π
ι
i,1, π

ι
i,1)})

(U, Q, S)
(π) ((u, πι

i) ∈ S)

Note that adding bι (or πι
i,1 in the schematic form) to U is compatible with the

definition of frame images, since b (or πi,1, the child of πi) has secondary type

πi,1 and is thus a π-node. This is also part of why we define the roots of query

formulas to be π-nodes: the definition of frame images would otherwise have to

include a separate clause to allow a·

1 to name a world in a model represented by

a frame image.

A branch of an L-tableau is said to be (atomically) closed if its leaf is, and an L-

tableau is said to be (atomically) closed if all of its branches are. Otherwise, they are

(atomically) open.
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a lab(a) sgn(a) ptype(a) stype(a)
a1 21(p1 ⊃ p2) ⊃ 21p1 ⊃ 21p2 0 α
a2 21(p1 ⊃ p2) 1 ν1 α1

a3 p1 ⊃ p2 1 β ν1,1

a4 p1 0 β1

a5 p2 1 β2

a6 21p1 ⊃ 21p2 0 α α2

a7 21p1 1 ν1 α1

a8 p1 1 ν1,1

a9 21p2 0 π1 α2

a10 p2 0 π1,1

Figure 3.1: The signed formula tree and label, sign, and type functions of (21(p1 ⊃
p2) ⊃ 21p1 ⊃ 21p2, 0) (example 3.1.1).

Example 3.1.1 (L-tableaus). In this example, we show an atomically closed K-

tableau for the signed formula (A, 0) = (21(p1 ⊃ p2) ⊃ 21p1 ⊃ 21p2, 0). Recall that

K is the unimodal logic (n = 1) with no frame conditions. The signed formula tree and

label, sign, and type functions of (A, 0) are shown in figure 3.1, while an atomically

closed K-tableau for it is shown in figure 3.2. The tableau is broken up into several

parts for formatting reasons, and for clarity, we have underlined the source of every

tableau rule decomposition. At the leaf of each branch, we have also underlined the

two elements that atomically close it.

The L-tableau formalism is a proof system that provides a characterization of

L-validity for formulas. In particular, a formula A is L-valid if and only if there is

a closed L-tableau for the signed formula (A, 0). For instance, the atomically closed

K-tableau for (21(p1 ⊃ p2) ⊃ 21p1 ⊃ 21p2, 0) shown in figure 3.2 establishes the K-

validity of the formula 21(p1 ⊃ p2) ⊃ 21p1 ⊃ 21p2. We will prove the two directions
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A B
({a·

1, a
·

10}, {(1, a
·

1, a
·

10)}, {(a
·

1, a
·

1), (a
·

1, a
·

6), (a
·

1, a
·

9), (a
·

10, a
·

10), (a
·

1, a
·

2), (a
·

10, a
1
3)})

(β)

({a·

1, a
·

10}, {(1, a
·

1, a
·

10)}, {(a
·

1, a
·

1), (a
·

1, a
·

6), (a
·

1, a
·

9), (a
·

10, a
·

10), (a
·

1, a
·

2)})
(ν)

({a·

1, a
·

10}, {(1, a
·

1, a
·

10)}, {(a
·

1, a
·

1), (a
·

1, a
·

6), (a
·

1, a
·

9), (a
·

10, a
·

10)})
(α1)

({a·

1}, ∅, {(a·

1, a
·

1), (a
·

1, a
·

6), (a
·

1, a
·

9)})
(π)

({a·

1}, ∅, {(a·

1, a
·

1), (a
·

1, a
·

6)})
(α2)

({a·

1}, ∅, {(a·

1, a
·

1)})
(α2)

where

A =

({a·

1, a
·

10}, {(1, a
·

1, a
·

10)}, {(a
·

1, a
·

1), (a
·

1, a
·

6), (a
·

1, a
·

9), (a
·

10, a
·

10), (a
·

1, a
·

2), (a
·

10, a
1
3), (a

·

10, a
1
4), (a

·

1, a
·

7), (a
·

10, a
1
8)})

({a·

1, a
·

10}, {(1, a
·

1, a
·

10)}, {(a
·

1, a
·

1), (a
·

1, a
·

6), (a
·

1, a
·

9), (a
·

10, a
·

10), (a
·

1, a
·

2), (a
·

10, a
1
3), (a

·

10, a
1
4), (a

·

1, a
·

7)})
(ν)

({a·

1, a
·

10}, {(1, a
·

1, a
·

10)}, {(a
·

1, a
·

1), (a
·

1, a
·

6), (a
·

1, a
·

9), (a
·

10, a
·

10), (a
·

1, a
·

2), (a
·

10, a
1
3), (a

·

10, a
1
4)})

(α1)

and

B = ({a·

1, a
·

10}, {(1, a
·

1, a
·

10)}, {(a
·

1, a
·

1), (a
·

1, a
·

6), (a
·

1, a
·

9), (a
·

10, a
·

10), (a
·

1, a
·

2), (a
·

10, a
1
3), (a

·

10, a
1
5)})

Figure 3.2: An atomically closed K-tableau for (21(p1 ⊃ p2) ⊃ 21p1 ⊃ 21p2, 0) (example 3.1.1).
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of this claim—the soundness and completeness of the tableau characterization—in

sections 3.2 and 3.3, respectively.

3.2 Soundness

This section consists of a proof of the soundness of the tableau characterization, stated

as follows.

Theorem 3.2.1 (Soundness of the tableau characterization). If there is a closed L-

tableau for a signed formula (A, 0), then A is L-valid.

Suppose, for the sake of deriving a contradiction, that there is a closed L-tableau

for X = (A, 0), but A is not L-valid. Then there is an L-model M = (W, R, V ) and

a w ∈ W such that M, w 6
 A. This means that the root ({a·

1}, ∅, {(a·

1, a
·

1)}) of our

closed L-tableau for X is L-satisfiable, a property defined as follows.

Definition 3.2.1 (L-satisfiability of frame images). A frame image (U, Q, S) of a

signed formula is said to be satisfied by a model M = (W, R, V ) and function I from

U to W if the following conditions hold.

1. If (i, u, v) ∈ Q, then (i, I(u), I(v)) ∈ R.

2. If (u, aι) ∈ S and sgn(a) = 0, then M, I(u) 6
 lab(a).

3. If (u, aι) ∈ S and sgn(a) = 1, then M, I(u) 
 lab(a).

I is called an interpretation. (U, Q, S) is said to be L-satisfiable if there is an L-model

and interpretation that satisfy it.

Notice that we are here formalizing a notion we hinted at in the previous chap-

ter. Every node a of a signed formula is associated with a signed formula of its

own, (lab(a), sgn(a)), and sgn(a) being 0 or 1 represents or encodes the falsehood or
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truth, respectively, of lab(a) at some world of a countermodel. The second and third

conditions of definition 3.2.1 capture this encoding.

The next result shows that if an L-tableau node is L-satisfiable, then at least one

of its children, if it has any, is also L-satisfiable. A consequence of this is that since

the root of our closed L-tableau for X is assumed to be L-satisfiable, it has at least

one L-satisfiable leaf.

Lemma 3.2.1 (Preservation of L-satisfiability). Suppose (U, Q, S) is an L-satisfiable

frame image of a signed formula.

1. If S contains a pair (u, aι), where a has primary type α and children b and c,

then (U, Q, S ∪ {(u, bι)}) and (U, Q, S ∪ {(u, cι)}) are L-satisfiable.

2. If S contains a pair (u, aι), where a has primary type β and children b and c,

then (U, Q, S ∪ {(u, bι)}) or (U, Q, S ∪ {(u, cι)}) is L-satisfiable.

3. If S contains a pair (u, aι), where a has primary type νi and child b, and

(i, u, v) ∈ clL(Q), then for any positive integer l, (U, Q, S ∪ {(v, bιl)}) is L-

satisfiable.

4. If S contains a pair (u, aι), where a has primary type πi and child b, and bι /∈ U ,

then (U ∪ {bι}, Q ∪ {(i, u, bι)}, S ∪ {(bι, bι)}) is L-satisfiable.

Proof. We show some representative cases. The omitted ones are analogous. In each

case, let M = (W, R, V ) and I be an L-model and interpretation that satisfy (U, Q, S).

1. Suppose (lab(a), sgn(a)) has the form (B ∧ C, 1), so (lab(b), sgn(b)) = (B, 1)

and (lab(c), sgn(c)) = (C, 1). Since (U, Q, S) is L-satisfied by M and I, and

(u, aι) ∈ S, M, I(u) 
 B ∧C, which means that M, I(u) 
 B and M, I(u) 
 C.

In other words, M and I also satisfy (U, Q, S∪{(u, bι)}) and (U, Q, S∪{(u, cι)}).

2. Suppose (lab(a), sgn(a)) has the form (B ⊃ C, 1), so (lab(b), sgn(b)) = (B, 0)

and (lab(c), sgn(c)) = (C, 1). Since (U, Q, S) is L-satisfied by M and I, and
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(u, aι) ∈ S, M, I(u) 
 B ⊃ C, which means that M, I(u) 6
 B or M, I(u) 
 C.

In other words, M and I also satisfy either (U, Q, S ∪ {(u, bι)}) or (U, Q, S ∪

{(u, cι)}).

3. Suppose (lab(a), sgn(a)) has the form (2iB, 1), so (lab(b), sgn(b)) = (B, 1).

Since (U, Q, S) is L-satisfied by M and I, and (u, aι) ∈ S, M, I(u) 
 2iB,

meaning that for every w ∈ W such that (i, I(u), w) ∈ R, M, w 
 B. Since

(i, u, v) ∈ clL(Q), (i, I(u), I(v)) ∈ R by corollary 2.3.2, so M, I(v) 
 B. In other

words, for any positive integer l, M and I also satisfy (U, Q, S ∪ {(v, bιl)}). We

can say “for any positive integer” here, since the definition of L-satisfiability

of frame images ignores the sequences of positive integers associated with node

names.

4. Suppose (lab(a), sgn(a)) has the form (3iB, 1), so (lab(b), sgn(b)) = (B, 1).

Since (U, Q, S) is L-satisfied by M and I, and (u, aι) ∈ S, M, I(u) 
 3iB,

meaning that there is a w ∈W such that (i, I(u), w) ∈ R and M, w 
 B. Since

bι /∈ U , I is not defined on bι. Let I ′ be an interpretation from U ∪ {bι} to W

obtained by extending I by letting I ′(bι) = w. Now (i, I ′(u), I ′(bι)) ∈ R and

M, I ′(bι) 
 B. In other words, M and I ′ satisfy (U ∪ {bι}, Q ∪ {(i, u, bι)}, S ∪

{(bι, bι)}).

If our closed L-tableau for X has an L-satisfiable leaf, then this L-satisfiable leaf

must also be closed. Suppose (U, Q, S) is a leaf satisfied by an L-model M = (W, R, V )

and interpretation I and also closed by (u, aι) ∈ S and (u, bκ) ∈ S. If sgn(a) = 0 and

sgn(b) = 1 (the other case is analogous), then M, I(u) 6
 lab(a) and M, I(u) 
 lab(b).

Since lab(a) = lab(b), however, this is a contradiction, completing the proof of the

soundness of the tableau characterization.
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3.3 Completeness

This section consists of a proof of the completeness of the tableau characterization,

stated as follows.

Theorem 3.3.1 (Completeness of the tableau characterization). If a formula A is

L-valid, then there is an atomically closed L-tableau for (A, 0).

Notice that this result is not quite the converse of the soundness result of the

previous section. Here, we are claiming that the L-validity of a formula A implies not

just the existence of a closed L-tableau for (A, 0), but of an atomically closed one.

The converse of the soundess of the tableau characterization is a weaker result, which

is however implied by theorem 3.3.1.

The completeness of tableau systems is typically proved using a systematic con-

struction procedure, a deterministic procedure that, given a query formula, either

constructs a closed tableau for it, establishing its validity, or generates evidence of

a countermodel, implying its invalidity. In our case, given a query formula A, our

procedure will attempt to construct an atomically closed L-tableau for (A, 0). Such

an attempt has one of three outcomes.

1. The procedure terminates and returns an atomically closed L-tableau for (A, 0).

2. The procedure terminates and returns an atomically open L-tableau for (A, 0).

3. The procedure does not terminate.

The procedure must be defined in such a way that the existence of a countermodel (an

L-model in which A is false at some world) follows from the second and third outcomes.

If the systematic construction procedure has this property and A is L-valid, then the

procedure must terminate and return an atomically closed L-tableau for (A, 0). Notice

that this makes the systematic construction procedure a semidecision procedure for
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L-validity, albeit a naive one. Before we describe the procedure, however, some new

terminology is in order.

