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Figure 1: An illustration of the texture modification process used by our system.

Abstract

Contact on a finger pad results in deformation that redistributes
blood within the fingertip tissue in a manner correlated to the pres-
sure. We build a data-driven model that relates contact information
to the visible changes of the finger nail and surrounding tissue on
the back of the finger tip. Our data analysis and model construc-
tion makes use of the space of hemoglobin concentrations, as op-
posed to an RGB color space, which permits the model to be trans-
ferred across different fingers and different people. We use princi-
pal component analysis to build a compact model which maps well
to graphics hardware with an efficient fragment program implemen-
tation. We provide a validation of our model, and a demonstration
of a grasping controller running in a physically based simulation,
where grip strength is visible in both hand posture and the appear-
ance of color changes at the fingertips.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: hands, grasping, texture, hemoglobin, light scattering,
physics-based animation, interactive simulation

1 Introduction

Interactive character animation is a key part of video games and can
be important in many other applications, such as ergonomic design,
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training simulations, and movie production. Digital characters have
become very realistic over the years. Many skinning techniques
have been developed to better model the deformation of skin; phys-
ically based simulation of garments have improved realism by pro-
viding valuable secondary motion to a character’s movement; and
control strategies have allowed for natural simulated motion that
reacts to environmental changes in a plausible manner.

While motion is central to the problem of character animation,
and deforming geometry is a primary factor explaining overall ap-
pearance, color variations across the character’s skin are essen-
tial for rendering life-like images. Texture and bump mapping are
now standard, while spatially varying surface scattering distribution
functions and light transport approximations are becoming more
common for highly realistic image production. In some cases, re-
flectance or scattering models can be parameterized. For instance,
varying amounts of perspiration can drive glossiness to permit sim-
ple appearance changes, while it is also possible to model sub-
surface blood variations due to pose, pressure, alcohol consump-
tion, or exercise. This is where our work fits in, as we are modeling
color changes due to the contact forces available in an interactive
simulation. Our approach to modeling these color changes is with
a simple scattering model.

Control, deformation, and appearance can make use of procedural
techniques, physics simulation, or data-driven models. Physically
based deformation and rendering, in combination with anatomically
detailed models, have become a popular approach for improving
the quality of images and animation. We follow the alternative,
which is to use captured data to create empirical models that repli-
cate the behavior of real world example measurements. In contrast,
our grasping motion controller uses a multi-body physics simula-
tion and standard control techniques, similar to others in graphics
and robotics.

Figure 1 shows an overview of our appearance modification pro-
cess. Our contributions can be summarized as follows: we present
a simple capture process for collecting fingertip photos and finger-
pad pressure images, an analysis method that uses a custom sim-
plified hemoglobin concentration model, and an efficient appear-
ance model implementation within a fragment program, which in-
tegrates easily with a real-time interactive physics-based simulation
of grasping control.



2 Related Work

Over the years, many improvements have been proposed to improve
the appearance of animated characters beyond the standard linear
blend skinning model [Magnenat-Thalmann et al. 1988]. For in-
stance, pose space deformation interpolates geometry corrections
using radial basis functions [Lewis et al. 2000], shape by example
interpolates corrections mapped back into the rest pose with the in-
verse skinning transform [Sloan et al. 2001]. In an anatomically
accurate approach, geometric features on the back of hand can be
driven by tendon simulations [Sueda et al. 2008]. Alternatively,
Huang et al. [2011] capture and model pose dependent wrinkles on
hands, while another popular approach is to build wrinkle texture
maps into the character rig to provide these details without the cost
of geometric modeling [Oat 2007; Dutreve et al. 2011]. Similar
to pose space deformation [Lewis et al. 2000] and shape by exam-
ple [Sloan et al. 2001], the EigenSkin technique interpolates shapes
within a memory efficient basis computed with principal compo-
nent analysis [Kry et al. 2002]. Our approach is similar to this,
except that instead of interpolating geometric shape, we interpo-
late a blood concentration texture in a memory efficient representa-
tion and use this to compute a correction to the skin color. We use
contact information within a physical simulation to drive the color
changes. This is similar to playable universal capture [Borshukov
et al. 2007], except that the texture appearance is driven by sim-
ulated attributes (contacts in the physics simulation) rather than a
previously recorded appearance trajectory.

