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Abstract. In this paper, we consider the following graph embedding
problem: Given a bipartite graph G = (V1, V2; E), where the maximum
degree of vertices in V2 is 4, can G be embedded on a two dimensional
grid such that each vertex in V1 is drawn as a line segment along a grid
line, each vertex in V2 is drawn as a point at a grid point, and each
edge e = (u, v) for some u ∈ V1 and v ∈ V2 is drawn as a line segment
connecting u and v, perpendicular to the line segment for u? We show
that this problem is NP-complete, and sketch how our proof techniques
can be used to show the hardness of several other related problems.

1 Introduction

Orthogonal graph drawing is a well studied area in the graph drawing commu-
nity, and one may find many applications in VLSI design. In this paper, we
study orthogonal drawings of bus graphs, which represent interconnectivity of
functional entities in a chip. In VLSI layouts, a bus is a line segment drawn on
a plane. To establish a connection among a collection of buses, a connector is
drawn as a point on the plane, and then joined to the buses by line segments.
Thus, the interconnections of the buses can be represented by a bipartite graph,
where one partition of vertices corresponds to the set of buses, and the other
corresponds to the set of connectors. We call such bipartite graphs bus graphs,
and we are interested in the problem of drawing bus graphs on the plane.

For manufacturing purposes, it is desired that all the buses and the edges
that join them are laid out either horizontally or vertically. Furthermore, it is
also necessary to lay out the components of a chip, i.e. buses and connectors,
sufficiently far from each other. Thus, we wish to draw the bus graph on a grid,
where each bus is laid out along a grid line, and each connector is drawn at a grid
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Fig. 1. A combinatorial bus graph and its realization. This graph is a gadget called an
(A, B)-perp, defined in Sect. 3.2, Definition 1.

point. Each edge between a bus and a connector is also drawn along a grid line. In
particular, an edge joining a bus is drawn as a line segment perpendicular to the
bus. We do not allow any edge to intersect with any connectors or buses, except
at endpoints of the edge. However, a horizontal edge may cross a vertical edge.
Thus, each connector can connect at most 4 buses. We define the combinatorial
bus graphs as the class of bipartite graphs G = (B, C; E), where the degree of
connector vertices in C is at most 4.

We say a (combinatorial) bus graph G is realizable if G can be drawn while
meeting the conditions above. See Fig. 1 for an example of a bus graph and its
realization. We now formally define the Bus Graph Realizability (BGR) problem
as follows:

Instance: A bipartite graph G = (B, C; E) such that ∀c ∈ C, deg(c) ≤ 4.
Question: Can G be drawn onto a grid so that the following properties hold?

1. Each vertex B ∈ B is drawn as a closed line segment along a grid line.
2. Each vertex c ∈ C is drawn as a point at a grid point.
3. Each edge (B, c) ∈ E is drawn as a closed line segment between B and

c, that is perpendicular to B, and contains no other connectors or buses
apart from B and c; an edge can, however, cross other edges as shown
in Fig. 1. An edge may connect to a bus at an endpoint of the bus.

4. No buses or connectors may intersect.

Now we are ready to state our main result.

Theorem 1. Bus Graph Realizability is NP-complete.

The rest of this paper is organized as follows. In Sect. 2, we give definitions
and preliminaries. A proof of our main theorem is given in Sect. 3. In Sect. 4, we
show that the techniques we use to prove Theorem 1 can be applied to related



problems. In Sect. 5, we look at a variation of the problem where the lengths
of the buses are given as input, and prove that this version of the problem is
NP-hard. Finally, we conclude with some open problems in Sect. 6.

Related Work. The orthogonal graph drawing style has found many applica-
tions in VLSI design since its introduction in [1], [2], and [3]. Many optimization
criteria have been suggested, such as minimizing layout area, minimizing the
number of wire crossings in a layout, etc. ([4], [5])

A realization of a bus graph conveys visibility relations among the buses
and connectors. Given an arrangement of points (connectors) and axis-parallel
line segments (buses) on a grid, if a bus Bi and a connector cj can be joined
by a straight-line edge, then there exists an axis-parallel line of sight that does
not intersect any buses or connectors except Bi and cj . Furthermore, if all the
buses are drawn horizontally, the bus graph G is a subgraph of the visibility
graph representing the vertical visibility among the bus segments. There is an
abundance of prior work on the visibility graphs based on axis-parallel lines of
sight, for example, in [6], [7], [8], [9], [10], [11], [12], and [13]. In particular, [10]
and [11] study bar visibility graphs (BVGs), where each vertex in the graph is
drawn as a horizontal line segment in IR2, and the adjacency among the vertices
represent vertical visibility. It is shown that the recognition problem of such
graphs can be solved in linear time. In [7], [9], [8], [12], [13], the authors study
rectangle visibility graphs (RVGs), where each vertex is drawn as a rectangle, and
the adjacency among the vertices represent axis-parallel lines of sight. Reference
[13] shows that the recognition problem of such graphs is NP-complete. The bus
graphs that we study in this paper can be regarded as related to RVGs, where
the vertices are restricted to degenerate rectangles such as line segments and
points.