Definition 3.3.1 (L-viability). Let (U, Q, S) be a frame image of a signed formula.

A pair (u, aι) ∈ S is said to be L-viable if

1. a has primary type α and children b and c, and (u, bι) /∈ S or (u, cι) /∈ S,

2. a has primary type β and children b and c, and (u, bι) /∈ S and (u, cι) /∈ S,

3. a has primary type νi and child b, and there is a v ∈ U such that (i, u, v) ∈ clL(Q)

and there is no positive integer l such that (v, bιl) ∈ S, or

4. a has primary type πi and child b, and bι /∈ U , (i, u, bι) /∈ Q, or (bι, bι) /∈ S.

(U, Q, S) is said to be L-viable if there is an L-viable element in S. A branch of an

L-tableau is said to be L-viable if its leaf is L-viable. If a frame image or a branch of

an L-tableau is not L-viable, then it is L-unviable.

L-viability pins down when a tableau branch can be extended further to generate

more information that could be used in closing it. An L-viable tableau branch has a

leaf containing elements that can be decomposed further, so the systematic construc-

tion procedure will use L-viability as a test of whether an element of a frame image

in an intermediate tableau is to be decomposed further.

In addition to using the notion of L-viability, the systematic construction proce-

dure will associate some bookkeeping information with each leaf of every interme-

diate L-tableau it constructs. In particular, if (U, Q, S) is a leaf of an intermediate

L-tableau, then we will associate with it a total order on S, which we will represent as

a sequence whose elements are those of S. We will call this sequence the bookeeping

sequence of (U, Q, S).

The purpose of this sequence is to guarantee fairness when choosing elements to

decompose. If (U, Q, S) is associated with the bookkeeping sequence s1, s2, . . . , sm,
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for instance, where each sl ∈ S, then we will choose, as the element to decompose,

the first L-viable element sl of the sequence. With any new children of (U, Q, S)

introduced as a result of the decomposition, we will associate a bookkeeping sequence

in which sl, the most recently decomposed element, is pushed to the back of the

sequence, behind any new elements introduced to S and the bookkeeping sequence by

the decomposition itself. We will specify this behaviour more precisely in the following

definition.

Definition 3.3.2 (Systematic L-tableau construction procedure). The systematic

L-tableau construction procedure for a signed formula X proceeds in stages. Some

bookkeeping information is associated with each frame image (U, Q, S) in the form

of a bookkeeping sequence, an ordering on S. This sequence determines the order in

which elements of S are chosen for decomposition.

In stage 1, let the root of the L-tableau be ({a·

1}, ∅, {(a·

1, a
·

1)}). The bookkeeping

sequence contains only (a·

1, a
·

1). After stage n is complete, terminate if the L-tableau

has no atomically open L-viable branches. Otherwise, carry out stage n+1 as follows.

Let the branch to be extended be the leftmost shortest atomically open L-viable

branch, (U, Q, S) its leaf, s1, s2, . . . , sm the bookkeeping sequence of (U, Q, S), and

sl = (u, aι) the first L-viable element of S.

1. If a has primary type α and children b and c, and (u, aι) is L-viable because

(u, bι) /∈ S, then apply rule (α1) to α1-decompose (u, aι) to (u, bι). Let the

bookkeeping sequence of (U, Q, S ∪ {(u, bι)}) be s1, s2, . . . , sl−1, sl+1, . . . , sm,

(u, bι), (u, aι).

2. If a has primary type α and children b and c, and (u, aι) is L-viable because

(u, cι) /∈ S, then apply rule (α2) to α2-decompose (u, aι) to (u, cι). Let the

bookkeeping sequence of (U, Q, S ∪ {(u, cι)}) be s1, s2, . . . , sl−1, sl+1, . . . , sm,

(u, cι), (u, aι).
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3. If a has primary type β and children b and c, and (u, aι) is L-viable because

(u, bι) /∈ S and (u, cι) /∈ S, then apply rule (β) to β-decompose (u, aι) to (u, bι)

and (u, cι). Let the bookkeeping sequence of (U, Q, S ∪ {(u, bι)}) be s1, s2, . . . ,

sl−1, sl+1, . . . , sm, (u, bι), (u, aι) and that of (U, Q, S ∪ {(u, cι)}) be s1, s2, . . . ,

sl−1, sl+1, . . . , sm, (u, cι), (u, aι).

4. If a has primary type νi and child b, and (u, aι) is L-viable because there is

a v ∈ U such that (i, u, v) ∈ clL(Q) and there is no positive integer l such

that (v, bιl) ∈ S, then for every such v ∈ U , apply rule (ν) to ν-decompose

(u, aι) to (v, bιl) for some positive integer l. Let {v1, v2, . . . , vk} ⊆ U be all such

worlds (since U is finite, there are finitely many of them, so this operation can

be carried out in a finite number of steps), and for each k′ ∈ {1, 2, . . . , k}, let

(u, aι) be ν-decomposed to (vk′, bιl
k′ ). Let the bookkeeping sequence of (U, Q, S∪

{(v1, b
ιl1), (v2, b

ιl2), . . . , (vk, b
ιlk)}) be s1, s2, . . . , sl−1, sl+1, . . . , sm, (v1, b

ιl1),

(v2, b
ιl2), . . . , (vk, b

ιlk), (u, aι).

5. If a has primary type πi and child b, and (u, aι) is L-viable because bι /∈ U ,

(i, u, bι) /∈ Q, or (bι, bι) /∈ S, then since the tableau rules guarantee that only a

π-decomposition to (bι, bι) can have any of these effects, such a π-decomposition

has not yet taken place along this tableau branch, so bι /∈ U , and we can apply

rule (π) to π-decompose (u, aι) to (bι, bι). Let the bookkeeping sequence of

(U ∪ {bι}, Q∪ {(i, u, bι)}, S ∪ {(bι, bι)}) be s1, s2, . . . , sl−1, sl+1, . . . , sm, (bι, bι),

(u, aι).

The bookkeeping sequence of a leaf (U, Q, S) determines the order in which ele-

ments of S are decomposed, so informally, it implements a first-in-first-out queue of

L-viable elements. It contains all the elements of S, but we ignore all but the L-viable

ones. Intuitively, this makes the systematic construction procedure fair : if a branch of

an intermediate L-tableau has a leaf with an L-viable element, then that element will
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eventually be chosen for decomposition, unless the branch becomes atomically closed

or the element becomes L-unviable. Moreover, L-tableaus are finitely branching, and

by choosing to extend one of the shortest atomically open L-viable branches at every

stage, we guarantee that no such branch is neglected indefinitely.

Recall the three possible outcomes of the systematic construction procedure:

1. The procedure terminates and returns an atomically closed L-tableau.

2. The procedure terminates and returns an atomically open L-tableau.

3. The procedure does not terminate.

The first case occurs if all branches of the constructed L-tableau are atomically closed.

The second case occurs if each branch of the constructed L-tableau is either atomically

closed or L-unviable, but at least one of them is atomically open by virtue of having

an atomically open leaf. Any such atomically open leaf is still L-unviable, however,

and any such atomically open L-unviable leaf encodes a countermodel for A. We will

prove this shortly.

The third case is the most interesting one. Every iteration of the systematic con-

struction procedure can be carried out in a finite number of steps and increases the

length of a branch of the intermediate L-tableau by at least one, possibly forking

it. Here, we use the assumptions that our logic has finitely many modalities and

that formulas must be finite, so L-closures can be computed in finite time. This

means that a nonterminating systematic construction procedure describes an “infi-

nite open branch”, i.e., an infinite sequence (U1, Q1, S1), (U2, Q2, S2), . . . of atomically

open frame images, where (U1, Q1, S1) is the root ({a·

1}, ∅, {(a·

1, a
·

1)}), and for every

l ∈ {1, 2, . . .}, (Ul+1, Ql+1, Sl+1) is the child of an application of a branch extension

rule to (Ul, Ql, Sl). What we will do is let U =
⋃

∞

l=1 Ul, Q =
⋃

∞

l=1 Ql, and S =
⋃

∞

l=1 Sl,

and then show that (U, Q, S) is a countermodel for A. Note that the systematic con-

struction procedure does not actually produce or return this potential countermodel,
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but its existence is a consequence of the nontermination of the procedure.

We are now in a position to formally prove our claims from above. To this end, we

require one more technical notion, namely that of L-Hintikka frame images. These

are a variant of Hintikka sets [44], also known as downward saturated sets [16].

Definition 3.3.3 (L-Hintikka frame images). A frame image (U, Q, S) of a signed

formula is said to be an L-Hintikka frame image if it has the following properties.

1. It is atomically open.

2. If (u, aι) ∈ S, where a has primary type α and children b and c, then (u, bι) ∈ S

and (u, cι) ∈ S.

3. If (u, aι) ∈ S, where a has primary type β and children b and c, then (u, bι) ∈ S

or (u, cι) ∈ S.

4. If (u, aι) ∈ S, where a has primary type νi and child b, then for every v ∈ U

such that (i, u, v) ∈ clL(Q), there is a positive integer l such that (v, bιl) ∈ S.

5. If (u, aι) ∈ S, where a has primary type πi and child b, then bι ∈ U , (i, u, bι) ∈

clL(Q), and (bι, bι) ∈ S.

Notice the similarities between the clauses in definitions 3.3.1 (L-viability) and

3.3.3 (L-Hintikka frame images). The negation of each clause of definition 3.3.1 implies

the conditions for the corresponding clause of definition 3.3.3, so if a tableau node

(U, Q, S) is atomically open and L-unviable, then it is an L-Hintikka frame image.

The following lemma asserts that an L-Hintikka frame image is also L-satisfiable.

Lemma 3.3.1 (L-Hintikka frame image L-satisfiability). Every L-Hintikka frame

image is L-satisfiable.
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Proof. We will show that an L-Hintikka frame image (U, Q, S) is satisfied by the

model M = (U, clL(Q), V ) and the identity function I on U , where

V (p) = {u ∈ U : (u, aι) ∈ S, lab(a) = p, and sgn(a) = 1},

and that M is an L-model. First, notice that if (i, u, v) ∈ Q, then since I(u) = u,

I(v) = v, and Q ⊆ clL(Q), (i, I(u), I(v)) ∈ clL(Q). Next, the claims that

1. if (u, aι) ∈ S and sgn(a) = 0, then M, I(u) 6
 lab(a), and

2. if (u, aι) ∈ S and sgn(a) = 1, then M, I(u) 
 lab(a)

are proved by simultaneous induction on the degree of lab(a). We show some repre-

sentative cases. The omitted ones are analogous. In each case, we use one of rules

1–5 of definition 3.3.3.

1. If (lab(a), sgn(a)) has the form (p, 0), then by rule 1, there is no (u, bκ) ∈ S

such that lab(b) = lab(a) = p and sgn(b) = 1. This means that u /∈ V (p), so

M, u 6
 p, or M, I(u) 6
 lab(a).

2. If (lab(a), sgn(a)) has the form (p, 1), then u ∈ V (p), so M, u 
 p, or M, I(u) 


lab(a).

3. If (lab(a), sgn(a)) has the form (B∧C, 1) and a has children b and c, then by rule

2, (u, bι) ∈ S and (u, cι) ∈ S. sgn(b) = sgn(c) = 1, so by the induction hypoth-

esis, M, I(u) 
 lab(b) and M, I(u) 
 lab(c), or M, I(u) 
 B and M, I(u) 
 C,

so M, I(u) 
 B ∧ C, or M, I(u) 
 lab(a).

4. If (lab(a), sgn(a)) has the form (B ⊃ C, 1) and a has children b and c, then

by rule 3, (u, bι) ∈ S or (u, cι) ∈ S. sgn(b) = 0 and sgn(c) = 1, so by the

induction hypothesis, M, I(u) 6
 lab(b) or M, I(u) 
 lab(c), or M, I(u) 6
 B or

M, I(u) 
 C, so M, I(u) 
 B ⊃ C, or M, I(u) 
 lab(a).
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5. If (lab(a), sgn(a)) has the form (2iB, 1) and a has child b, then by rule 4, for

every v ∈ U such that (i, u, v) ∈ clL(Q), (v, bιl) ∈ S for some positive integer l.

sgn(b) = 1, so by the induction hypothesis, M, I(v) 
 lab(b) or M, v 
 B for

every v ∈ U such that (i, u, v) ∈ clL(Q), so M, u 
 2iB, or M, I(u) 
 lab(a).

6. If (lab(a), sgn(a)) has the form (3iB, 1) and a has child b, then by rule 5, bι ∈ U ,

(i, u, bι) ∈ clL(Q), and (bι, bι) ∈ S. sgn(b) = 1, so by the induction hypothesis,

M, I(bι) 
 lab(b), or M, bι

 B. Since (i, u, bι) ∈ clL(Q), this means that

M, u 
 3iB, or M, I(u) 
 lab(a).