There are important changes in the appearance of the fingertips dur-
ing posture changes and contact. In fact, it is possible to estimate
posture and touch force using sensors that measure color changes
under the fingernails [Mascaro and Asada 2004]. Inspired by this
difficult inverse problem, our focus is the creation of a data-driven
model suitable for synthesizing these appearance changes. While
it may be convenient to model appearance variations in RGB color
space, it is preferable to work in the space of changing hemoglobin
concentrations. Displacement of blood due to contact is the pri-
mary explanation for the appearance change, and building a model
that works directly in the space of hemoglobin concentrations al-
lows for easier reuse of captured data across different fingers and
different people. Thus, we estimate hemoglobin variations across
the example images that we collect. A variety of techniques have
been devised for estimating these quantities for medical purposes.
For instance, camera based sensors can be constructed for mea-
suring melanin, hemoglobin, and oxygenation of tissue, through
the use of a known spectral illumination [Jakovels et al. 2011].
More recently it has been shown that Wiener estimation methods
can produce estimates from an appropriately white balanced RGB
camera [Nishidate et al. 2013]. In computer graphics, Tsumura et
al. [2003] use independent component analysis to estimate melanin
and hemoglobin components using a single image, such as the im-
age of a face.

Our hemoglobin estimation method is inspired by others [Jimenez
et al. 2010; Tsumura et al. 2003; Tsumura et al. 1999]. It closely re-
lates to that of Tsumura et al. [1999], in that we use a negative log
color space analysis, with the assumption that a simple Lambert-
Beer scattering law explains skin color. Otherwise, the difference
with our work is that we do not need to perform independent com-
ponent analysis to extract melanin concentrations because we can
focus entirely on the appearance variation due to hemoglobin con-
centration variations across several images. At run time, we ad-
just the color of skin in the log-color space using the absorption
properties of hemoglobin (estimated from our example images). In
contrast, Jimenez et al. [2010] produce skin color variations with
a lookup table indexed by hemoglobin and melanin concentrations.
Their objective is to model the appearance of dynamic faces using a

skin appearance rig, and they use hemoglobin maps to control skin
color, permitting variation of appearance under the deformation of
different blend shapes, or due to other conditions, such as exercise
or alcohol consumption. Kider et al. [2011] have a data driven ap-
pearance model driven by fatigue which includes models of flushing
and perspiration appearance. In contrast, Boukhalfi [2012] focuses
on face geometry during strenuous exercises. Also closely related
to our work is that of Donner et al. [2008]. They specifically focus
on hands, and modify parameter maps to show the possibility of
appearance changes due to blood being squeezed out of areas de-
formed by contact. In our work, in contrast, we use an interactive
physics based simulation to drive the realistic color changes. Like-
wise, our data-driven model, which interpolates blood distribution
examples for different pressure magnitudes, employs data reduction
to permit an efficient implementation.

There are other examples where force capture data has been used in
computer animation. The Footsee system estimates full body pose
from pressure images of the feet on the ground [Yin and Pai 2003],
while Aladdin and Kry [2012] estimate static climbing poses from
force data measured with an instrumented climbing wall. Finally,
Kry and Pai [2006] describe a method of capturing and resynthesiz-
ing grasps where force measurements are used in conjunction with
motion capture to estimate the stiffness of joints. Force measure-
ments have also been used to measure both linear and non-linear
deformation of soft tissue, as well as frictional properties [Pai et al.
2001; Bickel et al. 2009].

3 Data Capture

Our capture process involves collecting photographs and force mea-
surements of fingertips that are applying different amounts of pres-
sure. We use a TekScan Grip system for measuring contact pres-
sure at a fingertip. This system has a resolution of 6.2 taxels per
square centimeter, where a taxel is a “tactile pixel” or “tactile ele-
ment” within a pressure image. At the fingertip, the pressure image
resolution is 4×4, giving a total of 16 taxels. We multiply the pres-
sure value at each taxel by the area of an individual taxel, and sum
up the force contributions of all taxels under the fingertip to pro-
duce a total force estimate. We also compute a center of pressure,
but we currently only investigate the appearance change associated
with forces centered on the finger pad. We have collected data with
varying center of pressure to be used in future work.