2 Preliminaries

Given a bus graph G = (B, C; E), we call a vertex B a B-vertex if B ∈ B;
its realization is called a bus. Similarly, a C-vertex refers to a vertex in C, and
its realization is called a connector. We often use uppercase letters to denote
B-vertices, and lowercase letters to denote C-vertices.

We use a function Γ to denote an embedding of a combinatorial bus graph
G. For example, Γ (c) for some C-vertex c denotes the grid point where c is laid
out in the embedding, and Γ (B) for some B-vertex B or Γ ((B, c)) for some edge
(B, c) denotes the line segment along a grid line where the bus or edge is laid out.
We call a grid point an event point if there is either a connector or an endpoint
of a bus at that grid point.

It is important to note here that many variations of the bus graph problem
can be devised, yet several are equivalent. For example, suppose the buses are
realized as open line segments. It is not hard to see that this variation is equiv-
alent to the problem stated in Sect. 1, as an embedding with buses as open line



segments can easily be transformed into an embedding with buses as closed line
segments, and vice versa.

For another variation, note that a bus graph G = (B, C; E) can be regarded
as a hypergraph, where B is the set of vertices, and C is the set of hyperedges,
each connecting at most four vertices. In this context, it is of interest to see if the
realizability problem changes if we disallow multiple hyperedges in the hyper-
graph G. In other words, we would assume that no two C-vertices are adjacent
to the same set of B-vertices. As the following lemma shows, this assumption
does not change our problem.

Lemma 1. Let G be a bus graph with multiple hyperedges in C, and let G′ be

the bus graph constructed from G by removing hyperedge duplicates. Then G is

realizable if and only if G′ is realizable.

Proof. Necessity is trivial. Conversely, suppose G′ is realizable. Take any em-
bedding of G′, and let c be a connector in the embedding at some position (i, j).
Then, create a copy of c with the same connectivity to buses as follows. For
each event point in the embedding, if its x-coordinate is strictly greater than i,
increase its x-coordinate by 1. Then, if c is connected to the rightmost endpoint
of a horizontal bus B, where the endpoint is at an x-coordinate equal to i, in-
crease the x-coordinate of the endpoint by 1. Similarly, if an event point has a
y-coordinate strictly greater than j, increase its y-coordinate by 1. Then, if c is
connected to the topmost endpoint of a vertical bus B′, where the endpoint is at
a y-coordinate equal to j, increase the y-coordinate of the endpoint by 1. Finally,
create a copy of c, and place it at (i +1, j +1). Intuitively, we are stretching the
buses that intersect either of the two grid lines x = i and y = j, so that there
is a grid point for the newly created copy of c, without making any collisions.
Repeat this for each C-vertex in G′, until a realization of G is obtained. ut

3 NP-Completeness

3.1 Membership in NP

Lemma 2. Bus graph realizability is in NP.

Proof. First, we claim that if a bus graph G is realizable, there exists a compact
layout such that the size of the layout is linear in each dimension. To see this,
take any layout of G, and compact the layout as follows. Take a vertical grid
line with no event points on it. Then, for each event point at (x, y) appearing to
the right of this grid line, shift it to (x − 1, y). Observe that this operation still
guarantees a legal layout. Repeat this for each such vertical grid line. Notice that
the width of the layout is now linear in the size of G. We can apply a similar
operation for all such horizontal grid lines. Thus, the claim is true, so there
exists a short certificate for each realizable graph G that gives the coordinates
of the event points in a compact layout. It is easy to see that we can check, in
polynomial time, if such a certificate represents a correct solution. ut



3.2 NP-Hardness

In this section, we prove the NP-hardness of BGR by a reduction from NAE-
3SAT [14]. We first introduce and discuss properties of several gadgets, and then
give the transformation.

Definition 1. An (A, B)-perp is a bus graph component consisting of three C-

vertices x, y, z, five B-vertices A, A′, B, B′, C, and twelve edges (A, x), (A′, x),
(B, x), (B′, x), (A, y), (A′, y), (B, y), (C, y), (A, z), (A′, z), (B′, z), (C, z).