We have shown that (U, Q, S) is satisfied by M and I. Now, since clL(Q) satisfies all

of L’s frame conditions by construction, M is an L-model, completing the proof that

(U, Q, S) is L-satisfiable.

To complete the proof of completeness, we will show that if the systematic con-

struction procedure terminates and returns an atomically open tableau, or does not

terminate, then there is an L-Hintikka frame image (U, Q, S) with (a·

1, a
·

1) ∈ S. By

the previous lemma, this frame image is L-satisfiable, so it falsifies A. Consequently, if

A is L-valid, then the only possible outcome of the systematic construction procedure

is an atomically closed L-tableau for A.

In the first case, if the systematic construction procedure terminates and returns

an atomically open tableau, then it has an atomically open leaf (U, Q, S). Recall that

this leaf must be an L-Hintikka frame image because it is L-unviable and atomically

open. S contains (a·

1, a
·

1), so A is not L-valid.

If the procedure does not terminate, then recall that (U, Q, S) is defined by an

infinite open branch (U1, Q1, S1), (U2, Q2, S2), . . . of atomically open frame images:

U =
⋃

∞

l=1 Ul, Q =
⋃

∞

l=1 Ql, and S =
⋃

∞

l=1 Sl. Moreover, for every l ∈ {1, 2, . . .},

Ul ⊆ Ul+1, Ql ⊆ Ql+1, and Sl ⊆ Sl+1. We will show shortly that (U, Q, S) is an

L-Hintikka frame image. To do so, however, we require one more technical result,
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namely that two elements (u, aι) and (v, aι), where u 6= v, cannot occur in the same

tableau. There are two cases to consider.

1. Suppose ι = ι′l. This means that a has a nearest ν-ancestor a′, since only

ν-decompositions can extend the sequence of positive integers associated with

node names. Since (u, aι) occurs in the tableau, a ν-decomposition of a pair of

the form (u′, a′ι′) is performed along the branch in which it occurs. Similarly,

since (v, aι) occurs in the tableau, a ν-decomposition of a pair of the form (v′, a′ι′)

is performed along the branch in which it occurs. The proviso on the (ν) rule

implies that regardless of how the tableau was constructed, the same positive

integer l cannot have been used in both of these ν-decompositions, violating the

legality of the tableau.

2. Suppose ι = ·, meaning that a has no nearest ν-ancestor. From the tableau

rules, it is clear that u and v are necessarily both the nearest π-ancestor of

a with the integer sequence ·. This is because no ν-decompositions can have

taken place along the relevant branches, and other than ν-decompositions, only

π-decompositions affect the world names that nodes are associated with. Since

the nearest π-ancestor of a is unique, u = v.

We can now show that (U, Q, S) is an L-Hintikka frame image as follows.

1. It is atomically open. If it were not, then since Sl ⊆ Sl+1 for every l ∈ {1, 2, . . .},

there would be an atomically closed frame image along the branch.

2. If (u, aι) ∈ S, where a has primary type α and children b and c, and (u, bι) /∈ S or

(u, cι) /∈ S, then (u, aι) is L-viable at some point along the branch, and the fair-

ness of the systematic construction procedure guarantees that it is decomposed

to (u, bι) and (u, cι) at some point, meaning that (u, bι) ∈ S and (u, cι) ∈ S.

This is a contradiction.
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3. If (u, aι) ∈ S, where a has primary type β and children b and c, and (u, bι) /∈

S and (u, cι) /∈ S, then (u, aι) is L-viable at some point along the branch,

and the fairness of the systematic construction procedure guarantees that it is

decomposed to (u, bι) and (u, cι) at some point, meaning that (u, bι) ∈ S or

(u, cι) ∈ S. This is a contradiction.

4. If (u, aι) ∈ S, where a has primary type νi and child b, and there is a v ∈ U such

that (i, u, v) ∈ clL(Q), and there is no positive integer l such that (v, bιl) ∈ S,

then by corollary 2.3.3, there is an m ∈ {1, 2, . . .} such that (i, u, v) ∈ clL(Qm).

There is also an m′ ∈ {1, 2, . . .} such that (u, aι) ∈ Sm′ .

If m ≥ m′, then Sm′ ⊆ Sm, so (u, aι) is L-viable at (Um, Qm, Sm). The fairness

of the systematic construction procedure guarantees that it is decomposed to

(v, bιl) for some positive integer l at some point above (Um, Qm, Sm), meaning

that (v, bιl) ∈ S. This is a contradiction.

If m′ ≥ m, then Um ⊆ Um′ and Qm ⊆ Qm′ , so by corollary 2.3.1 (i, u, v) ∈

clL(Qm′), so (u, aι) is L-viable at (Um′ , Qm′ , Sm′). The fairness of the systematic

construction procedure guarantees that it is decomposed to (v, bιl) for some

positive integer l at some point above (Um′ , Qm′, Sm′), meaning that (v, bιl) ∈ S.

This is a contradiction.

5. If (u, aι) ∈ S, where a has primary type πi and child b, and bι /∈ U , (i, u, bι) /∈

clL(Q), or (bι, bι) /∈ S, then there is an m ∈ {1, 2, . . .} such that (u, aι) ∈ Sm

and is L-viable at (Um, Qm, Sm). To see this, consider the following three cases.

(a) If bι /∈ U , then for every m ∈ {1, 2, . . .}, bι /∈ Um.

(b) If (i, u, bι) /∈ clL(Q), then (i, u, bι) /∈ Q, so for every m ∈ {1, 2, . . .},

(i, u, bι) /∈ Qm. This means that a ν-decomposition of (u, aι) to (bι, bι)

does not occur anywhere along the branch, implying that for every m ∈
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{1, 2, . . .}, bι /∈ Um. There can also be no decomposition of (v, aι) to (bι, bι),

where u 6= v, thanks to our previous observation.

(c) If (bι, bι) /∈ S, then for every m ∈ {1, 2, . . .}, (bι, bι) /∈ Sm. This means that

a ν-decomposition to (bι, bι) does not occur anywhere along the branch,

implying that for every m ∈ {1, 2, . . .}, bι /∈ Um.

In each case, (u, aι) ∈ Sm for some m ∈ {1, 2, . . .}, so (u, aι) is L-viable at

(Um, Qm, Sm), and the fairness of the systematic construction procedure guaran-

tees that it is decomposed to (bι, bι) at some point above (Um, Qm, Sm), meaning

that bι ∈ U , (i, u, bι) ∈ clL(Q), and (bι, bι) ∈ S. This is a contradiction.

Since (U, Q, S) is an L-Hintikka frame image, it is L-satisfiable. Once again, S contains

(a·

1, a
·

1), meaning that A is not L-valid, completing the proof of the completeness of

the tableau characterization.

Because theorem 3.3.1 is stronger than the converse of theorem 3.2.1, a characteri-

zation of L-validity based on atomically closed L-tableaus is sound and complete with

respect to one based on closed L-tableaus that are not necessarily atomically closed.

One direction of this result is obvious, but the other is worth stating explicitly.

Corollary 3.3.1. If there is a closed L-tableau for a signed formula X = (A, 0), then

there is an atomically closed one.

Proof. By theorem 3.2.1, the existence of a closed L-tableau for X implies that A is

L-valid. By theorem 3.3.1, this implies that there is an atomically closed L-tableau

for X.

An alternative proof of this result involves defining a procedure that converts a

closed L-tableau into an atomically closed one.
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Chapter 4

Path characterization

The tableau characterization of the previous chapter is a convenient and powerful

formalism, but like most tableau systems, it suffers from a problem Wallen calls

irrelevance [48]. This is best demonstrated by example.

During the construction of a tableau derivation, certain disjunctive choices must

be made. If (U, Q, S) is the leaf of a tableau, then we may have a choice as to which

element of S to decompose. However, since tableau inference rules focus only on the

primary types of nodes of the query formula, it is possible to make choices that are

not relevant to producing a proof. Suppose a partial tableau derivation has produced

an intermediate frame image (U, Q, S), for instance, where S contains two pairs (u, aι)

and (u, bκ) with the following properties:

1. (lab(a), sgn(a)) = (B ∧ p1, 1), where B is a large, complex subformula.

2. (lab(b), sgn(b)) = (p1, 0).

Applying rule (α2) to decompose (u, aι) to (u, a′

2
ι), where (lab(a′

2), sgn(a′

2)) = (p1, 1),

would close the branch. However, applying (α1) to decompose (u, aι) to (u, a′

1
ι), where

(lab(a′

1), sgn(a′

1)) = (B, 1), could result in the branch becoming much longer before it

closes. In other words, proof search procedures based on tableau inference rules cannot
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inspect the deeper structure of the query formula in order to make better decisions,

which may result in large portions of a derivation being essentially irrelevant.

Note that this is a problem with the tableau proof space rather than particular

proof search strategies, since knowing which tableau rules to apply to approach a com-

plete proof requires knowledge of the deeper structure of the query formula, which,

unless the proof search procedure performs some more involved analysis, simply can-

not be obtained without actually applying the intermediate decompositions. Although

matrix and path characterizations also inspect the entire structure of a query formula,

they do so without having to make the disjunctive choices that tableau systems are

typically forced to make.

Wallen also identifies another important problem that plagues many sequent cal-

culus and related tableau systems, which he calls non-permutability. Informally, this

means that tableau rules cannot be applied in any order due to dependencies between

different parts of the derivation. By applying rules in a particular order, the construc-

tion of a derivation might run into a dead end, and backtracking might be required

during proof construction. Our tableau system does not suffer from this problem,

since our logics are propositional, and the provisos on our modal inference rules are

conservative in that they prevent rule applications that would lead to dead ends. In

Wallen’s words, there is no order dependence amongst the propositional rules [48], and

although it is possible to perform irrelevant ν-decompositions in our tableau system,

they do not prevent relevant ones from being carried out in the future.

However, our tableau derivations do mix different types of choices even though

they are conceptually quite distinct: the structural choices that lead to irrelevance

are of one kind, while the modal choices of which worlds to instantiate ν-nodes at are

distinct concerns, and the goal of our path characterization is to explicitly separate

them.
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4.1 Definitions

Nodes of a signed formula tree represent subformula occurrences of the query formula.

Informally, the path characterization uses nodes of a formula tree to denote not just

subformula occurrences of a query formula, but also modal information about them.

In a tableau, the π-decomposition of a node creates a new world (or a new name for

a world required to exist) and adds it to the information known about the putative

countermodel. In the path characterization, π-nodes, then, will have a special role

as representing the concrete worlds for whose introduction they are responsible. This

reflects our convention, in the tableau characterization, of using formula tree node

names as world names (augmented by sequences of positive integers, which we will

come to shortly). Meanwhile, in a tableau, the ν-decomposition of a node creates

an association between the subformula occurrence that the ν-node represents and a

world in the putative countermodel previously named by a node as a result of a π-

decomposition. In the path characterization, then, ν-nodes will be mapped to π-nodes.

However, if we use a signed formula tree to perform this sort of node-based modal

association, then we quickly run into the problem that each ν-node can be associated

with only a single π-node. This does not sit comfortably with the fact that in tableaus,

a node of primary type νi can be decomposed several times to “instantiate” its ν-child

at more than one world of the countermodel. This issue is tackled by using not a signed

formula tree for our node-based modal association, but an extension in which subtrees

have been replicated or pruned according to a multiplicity, defined as follows.

Definition 4.1.1 (Multiplicities). A multiplicity for a signed formula X is a partial

function µ from tuples of the form (a, ι) to nonnegative integers, where a is the name

of a ν-node of X, and ι is a sequence of positive integers, with the following properties.

1. If a is a ν-node with no ν-ancestors, then µ is defined on (a, ·).

2. If a is a ν-node with a nearest ν-ancestor a′, and µ is defined on (a′, ι), then for
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every l ∈ {1, 2, . . . , µ(a′, ι)}, µ is defined on (a, ιl).

A multiplicity µ is defined on a pair (a, ι) only if warranted by one of these two rules.

Note that the second clause does not produce a circularity, since ι is shorter than ιl.

The purpose of a multiplicity, as its name might suggest, is to encode in how

many ways a ν-node of X can, in the parlance of tableaus, be introduced through

ν-decomposition. In other words, it tells us at how many potentially different worlds

a ν-node can be instantiated. This is the intended high-level interpretation. At a

more immediate level, a multiplicity encodes how parts of the signed formula tree

of X are to be replicated or pruned. Our definition of multiplicities provides a very

fine grain of control over this replication and pruning, and while its flexibility is not

strictly necessary, it allows us to create a very close correspondence between proofs

of validity in the tableau and path characterizations. This correspondence will be

explored in greater detail in section 4.3, in which we prove the completeness of the

path characterization with respect to the tableau characterization.

