
TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 1

Blended linear models for
reduced compliant mechanical systems

Sheldon Andrews, Member, IEEE, Marek Teichmann, Paul G. Kry

Abstract—We present a method for the simulation of compliant, articulated structures using a plausible approximate model that
focuses on modeling endpoint interaction. We approximate the structure’s behavior about a reference configuration, resulting in a first
order reduced compliant system, or FORK-1S. Several levels of approximation are available depending on which parts and surfaces we
would like to have interactive contact forces, allowing various levels of detail to be selected. Our approach is fast and computation of
the full structure’s state may be parallelized. Furthermore, we present a method for reducing error by combining multiple FORK-1S
models at different linearization points, through twist blending and matrix interpolation. Our approach is suitable for stiff, articulate
grippers, such as those used in robotic simulation, or physics-based characters under static proportional derivative control. We
demonstrate that simulations with our method can deal with kinematic chains and loops with non-uniform stiffness across joints, and
that it produces plausible effects due to stiffness, damping, and inertia.

Index Terms—character animation, physics simulation, constraints

F

1 INTRODUCTION

R EAL-TIME physics simulation has emerged as a fun-
damental component of interactive immersive virtual

environments. There are important applications in operator
training for robots and heavy equipment, robotic design,
and simulation of virtual humans in video games.

In this paper, we describe a technique that improves in-
teractive simulations involving complex multi-body mecha-
nisms with contact. For instance, the simulation of human or
robotic hands during grasping involves complicated chains
of compliant joints and distributed contacts. Collaborative
grasping and manipulation with multiple people, multi-
legged robots, and vehicle suspension systems can produce
similarly difficult computational scenarios. Simulating these
kinds of systems is tricky because they result in large over-
constrained systems of equations that may require consid-
erable computational effort to solve. Furthermore, special
attention must be paid to the parameters of both the system
and simulation to ensure stability. Our technique simplifies
these kinds of systems, allowing for complex mechanisms
to be simulated while meeting real-time requirements.

Our approach is based on two main assumptions. The
first assumption is that there are a limited number of
surfaces at which articulated systems experience contact.
Thus, we focus on the effective mechanical properties of a
small collection of bodies in the system. This is a reasonable
assumption for many scenarios, such as the wheel ground
contact for a vehicle, the fingertips of a hand during grasp-
ing, or simulated tool-use by virtual humans and robots.
The second assumption is that the multi-body system has
a reference pose, which is held due to linear springs at the
joints. This is certainly true for systems that have passive
linear elastic joints, but also reasonable for virtual humans

• Sheldon Andrews and Paul G. Kry are with the School of Computer
Science, McGill University, Montreal, QC, Canada. Marek Teichmann
is with CMLabs, Montreal, QC, Canada.

Manuscript received March, 2015.

following the equilibrium point hypothesis of motor control,
and in simulated robots using proportional derivative (PD)
control.

In the case of a single interaction surface, our approach
simplifies an entire system to a single 6D mass-spring
system. When there are multiple bodies with surfaces ex-
periencing contact, we use a collection of compliantly cou-
pled 6D bodies. We present an incremental algorithm that
walks the body connectivity graph to compute the dynamics
model. The result is a system that is much simpler than the
original, and is also stable and fast to compute. Note that
we do not assume that the structure has the topological
structure of a tree, as is necessary for fast computation in
many alternative multi-body algorithms.

We call the resulting model a first order reduced compliant
system, abbreviated as FORK-1S. The method description
and model construction originally described by Andrews et
al. [1] are presented in this article with additional numerical
details and with numerous edits focused on improving clar-
ity (for example, the use of compliance matrices instead of
inverse stiffness). In this article we also present an important
extension to the original FORKS model. We show how to
combine multiple FORK-1S models at different linearization
points to reduce simulation errors over a wider range of the
state space.