A combinatorial graph of an (A, B)-perp and an example embedding of it
are shown in Fig. 1.

Lemma 3. In any embedding Γ of an (A, B)-perp,

1. Γ (B) and Γ (B′) are parallel,

2. Γ (A) and Γ (B) are perpendicular, and

3. Γ (A) and Γ (A′) are parallel.

Proof.

1. Note that y and z are both adjacent to A, A′ and C. Γ ((B, y)) and Γ ((B′, z))
are then parallel, so Γ (B) and Γ (B′) are parallel.

2. By 1, Γ (B) and Γ (B′) are parallel. So if Γ (A) were parallel to Γ (B), then
x would be adjacent to three parallel buses. This is a contradiction.

3. By 2, Γ (A) and Γ (B) are perpendicular. If Γ (A′) were perpendicular to
Γ (A), then Γ (A′) would be parallel to Γ (B), making x adjacent to three
parallel buses. This is a contradiction.

ut

Definition 2. A (B, o)-flipper is a bus graph component consisting of an (A, B)-
perp, one additional C-vertex o, and two additional edges (B, o), (B ′, o).

An example embedding of a (B, o)-flipper is shown in Fig. 2.

Lemma 4. Let i be a C-vertex, and O be a B-vertex. If i is joined with a (B, o)-
flipper by an edge (B, i), and O is joined with the (B, o)-flipper by an edge (O, o),
then in any embedding Γ ,

1. Γ ((B, i)) and Γ ((O, o)) are perpendicular, and

2. Γ (B) and Γ (O) are perpendicular.

Proof.

1. By Lemma 3, Γ (B) and Γ (B′) are parallel, so Γ ((B, o)) and Γ ((B′, o)) are
also parallel. Γ ((O, o)) is then perpendicular to Γ ((B, o)). Thus, Γ ((O, o))
is parallel to Γ (B) and perpendicular to Γ ((B, i)).

2. Follows immediately from 1.
ut



Fig. 2. Example embedding of a
(B, o)-flipper.

Fig. 3. Example embedding of an
(A, 2, B, 2)-variable-box.

Definition 3. An (A, k, B, l)-variable-box is a bus graph component consisting

of an (A, B)-perp, (3+k)+(3+ l) additional C-vertices xA, yA, zA, o1
A, o2

A, . . . ,

ok
A, xB , yB, zB, o1

B, o2
B , . . . , ol

B, eight additional B-vertices RA, SA, TA, UA,

RB, SB, TB, UB, and (12 + 2k) + (12 + 2l) additional edges

(A, xA), (RA, xA), (SA, xA), (UA, xA),

(A, yA), (RA, yA), (TA, yA), (UA, yA),

(A, zA), (SA, zA), (TA, zA), (UA, zA),

(RA, oi
A), (SA, oi

A) for i = 1, 2, . . . , k,

(B, xB), (RB , xB), (SB , xB), (UB , xB),

(B, yB), (RB , yB), (TB , yB), (UB , yB),

(B, zB), (SB , zB), (TB , zB), (UB , zB),

(RB , oi
B), (SB , oi

B) for i = 1, 2, . . . , l.

An example embedding of an (A, 2, B, 2)-variable-box is shown in Fig. 3.

Lemma 5. Let (Oi
A, oi

A) for i = 1, 2, . . . , k and (Oj
B , o

j
B) for j = 1, 2, . . . , l be

edges joined with an (A, k, B, l)-variable-box. Then in any embedding Γ ,

1. Γ ((Oi
A, oi

A)) and Γ (A) are perpendicular for any i = 1, 2, . . . , k.

2. Γ ((Oi
B , oi

B)) and Γ (B) are perpendicular for any i = 1, 2, . . . , l.

Proof. We prove the first statement; the proof of the second is analogous. Notice
that vertices xA, yA, zA, RA, SA, TA, UA, o1

A, o2
A, . . . , ok

A form an (RA, oi
A)-

flipper with multiple output C-vertices. As shown in the proof of Lemma 4,



Fig. 4. Example embedding of an (I,O)-chain.

Γ ((Oi
A, oi

A)) is parallel to Γ (RA) for all i = 1, 2, . . . , k. Using the same reasoning
as in the proof of Lemma 3, Γ (RA) is perpendicular to Γ (A). It follows that
every edge Γ ((Oi

A, oi
A)) is perpendicular to Γ (A). ut

Definition 4. An (I, O)-chain is a bus graph component consisting of

1. an (I, o1)-flipper,

2. an (I1, o2)-flipper,

3. an (I2, o3)-flipper,

4. an (I3, O)-perp,

and three additional edges (I1, o1), (I2, o2), (I3, o3).