We capture images with a consumer camera. Because we use a
makeshift diffuse light box (consisting of David laser scanner cal-
ibration panels), we assume that the images effectively capture the
albedo variation of the skin and fingernail. The camera white bal-
ance is set so that we can compute reasonable hemoglobin concen-
tration estimates (see more details in Section 4).

Figure 2 shows our capture setup along with a sample of the cap-
tured pressure data. We have captured data for index and ring fin-
gers of the right hand across three subjects. The capture process
starts with the capture subject placing the distal finger pad of the
selected finger at the center of the fingertip taxel grid. The cap-
ture subject interactively adjusts the positioning of their finger by
applying a small amount of perpendicular force to the sensor sur-
face. The fingertip position is adjusted until the center of pressure
is aligned with the center of the sensor grid. Once capture begins,
the finger remains in contact with the sensor, and if finger slippage
occurs, then we restart the process. The back of the finger remains
visible to the camera as the subject explores different pressure mag-
nitudes (as well as varying the center of pressure in our extended
future work data set). Pressure and image data are captured simul-
taneously. The interactive nature of the capture software allows the
subject to avoid collecting multiple similar examples, which could



Figure 2: Left, makeshift diffuse light box and TekScan capture
setup. Right, example pressure data showing center of pressure.

Figure 3: Left, an example raw captured image, and right, the
cropped and masked pre-processed image ready for analysis.

be problematic for over-fitting during model construction.

Because the fingertip may translate and rotate slightly between dif-
ferent photographs when applying different amounts of pressure,
the example images need to be warped into a consistently param-
eterized texture image (note that rotation is more pronounced in
examples that involve varying centers of pressure). In particular it
is important to match the shape of the fingernail. While it would be
possible to develop a custom automated process to warp the images,
we choose to do this manually for the examples that we collect (i.e.,
10 samples used for our data-driven model). This pre-processing
task is not onerous, and ultimately we observe that the estimated
model for one fingertip is sufficiently general to apply to all fin-
gertips and across individuals (validation of this can be found in
Section 6). We use the Puppet Warp tool in Photoshop to deform
the images, and apply a mask to avoid including any of the fin-
gertip silhouettes and background in the analysis. Figure 3 shows
an example photograph, along with a pre-processed example image
which is ready for analysis.

4 Model Fitting

While Mascaro and Asada [2004] note that finger posture also plays
an important part in fingertip appearance, we focus solely on con-
tact forces. Thus our appearance model can be seen as a function
mapping a force on a finger pad to color variations in the texture.
Given that these color changes are largely driven by the distribution
of blood in the fingertip, we choose to do our regression in the space
of hemoglobin concentrations.

In this section, we first explain our simple model for appearance due
to varying concentrations of hemoglobin and the effect that it has on
light scattering. We then describe how we estimate the absorption
properties of hemoglobin in our images, and from there, work in
the space of hemoglobin concentration changes across the fingertip
images. Finally, we describe an interpolation function that allows

us to reproduce the collected examples.

4.1 Material Concentration and Light Absorption

We assume a simple model for light scattering within human skin
following previous work [Tsumura et al. 1999; Jensen et al. 2001;
Tsumura et al. 2003]. The transmittance T of light through a ma-
terial at a given wavelength λ, is defined as the fraction of the exit-
ing spectral radiance L(λ) over the initial incident radiance L0(λ).
The Lambert-Beer law models transmittance as a function of the
distance d that the light travels within the material, and the mo-
lar absorptivity and concentration of a material α(λ) at the given
wavelength, specifically,

T =
L(λ)

L0(λ)
= 10−α(λ)d ∈ [0, 1]. (1)

Since we are using RGB images, we will take the convenience of
defining α ∈ R3 as a three-tuple of values corresponding to red,
green, and blue wavelengths. When there exists a mixture of ma-
terials, we can write α as a sum of contributions from each of the
materials. For instance, in our case it is useful to write the absorp-
tion as the sum of two parts, the first due to hemoglobin, αh, and the
second due to other constituents, αo, such as melanin and keratin.