For a single FORK-1S model at simulation time, external
forces produce a dynamic transient behavior for the bodies
that we include in the model. The positions of all the remain-
ing bodies are visualized by computing a compatible state.
Rather than using inverse kinematics, we compute linear
maps that provide twists for each body as a function of
the reduced system state. With these maps, we then use the
exponential map to compute the body positions. Thus, non-
interacting body positions can be computed independently
and in a parallel fashion. Although the twists only model
the linear response, we observe that the exponential map
gives good behavior with little separation at joints for an

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 2

Fig. 1. Example simulations that we use to demonstrate our technique include a multi-legged robot on uneven terrain, two firefighters catching a
bunny, and humanoid robot grasping. The reduced model for the firefighters involves only one body, the trampoline, while the reduced models for
the legged robot and hand involve multiple coupled end effectors.

adequate range of interaction forces, and we discuss the
size of the errors produced. However, there will always be
states with visible error when using only a single model,
thus we describe in this article how to use multiple models
to reduce the kinematic reconstruction errors as desired. In
particular, the collection of linearized models can be built
by an iterative and interactive online process, by computing
and adding a new FORK-1S model whenever the current
collection does not provide a suitable simulation at a given
point in the state space.

Because the position updates can all happen in parallel,
our method is well suited to parallel implementation on
modern CPUs and GPUs. With new hardware primarily
gaining additional computation power through increasing
core counts, we believe it is important for future algorithms
to exploit parallelism, and we identify this separable com-
putation of the internal state as one of the important con-
tributions of our work. Additionally, note that the runtime
computation necessary to prepare the results of different
models for blending can also be done in parallel.

Another important aspect in our work is that we have
control over the fidelity of the physics simulation, and
can dial it up or down as necessary. For instance, we can
simplify a grasping system to be the finger tips of a hand
in frictional contact with a grasped object. Alternatively,
assuming no sliding or rolling at contacts, we can reduce
the system to model the grasped body alone, which may be
of interest in the simulation of a peg-in-hole insertion task.
Likewise, if we know that additional contacts will occur at
other bodies in the multi-body system, then we can include
those interaction surfaces in our model. Furthermore, in
contrast to our previous work [1], we can reduce simulation
errors over a wider range of the state space by combining
multiple FORK-1S models at different linearization points,
as we detail in this article. This is not simply to reduce
kinematic errors, but also to better model variations in the
effective stiffness of the model throughout the state space.

We demonstrate various scenarios that show the utility
of our approach and the models that we can produce, such
as simulation of human grasping and multi-legged robots,
as shown in Figure 1. We provide computation time compar-
isons, discuss approximation errors and limitations of the
model. Finally, we identify a few interesting opportunities
for future work.

2 RELATED WORK

Modeling and animating physical systems at different levels
of fidelity is a common objective in many aspects of physics-
based animation, such as simulating deformation, friction,
contact, and collision. For deformation, there has been a
vast amount of work in computer graphics exploiting modal
vibration models for reduction. A good survey can be found
in a state of the art report by Nealen et al. [2], while other
alternative elastic simulation reduction techniques continue
to be an active area of research [3], [4], [5], [6]. Frictional
contact computations can also be simplified in a variety of
ways, such as exact Coulomb friction cones, discretized fric-
tion pyramids, box constraints, or penalty based methods
[7], [8], [9]. With respect to the contact equations, the con-
tact patches can be discretized at arbitrary resolutions [10].
Finally, collision detection and response can be modified to
produce various plausible animations with different fidelity
levels [11].

One approach for the simulation of multi-body mechan-
ical systems is to use a constrained full-coordinate formu-
lation. Such systems can be solved quickly with sparse
methods, and linear time solutions are possible when the
structure has the connectivity of a tree [12]. Constrained
multi-body simulations are popular for their simplicity, and
are available in a number of different software libraries
including Vortex, PhysX, Havok, DART, and the Open Dy-
namics Engine. Numerical drift must be addressed in this
case using stabilization techniques [13], and loops result
in redundant constraints that require additional attention
in the solution of such systems [14], [15]. Recently, Tomcin
et al. [16] describe an efficient solution to systems with re-
dundant constraints by using Tikhonov regularization with
carefully selected parameters.