To formally implement the intended effect of a multiplicity µ on a signed formula

X, we define an extension of the signed formula X and its signed formula tree in the

following way.

Definition 4.1.2 (Indexed signed formulas). An indexed signed formula is a pair

(X, µ), where X is a signed formula, and µ is a multiplicity for X.

Definition 4.1.3 (Indexed signed formula trees). The set of indexed node names of

an indexed signed formula (X, µ) is a set of expressions of the form aι, where a is the

name of a node of X, and ι is a sequence of positive integers, called an index. These

expressions will serve as names of nodes in the indexed signed formula tree of (X, µ).

With this in mind, we can simultaneously define both the indexed node names and

the structure of the indexed signed formula tree of (X, µ) with the following rules.
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1. a·

1 is an indexed node name, and it names the root of the indexed signed formula

tree.

2. If a node a of X has a ν-child b, and aι is an indexed node name, then for every

l ∈ {1, 2, . . . , µ(b, ι)}, bιl is also an indexed node name, and it names a child of

aι in the indexed signed formula tree.

3. If a node a of X has a non-ν-child b (i.e., a child b of secondary type other than

νi,1), and aι is an indexed node name, then bι is also an indexed node name, and

it names a child of aι in the indexed signed formula tree.

In the second clause, we know µ to be defined on (b, ι) from its definition as a

multiplicity. The following lines of reasoning show why this is so.

1. If b is a ν-node with no ν-ancestors, then the first and third clauses above imply

that ι is the empty sequence ·, and clause 1 of definition 4.1.1 guarantees that

µ is defined on (b, ·), or (b, ι).

2. If b has a nearest ν-ancestor b′, then the first and third clauses above again

imply that b′ι is also an indexed node name. Let ι have the form ι′l′ (since b′

is a ν-node, ι cannot be the empty index, by the second clause above), and let

a′ be the parent of b′. For b′ι to be an indexed node name, a′ι′ must be one

as well, and µ must be defined on (b′, ι′), with µ(b′, ι′) ≥ l′. So by clause 2 of

definition 4.1.1, for every l′′ ∈ {1, 2, . . . , µ(b′, ι′)}, µ is defined on (b, ι′l′′). Since

µ(b′, ι′) ≥ l′, µ is defined on (b, ι′l′), or (b, ι).

The nodes of indexed signed formula trees inherit the labels, signs, and types of

their progenitors:

lab(aι) = lab(a) ptype(aι) = ptype(a)

sgn(aι) = sgn(a) stype(aι) = stype(a)
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a lab(a) sgn(a) ptype(a) stype(a)
a1 31p1 ∨31p2 ⊃ 31(p1 ∨ p2) 0 α
a2 31p1 ∨31p2 1 β α1

a3 31p1 1 π1 β1

a4 p1 1 π1,1

a5 31p2 1 π1 β2

a6 p2 1 π1,1

a7 31(p1 ∨ p2) 0 ν1 α2

a8 p1 ∨ p2 0 α ν1,1

a9 p1 0 α1

a10 p2 0 α2

Figure 4.1: The signed formula tree and label, sign, and type functions of (31p1 ∨
31p2 ⊃ 31(p1 ∨ p2), 0) (example 4.1.1).

The terminology of ν- and π-nodes from signed formula trees, as well as the modalities

of nodes, also carries over to indexed signed formula trees. If≪ is the tree ordering of

the signed formula tree of X, then we will denote the corresponding relation on nodes

of the indexed signed formula tree of (X, µ) by ≪µ. However, we will systematically

omit the superscript wherever we can safely do so without causing confusion.

Example 4.1.1 (Indexed signed formula trees). The signed formula tree and label,

sign, and type functions of the signed formula X = (31p1∨31p2 ⊃ 31(p1∨p2), 0) are

shown in figure 4.1. If µ is defined to be a multiplicity for X such that µ(a8, ·) = 2,

then the indexed signed formula tree and label, sign, and type functions of the indexed

signed formula (X, µ) are shown in figure 4.2. Notice the duplication of the subtree

rooted at a8 and how the indices distinguish between the copies.

The indices of the indexed node names of the indexed signed formula tree of (X, µ)
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a lab(a) sgn(a) ptype(a) stype(a)
a·

1 31p1 ∨31p2 ⊃ 31(p1 ∨ p2) 0 α
a·

2 31p1 ∨31p2 1 β α1

a·

3 31p1 1 π1 β1

a·

4 p1 1 π1,1

a·

5 31p2 1 π1 β2

a·

6 p2 1 π1,1

a·

7 31(p1 ∨ p2) 0 ν1 α2

a1
8 p1 ∨ p2 0 α ν1,1

a1
9 p1 0 α1

a1
10 p2 0 α2

a2
8 p1 ∨ p2 0 α ν1,1

a2
9 p1 0 α1

a2
10 p2 0 α2

Figure 4.2: The indexed signed formula tree and label, sign, and type functions of
((31p1 ∨31p2 ⊃ 31(p1 ∨ p2), 0), µ), where µ(a8, ·) = 2 (example 4.1.1).

provide a form of multiplicity-context. The multiplicity causes subtrees rooted at ν-

nodes to be copied or deleted (this mechanism is driven by clause 2 of definition 4.1.3),

and the indices of the copied nodes are a bookkeeping tool that allow us to identify

which copied subtree they belong to.

The expression “copying subtrees” in the context of multiplicities should be taken

with a grain of salt, however, since if a subtree rooted at a ν-node a is “copied” by

virtue of µ being defined on and greater than one for some pair (a, ι), then each “copy”

may be different if the subtree contains further ν-nodes. This is one important way

in which our definition of multiplicities differs from Wallen’s, whose multiplicities are

simply functions from ν-nodes to nonnegative integers. The reason we have opted
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a lab(a) sgn(a) ptype(a) stype(a)
a1 3132p1 ⊃ 3231p1 0 α
a2 3132p1 1 π1 α1

a3 32p1 1 π2 π1,1

a4 p1 1 π2,1

a5 3231p1 0 ν2 α2

a6 31p1 0 ν1 ν2,1

a7 p1 0 ν1,1

Figure 4.3: The signed formula tree and label, sign, and type functions of (3132p1 ⊃
3231p1, 0) (example 4.1.2).

for this slightly more complicated definition of multiplicities is that it makes the

relationship between our tableau and path formalisms (and the translation of proofs

from one to the other) more direct. We will witness this in the proof of completeness

of our path characterization later in this chapter.

Example 4.1.2 (Indexed signed formula trees). The signed formula tree and label,

sign, and type functions of the signed formula X = (3132p1 ⊃ 3231p1, 0) are shown

in figure 4.3. If µ is defined to be a multiplicity for X such that µ(a6, ·) = 2, µ(a7, 1) =

1, and µ(a7, 2) = 3, then the indexed signed formula tree and label, sign, and type

functions of the indexed signed formula (X, µ) are shown in figure 4.4. Notice that

the subtrees rooted at a1
6 and a2

6 are quite different, since µ(a7, 1) 6= µ(a7, 2).

The node-based modal association of nodes of the indexed signed formula tree can

now be represented using a realization.

Definition 4.1.4 (Realizations). A realization for an indexed signed formula Z is a

pair (σ, ρ), where σ is a function mapping ν-nodes of Z to π-nodes of Z, and ρ is a
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a lab(a) sgn(a) ptype(a) stype(a)
a·

1 3132p1 ⊃ 3231p1 0 α
a·

2 3132p1 1 π1 α1

a·

3 32p1 1 π2 π1,1

a·

4 p1 1 π2,1

a·

5 3231p1 0 ν2 α2

a1
6 31p1 0 ν1 ν2,1

a11
7 p1 0 ν1,1

a2
6 31p1 0 ν1 ν2,1

a21
7 p1 0 ν1,1

a22
7 p1 0 ν1,1

a23
7 p1 0 ν1,1

Figure 4.4: The indexed signed formula tree and label, sign, and type functions
of ((3132p1 ⊃ 3231p1, 0), µ), where µ(a6, ·) = 2, µ(a7, 1) = 1, and µ(a7, 2) = 3
(example 4.1.2).

function mapping ν-nodes of Z to sets of π-nodes of Z such that for every ν-node z

of Z, σ(z) ∈ ρ(z).

A realization Ω = (σ, ρ) induces a partial ordering < on the nodes of Z by the rule

that z < z′ if and only if z ∈ ρ(z′). This is called the realization ordering of Ω. Given

a realization Ω for an indexed signed formula Z, we can combine the tree ordering ≪

of Z and the realization ordering < of Ω into a single ordering � = (≪ ∪ <)∗ (the

transitive closure of the union of ≪ and <). This is called the reduction ordering of

Z and Ω.

The function σ maps ν-nodes to π-nodes, and we will make use of an extension

σ∗ of σ that maps arbitrary nodes to π-nodes. It is obtained directly from σ in the

following way.
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Figure 4.5: The indexed signed formula tree of ((31p1 ∨ 31p2 ⊃ 31(p1 ∨ p2), 0), µ),
where µ(a8, ·) = 2. π- and ν-nodes are enclosed in squares and circles, respectively,
and dashed arrows represent a realization ordering < (example 4.1.3).

1. If z is a π-node, then σ∗(z) = z.

2. If z is a ν-node, then σ∗(z) = σ(z).

3. If z is neither a π- nor ν-node, then σ∗(z) = σ∗(z′), where z′ is the parent of z.

Note that the function σ∗ is well-defined, since the root is defined to be a π-node.

Example 4.1.3 (Realizations). Let Z = (X, µ) be the indexed signed formula de-

scribed in example 4.1.1. If σ and ρ are such that σ(a1
8) = a·

4, σ(a2
8) = a·

6, ρ(a1
8) =

{a·

1, a
·

4}, and ρ(a2
8) = {a·

1, a
·

6}, then (σ, ρ) is a realization for Z. In this case,

σ∗(a·

1) = a·

1, σ∗(a·

3) = a·

1, σ∗(a·

6) = a·

6, σ∗(a2
8) = a·

6, and σ∗(a2
9) = a·

6, for instance.

Figure 4.5 shows the indexed signed formula tree of Z with π- and ν-nodes enclosed

in squares and circles, respectively, and dashed arrows representing the realization

ordering < of Ω. The transitive closure of the relation represented by all arrows in

the figure thus represents the reduction ordering � of Z and Ω.

A key insight in understanding the relationship between tableau and path char-

acterizations is that the nodes of an indexed signed formula tree can be thought of

as representing tableau inference rules. Each tableau rule is a decomposition that

introduces a node of the query formula in some modal context, i.e., at some world

of the assumed countermodel. The nodes of an indexed signed formula can represent
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the rule applications that introduce the nodes of the signed query formula from which

they are obtained. The modal context, i.e., the world at which the decomposition is

taking place, is provided by σ∗ (recall that the names of π-nodes represent the worlds

for whose “creation” they carry responsibility in the setting of tableaus).

What is the role of the ordering induced by the realization, then? Why do we

require a function ρ to induce a reduction ordering on the nodes of an indexed signed

formula? The answer is that tableau rule applications can depend on others. The

provisos on tableau rules guarantee that no world is used before it is created, and these

provisos translate naturally into requirements for rules represented by indexed signed

formula tree nodes to be applied in an order that respects the reduction ordering.

This explains why σ(z), where z is a ν-node, should “precede” z in some way: σ(z)

is the π-node responsible for introducing the world that z is instantiated at.

The function ρ exists because the dependence amongst rule applications is not

always this simple. Before a ν-node can be instantiated, its “target” world, which

some π-node is responsible for, must not only exist, but must be accessible from the

world at which the ν-node’s parent has been instantiated (this is formalized later in

this section, in definition 4.1.8). Since our frame conditions can encode interacting

modalities and these interactions can be quite complex, this accessibility might depend

on other π-nodes having been created before the instantiation of the ν-node takes

place. Consequently, the set ρ(z) contains those π-nodes whose worlds are needed for

z to be introduced by a ν-decomposition. This includes σ(z), the “target”, which is

why σ(z) ∈ ρ(z).

The way we have defined the extended function σ∗ guarantees that it is compatible

with the reduction ordering in the following way. This stems directly from the fact

that σ is compatible with the reduction ordering by design.

Lemma 4.1.1. If Ω is a realization for an indexed signed formula Z, and � is their

reduction ordering, then for every node z of Z, σ∗(z) � z.
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Proof. By induction on the distance of z from the root.