An example embedding of an (I, O)-chain is shown in Fig. 4.

Lemma 6. In any embedding Γ of an (I, O)-chain, Γ (I) and Γ (O) are parallel.

Proof. By repeatedly applying Lemma 4, Γ (I) is perpendicular to Γ (I1), Γ (I1)
is perpendicular to Γ (I2), and Γ (I2) is perpendicular to Γ (I3). By Lemma 3,
Γ (I3) is perpendicular to Γ (O). It follows that Γ (I) is parallel to Γ (O). ut

Finally, we are ready to give the transformation from NAE-3SAT to BGR.
Let φ be an instance of NAE-3SAT, consisting of boolean variables x1, . . . , xn,
and clauses C1, . . . , Cm. Construct a bus graph G as follows.

1. For each boolean variable xi, create a (Xi, ti, Xi, fi)-variable-box, where ti
and fi are the numbers of distinct occurrences of the literals xi and xi,
respectively, in φ.

2. For each clause Cq = (x∗
i ∨ x∗

j ∨ x∗
k), where x∗ is either x or x, create

(a) a C-vertex cq ,
(b) an (Iq,1, Oq,1)-chain, an (Iq,2, Oq,2)-chain, and an (Iq,3, Oq,3)-chain,
(c) edges (Oq,1, cq), (Oq,2, cq) and (Oq,3, cq),



Fig. 5. A schematic embedding of G, where φ consists of the clauses C1 = (x2∨x3∨x4),
C2 = (x1 ∨ x2 ∨ x3),and C3 = (x1 ∨ x2 ∨ x4) with a satisfying truth assignment
x1 = x3 = x4 = true and x2 =false. Note the regions separated by the dashed lines
and x−, y−axes. Complete instructions for the embedding is included in Appendix.

(d) edges (Iq,1, pi), (Iq,2, pj) and (Iq,1, pk), where pi = or
Xi

if x∗
i = xi and

pi = or

Xi

if x∗
i = xi, and it is the rth occurrence of x∗

i being considered.

Since every gadget is of linear size, the transformation clearly takes polyno-
mial time. Finally, the following lemma completes the proof of Theorem 1.

Lemma 7. φ ∈ NAE-3SAT if and only if G ∈ BGR.

Proof. Suppose φ ∈ NAE-3SAT. An embedding Γ of G can be constructed as
demonstrated in Fig. 5. Notice that the variable boxes are embedded in such a
way that the buses corresponding to true literals are drawn vertically and the
buses corresponding to false literals are drawn horizontally. See Appendix for a
full description of this layout.

Conversely, suppose G ∈ BGR, and take an embedding Γ of G. By Lemma 3,
Γ (Xi) is perpendicular to Γ (Xi) for each variable box, so assign each variable
xi to be true if Γ (Xi) is vertical and false otherwise. To see that this truth-
assignment satisfies the clauses, consider a clause Cq = (x∗

i ∨ x∗
j ∨ x∗

k). The
clause vertex cq is adjacent to three buses Oq,1, Oq,2, and Oq,3 at the end of



(I, O)-chains. Since cq can be joined to at most two parallel buses, at least one
of these three buses must be drawn horizontally, and at least one must be drawn
vertically. Take any one of the three buses, say Oq,1, and consider the literal
bus to which Oq,1 connects in the variable box. By Lemma 5 and Lemma 6, the
orientation of these two buses must be the same. This implies that the clause
vertex cq is connected to at least one vertically drawn literal bus, and at least one
horizontally drawn literal bus. Therefore, the truth-assignment satisfies φ. ut

4 Applications of Proof Techniques

In this section, we look at variations of the bus graph realizability problem in
which the degree of C-vertices is restricted. In the original bus graph realizability
problem presented in Sect. 1, each C-vertex has a maximum degree of 4, due to
the orthogonal drawing style. An analogous problem can be devised for the class
of bus graphs where the C-vertices have maximum degrees of either 2 or 3. In
what follows, we show that these variations are also NP-complete. Finally, we
discuss the problem of merely deciding the orientation of buses, which also turns
out to be NP-complete.

4.1 Connectors with Bounded Degree

First, consider the class of bus graphs where the C-vertices have maximum degree
1. These graphs are trivially realizable by simply drawing all the buses along a
grid line. However, if the maximum degree of C-vertices is greater than or equal to
2, the problem becomes harder. Recall from the proof of Theorem 1 in Sect. 3 that
the reduction from NAE-3SAT was done using a series of gadgets, each of which
was based on the (A, B)-perp. The following results follow from constructing an
(A, B)-perp gadget for each case, and then constructing the remaining gadgets
in a similar fashion.