In the context of a diffuse reflection, we assume that our RGB im-
ages do not contain any lighting variation due to geometry, and in
one sense, we can view the pixel values as varying surface albedo,
which can be used as the diffuse material parameter in a lighting
program. Here, we assume this per pixel reflected light percent-
age can be treated as transmission along a sub-surface light path of
unknown fixed length within a homogeneous material. We further
assume the light path d to be constant across all pixels. Thus, the
negative logarithm of the pixel components gives us a proportional
absorption property of the material mixture recorded at that pixel.
That is, given a pixel’s color as (R,G,B) ∈ [0, 1]3, we compute

α = (− log(R),− log(G),− log(B)) ∈ [0,∞]3. (2)

Because the molar absorptivity of a material is constant, we factor
α into a normalized pigment vector and a scalar quantity. Thus, we
model color changes in log space as changes in material quantity,
and at any given pixel we can write

α = qσh + αo, (3)

where q ≥ 0 is the hemoglobin quantity, σh ∈ R3 is the
hemoglobin pigment, and αo models the absorption of all other
materials. We expect q at a given pixel to change depending on
the distribution of blood in the fingertip, while the concentration of
other materials, and in turn the absorption, remains constant.

4.2 Hemoglobin Pigment Estimation

With the white balance of the camera set correctly, our images will
have colors appropriate for use in a texture map. However, be-
cause the illumination spectrum and camera response curves are
unknown, the observed pigmentation of hemoglobin may not be
fixed and must be estimated from the capture data. This is rela-
tively straightforward because we have numerous sample images in
which the only changes are due to the redistribution of blood in the
fingertip tissues as different pressures are applied to the finger pad.
Thus, the negative log color values of different images at a given
pixel should only vary in the direction σh.

We estimate σh as the first principal component of the negative log
color of all pixels and all images. Each pixel’s negative log color
is centered independently to account for the varying amounts of
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Figure 4: Example quantity-change images showing considerable
correlation across examples at different nonzero finger pad forces.

other materials (i.e., αo) across the fingertip. In our case, we use
the negative log color of the pixel in the zero pressure image as the
center, though the mean negative log value would also be suitable
(or likewise, that of any example image).

Note that the vector σh will have all positive components because
absorption at different wavelengths is positively correlated (i.e., a
material can only absorb more of any given light wavelength when
its concentration is increased). Averaging across three data sets
for three individuals, we estimate σh = (0.19, 0.77, 0.61), which
corresponds to higher absorption of green and blue wavelengths in
comparison to red. Section 6 discusses estimates and validation
further.

Letting σh be normal length, we can compute the hemoglobin quan-
tity for any pixel in any image with a simple dot product,

q = α · σh, (4)

while the residual provides absorption due to other materials,

αo = α− qσh. (5)

We compute hemoglobin quantity-change images for all of the ex-
amples to permit analysis and modeling (see Figure 4). While the
pigment estimation is not sensitive to the center, we choose the zero
pressure image as the center for the example hemoglobin quantity-
change images. Therefore, the quantity has zero change when there
is zero force on the finger pad. We do not store the α or residual
αo vectors as they can easily be computed on the fly in the shader
program as described in Section 5.

4.3 PCA Model of Hemoglobin Quantity Changes

Because there is considerable correlation among the hemoglobin
quantity-change images that we observe with the different finger
pad forces, it is appropriate to use principal component analysis
(PCA) to compute an efficient basis to represent these changes in
our example images.

There is camera noise in our example images, and because blood
redistribution does not happen at the spatial frequencies captured by
our full resolution example images, we down-sample the images to
256 × 256. Furthermore, we have considered applying a Gaussian
blur to reduce camera noise, but this is not essential as we have
not observed noise as having a significant effect on the first few
principal components.