1. If z is π-modal, then σ∗(z) = z.

2. If z is ν-modal, then σ∗(z) = σ(z), and σ(z) ∈ ρ(z), so σ(z) < z.

3. If z is neither π- nor ν-modal, then σ∗(z) = σ∗(z′), where z′ is the parent of z.

By the induction hypothesis, σ∗(z′) � z′, and z′ ≪ z.

We have alluded to the correspondence between the nodes of indexed signed for-

mulas and tableau rule applications, suggesting that a reduction ordering implements

the ordering on tableau rule applications caused by the provisos on tableau rules in

the context of indexed signed formula tree nodes. Taking the correspondence further,

a set of indexed signed formula tree nodes can be thought of as encoding a sequence

of tableau rule applications (in other words, a tableau branch), as long as the set of

nodes respects the reduction ordering in the following way.

Definition 4.1.5 (Respecting the reduction ordering). Let Ω be a realization for an

indexed signed formula Z, and let � be their reduction ordering. A subset φ of the

nodes of Z is said to respect � if for every node z ∈ φ, φ contains every node of Z

that is �-smaller than z.

We have encoded the possibility of multiple instantiations of ν-nodes using mul-

tiplicities and the instantiations themselves using realizations. Next, we introduce

Ω-paths, sets of nodes of an indexed signed formula that capture all the information

that may be used in a countermodel. They correspond exactly to tableau branches.

Definition 4.1.6 (Ω-paths). Let Ω be a realization for an indexed signed formula Z,

and let � be their reduction ordering. An Ω-path through Z is a subset of the nodes

of Z. The set of Ω-paths through Z is defined as follows.

1. {a·

1} is an Ω-path.
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2. If φ is an Ω-path containing a node z of primary type α, as well as every node of

Z that is �-smaller than the left child z′ of z, but not z′ itself, then φ′ = φ∪{z′}

is an Ω-path, and φ is said to be α1-reducible to φ′.

3. If φ is an Ω-path containing a node z of primary type α, as well as every node of

Z that is �-smaller than the right child z′ of z, but not z′ itself, then φ′ = φ∪{z′}

is an Ω-path, and φ is said to be α2-reducible to φ′.

4. If φ is an Ω-path containing a node z of primary type β, as well as every node

of Z that is �-smaller than the children z′1 and z′2 of z, but not z′1 and z′2

themselves, then φ′

1 = φ ∪ {z′1} and φ′

2 = φ ∪ {z′2} are Ω-paths, and φ is said to

be β-reducible to φ′

1 and φ′

2.

5. If φ is an Ω-path containing a node z of primary type νi, as well as every node

of Z that is �-smaller than a child z′ of z, but not z′ itself, then φ′ = φ ∪ {z′}

is an Ω-path, and φ is said to be ν-reducible to φ′.

6. If φ is an Ω-path containing a node z of primary type πi, as well as every node

of Z that is �-smaller than the child z′ of z, but not z′ itself, then φ′ = φ∪{z′}

is an Ω-path, and φ is said to be π-reducible to φ′.

If an Ω-path is not reducible, then it is irreducible.

Notice that, by construction, all Ω-paths respect �. An Ω-path φ through Z

is said to be closed if it contains two nodes z and z′ such that lab(z) = lab(z′),

sgn(z) 6= sgn(z′), and σ∗(z) = σ∗(z′). If lab(z) and lab(z′) are atomic, then φ is

said to be atomically closed. This overloading of tableau-terminology (concerning

frame images, in particular) is quite deliberate. Every tableau branch is represented

by its leaf, and Ω-paths correspond naturally to tableau branches. Irreducible Ω-

paths correspond to maximally extended tableau branches, i.e., branches whose leaves

cannot fruitfully be decomposed any further.
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We can make several useful observations about irreducible paths. For instance, if

φ is an irreducible Ω-path through Z, then the following statements are all true.

1. If φ contains a node z of primary type α, then φ also contains all of its children.

This is because every node of Z that is �-smaller than a child of z is also �-

smaller than or equal to z itself (since < is only defined on ν- and π-nodes),

so φ already contains every node �-smaller than any child of z. If it did not

contain all of z’s children, then it would be reducible.

2. If φ contains a node z of primary type β, then by similar reasoning as in the

previous case, φ also contains one of its children.

3. If φ contains a node z of primary type νi and every node <-smaller than a child

z′ of z, then φ also contains z′. A node z′′ of Z can only be �-smaller than z′

if there is a node z′′′ that is ≪-smaller than z′ and z′′ � z′′′, or z′′′ is <-smaller

than z′ and z′′ � z′′′. Since z is the parent of z′, if z′′′ is≪-smaller than z′, then

z′′′ � z, so z′′′ ∈ φ (since φ respects � and z ∈ Ω). In the other case, φ contains

z′′′ by assumption. In either case, z′′ ∈ φ, so every node that is �-smaller than

z′ is already an element of φ. If z′ were not an element of φ, then φ would be

reducible.

4. If φ contains a node z of primary type πi, then by similar reasoning as in the

first two cases, φ also contains z’s child.

These properties of irreducible paths will be used in the proof of completeness of the

path characterization later in this chapter.

Example 4.1.4 (Ω-paths). Let Z = (X, µ) be the indexed signed formula described

in example 4.1.1, and let Ω be the realization for Z described in example 4.1.3. The

irreducible Ω-paths of Z are

{a·

1, a
·

2, a
·

3, a
·

4, a
·

7, a
1
8, a

1
9, a

1
10}
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and

{a·

1, a
·

2, a
·

5, a
·

6, a
·

7, a
2
8, a

2
9, a

2
10}.

We can make the connection between Ω-paths and frame images more vivid by

defining an association between Ω-paths and frames.

Definition 4.1.7 (Associated frames). For any set φ of nodes of Z that respects �,

we can associate a frame (U, Q). In particular, let U be the set of π-nodes in φ, and

define Q using the rule that if z ∈ U is a nonroot π-node of Z with parent z′ and

modality i, then (i, σ∗(z′), z) ∈ Q. Since σ∗(z′)�z′ ≪ z and φ respects �, σ∗(z′) ∈ U .

A useful property of associated frames is that if φ and φ′ are sets of nodes of Z

that respect �, with associated frames (U, Q) and (U ′, Q′), respectively, and φ ⊆ φ′,

then U ⊆ U ′ and Q ⊆ Q′. That U ⊆ U ′ is trivial. If (i, σ∗(z′), z) ∈ Q, where i is the

modality and z′ the parent of z ∈ U , then z ∈ U ′, and its modality and parent are

still i and z′ in φ′, so (i, σ∗(z′), z) ∈ Q′. This holds for every accessibility triple in Q,

so Q ⊆ Q′.

The realization encodes instantiations of ν-nodes to π-nodes (or rather, to the

worlds they are responsible for introducing), but we have not yet introduced any

mechanism for guaranteeing that these instantions are legal. In other words, if a ν-

node z is associated with a π-node z′, i.e., σ(z) = z′, the realization by itself does not

require that in some putative countermodel, the world associated with the parent of z

can i-access the world created by z′, where i is the modality of z. This is a property of

the logic under consideration, and so far, we have not even mentioned any distinctions

between logics.

In a way, it is a testament to the modularity of the path characterization that our

development so far has been independent of the logic being considered. However, it

does enter into the game now in the form of a property of L-admissiblity defined on

realizations.
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Definition 4.1.8 (L-admissibility of realizations). A realization Ω for an indexed

signed formula Z is said to be L-admissible if, for every ν-modal node z of Z with

parent z′ and modality i, (i, σ∗(z′), σ∗(z)) ∈ clL(Q), where Q is the accessibility

relation of the frame associated with the set of nodes of Z that are �-smaller than z.

Example 4.1.5 (L-admissibility of realizations). Let Z = (X, µ) be the indexed

signed formula described in example 4.1.1, and let Ω be the realization for Z described

in example 4.1.3. The ν-modal nodes of Z are a1
8 and a2

8, and the sets of nodes of

Z that are �-smaller than a1
8 and a2

8 are {a·

1, a
·

2, a
·

3, a
·

4, a
·

7} and {a·

1, a
·

2, a
·

5, a
·

6, a
·

7},

respectively. The frames they are associated with are ({a·

1, a
·

4}, {(1, a
·

1, a
·

4)}) and

({a·

1, a
·

6}, {(1, a
·

1, a
·

6)}), respectively.

Because (1, σ∗(a7), σ
∗(a1

8)) = (1, a·

1, a
·

4) and (1, σ∗(a7), σ
∗(a2

8)) = (1, a·

1, a
·

6), it

is the case that for every ν-modal node z of Z with parent z′ and modality i,

(i, σ∗(z′), σ∗(z)) ∈ Q, where Q is the accessibility relation of the frame associated

with the set of nodes of Z that are �-smaller than z. For any logic L, Q ⊆ clL(Q),

so this demonstrates that Ω is L-admissible for any L (with n ≥ 1).

Notice that for a realization to be L-admissible, the required accessibility for a

ν-node z is forced in the frame associated with the set of nodes �-smaller than z.

This is why ρ, which defines < and thus affects �, is defined in the way that it is. If

Ω = (ρ, σ) is L-admissible, then ρ(z) describes exactly which worlds associated with

π-nodes are needed for an instantiation to succeed. So ρ and the intended meaning

behind L-admissibility go hand in hand.

The definitions and obervations in this section, although they might seem a little

ad hoc at first glance, come together to form a characterization of L-validity for

formulas. In particular, a formula A is L-valid if and only if there is a multiplicity µ

for the signed formula (A, 0) and an L-admissible realization Ω for the indexed signed

formula Z = (X, µ) such that every irreducible Ω-path through Z is atomically closed.

This is the path characterization of validity. We will prove the two directions of this
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claim—the soundness and completeness of the path characterization—in sections 4.2

and 4.3, respectively.

Example 4.1.6 (Path characterization of validity). Let Z = (X, µ) be the indexed

signed formula described in example 4.1.1, and let Ω be the realization for Z described

in example 4.1.3. As we saw in example 4.1.5, Ω is L-admissible for any L. In

example 4.1.4, we saw that the irreducible Ω-paths through Z are

{a·

1, a
·

2, a
·

3, a
·

4, a
·

7, a
1
8, a

1
9, a

1
10}

and

{a·

1, a
·

2, a
·

5, a
·

6, a
·

7, a
2
8, a

2
9, a

2
10}.

The first is atomically closed by a·

4 and a1
9, and the second is atomically closed by a·

6

and a2
10. We can conclude that 31p1 ∨31p2 ⊃ 31(p1 ∨ p2) is L-valid for any L (with

n ≥ 1).

Readers familiar with Wallen’s matrix characterizations may have expected the

definition of L-admissibility of a realization Ω with reduction ordering � to include a

clause requiring � to be acyclic (or irreflexive, equivalently). The reason we do not

require such a clause is that our paths differ from Wallen’s in that they are defined

using �. A cycle in � would preclude the possibility of any nodes on the cycle

appearing in an Ω-path, rendering them useless for the purpose of closing any paths

and thus completing a proof.

4.2 Soundness

This section consists of a proof of the soundness of the path characterization, stated

as follows.
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Theorem 4.2.1 (Soundness of the path characterization). If there is a multiplicity

µ for a signed formula X = (A, 0) and an L-admissible realization Ω for the indexed

signed formula Z = (X, µ) such that every irreducible Ω-path through Z is atomically

closed, then A is L-valid.

One way of proving this theorem is to use the soundness of the tableau system

presented in chapter 3. In particular, µ and Ω can be used to construct an atomically

closed L-tableau for A, and theorem 3.2.1 asserts that the existence of such a tableau

implies that A is L-valid. Translations of this kind from matrix proofs to sequent-style

proofs have been explored by Kreitz and Schmitt [29]. Since the parallels between our

tableau and path characterizations are strong, the translation would be quite direct.

The proof we give in this section avoids such an explicit detour through tableaus,

but follows the same pattern as the proof of the soundness of the tableau charac-

terization. We will also use the notion of frame images, but not in the context of

tableaus. More specifically, we will associate a frame image (U, Q, S) with every Ω-

path φ through Z. In particular, let U be the set of π-nodes in φ, let Q be defined

by the rule that for every nonroot π-node z ∈ U with modality i and parent z′,

(i, σ∗(z′), z) ∈ Q, and for every z ∈ φ, let (σ∗(z), z) ∈ S. Notice that (U, Q) is simply

the frame associated with φ, as defined in the previous section, and that if z ∈ φ,

then σ∗(z) ∈ U , since σ∗(z) is a π-node �-smaller than or equal to z.

Having associated frame images with Ω-paths, we can borrow terminology related

to frame images and apply it to paths. We will say, for instance, that an Ω-path φ

is L-satisfiable if its associated frame image is L-satisfiable. The following lemma is

then the path-equivalent of lemma 3.2.1.