Theorem 2. Bus Graph Realizability is NP-complete when the maximum degree

of C-vertices is 2.

Proof sketch. If every C-vertex has degree 2, we may regard each C-vertex as
an edge connecting two B-vertices. Thus, in the following description, when we
say to join two B-vertices, we mean to create a C-vertex that joins the two B-
vertices. To construct the perp gadget, start with a complete graph K8, with
vertices labeled B1 through B8. Then, create another vertex B9, and join it with
vertices B1 through B7. Finally, create a vertex B10, and join it to vertices B1

through B6, B8, and B9. It can be shown that the buses B8 and B10 must be
drawn perpendicularly to each other, and all other gadgets can be constructed
based on this structure.1 ut

Theorem 3. Bus Graph Realizability is NP-complete, when the maximum de-

gree of C-vertices is 3.

1 For obvious reasons, we cannot use a single C-vertex to represent a clause. This can
be resolved by creating a combination of perp gadgets and (I,O)-chains.



Proof sketch. The perp gadget for this case is a bus graph component consisting
of eight C-vertices s, t, u, v, w, x, y, z, six B-vertices A, A′, B, B′, C, D and 24
edges, connecting the B-vertices to the C-vertices as follows: s to A, B, C; t to
A, B, A′; u to A, B ,B′; v to C, A′, B′; w to A′, B, D; x to A′, B, B′; y to D,
A, B′; z to A′, B′, A. It can be shown that the buses A and B must be drawn
perpendicularly to each other, and parallel to A′ and B′, respectively. All other
gadgets can be constructed based on this structure. ut

Our results can be summarized as follows.

Theorem 4. Bus Graph Realizability is NP-complete if and only if the maxi-

mum degree of C-vertices in the given graph is 2, 3, or 4.

4.2 Partition by Orientation

In order to realize a given bus graph, one must decide the orientations of the
buses. Since a connector can be joined to at most two horizontal buses and at
most two vertical buses, all realizable bus graphs admit a bipartition of buses
by orientation. As we will see shortly, even deciding whether the buses can be
properly oriented is hard to compute. Note, however, that a proper bipartition
by orientation does not guarantee that the graph is realizable.2

We define the problem PARTITION-BY-ORIENTATION as follows:

Instance: A bipartite graph G = (B, C; E) such that ∀c ∈ C, deg(c) ≤ 4.
Question: Can B be partitioned into two disjoint sets BH and BV , such that

∀c ∈ C, c is adjacent to no more than two vertices in BH and no more than
two vertices in BV?

Theorem 5. PARTITION-BY-ORIENTATION is NP-complete.

Proof. The problem is clearly in NP, as one could guess a partition and check
for its correctness in polynomial time. For the reduction, we use NAE-3SAT.
Given an instance φ of NAE-3SAT, we construct a graph G as follows. First, for
each variable xi in φ, create an (A, B)-perp. Vertex A corresponds to xi, whereas
vertex B corresponds to xi. Then, for each clause Cq = (x∗

i ∨ x∗
j ∨ x∗

k), create
a C-vertex cq, and join it to the three literal vertices. The rest of the proof is
similar to the proof of Lemma 7, and follows from Lemma 3. ut

5 Bus Graph Realizability with Given Bus Lengths

In this section, we study a variation of bus graph realizability in which the lengths
of buses are given as input (BGR+BL). We devise a new encoding scheme for the
instances of this problem. The purpose of this encoding scheme will become clear
shortly. Recall from the discussion in Sect. 2 that bus graphs can be regarded

2 A simple counterexample can be constructed by first creating a complete graph with
9 B-vertices, and then placing a C-vertex on each edge.



as hypergraphs, where each C-vertex corresponds to a hyperedge. In the new
encoding scheme, we assume that the problem instance is given as a list of
subsets of B, where each subset is of cardinality at most 4. For each subset, we
also encode the number of C-vertices that are adjacent to exactly that subset of B-
vertices. Notice that this is a form of adjacency matrix for the hypergraph, where
each entry in the matrix denotes the number of hyperedges for that particular
subset of buses. In the case of hypergraphs where no multiple hyperedges are
allowed, each entry in the matrix would be either 1 or 0.

Now we are ready to state and prove the main result of this section.

Theorem 6. BGR+BL is NP-hard. It is also NP-hard if the maximum degree

of C-vertices is 2, or if we require the buses to be parallel to each other.

