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Abstract

We consider the following graph embedding problem:
Given a bipartite graph G = (V1, V2; E), where the max-
imum degree of vertices in V2 is 4, can G be embedded
on a two dimensional grid such that each vertex in V1

is drawn as a line segment along a grid line, each ver-
tex in V2 is drawn as a point at a grid point, and each
edge e = (u, v) for some u ∈ V1 and v ∈ V2 is drawn
as a line segment connecting u and v, perpendicular to
the line segment for u? We show that this problem is
NP-complete, as well as related problems.

1 Introduction

Orthogonal graph drawing is a well studied area in
graph drawing. In this paper, we study orthogonal
drawings of bus graphs, which represent interconnectiv-
ity of functional entities in a chip. In VLSI layouts, a
bus is a line segment drawn on a plane. To establish a
connection among a collection of buses, a connector is
drawn as a point on the plane, and then joined to the
buses by line segments. Thus, the interconnections of
the buses can be represented by a bipartite graph, where
one partition of vertices corresponds to the set of buses,
and the other corresponds to the set of connectors. We
call such bipartite graphs bus graphs, and ask whether
they have certain grid drawings. Bus graph realizability
(BGR) problem is defined as follows.

BGR Instance: A bipartite graph G = (B, C; E) such
that ∀c ∈ C, deg(c) ≤ 4.

Question: Can G be drawn onto a grid so that the
following properties hold?

1. Each vertex B ∈ B is drawn as a closed line
segment along a grid line.

2. Each vertex c ∈ C is drawn at a grid point.

3. Each edge (B, c) ∈ E is drawn as a closed line
segment between B and c, that is perpendic-
ular to B, and contains no other connectors
or buses apart from B and c; an edge can,
however, cross other edges as shown in Fig. 1.
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Figure 1: A bus graph and its realization. This graph
is a gadget called an (A, B)-perp, defined in Sect. 3

4. No buses or connectors may intersect.

We say a bus graph G is realizable if G can be drawn
while meeting the conditions above. See Fig. 1. Now
we are ready to state our main result.

Theorem 1 BGR is NP-complete.

Furthermore, Sect. 4 studies several related problems.

Related Work. The orthogonal graph drawing style
has found many applications in VLSI design since its
introduction in [8]. A realization of a bus graph con-
veys visibility relations among the buses and connec-
tors. Given an arrangement of points (connectors) and
axis-parallel line segments (buses) on a grid, if a bus Bi

and a connector cj can be joined by a straight-line edge,
then there exists an axis-parallel line of sight that does
not intersect any buses or connectors except Bi and cj .
Furthermore, if all the buses are drawn horizontally, the
bus graph G is a subgraph of the visibility graph repre-
senting the vertical visibility among the bus segments.
There is an abundance of prior work on the visibility
graphs based on axis-parallel lines of sight. In particu-
lar, [9] and [7] study bar visibility graphs (BVGs), where
each vertex in the graph is drawn as a horizontal line
segment in R2, and the adjacency among the vertices
represent vertical visibility. The recognition problem of
such graphs can be solved in linear time. In [1, 2, 4, 5, 6],
the authors study rectangle visibility graphs (RVGs),
where each vertex is drawn as a rectangle, and the ad-
jacency among the vertices represent axis-parallel lines
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of sight. Reference [5] shows that the recognition prob-
lem of such graphs is NP-complete. The bus graphs
studied here can be regarded as related to RVGs, where
the vertices are restricted to degenerate rectangles such
as line segments and points.

2 Preliminaries

Given a bus graph G = (B, C; E), we call a vertex B a B-
vertex if B ∈ B; its realization is called a bus. Similarly,
a C-vertex refers to a vertex in C, and its realization is
called a connector. Uppercase letters denote B-vertices,
and lowercase letters denote C-vertices.

We use a function Γ to denote an embedding of a
combinatorial bus graph G. For example, Γ(c) for some
C-vertex c denotes the grid point where c is laid out, and
Γ((B, c)) for some edge (B, c) denotes the line segment
along a grid line where (B, c) is laid out.

Note that many variations of the bus graph problem
can be devised, yet several are equivalent. For example,
suppose the buses are realized as open line segments. It
is not hard to see that this variation is equivalent to the
problem stated in Sect. 1.