Lemma 4.2.1 (Preservation of L-satisfiability for paths). Let Ω be an L-admissible

realization for an indexed signed formula Z, and let φ be an L-satisfiable Ω-path

through Z.

1. If φ is α1-, α2-, ν-, or π-reducible to φ′, then φ′ is L-satisfiable.
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2. If φ is β-reducible to φ′

1 and φ′

2, then either φ′

1 or φ′

2 is L-satisfiable.

Proof. We show some representative cases. The omitted ones are analogous. In each

case, let (U, Q, S) be the frame image associated with φ, and let M = (W, R, V ) and

I be the L-model and interpretation that satisfy it.

1. Suppose φ is α1-reducible to φ ∪ {z}, z has parent z′ ∈ φ, and (lab(z′), sgn(z′))

has the form (B ∧ C, 1). Since (σ∗(z′), z′) ∈ S, we know that M, I(σ∗(z′)) 


lab(z′), or M, I(σ∗(z′)) 
 B ∧ C. This means that M, I(σ∗(z′)) 
 B, or

M, I(σ∗(z′)) 
 lab(z). Since z is neither a π- nor a ν-node (its secondary type is

α1), σ∗(z) = σ∗(z′), so M, I(σ∗(z)) 
 lab(z). In other words, since sgn(z) = 1,

M and I satisfy (U, Q, S ∪ {(σ∗(z), z)}), which is the frame image associated

with φ ∪ {z}.

2. Suppose φ is β-reducible to φ ∪ {z1} and φ ∪ {z2}, z1 and z2 have parent z′ ∈

φ, and (lab(z′), sgn(z′)) has the form (B ⊃ C, 1). Since (σ∗(z′), z′) ∈ S, we

know that M, I(σ∗(z′)) 
 lab(z′), or M, I(σ∗(z′)) 
 B ⊃ C. This means that

either M, I(σ∗(z′)) 6
 B or M, I(σ∗(z′)) 
 C, or either M, I(σ∗(z′)) 6
 lab(z1)

or M, I(σ∗(z′)) 
 lab(z2). Since z1 and z2 are neither π- nor ν-nodes (their

secondary types are β1 and β2, respectively), σ∗(z1) = σ∗(z2) = σ∗(z′), so

either M, I(σ∗(z1)) 6
 lab(z1) or M, I(σ∗(z2)) 
 lab(z2). In other words, since

sgn(z1) = 0 and sgn(z2) = 1, M and I satisfy (U, Q, S ∪ {(σ∗(z1), z1)}) or

(U, Q, S ∪ {(σ∗(z2), z2)}), which are the frame images associated with φ ∪ {z1}

and φ ∪ {z2}, respectively.

3. Suppose φ is ν-reducible to φ ∪ {z}, z has parent z′ ∈ φ, and (lab(z′), sgn(z′))

has the form (2iB, 1). Since (σ∗(z′), z′) ∈ S, we know that M, I(σ∗(z′)) 


lab(z′), or M, I(σ∗(z′)) 
 2iB. This means that for every w ∈ W such that

(i, I(σ∗(z′)), w) ∈ R, M, w 
 B.

Since Ω is L-admissible, (i, σ∗(z′), σ∗(z)) ∈ clL(Q′), where Q′ is the accessibility
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relation of the frame (U ′, Q′) associated with the set of nodes of Z that are �-

smaller than z. Since φ is ν-reducible to φ∪ {z}, φ contains all nodes of Z that

are �-smaller than z, so as we observed in the previous section, U ′ ⊆ U and Q′ ⊆

Q. By lemma 2.3.1, (i, σ∗(z′), σ∗(z)) ∈ clL(Q′) implies that (i, σ∗(z′), σ∗(z)) ∈

clL(Q), and by lemma 2.3.2, (i, I(σ∗(z′)), I(σ∗(z))) ∈ R.

So M, I(σ∗(z))) 
 B, or M, I(σ∗(z)) 
 lab(z). In other words, since sgn(z) = 1,

M and I satisfy (U, Q, S ∪ {(σ∗(z), z)}), which is the frame image associated

with φ ∪ {z}.

4. Suppose φ is π-reducible to φ ∪ {z}, z has parent z′ ∈ φ, and (lab(z′), sgn(z′))

has the form (3iB, 1). Since (σ∗(z′), z′) ∈ S, we know that M, I(σ∗(z′)) 


lab(z′), or M, I(σ∗(z′)) 
 3iB. This means that there is a w ∈ W such that

(i, I(σ∗(z)), w) ∈ R and M, w 
 B.

z /∈ φ, so z /∈ U . This means that I is not defined on z. Let I ′ be an interpreta-

tion from U ∪ {z} to W obtained by extending I by defining I ′(z) = w. Since z

is a π-node, σ∗(z) = z, so M, I ′(σ∗(z)) 
 B, or M, I ′(σ∗(z)) 
 lab(z). In other

words, M and I ′ satisfy (U ∪ {z}, Q∪ {(i, σ∗(z′), z)}, S ∪ {(σ∗(z), z)}), which is

the frame image associated with φ ∪ {z}.

An immediate consequence of this lemma is that if the Ω-path {a·

1} is L-satisfiable,

then there is an irreducible Ω-path through Z which is L-satisfiable, since every path

reduction preserves L-satisfiability for at least one of the obtained offspring paths.

We can now prove theorem 4.2.1 by contradiction. Suppose A is not L-valid. Then

there is an L-model M = (W, R, V ) and a w ∈ W such that M, w 6
 A. This means

that the Ω-path {a·

1} is L-satisfied by M and any interpretation I that maps a·

1 to w.

By lemma 4.2.1, this means that there is at least one L-satisfiable irreducible Ω-path

φ through Z.

Since φ, like every irreducible Ω-path through Z, is assumed to be atomically



79

closed, there are nodes z, z′ ∈ φ such that lab(z) = lab(z′), sgn(z) 6= sgn(z′), and

σ∗(z) = σ∗(z′). If sgn(z) = 1 and sgn(z′) = 0 (the other case is analogous), then

M, I(σ∗(z)) 
 lab(z) and M, I(σ∗(z′) 6
 lab(z′). Since lab(z) = lab(z′) and σ∗(z) =

σ∗(z′), this is a contradiction, completing the proof of the soundness of the path

characterization.

4.3 Completeness

This section consists of a proof of the completeness of the path characterization, stated

as follows.

Theorem 4.3.1 (Completeness of the path characterization). If a formula A is L-

valid, then there is a multiplicity µ for the signed formula X = (A, 0) and an L-

admissible realization Ω for the indexed signed formula Z = (X, µ) such that every

irreducible Ω-path through Z is atomically closed.

To prove this result, we will use the completeness of the tableau characterization

from section 3.3. By theorem 3.3.1, if A is L-valid, then there is an atomically closed

L-tableau for X = (A, 0). Starting with this L-tableau, we will carry out the following

steps.

1. Extract a multiplicity µ for X from the tableau.

2. Extract a realization Ω for Z = (X, µ) from the tableau.

3. Show that Ω is L-admissible.

4. Show that every irreducible Ω-path through Z is atomically closed.

Throughout the proof, we will show concrete examples in which we perform the above

steps on the atomically closed K-tableau for 21(p1 ⊃ p2) ⊃ 21p1 ⊃ 21p2 shown in

figure 3.2 (example 3.1.1).
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The first step, extracting a multiplicity for X, is quite straightforward. In partic-

ular, let µ be a partial function from pairs of the form (a, ι) to nonnegative integers,

where a is a ν-node of X, and ι is a sequence of positive integers, defined as follows.

1. If a is a ν-node of X with no ν-ancestors, then let µ(a, ·) be the largest positive

integer l such that al occurs in the tableau, or 0 if there is no such occurrence.

Recall that aι occurs in a tableau if the tableau contains a frame image (U, Q, S)

such that S contains a pair of the form (u, aι).

2. If a is a ν-node of X with a nearest ν-ancestor a′, and a′ι occurs in the tableau,

then let µ(a, ι) be the largest positive integer l such that aιl occurs in the tableau,

or 0 if there is no such occurrence.

We must of course show that µ, defined in this way, is indeed a multiplicity. That

the first clause of definition 4.1.1 holds is easy to see. As for the second, observe

that if a is a ν-node with a nearest ν-ancestor a′, and µ is defined on (a′, ι), then

a′ι1, a′ι2, . . . , and a′ιl′ occur in the tableau, where l′ = µ(a′, ι). This follows from

the construction of µ and from the fact that if aιl′ occurs in the tableau, then for

every l ∈ {1, 2, . . . , l′ − 1}, so does aιl. Next, from the second clause of the above

construction of µ, it follows that µ is defined on (a, ι1), (a, ι2), . . . , (a, ιµ(a′, ι)). In

particular, for every l ∈ {1, 2, . . . , µ(a′, ι)}, µ(a, ιl) is the largest positive integer l′′

such that aιll′′ occurs in the tableau.

This shows that µ is defined on every pair it needs to be defined on to be a

multiplicity for Z. It is also not defined on any others. To see this, first notice that if

a is a ν-node, and aι′l occurs in the tableau, then µ is defined on (a, ι′), and µ(a, ι′) ≥ l.

This follows from a straightforward induction on the distance of a from the root (or

on the length of ι′). Now suppose there were a pair (a, ι) that µ is defined on without

needing to be, according to definition 4.1.1. If ι = ·, then a has no ν-ancestors, since

the second clause of the above definition of µ cannot account for definition on pairs
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of the form (a, ·), as expressions of the form a·, where a is a ν-node, cannot occur

in a tableau. But every multiplicity must be defined on (a, ·), so this definition of µ

on (a, ·) is not unwarranted. If ι = ι′l, then a has a nearest ν-ancestor a′ such that

a′ι occurs in the tableau, meaning that by our previous observation, µ is defined on

(a′, ι′), and µ(a′, ι′) ≥ l. By clause 2 of definition 4.1.1, every multiplicity must be

defined on (a, ι′l) under these circumstances.

Example 4.3.1 (Extracting a multiplicity from a tableau). Let X = (21(p1 ⊃ p2) ⊃

21p1 ⊃ 21p2, 0). The multiplicity µ for X extracted from the tableau shown in

figure 3.2 (example 3.1.1) is defined on (a3, ·) and (a8, ·). In particular, µ(a3, ·) =

µ(a8, ·) = 1.

Now that we have established that µ is a multiplicity for X, we consider the

indexed signed formula (X, µ). µ was defined in a very particular way. The indexed

node names that occur in tableaus are not induced by a multiplicity, but by the

tableau rules. However, they implicitly describe a multiplicity, which we have now

formally extracted. To show that our extraction of µ is correct, we will prove the

following two multiplicity-correctness lemmas.

Lemma 4.3.1 (Completeness of µ). If aι occurs in the tableau, then aι is a node of

(X, µ).

Proof. By induction on the distance of a from the root of X.

1. If aι = a·

1, then the result follows trivially.

2. If a is a ν-node, then by inspection of the tableau rules, a has a parent a′, ι has

the form ι′l, and a′ι′ occurs in the tableau. By the induction hypothesis, a′ι′ is

a node of (X, µ), and µ(a, ι′) ≥ l (by the construction of µ and our previous

observation), so by the definition of indexed node names, aι′l = aι is a node of

(X, µ).
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3. If a is a nonroot non-ν-node, then a has a parent a′, and a′ι occurs in the

tableau. By the induction hypothesis, a′ι is a node of (X, µ), so by the definition

of indexed node names, aι is a node of (X, µ).

Lemma 4.3.2 (Soundness of µ). If aι is a ν-node of (X, µ), then aι occurs in the

tableau.

Proof. By induction on the distance of a from the root of X.

1. If a has no ν-ancestors, then ι = l for some positive integer l. For al to be

a ν-node of (X, µ), µ(a, ·) must be greater than or equal to l. Because µ is

obtained from the tableau, aµ(a,·) occurs in it, so by the tableau rules, so does

al.

2. If a has a nearest ν-ancestor a′, then ι has the form ι′l, and a′ι′ is a ν-node of

(X, µ). By the induction hypothesis, a′ι′ occurs in the tableau. Note that for

aι to be a node of (X, µ), it must be the case that µ is defined on (a, ι′), and

µ(a, ι′) ≥ l. Since a′ι′ occurs in the tableau and µ(a, ι′) ≥ l, aι′l must also occur

in the tableau, since µ is defined by the tableau.