Figure 5 shows the principal component basis, along with the vari-
ation explained by the different basis vectors. We call these basis
images eigen textures. Note that with just the first two we can cap-
ture over 94% of the variation observed in our examples.
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Figure 5: Visualization of the principal component basis vectors,
i.e., eigen textures, explaining quantity-change images. Below each
is a value corresponding to the variation explained by each vector.

EXAMPLE DATA

RECONSTRUCTION

0.6 N 2.5 N 5.4 N 7.7 N 9.7 N

Figure 6: Top row shows processed example images, while the sec-
ond row shows reconstructions using 4 principal components. Note
the whitening at the sides of the fingertip and under the nail at the
tip as the pressure increases due to blood being squeezed out into
surrounding tissues. Also notice the similarity between examples
and Reconstruction.

Figure 6 shows reconstructions of the example RGB images using
a reduced basis with only 4 components. The negative log color
image is modified by adding σh scaled by the per pixel quantity
change computed with the truncated eigen texture basis. The result
is negated, exponentiated, and finally clamped to [0, 1] to produce
the reconstruction RGB image. Note that clamping is only neces-
sary for extreme modifications and is typically unnecessary.

We are effectively modeling a process of appearance change due
to blood moving about in the fingertip. As such, it would be ideal
to use a data interpolation technique that appropriately takes into
account mass transport [Bonneel et al. 2011]. In the interest of hav-
ing an inexpensive interpolation, we instead choose to model blood
distribution variation in a principal component basis. The conse-
quence is that we cannot do any better than blending examples, and
if we do not have enough examples, then our results will exhibit
less prominent differences from either the average or zero force ap-
pearance.

4.4 Interpolation

At this point, we have a collection of N examples consisting of
a measured total finger pad force in newtons, x ∈ R, and a
hemoglobin concentration change that is represented in a truncated
PCA basis, y ∈ RM . We use M = 4 because it is both sufficient
and maps easily to graphics hardware.

We use a quadratic polyharmonic spline to interpolate the PCA co-
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Figure 7: Interpolation of the examples, shown with dots, in the
coefficients of the PCA basis.

ordinates at the sampled forces,

y(x) =

N∑
j=1

wjφ(‖ x− xj ‖), (6)

where φ(r) = r2ln(r) and xj is force data for the jth sample. The
weights w are computed easily with a linear solve. We use this
radial basis function interpolation approach because it will extend
easily to interpolate other important features, such as the center of
pressure on the finger pad, and the posture of the distal joint. In our
preliminary work in this direction, we note that care is necessary in
defining the distance metric for x such that it is meaningful. Ranges
of different components must be taken into account to allow for
meaningful comparison (position, force, angle).

Figure 7 shows plots of how well and how smooth the interpolations
fit the data. The coefficients of the higher index principal compo-
nents are noticeably smaller. This is because the basis vectors are
all unit length, and the higher index vectors only capture a small
portion of the variation.

5 Reconstruction Implementation

In this section, we describe the reconstruction of the fingertip ap-
pearance in the context of rendering our full hand model. Thus, we
will address how we pack information into textures and implement
the reconstruction process in a fragment shader.

Our model is suitable for any skinned hand rig. We started with a
hand model exported from Daz Studio, and in our current work
we are using a hand model purchased from TurboSquid, which
has higher quality textures. Both models include linear transform
blending weights. We use FBX format for the convenience of being
able to load and display the models easily within OpenSceneGraph.

5.1 Textures

In order to modify the colors of the diffuse texture map, we cre-
ate a second texture map shown in Figure 8. We name this tex-
ture stiaTex to denote the contents of its four components: s
and t texture coordinates, a finger index i, and an alpha mask
a. The red and green channels contain the texture coordinates for

Figure 8: Textures used in computing varying fragment colors at
the fingertips, with the base texture shown at bottom left. Top shows
the stiaTex, with texture coordinates in red and green for look-
ing up hemoglobin concentration changes, and the finger index en-
coded with different shades in the blue channel. Bottom right shows
the alpha mask with feathered edges used to blend the base texture
with color values modified due to finger pad forces.

the fragment’s corresponding location in the pre-processed example
image (to access the eigen textures for computing the fragment’s
hemoglobin quantity change). The blue channel contains an index i
to identify the finger tip to which the fragment belongs (this allows
us to look up the appropriate finger’s PCA coordinates which were
computed from the contact force). Finally, the alpha channel con-
tains an alpha mask to allow a smooth blend between the modified
colors and the base texture at the edges of the fingertip.