Proof. The reduction is from PARTITION [14]. Let 〈A, s〉 be an instance of
PARTITION, where A is a set of elements, and s : A → Z+ is a size function
for each element. For simplicity, we assume that no element is of size 1, as we
can scale the size function appropriately. We construct a bus graph G as follows.
Create a B-vertex B∗ of length 1

2

∑
a∈A s(a)− 1. Then, for each a ∈ A, create a

B-vertex Ba of length s(a)− 1. Now, for each element a ∈ A, create exactly s(a)
copies of C-vertex, and join them to both Ba and B∗. With the new encoding
scheme, this transformation can be done in polynomial time.

Suppose 〈A, s〉 ∈ PARTITION. First, lay out the bus B∗ horizontally along
the x-axis. It is easy to see that one can place the buses Ba for all a ∈ A′

horizontally along the grid line y = 1 (above B∗), and place the rest horizontally
along the grid line y = −1 (below B∗). This is a legal layout.

Conversely, suppose G is a yes-instance of BGR+BL. Take an embedding of
G, and assume without loss of generality that B∗ is drawn horizontally. Then,
each bus Ba must be laid out either completely above B∗, or completely below
B∗. To see this, suppose otherwise. This means either (1) some Ba is drawn on
the same grid line as B∗, or (2) some Ba is drawn vertically, where one endpoint
of Ba is above B∗, and the other endpoint is below B∗. Case (1) is not possible,
as no connector can join Ba with B∗. Consider case (2). Then, there exists a
grid point p at the intersection of Ba and the grid line where B∗ is drawn. No
connector can connect p with B∗, since every edge must connect to a bus (B∗,
in particular) perpendicularly. This is a contradiction because each grid point
along the bus Ba must connect to B∗ via a connector.

This implies that the number of grid points along the buses drawn above
B∗ equals the number of grid points along B∗. Similarly, the number of grid
points along the buses drawn below B∗ equals the number of grid points along
B∗. Therefore, we have a subset A′ ⊂ A, where A′ is the set of elements that
correspond to the buses drawn above B∗, and this is a valid partition. ut

6 Concluding Remarks and Open Problems

Although bus graph realizability is an NP-complete problem in general, some
special classes of graphs admit polynomial time solutions. For example, if the



given bus graph G is a tree, it is simple to devise an algorithm to produce a
realization of G, and hence G always admits a bus graph embedding. However,
what other classes of graphs admit polynomial time recognition algorithms for
realizable bus graphs is an unexplored question.

As a consequence of the hardness results of this paper, one may search for
approximate solutions to the problems. It is unclear, however, what optimization
criteria would be used. With applications in VLSI in mind, one may wish to lay
out all the buses first, and then maximize the connectivity by maximizing the
number of connectors realized in the layout.
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Appendix: Necessity Proof for Lemma 7

In this section, a full proof for the necessity of the Lemma 7 is given. Let φ denote
a boolean formula for NAE-3SAT, consisting of n variables and m clauses, and
let σ : X → {T, F} be a satisfying truth assignment for φ. Given φ, our goal is to
show that the bus graph G, constructed from the transformation shown in Sect.
3.2, is realizable. We first describe how each gadget, as introduced in Sect. 3.1,
can be embedded within a bounding box of predefined size. Then, the overall
embedding of G is presented by explicitly giving coordinates for each gadget
bounding box. Finally, we show that the so-described embedding of G is a legal
layout of a bus graph, which completes the proof. For simplicity, we often refer
to a bounding box as an n×n subgrid, which is a square of size (n−1)× (n−1),
with n grid points along each side.

A. Embedding of Gadgets

Note that the coordinates used in this section are relative to each corresponding
gadget only.

Perps and Flippers. We embed a perp within an 9 × 9 subgrid, as shown in
Fig. 1. In the case of the (I3, O)-perp inside an (I, O)-chain, its incoming edge
is connected to the grid point at the center of the bus Γ (I3). See Fig. 4 for an
example. Similarly, a flipper is embedded in a 9 × 9 subgrid, and the incoming
and outgoing edges are drawn so that they lie along the same grid line as the
center grid point of the subgrid. See Fig. 2 for an illustration of the embedding.