Why does it matter that the indexed ν-nodes occurring in the tableau are exactly

the ones of (X, µ)? Because this allows us to carry out the second step of our proof,

namely extracting a realization Ω from the tableau. For every ν-node aι of (X, µ), aι

occurs in the tableau. By the proviso on the (ν) rule, there is exactly one (ν) rule

application which ν-decomposes some pair to one of the form (u, aι):

(U, Q, S ∪ {(u, aι)})

(U, Q, S)
(ν)

Here, for every u ∈ U , u occurs in the tableau, making it a π-node of (X, µ) by

lemma 4.3.1. Consequently, we may let σ(aι) = u and ρ(aι) = U . We have shown

that aι is a ν-node of (X, µ) and that every u ∈ U is a π-node of (X, µ). We have also
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shown that every ν-node of (X, µ) occurs in the tableau, meaning that Ω = (ρ, σ) is

a properly defined realization for Z = (X, µ).

Example 4.3.2 (Extracting a realization from a tableau). Let X = (21(p1 ⊃ p2) ⊃

21p1 ⊃ 21p2, 0), and let µ be the multiplicity for X extracted in example 4.3.1. The

realization Ω = (ρ, σ) for Z = (X, µ) extracted from the tableau shown in figure 3.2

(example 3.1.1) is defined by σ(a1
3) = σ(a1

8) = a·

10 and ρ(a1
3) = ρ(a1

8) = {a·

1, a
·

10}.

As the third step of our proof, we must show that Ω is L-admissible. Before doing

so, however, we will make the relationship between (X, µ), Ω, and the frame images

of our closed tableau more explicit. In particular, we will associate with every frame

image of the tableau a set of nodes of Z = (X, µ) that respects �, the reduction

ordering of Z and Ω. The set associated with the root is {a·

1}, and for each tableau

rule, we will describe how to obtain the set associated with a child frame image from

the one associated with the parent frame image.

1. If the (α1) rule is applied to a frame image (U, Q, S) associated with a node set

φ to α1-decompose (u, aι) to (u, bι), then associate (U, Q, S ∪ {(u, bι)}) with the

node set φ ∪ {bι}.

2. If the (α2) rule is applied to a frame image (U, Q, S) associated with a node set

φ to α2-decompose (u, aι) to (u, bι), then associate (U, Q, S ∪ {(u, bι)}) with the

node set φ ∪ {bι}.

3. If the (β) rule is applied to a frame image (U, Q, S) associated with a node set φ

to β-decompose (u, aι) to (u, bι) and (u, cι), then associate (U, Q, S ∪ {(u, bι)})

with the node set φ ∪ {bι} and (U, Q, S ∪ {(u, cι)}) with the node set φ ∪ {cι}.

4. If the (ν) rule is applied to a frame image (U, Q, S) associated with a node set

φ to ν-decompose (u, aι) to (v, bιl), then associate (U, Q, S ∪ {(v, bιl)}) with the

node set φ ∪ {bιl}.
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5. If the (π) rule is applied to a frame image (U, Q, S) associated with a node set

φ to π-decompose (u, aι) to (bι, bι), then associate (U ∪ {bι}, Q∪ {(i, u, bι)}, S ∪

{(bι, bι)}) with the node set φ ∪ {bι}.

That every node set associated with a frame image does indeed respect � is shown

by induction. Before proving it, though, notice that if a frame image (U, Q, S) of the

tableau is associated with a node set φ, then U consists of exactly the π-nodes of

φ. This is easy to prove by a straightforward induction on the distance of the frame

image and associated node set from the root, but is a useful and important property

of our frame-image-node-set association. It also allows us to prove that every node

set associated with a frame image respects �. It is obviously true of the root, and

the remaining cases are fairly straightforward. We show a few representative ones:

1. If the (α1) rule is applied to a frame image (U, Q, S) associated with a node set

φ to α1-decompose (u, aι) to (u, bι), then (U, Q, S ∪ {(u, bι)}) is associated with

the node set φ ∪ {bι}. By the induction hypothesis, φ respects �, and every

node �-smaller than bι is also �-smaller than aι (with the exception of aι itself,

of course), so φ ∪ {bι} respects �.

2. If the (ν) rule is applied to a frame image (U, Q, S) associated with a node set

φ to ν-decompose (u, aι) to (v, bιl), then (U, Q, S ∪ {(v, bιl)}) is associated with

the node set φ∪{bιl}. By the induction hypothesis, φ respects �, and if a node

z of Z is �-smaller than bιl, then it is either �-smaller than or equal to aι (in

which case it is an element of φ), or <-smaller than bιl. If a node z is <-smaller

than bιl, then z ∈ ρ(bιl) by construction. Since we have defined ρ(bιl) to be U ,

and φ contains the nodes of U , φ contains z. In other words, φ contains every

node �-smaller than bιl, so φ ∪ {bιl} respects �.

3. If the (π) rule is applied to a frame image (U, Q, S) associated with a node set φ

to π-decompose (u, aι) to (bι, bι), then (U ∪{bι}, Q∪ {(i, u, bι)}, S ∪ {(bι, bι)}) is
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associated with the node set φ∪{bι}. By the induction hypothesis, φ respects �,

and every node �-smaller than bι is also �-smaller than aι (with the exception

of aι itself, of course), so φ ∪ {bι} respects �.

This result has the interesting consequence that every node set associated with a

frame image is, in fact, an Ω-path through Z. Before using this result, however, we

can prove some further invariants concerning the association of sets of nodes with

frame images. We have already seen the first clause of the following lemma, but we

restate it for the sake of completeness.

Lemma 4.3.3. If a tableau frame image (U, Q, S) is associated with a set φ of nodes

of (X, µ), then

1. U = {z : z ∈ φ is a π-node},

2. Q = {(i, σ∗(z′), z) : z ∈ U is a nonroot π-node with modality i and parent z′},

and

3. S = {(σ∗(z), z) : z ∈ φ}.

Proof. By induction on the distance of the frame image from the root. In all but the

base case, let (U ′, Q′, S ′) be the parent frame image of (U, Q, S), and let φ′ be the set

of nodes of (X, µ) associated with (U ′, Q′, S ′).

1. If (U, Q, S) = ({a·

1}, ∅, {(a·

1, a
·

1)}), then φ = {a·

1}, and the results are trivial.

2. (a) Suppose (U, Q, S) was obtained through an α1-decomposition of (u, aι) to

(u, bι), so U = U ′, Q = Q′, S = S ′ ∪ {(u, bι)}, and φ = φ′ ∪ {bι}.

By the induction hypothesis, the invariants hold for U ′, Q′, and S ′ (with

respect to φ′). Since bι is not a π-node, they also immediately hold for U

and Q. Since S ′ = {(σ∗(z), z) : z ∈ φ′} and (u, aι) ∈ S ′, σ∗(aι) = u. Since
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bι is neither a ν- nor a π-node, σ∗(bι) = σ∗(aι) = u. Consequently,

S = S ′ ∪ {(u, bι)} = {(σ∗(z), z) : z ∈ φ′ ∪ {bι}},

meaning that the invariant also holds for S.

(b) Suppose (U, Q, S) was obtained through a β-decomposition of (u, aι) to

(u, bι) and (u, cι), so U = U ′, Q = Q′, S = S ′∪{(u, bι)}, and φ = φ′ ∪{bι}.

By the induction hypothesis, the invariants hold for U ′, Q′, and S ′ (with

respect to φ′). Since bι is not a π-node, they also immediately hold for U

and Q. Since S ′ = {(σ∗(z), z) : z ∈ φ′} and (u, aι) ∈ S ′, σ∗(aι) = u. Since

bι is neither a ν- nor a π-node, σ∗(bι) = σ∗(aι) = u. Consequently,

S = S ′ ∪ {(u, bι)} = {(σ∗(z), z) : z ∈ φ′ ∪ {bι}},

meaning that the invariant also holds for S. This case covers one branch of

the fork caused by the β-decomposition. An analogous argument is used

to show that the invariants hold for the frame image (U ′, Q′, S ′ ∪ {(u, cι)})

associated with the node set φ′ ∪ {cι}.

(c) Suppose (U, Q, S) was obtained through a ν-decomposition of (u, aι) to

(v, bιl), so U = U ′, Q = Q′, S = S ′ ∪ {(v, bιl)}, and φ = φ′ ∪ {bιl}.

By the induction hypothesis, the invariants hold for U ′, Q′, and S ′ (with

respect to φ′). Since bιl is not a π-node, they also immediately hold for U

and Q. Since S ′ = {(σ∗(z), z) : z ∈ φ′} and (u, aι) ∈ S ′, σ∗(aι) = u. Since

bιl is a ν-node, σ∗(bιl) = σ(bιl) = v (recall that this this is how σ is defined

on bιl). Consequently,

S = S ′ ∪ {(v, bιl)} = {(σ∗(z), z) : z ∈ φ′ ∪ {bιl}},



87

meaning that the invariant also holds for S.

(d) Suppose (U, Q, S) was obtained through a π-decomposition of (u, aι) to

(bι, bι), so U = U ′ ∪ {bι}, Q = Q′ ∪ {(i, u, bι)}, S = S ′ ∪ {(bι, bι)}, and

φ = φ′ ∪ {bι}.

By the induction hypothesis, the invariants hold for U ′, Q′, and S ′ (with

respect to φ′). Since bι is a π-node,

U = U ′ ∪ {bι} = {z : z ∈ φ′ ∪ {bι} is a π-node},

so the invariant holds for U . Also,

Q = Q′ ∪ {(i, u, bι)}

= {(i, σ∗(z′), z) : z ∈ U ′ ∪ {bι} is a nonroot

π-node with modality i and parent z′},

since the parent of bι is aι, and σ∗(aι) = u (we know this since the source

of the π-decomposition is (u, aι) ∈ S ′), so the invariant holds for Q. That

the modality of bι is i follows from the fact that the accessibility triple

added to Q′ by the π-decomposition is (i, u, bι), and the modality of this

accessibility triple is determined by the modality of bι. Finally, since bι is

a π-node, σ∗(bι) = bι, so

S = S ′ ∪ {(bι, bι)} = {(σ∗(z), z) : z ∈ φ′ ∪ {bι}},

meaning that the invariant also holds for S.

This is a rather striking result. We have shown that with µ and Ω extracted from

a tableau, we can express the entire tableau in terms of sets of nodes of (X, µ), since

the frame images can be reconstructed from these sets. Perhaps not surprisingly, the
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next step in the proof of completeness, that Ω is L-admissible, follows fairly naturally.

We have associated sets of nodes of Z with tableau frame images. Recall also that

every ν-node of Z occurs in the tableau.

So for every ν-node of Z with modality i and parent z′, let (U, Q, S) be the

frame image at which it is introduced through a ν-decomposition. In other words,

(U, Q, S) is a frame image of the tableau, and S contains a pair (u, aι) which is ν-

decomposed into (v, bιl). Let z = bιl and z′ = aι. By the proviso on the (ν) tableau

rule, (i, u, v) ∈ clL(Q). Let (U ′, Q′) be the frame associated with the set of nodes

of Z that are �-smaller than z. We defined ρ(z) = U , so for every u ∈ U , u � z.

In other words, U ⊆ U ′. By the previous lemma, Q is determined by U in exactly

the same way that Q′ is determined by U ′, so it is also the case that Q ⊆ Q′. So by

corollary 2.3.1, we know that (i, u, v) ∈ clL(Q) implies that (i, u, v) ∈ clL(Q′). Finally,

by the invariant on S, we know that σ∗(aι) = u and σ∗(bιl) = v, from which we obtain

that (i, σ∗(z′), σ∗(z)) ∈ clL(Q′). This argument can be repeated for every ν-node of

Z to establish the L-admissibility of Ω.

One step remains in the proof of theorem 4.3.1, namely that every irreducible

Ω-path through Z is atomically closed. We have seen that every node set associated

with a frame image is an Ω-path, and as the reader may have already noticed, if a

frame image is atomically closed, then its associated Ω-path is also atomically closed.

This follows immediately from the invariants established by the previous lemma. As

a result, every Ω-path associated with a leaf of our tableau is atomically closed.

We require a slightly stronger result, however. We need to show that every ir-

reducible Ω-path, regardless of whether or not it is associated with a leaf of our

atomically closed tableau, is atomically closed. As it turns out, our result is already

sufficiently strong. Consider the Ω-path {a·

1} associated with the root of the tableau.

It is a subset of every irreducible Ω-path through Z. Any nodes added to this Ω-path

by α1-, α2-, ν-, or π-decompositions are contained in every irreducible Ω-path because
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they are irreducible. When the tableau branches because of a β-decomposition, every

irreducible Ω-path through Z contains, as a subset, the Ω-path associated with one

of the child frame images of the fork. This continues, and the invariant is maintained

that every irreducible Ω-path through Z contains, as a subset, one of the Ω-paths

associated with a leaf of an intermediate tableau.