For another variation, note that a bus graph G =
(B, C; E) can be regarded as a hypergraph, where B is
the set of vertices, and C is the set of hyperedges, each
connecting at most four vertices. In this context, it is
of interest to see if the realizability problem changes
if we disallow multiple hyperedges in the hypergraph
G. In other words, we would assume that no two C-
vertices are adjacent to the same set of B-vertices. As
the following lemma shows, this assumption does not
change our problem.

Lemma 2 Let G be a bus graph with multiple hyper-

edges in C, and let G′ be the bus graph constructed from

G by removing hyperedge duplicates. Then G is realiz-

able if and only if G′ is realizable.

3 NP-Completeness

We now show the hardness of BGR. First, it is easy to
show that the problem is in NP: if a bus graph G is
realizable, there exists a compact layout such that the
size of the layout is linear in each dimension. To see
this, we can take any layout of G, and then compact
the layout so that the layout is bounded by a box of
O(n) × O(n) size.

Lemma 3 BGR is in NP.

We prove the NP-hardness of BGR by a reduction
from NAE-3SAT [3]. First we introduce and discuss
properties of several gadgets.

Definition 4 An (A, B)-perp is a bus graph component

consisting of three C-vertices, five B-vertices, and twelve

edges as shown in Fig. 1.

Figure 2: An embedding of a (B, o)-flipper.

Figure 3: An embedding of an (A, 2, B, 2)-variable-box.

Lemma 5 In any embedding Γ of an (A, B)-perp,

1. Γ(B) and Γ(B′) are parallel,

2. Γ(A) and Γ(B) are perpendicular, and

3. Γ(A) and Γ(A′) are parallel.

Definition 6 A (B, o)-flipper is a bus graph component

as shown in Fig. 2.

Observe that a (B, o)-flipper contains an (A, B)-perp
as a subgraph. The dotted arrows in Fig. 2 depicts edges
connecting other components of the overall graph.

Lemma 7 Let i be a C-vertex, and O be a B-vertex. If

i is joined with a (B, o)-flipper by an edge (B, i), and O

is joined with the (B, o)-flipper by an edge (O, o), then

in any embedding Γ,

1. Γ((B, i)) and Γ((O, o)) are perpendicular, and

2. Γ(B) and Γ(O) are perpendicular.

Definition 8 An (A, k, B, l)-variable-box is a bus graph

component that contains an (A, B)-perp and 2k connec-

tors leaving the component, as shown in Fig. 3
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Figure 4: An embedding of an (I, O)-chain.

Lemma 9 Let (Oi
A, oi

A) for i = 1, 2, . . . , k and

(Oj
B , o

j
B) for j = 1, 2, . . . , l be edges joined with an

(A, k, B, l)-variable-box. Then in any embedding Γ,

1. Γ((Oi
A, oi

A)) and Γ(A) are perpendicular for any i =
1, 2, . . . , k.

2. Γ((Oi
B , oi

B)) and Γ(B) are perpendicular for any

i = 1, 2, . . . , l.

Definition 10 An (I, O)-chain is a bus graph com-

ponent consisting of (I1, o1)-flipper, (I2, o2)-flipper,

(I3, o3)-flipper, and an (I3, O)-perp, as shown in Fig. 4.

Lemma 11 In any embedding Γ of an (I, O)-chain,

Γ(I) and Γ(O) are parallel.

Finally, we are ready to give the transformation from
NAE-3SAT to BGR. Let φ be an instance of NAE-3SAT,
consisting of boolean variables x1, . . . , xn, and clauses
C1, . . . , Cm. Construct a bus graph G as follows.

1. For each boolean variable xi, create a
(Xi, ti, Xi, fi)-variable-box, where ti and fi

are the numbers of distinct occurrences of the
literals xi and xi, respectively, in φ.

2. For each clause Cq = (x∗
i ∨ x∗

j ∨ x∗
k), where x∗ is

either x or x, create

(a) a C-vertex cq,

(b) an (Iq,1, Oq,1)-chain, an (Iq,2, Oq,2)-chain, and
an (Iq,3, Oq,3)-chain,

(c) edges (Oq,1, cq), (Oq,2, cq) and (Oq,3, cq),

(d) edges (Iq,1, pi), (Iq,2, pj) and (Iq,1, pk), where
pi = or

Xi
if x∗

i = xi and pi = or

Xi

if x∗
i =

xi, and it is the rth occurrence of x∗
i being

considered.