Variable Boxes. Let a denote the maximum number of occurrences of a literal
in φ. Then, draw each variable box in a K × K subgrid, where K = 11a + 18.
Then, using the upper-left corner of the subgrid as the origin:

1. Embed the horizontal outgoing edges along the grid lines y = −10i

2. Embed the vertical outgoing edges along the grid lines x = 10i

for all i = 1 . . . a. See Fig. 6 for the embedding of a (X, 4, X, 4)-variable box.
Notice that some literals may not appear a times in φ, but the embedding re-
serves a fixed area for every variable box to accommodate all the occurrences of
a literal in φ. Notice that all parallel outgoing edges are spaced apart by 9 grid
lines. It is also important to note that the embedding is symmetric along the
diagonal of the subgrid with respect to the position of outgoing edges. This is
crucial for the embedding, as the orientation of the embedding is decided upon
the satisfying assignment σ. If a variable Xi is assigned true by σ, then the cor-
responding variable box is embedded so that the bus Γ (Xi) is drawn vertically.
Otherwise, it is embedded as a reflection about the diagonal so that Γ (Xi) is
drawn horizontally.



Fig. 6. Embedding of a (X, 4, X, 4)-variable box. Observe that there are 16 grid points
along each side of the shaded region, and (10a + 1) + (a + 1) grid points on either side
of the shaded region. The orientation in the figure assumes X =true.

Clause Boxes. Although not presented as a gadget in Sect. 3.2, each clause
connector ci can be embedded on a 40 × 40 subgrid, along with some compo-
nents of (I, O)-chains joined to ci. As with the embedding of variable boxes, the
embedding of clause boxes depends on σ. Since σ is a satisfying assignment of
NAE-3SAT, there are 2 cases for the truth assignment of each clause: (T, F, F ),
and (T, T, F ). See Fig. 7 for the embedding of both cases. Observe that if a literal
in the clause is assigned to true, then the (I2, o3)-flipper and (I3, O)-perp com-
ponent in the corresponding (I, O)-chain is drawn inside the subgrid. Otherwise,
only the (I3, O)-perp component is drawn inside the subgrid. Observe that the
incoming edges are drawn at fixed y-coordinates, regardless of the assignment
for the clause.

B. Embedding of G

We are now ready to realize G. For an overview of the embedding, see Fig. 5.
First, we begin by embedding the variable boxes. For each boolean variable Xi,
lay out the corresponding variable box on the subgrid bounded by x ∈ [−K,−1]
and y ∈ [(K + 10a + 2)i−K + 1, (K + 10a + 2)i], in the orientation determined
by σ. Observe that each variable box is embedded in the second quadrant, and
every two neighboring subgrids are 10a + 2 grid lines apart from each other.

Then, for each clause cq, lay out the corresponding clause box on the subgrid
bounded by x ∈ [(K +10a+2)n, (K +10a+2)n+39] and y ∈ [−40q,−40q+39].
The internal layout of each clause box is determined by σ, but the three incoming



Fig. 7. Embedding for a clause box assigned with T, F, F (left), and a clause box as-
signed with T, T, F (right). Shaded boxes denote flipper components, whereas unshaded
boxes denote perp components, for each corresponding (I, O)-chain.

edges are always located at y = −40q + 5, y = −40q + 20, and y = −40q + 35.
Observe that each clause box is embedded to the right of the grid line y =
(K + 10a + 2)n.

We now need to lay out the (I, O)-chains that join the variable boxes with
clause boxes. There are two types of embedding for (I, O)-chains, determined
by the truth-assignment of the literal bus that the (I, O)-chain connects to. If
an (I, O)-chain connects to a literal assigned true, we say that its embedding is
of Type-T . If an (I, O)-chain connects to a literal assigned false, we say that its
embedding is of Type-F . We describe the two embedding types separately. See
Fig. 8 for an illustration.

Fig. 8. Type-T embedding and Type-F embedding

Type-T Embedding. Let cq be the clause vertex inside the clause box, and let
ori

Xi
be the literal vertex inside the variable box. Our aim is to connect cq to ori

Xi



using an (I, O)-chain. For Type-T , recall that (I2, o3)-flipper and (I3, O)-perp
are embedded within the clause box. Thus, it suffices to describe the positions
for the (I, o1)-flipper and the (I1, o2)-flipper.

Observe that the (I, O)-chain must exit the variable box horizontally at y =
y1, where y1 is the y-coordinate of ori

Xi
, and enter the clause box horizontally

at y = y2, where y2 is the position defined by the clause box type as shown in
Fig. 7. Place the two flippers as follows.

1. Embed the (I, o1)-flipper in the subgrid bounded by x, y ∈ [y1 − 4, y1 + 4].
2. Embed the (I1, o2)-flipper in the subgrid bounded by x ∈ [y1 −4, y1 +4] and

y ∈ [y2 − 4, y2 + 4].

Type-F Embedding. Let cq be the clause vertex inside the clause box, and
let o

rj

Xj

be the literal vertex inside the variable box. Our aim is to connect cq

to o
rj

Xj

using an (I, O)-chain. For Type-F , only the (I3, O)-perp is embedded

within the clause box. Hence, we must describe the positions for (I, o1)-flipper,
(I1, o2)-flipper, and (I2, o3)-flipper.