Formally, we will associate with every frame image (U, Q, S) of the tableau a set

Φ of irreducible Ω-paths through Z, maintaining the invariant that if φ is the Ω-

path associated with the frame image, then it is a subset of every irreducible Ω-path

contained in Φ. We will prove this invariant by induction on the distance of (U, Q, S)

from the root, for which it holds trivially (with Φ the set of all irreducible Ω-paths

through Z).

1. If the (α1) rule is applied to a frame image (U, Q, S) associated with φ and Φ

to α1-decompose (u, aι) to (u, bι), then (U, Q, S ∪ {(u, bι)}) is associated with

φ ∪ {bι} and Φ. By induction, every φ′ ∈ Φ contains aι and, being irreducible,

bι, so φ ∪ {bι} ⊆ φ′.

2. If the (α2) rule is applied to a frame image (U, Q, S) associated with φ and Φ

to α2-decompose (u, aι) to (u, bι), then (U, Q, S ∪ {(u, bι)}) is associated with

φ ∪ {bι} and Φ. By induction, every φ′ ∈ Φ contains aι and, being irreducible,

bι, so φ ∪ {bι} ⊆ φ′.

3. If the (β) rule is applied to a frame image (U, Q, S) associated with φ and Φ to

β-decompose (u, aι) to (u, bι) and (u, cι), then (U, Q, S ∪ {(u, bι)}) is associated

with φ ∪ {bι} and Φ1, while (U, Q, S ∪ {(u, cι)}) is associated with φ ∪ {cι} and

Φ2. Φ1 is the subset of Φ whose members contain bι, while Φ2 is the subset of

Φ whose members contain cι. By induction, every path in Φ contains aι and is

irreducible, so Φ1 and Φ2 partition Φ. Also, for every φ′ ∈ Φ1, φ ∪ {bι} ⊆ φ′,

and for every φ′ ∈ Φ2, φ ∪ {cι} ⊆ φ′.
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4. If the (ν) rule is applied to a frame image (U, Q, S) associated with φ and Φ to ν-

decompose (u, aι) to (v, bιl), then (U, Q, S∪{(v, bιl)}) is associated with φ∪{bιl}

and Φ. By induction, every φ′ ∈ Φ contains aι and, since φ′ is irreducible and

contains every node of Z �-smaller than bιl (φ does, and by induction, φ ⊆ φ′),

bιl, so φ ∪ {bιl} ⊆ φ′.

5. If the (π) rule is applied to a frame image (U, Q, S) associated with φ and Φ

to π-decompose (u, aι) to (bι, bι), then (U ∪ {bι}, Q ∪ {(i, u, bι)}, S ∪ {(bι, bι)})

is associated with φ ∪ {bι} and Φ. By induction, every φ′ ∈ Φ contains aι and,

being irreducible, bι, so φ ∪ {bι} ⊆ φ′.

Every irreducible Ω-path through Z is associated with the root, and none are

lost as we traverse the tableau towards the leaves. Consequently, every irreducible

Ω-path through Z is associated with a leaf of the tableau, meaning that each one

contains, as a subset, an atomically closed Ω-path. Therefore, every irreducible Ω-

path through Z is atomically closed, completing the proof of the completeness of the

path characterization.

Example 4.3.3 (Associating Ω-paths with frame images). Let X = (21(p1 ⊃ p2) ⊃

21p1 ⊃ 21p2, 0), let µ be the multiplicity for X extracted in example 4.3.1, and let Ω

be the realization for Z = (X, µ) extracted in example 4.3.2. The Ω-paths associated

with the leaves of the K-tableau shown in figure 3.2 (example 3.1.1) are

{a·

1, a
·

2, a
1
3, a

1
4, a

·

6, a
·

7, a
1
8, a

·

9, a
·

10},

atomically closed by a1
4 and a1

8, and

{a·

1, a
·

2, a
1
3, a

1
5, a

·

6, a
·

9, a
·

10},
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atomically closed by a1
5 and a·

10. The irreducible Ω-paths through Z are

{a·

1, a
·

2, a
1
3, a

1
4, a

·

6, a
·

7, a
1
8, a

·

9, a
·

10},

which contains the first atomically closed Ω-path mentioned above as a subset, and

{a·

1, a
·

2, a
1
3, a

1
5, a

·

6, a
·

7, a
1
8, a

·

9, a
·

10},

which contains the second atomically closed Ω-path mentioned above as a subset, so

all irreducible Ω-paths through Z are atomically closed.
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Chapter 5

Conclusion

In this thesis, we have developed two proof formalisms and characterizations of va-

lidity for propositional multimodal logics with interacting accessibility relations. Our

systems are more semantically motivated than the prefixed tableau calculi of Fitting

[16] and the matrix characterizations of Wallen [48], and while our tableau calculus

is similar in spirit to those of Nerode [39] and Baldoni [4], it is more specifically de-

signed to allow us to separate some of the structural and modal choices made in a

derivation. The proofs of correctness of the path characterization reveal, however,

that our tableau and path formalisms are quite alike. This is perhaps not surprising,

since the path characterization is, in some ways, merely a different way of presenting

and understanding the information that exists in our tableau proofs. This, of course,

is by design. We have attempted to emphasize this by pointing out correspondences

between the two systems as they were developed.

How is the path characterization significantly different from the tableau charac-

terization, then? A key selling point is that tableau derivations that are slightly

different as a result of transposed decompositions of the structure of the query for-

mula correspond to the same proof in the path characterization, since the structural

decomposition of the query formula is concealed in the identities of the paths through
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it.

In other words, multiplicities and realizations contain all the modal decisions that

are made in a corresponding tableau derivation, while the structural decisions dis-

appear completely. They are determined by whether or not the paths through the

query formula are atomically closed. It is worth pointing out that since the identities

of the paths are dependent on the chosen multiplicity and realization, the separation

between modal and structural concerns is not absolute. However, while the concerns

remain subtly related, all disjunctive nondeterminism disappears from the structural

concerns.

A further important difference between both our formalisms and previous work

is that in our systems, the properties of the logics of interest are extracted almost

entirely from the definitions of the formalisms. They are present only in the form

of closures that need to be computed. As a consequence, our formalisms can easily

be extended to logics for whose frame conditions closures can be computed. In this

chapter, we will tie up some loose ends while discussing possible future work of this

kind.

5.1 Future work

Other frame conditions The frame conditions we defined in section 2.1 are mul-

timodal generalizations of some of the most well-known unimodal frame conditions.

However, in chapters 3 and 4 it became clear that our characterizations are defined in

a way that is very independent of the logics under consideration; they only make ap-

pearances in the form of closures of frame conditions. This means that our approach

extends easily to other frame conditions that are easy to close. If R is an accessibility

relation on a set W , then we might call it, for instance,

1. i, j-subsuming if (i, w, x) ∈ R implies that (j, w, x) ∈ R,
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2. i, j, k-subsuming if (i, w, x) ∈ R and (j, w, x) ∈ R together imply that (k, w, x) ∈

R,

3. i, j, k-reverse-transitive if (i, w, x) ∈ R and (j, x, y) ∈ R together imply that

(k, y, w) ∈ R, and

4. i, j, k, l-transitive if (i, w, x) ∈ R, (j, x, y) ∈ R, and (k, y, z) ∈ R together imply

that (l, w, z) ∈ R.

These frame conditions, along with all of the ones defined in section 2.1, are called

propagation frame conditions, meaning that they imply further accessibilities amongst

existing worlds. They do not postulate the existence of further, hitherto unreferenced

worlds. Frame conditions that do, called structural frame conditions, include, for

instance,

1. i-seriality, meaning that for every w ∈W , there is an x ∈W such that (i, w, x) ∈

R,

2. i, j, k-denseness, meaning that (i, w, y) ∈ R implies that there is an x ∈W such

that (j, w, x) ∈ R and (k, x, y) ∈ R, and

3. i, j, k, l-confluence, meaning that (i, w, x) ∈ R and (j, w, y) ∈ R together imply

that there is a z ∈W such that (k, x, z) ∈ R and (l, y, z) ∈ R.

This distinction between propagation and structural frame conditions (the terminol-

ogy is due to Castilho et al. [10]) is important. Adding support for structural frame

conditions to a tableau characterization is relatively straightforward, as it is typically

sufficient to add a new tableau rule for each type of structural frame condition. How-

ever, this means that the nature of the logic under consideration is no longer confined

to computing its closures: properties of the logic have spilled into custom tableau

rules. This means that the translation between the tableau and path characteriza-

tions would no longer be as direct, since thrown into the tableau formalism’s already
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mixed bag of structural and modal rules is a different class of modal rules implement-

ing the structural frame conditions. An additional layer of abstraction between the

tableau and path characterizations thus becomes necessary.

This is one significant manifestation of the differences between our characterization

and Wallen’s. Wallen’s framework for unimodal logic supports seriality, while ours,

without modification, does not. On the other hand, our framework supports symmetry

and other arbitrary propagation conditions for unimodal (and multimodal) logics,

while Wallen’s does not. The approaches are somewhat complementary, which is

perhaps to be expected, considering that our approach is more semantically motivated,

while Wallen’s is essentially syntactic. Wallen’s goal is, after all, efficient proof search

for unimodal logics, while ours is a deeper proof theoretic understanding of multimodal

logical validity.

Proof search Proof search in Wallen’s system—and modal connection-based the-

orem proving in general—is typically performed using string unification on prefixes

[48]. Our systems have no prefixes, so the efficient proof search mechanisms devel-

oped by Wallen do not have an immediate analogue in our framework. A naive proof

search procedure in the path characterization would first have to choose or construct

a multiplicity and then a realization, and finally test whether or not all paths through

the query indexed signed formula are atomically closed.

Proof search in this kind of proof space is bound to be quite different from the

incremental approach used in theorem provers based on tableau calculi, and it is

clear that the disjunctive choices that must be made in exploring this proof space

are essentially modal. Structural choices, i.e., choices related to how and in what

order to decompose parts of the query formula, disappear, replaced by the test of

atomic closure for all paths. Although the paths depend on the chosen realization, no

disjunctive choices need to be made to determine what they are and whether or not

they are closed.
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Intuitionistic modal logics As we emphasized in section 2.1, the foundations of

our logics are strictly classical. The idea of intuitionistic modal logic (IML) is still

relatively young, and a number of logics have been explored and proposed to capture

the essence of modalities in a constructive or intuitionistic setting (see for instance

Simpson [43], Bierman and de Paiva [7], and Pfenning and Davies [40]).

Our work was partly inspired by the interpretation of intuitionistic unimodal

logic as a fragment of classical bimodal logic, i.e., a classical modal logic with two

modalities—one “intuitionistic” and one “modal” in a more conventional sense—

interacting in particular ways (see for instance Wolter and Zakharyaschev [49] or

Alechina et al. [1]). Which interaction axioms are necessary to correctly model in-

tuitionism is debatable, but given a translation from IML to classical bimodal logic,

our path characterization also works, in principle, for IML, provided that our system

supports the required frame conditions and interactions.

In theory, making matrix or path characterizations work for various proposals or

variants of IML is “only” a question of being able to define the correct frame condi-

tions, so understanding frame conditions proof theoretically and designing frameworks

in which frame conditions can be treated modularly and abstractly seems very de-

sirable. This, along with the sheer number of ways in which frame conditions can

be combined, was the motivation behind designing our systems to be as independent

of frame conditions as possible, requiring only the ability to compute closures. Of

course, computing closures can be an expensive operation in itself, but this is an issue

of implementation.

Different modal languages The richness of modal languages themselves suggests

several interesting extensions.

Our multimodal logics feature strictly unary modalities, but the semantics of mul-

timodal logics extend easily to modalities of arbitrary arity. The binary relation

implicitly associated with each modality is simply replaced by a relation of higher
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arity. This raises the question of how these richer logics would behave in a path

characterization. In general, proof formalisms for extensions to the language of mul-

timodal logic do not seem to be thoroughly explored, perhaps because of the lack of

convincing applications for them.

A more convincing case might be made for first-order modal logic, and most treat-

ments of modal logic do indeed consider the first-order extension. The combination of

modal operators and first-order quantifiers introduces several semantic considerations

(see Fitting and Mendelsohn [19] for a discussion of the issues) which must natu-

rally be reflected in any proof theoretic formalism. We have restricted ourselves to

propositional multimodal logics in this thesis, but for practical modelling, first-order

multimodal logics remain of great interest.

We briefly mentioned description logics (DLs) in chapter 1 and pointed out that

a simple description logic can be thought of as a notational variant of a multimodal

logic. The vast majority of description logics in use, however, are more expressive. A

question that presents itself is thus what sorts of alternative proof theoretic formalisms

can be developed for description logics (see for instance Clément [12] for recent proof

theoretic work on constructive DLs) and whether or not reasoning algorithms for DLs

can be developed on the basis of matrix or path characterizations designed specifically

for them.
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