Note that the alpha component is shown separately at the bottom
right of Figure 8 to make it easier to see. Likewise, we overlay black
lines to show the mesh coordinates within the texture to display how
the texture contents relates to the mesh geometry. Obviously, our
run time textures do not contain these black lines. Furthermore,
note that these mesh lines reflect the coarse level resolution of the
mesh, while we use a subdivided mesh for better quality at run time.

The index information is easy to paint into the stiaTex texture
image. However, a bit more work is involved to set the red and
green channels to the appropriate texture coordinates. The process
we use is to first prepare a red-green texture gradient identity map,



and overlay this with our pre-processed fingertip example image.
We then paste the red-green texture coordinate image along with the
zero pressure example image in a coupled layer into the stiaTex
image. The pasted layers must first be scaled, translated, and rotated
to roughly match with the back of a fingertip in the base texture.
We then use the Photoshop Puppet Warp tool to carefully deform
the fingertip example image to match features in the base texture
and mesh geometry. Once we have a good match, the warped red-
green gradient can be flattened into the red and green channels of
the stiaTex image, and we repeat the process for all fingers.

Figure 9: Automatic
alpha mask computed
from PCA vectors.

The alpha mask is not difficult to produce.
We partially automate the process by us-
ing the eigen textures to identify where
there are important changes in hemoglobin
quantities. At each pixel, we sum up the
absolute values of the first 4 eigen textures,
and normalize to produce the mask shown
in Figure 9. This is helpful because the
pre-processed example images include ar-
eas which were masked and filled with a
neutral skin texture to avoid the silhouette
edges and background, and using this auto-
matic alpha mask as a guide ensures that we exclude these regions
in our blend. Ultimately, we edit this to produce the final alpha
mask (e.g., we apply threshold, erosion, blur, and custom per fin-
ger modifications). The alpha mask is warped and flattened into the
stiaTex image in the same process used for the red-green texture
coordinate gradient.

While we could let our model produce color changes on the base
texture, we choose to replace the base texture with the warped zero
pressure example image. This typically involves a small HSV space
color correction to the base texture to have it match our white bal-
anced example images. We use the alpha mask generated above to
smoothly blend the pasted example into the base texture.

Note computing hemoglobin changes involves a chain of two tex-
ture lookups. This is a useful alternative to defining a new set of tex-
ture coordinates over the surface of the mesh. It allows for distor-
tions in the mapping at the resolution of the texture, as opposed to
the resolution of the mesh. This can be useful for closely matching
small features, for instance, the length of fingernail may be longer
or shorter in the geometry in comparison to our pre-processed im-
ages.

It is with the eigen textures that we compute hemoglobin changes,
and we use the first four seen in Figure 5. These textures can be
assigned to different texture units, but when only four are needed,
it is efficient to pack them into the red, green, blue, and alpha com-
ponents of a single floating point texture image. Note that in the
previous section we use Matlab to compute the principal compo-
nent analysis, and export the eigen textures as floating point tiff
images, which are easily loaded into texture memory using Open-
SceneGraph.

5.2 GLSL Fragment Program

Almost all the work of modifying the appearance of fingertips is
done in a fragment program. Using the total force on each finger
pad, we evaluate the interpolation function in Equation 6 to com-
pute the PCA basis coefficients for each finger’s hemoglobin quan-
tity change. We have 4 values for each fingertip. Thus, we compute
a total of 20 values and store the results in a vec4 GLSL uniform
array. The GLSL fragment program code necessary to compute the
appearance modification is quite small and is provided in Figure 10.