Observe that the (I, O)-chain must exit the variable box vertically at x = x1,
where x1 is the x-coordinate of o

rj

Xj

, and enter the clause box horizontally at

y = y2, where y2 is the position defined by the clause box type as shown in
Fig. 7. Place the three flippers as follows.

1. Embed the (I, o1)-flipper in the subgrid bounded by x ∈ [x1 − 4, x1 + 4] and
y ∈ [y1 − 4, y1 + 4], where y1 = (K + 10a + 2)(j − 1) + 6 + 10(rj − 1).

2. Embed the (I1, o2)-flipper in the subgrid bounded by x, y ∈ [y1 − 4, y1 + 4].
3. Embed the (I2, o3)-flipper in the subgrid bounded by x ∈ [y1 −4, y1 +4] and

y ∈ [y2 − 4, y2 + 4].

C. Correctness of the Embedding

In this section, we show that the embedding of G is a legal layout. To do this,
we refer back to the four properties stated in the problem definition in Sect. 1.
The first two properties hold trivially by construction. Hence, it suffices to show
that the other two properties hold.

Proof. We check if the properties hold as we lay out each gadget. By construc-
tion, the embedding of each individual gadget is legal. So first lay out the variable
boxes and clause boxes. The embedding of these boxes together is legal, since no
two boxes overlap. Now, lay out the (I, O)-chains and see if the two properties
still hold.
(Property 3.) We say an edge passes through a gadget if the embedded edge
enters and exits the bounding box of the gadget. Since each bus or connector
is drawn within the bounding box of a gadget, we need to show that no edge
passes through a gadget. Note that we need only consider the edges along the
(I, O)-chains, as all other edges are embedded inside gadget bounding boxes.



Notice that for each flipper f in some (I, O)-chain in the embedding, f is joined
to other components by a horizontal edge fH and a vertical edge fV .

Now, take a horizontal edge eH on some grid line y = y1. There are three
cases to consider. (1) Suppose eH passes through a flipper f in some (I, O)-chain.
Then eH must be fewer than 4 grid lines apart from fH . This is a contradiction,
as any two horizontal edges in the embedding are at least 9 grid lines apart from
each other. (2) Suppose eH passes through a variable box. If y1 > 0, there is
exactly one variable box at y = y1, which eH connects to at its endpoint. If
y1 ≤ 0, eH cannot reach any variable box because all variable boxes are above
the x-axis. This is a contradiction. (3) Suppose eH passes through a clause box.
If y1 ≤ 0, there is exactly one clause box at y = y1, which eH connects to at its
endpoint. If y1 > 0, eH cannot reach any clause box because all clause boxes are
below the y-axis, hence a contradiction.

Take a vertical edge eV on some grid line x = x1. Note that eV cannot
pass through a clause box, since all vertical edges lie to the left of the grid line
x = (K + 10a + 2)n. Secondly, eV cannot pass through a variable box, since the
y-axis separates ev from variable boxes when x1 > 0, or ev completely lies within
region between two neighboring variable boxes when x1 ≤ 0. Finally, ev cannot
pass through flippers, either because the vertical edge fV for any flipper f is
sufficiently far from ev, or ev and f lie in different regions separated by variable
boxes.
(Property 4.) We say two gadgets intersect if the bounding boxes of the two em-
bedded gadgets intersect. Since each bus or connector is embedded within some
gadget, if no two gadgets intersect then no buses or connectors may intersect.
We categorize the gadgets into 5 types as follows.

1. Type-Q1 flipper: a flipper embedded in the first quadrant
2. Type-Q2 flipper: a flipper embedded in the second quadrant
3. Type-Q4 flipper: a flipper embedded in the fourth quadrant
4. a variable box
5. a clause box

It is easy to check that each gadget belongs the exactly one of these types. By
construction, no two gadgets of the same type may intersect. Take a variable box
Xi and a Type-Q2 flipper fj joined to a variable box Xj . Since fj is embedded
strictly below the variable box Xj and strictly above the variable box Xj+1, Xi

and fj cannot intersect, regardless of values for i and j.
Now, take a clause box Ci and a Type-Q4 flipper fj joined to a clause box

Cj . Observe that the grid line x = (K + 10a + 2)n separates the embedding
of flippers and clause boxes. Hence, Ci and fj may not intersect, regardless of
values for i and j.

For any other pair of types, they may not intersect since they belong to
different quadrants. ut