Figure 5: A schematic embedding of G, where φ consists
of the clauses C1 = (x2∨x3∨x4), C2 = (x1∨x2∨x3),and
C3 = (x1 ∨ x2 ∨ x4) with a satisfying truth assignment
x1 = x3 = x4 = true and x2 =false. Note the regions
separated by the dashed lines and x−, y−axes.

Since every gadget is of linear size, the transformation
clearly takes polynomial time. Finally, the following
lemma completes the proof of Theorem 1.

Lemma 12 φ ∈ NAE-3SAT if and only if G ∈ BGR.

Proof Sketch: Suppose φ ∈ NAE-3SAT. An embed-
ding Γ of G can be constructed as shown in Fig. 5. Note
that the variable boxes are embedded so that the buses
corresponding to true (false) literals literals are drawn
vertically (vertically, resp.).

Now, suppose G ∈ BGR, and take an embedding Γ of
G. By Lemma 5, Γ(Xi) is perpendicular to Γ(X i) for
each variable box, so assign each variable xi to be true
if Γ(Xi) is vertical and false otherwise. To see that this
truth-assignment satisfies the clauses, consider a clause
Cq = (x∗

i ∨ x∗
j ∨ x∗

k). The clause vertex cq is adjacent
to three buses Oq,1, Oq,2, and Oq,3 at the end of (I, O)-
chains. Since cq can be joined to at most two parallel
buses, at least one of these three buses must be drawn
horizontally, and at least one must be drawn vertically.
Take any one of the three buses, say Oq,1, and consider
the literal bus to which Oq,1 connects in the variable
box. By Lemmas 9 and 11, the orientation of these two
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buses must be the same. This implies that the clause
vertex cq is connected to at least one vertical literal bus,
and at least one horizontal literal bus. Thus, the truth-
assignment satisfies φ. �

4 Variations of Bus Graph Realizability

We now look at variations of the BGR problem. In
the original BGR problem stated in Sect. 1, each C-
vertex has a maximum degree of 4, due to the orthogonal
drawing style. Analogous problems can be devised for
the class of bus graphs where the maximum degree of the
C-vertices is either 2 or 3. First, consider the class of bus
graphs where the C-vertices have maximum degree 1.
These graphs are trivially realizable by simply drawing
all the buses along a grid line. However, if the maximum
degree of C-vertices is greater than or equal to 2, the
problem becomes harder. The next result can be shown
by a similar transformation based on gadgets using C-
vertices with bounded degree.

Theorem 13 BGR is NP-complete when the maximum

degree of C-vertices is 2 or 3.

In order to realize a given bus graph, one must de-
cide the orientations of the buses. Since a connector
can be joined to at most two horizontal buses and at
most two vertical buses, all realizable bus graphs admit
a bipartition of buses by orientation. As the following
results suggests, even deciding whether the buses can
be properly oriented is hard.

BUS-ORIENTATION Instance: A bipartite
graph G = (B, C; E) such that ∀c ∈ C, deg(c) ≤ 4.

Question: Can B be partitioned into two disjoint sets
BH and BV , such that ∀c ∈ C, c is adjacent to no
more than two vertices in BH and no more than
two vertices in BV?

Theorem 14 BUS-ORIENTATION is NP-complete.

Finally, we study a variation (BGR+BL) of BGR in
which the lengths of buses are given as input. The fol-
lowing result is due to a transformation from the SET-
PARTITION [3] problem.

Theorem 15 BGR+BL is NP-hard. It is also NP-hard

if the maximum degree of C-vertices is 2, or if we require

the buses to be parallel to each other.

5 Concluding Remarks and Open Problems

Although bus graph realizability is an NP-complete
problem, some special classes of graphs admit polyno-
mial time solutions. For example, if the given bus graph
G is a tree, G always admits a bus graph embedding.

What other classes of graphs admit efficient recognition
algorithms for realizability is open.

One may search for approximate solutions to these
problems. It is unclear, however, what optimization cri-
teria would be used. With applications in VLSI in mind,
one may wish to lay out all the buses first, and then
maximize the connectivity by maximizing the number
of connectors realized in the layout.
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