To summarize the process, it begins with a base color and stia

// Fragment program
sampler2D baseTex;
sampler2D stiaTex;
sampler2D eignTex;
varying vec2 tex0;
uniform vec4 y[5];
uniform vec3 sigma_h;

vec3 base = sampler2D( baseTex, tex0.st );
vec4 stia = sampler2D( stiaTex, tex0.st );
vec4 U03 = sampler2D( eignTex, stia.st );
vec4 y03 = y[int(stia.b)];
float dq = dot( y03, U03 );
vec3 alpha = -log( base );
alpha += dq * sigma_h;
vec3 base2 = exp( -alpha );
base2 = clamp( base2, 0, 1 );
float mask = stia.a;
diffuseColor = mix( base, base2, mask );
// per pixel lighting follows...

Figure 10: GLSL fragment shader code snippet summarizing the
necessary additions to a standard per fragment lighting program.

value texture lookup, followed by a third texture lookup of the PCA
basis at texture coordinates st. The negative log color of the base
texture is computed, and then modified in the direction of σh by
the hemoglobin concentration change. Note that σh is stored in a
uniform and only needs to be set once. The hemoglobin concen-
tration change is computed with a simple dot product of the PCA
coordinates and the 4 PCA basis vector components associated with
the fragment. Note that some care is necessary when building the
stia texture to ensure that the blue component can be correctly
cast to an integer. The final diffuse color is computed by exponenti-
ating the modified negative log color. The color is clamped to [0, 1],
and blended with the base color using the alpha mask.

5.3 Grasping Control and Simulation

The hand grasping animation is simulated with CMLabs’ Vortex
real-time physics simulation software. We use a variety of sim-
ple proportional derivative (PD) feed-forward control trajectories to
produce animation, as well as a grip strength controller that works
from a single grasping pose based on the method of Liu [2009].

Our grip strength controller permits the computation of forces and
torques at the fingertips that will allow for a simple modulation of
grasp strength. From the forces and torque at contacts, we compute
control torques at the joints by multiplying with the Jacobian trans-
pose [Murray et al. 1994]. This lets us set a reference pose for a
proportional derivative controller. We use reasonable joint stiffness
and damping values, which are set using the object-in-hand drop
test suggested by Pollard and Zordan [2005].

When there is one or more contacts at a finger pad, we sum up the
force contributions, and use the magnitude in the PCA coordinate
interpolation functions. We note that even when the simulation’s
collision restitution is set to zero (i.e., no bounce), there can be a
spike in the contact force which results in a brief white flash on
the fingertips. In reality, the appearance changes should be gradual
due to the fact that blood must physically move within the finger-
tip. Therefore, we add viscosity in the form of an exponential de-
cay, which we apply to the force magnitude (conceptually it would
make more sense to do this on the PCA coordinates, but there is no



Figure 11: Leave-one-out cross validation of our synthesis ap-
proach with testing examples at 0.18 N (top) and 9.25 N (bottom).
From left to right are the example images, synthesized images, the
RGB error magnitude of the synthesized image, and the RGB error
of the naive solution (errors scaled 4× to reveal detail).

difference in our model). Our simulation runs at 100 Hz, and we
note pleasing results by blending 0.95 of the previous time step’s
force magnitude with 0.05 of the current.

6 Validation and Results

In this section we discuss three types of validation that we have per-
formed on our fingertip appearance modeling efforts: leave one out
cross validation of interpolated reconstructions, model transferabil-
ity between fingers and subjects, and a verification of hemoglobin
pigment consistency. We also show results from interactive simula-
tions of grasping.

Figure 11 shows a comparison of images synthesized with inter-
polation compared to pre-processed example images that were left
out of the data analysis and fitting. The two examples show that
our method successfully interpolates examples involving both small
and large contact forces with little error. We compare our method to
the naive solution, which simply uses the base fingernail image for
all interaction forces. The absolute error is computed as the mean
squared difference in RGB values of the validation and synthesized
images. The relative error, computed by a ratio of absolute errors,
is 0.6559 at 0.18 N, giving just a moderate improvement over the
naive method. However, at larger interaction forces, the benefit of
our method becomes clear, as the relative error drops significantly,
to 0.1183 at 9.25 N.

To evaluate the transferability of our model across fingers and sub-
jects, we performed the model fitting steps on three separate sets of
10 sample images gathered from three subjects. Figure 12 shows
the first principal component from each set. These first eigen tex-
tures share qualitative similarities, with most changes occurring to-
ward the distal part of the fingernail, and in the skin to the left and
right. The Pearson correlation coefficient of the first eigen texture
between the first two subjects is 0.6033, indicating a moderate cor-
relation, but note that these two eigen textures do not share a com-
mon parameterization (i.e., we would expect a stronger correlation
if image warping was applied).

We have also evaluated the constancy of our hemoglobin pig-
ment estimation across different subjects and example sets. The
hemoglobin pigment vectors for the three subjects in Figure 12,
number one on the left, two in the middle, and three on the left,

Figure 12: The first principal component computed using differ-
ent sets of example data from three different subjects. Shown are
the index finger of subject one (left), the ring finger of subject two
(middle) and the index finger of subject three (right).

were estimated to be

1σh = (0.1584, 0.7786, 0.6072),
2σh = (0.1905, 0.7810, 0.5948),
3σh = (0.2386, 0.7513, 0.6153).

We note that the hemoglobin pigment vectors are remarkably sim-
ilar, with 1σh · 3σh = 0.9964, which is an angle of less than
5 degrees. The variance across the three pigment estimates is
(0.0279, 0.0184, 0.024).

Figure 13 shows an example simulation where a virtual hand sim-
ulation is grasping an object. When we increase the desired grip
strength parameter of the controller, the hand posture changes to
produce larger torques at the joints and in turn larger contact forces.
We see a change in finger posture for the stronger grip, but also
color changes at the fingertip due to blood distribution changes es-
timated by our data driven model. The effect can be seen more
prominently in the supplementary video.

Figure 14 demonstrates both fingertip color changes and the inter-
activity of our physics based grasping simulation. A mouse-spring
interface is used to apply forces on the wooden block, causing it
to rotate. The compliant finger joints bend to accommodate the
motion, while the fingertips show color changes due to the varying
contact forces. Again, this example can be seen in the supplemen-
tary video, along with other examples.

7 Conclusion

Our work describes a method for changing the appearance of fin-
gertips due to contact forces. This provides an important visual cue
to show the force used to grasp an object, much like shadows give
important information about the existence of contact. The PD con-
troller of our hand simulation exhibits posture changes that provide
an additional contact force cue. While deformations and wrinkles
are also important cues that give an indication of contact force, we
have left these aspects out of our work because many techniques al-
ready exist to deal with these issues. Ultimately, any of the contact
deformation techniques proposed in previous work could be com-
bined with our work to improve the overall quality of our results.

Construction of our data-driven model is straightforward. While
there is a human effort in warping images to permit the construc-
tion of the PCA basis, it only needs to be done once because the
model is transferable across fingers and subjects. Color changes
are easily computed in a fragment program using a dot product, an



Figure 13: A simulated grasping sequence where grip strength starts low and increases. Note the whitening of the nail while tissue near the
cuticle takes on a more prominent red color.

Figure 14: A simulated interaction where a box can be pulled away from a grasp using a spring attached to the cursor location. Note the
color changes at the middle and ring fingers that subtly indicate increased contact forces.

addition (or subtraction) of hemoglobin pigment, and a logarithm
and exponentiation to transform between colors and absorptions.

The inclusion of these appearance changes within a physics-based
simulation of grasping helps demonstrate how these subtle cues can
improve the overall interactive experience.

7.1 Future work

While we have mentioned previously that it would be natural to in-
clude the center of pressure and distal joint angle in our model of
hemoglobin changes, we note that we could also measure the vari-
ance of the pressure distribution in our data collection process, and
in turn create a model that can capture the difference between a
sharp and flat contacts (for instance, the corner of a cube, in con-
trast to a face). Because our physics simulation uses rigid collision
proxies, we would likewise need to rework the simulation to include
soft elastic contact, or estimate the size of contact patches based on
interpenetration volume.
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