The alternative to full-coordinates is to formulate the
system in minimal coordinates, i.e., the joint angles [17].
Straightforward linear time solvers have been used for
decades, and divide and conquer approaches permit parallel
algorithms with log time complexity [18], [19]. Mechanical
structures with loops likewise require special treatment and
modified solvers. Various libraries based on minimal coor-
dinates exist, such as SD/FAST which is commonly used
in mechanical engineering applications, and DART which is
designed specifically for character animation and simulated
robots.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 3

Our approach resembles neither a minimal coordinate
or redundant coordinate constrained multi-body system.
Instead, our first order reduced compliant systems more
closely resemble coupled elastic mass-spring systems. We
note that other approaches have been proposed for reducing
multi-body dynamics. For example, adaptive dynamics is
possible in reduced coordinates through rigidification of se-
lected joints [20]. In contrast, with a constrained redundant
coordinate formulation, modal reduction of rigid articulated
structures is possible and has been used to animate character
locomotion [21], [22].

We observe that inverse kinematics techniques would
also be a solution for determining the positions of internal
parts of the mechanism. There are a variety of fast meth-
ods for solving over-constrained inverse kinematics prob-
lems using singularity-robust inverse computations [23] or
damped least squares [24]. Instead, we opt for the computa-
tion of each body individually with a twist because each can
be updated in parallel, providing a constant time solution.
While typically unnoticeable for small motions, we evaluate
how joint constraint violations grow and discuss options to
minimize or avoid visible errors during larger interaction
forces by interpolating multiple linear models.

End effector equations of motion are important in robot
control and analysis, and projections of system dynamics are
a central part of the operational space formulation of Khatib
[25]. Our incremental projection of the dynamics produces
a similar model. In contrast, effective end-point dynamics
can also be estimated from data. For instance, model fit-
ting has been applied to human fingertips and hands [26],
[27]. In our case, a dynamics projection approach is prefer-
able because the fitting process can become difficult when
data is complex. Fitting a simple 6D linear mass-spring is
undesirable when the force to displacement relationship
in the full model exhibits non-linearities and bifurcation
behavior. Furthermore, sampling the system behavior can
be expensive and does not fit the desired work flow of
interactive simulators. However, it is not unreasonable to
impose such a simple model, and to identify its behavior
based on a projection of linear compliant or PD controlled
behavior of joints. Ultimately, our simplification produces
an inexpensive first order model with a plausible response
corresponding to a slightly modified set of non-linear joint
controllers.

We use concepts of 6D rigid motion in this paper. The
book by Murray et al. [28] includes a good overview of the
mathematics of rigid motion, twists, wrenches, and adjoint
transformations between different coordinate systems. We
also provide a brief introduction to rigid body kinematics
and related definitions in the Appendix.

Finally, note that this work extends that of Andrews
et al. [1]. We include in this article the formulation of the
FORK-1S model, but we make a number of improvements
for clarity. For instance, compliance matrices are not denoted
as an inverse of a stiffness in this article so as to avoid the
confusion when the stiffness is not invertible. We add some
additional explanations and adjust notation in Sections 3,
4, and 5. Our extensions to multiple linearized models are
described in Section 7, and the improvements that this
brings are evaluated and discussed in Section 8.

3 DYNAMICS PROJECTION AND NOTATION

Our method targets mechanisms made up of articulated
chains of compliant joints where external interaction occurs
only with a small collection of bodies at the interface. We
call these bodies the end effectors, following the terminol-
ogy used in robotics literature. For simplicity, we initially
present our approach for the case where the base, or root,
of the mechanical system is fixed in the world (the case
of a free-body base link is discussed in Section 6). There
are numerous simulation and animation applications where
this type of configuration occurs, such as the grasping and
manipulation examples described in Section 1.

In this section, we first explore the simple case of dy-
namics projection for a single body with one rotational
joint, and provide a preliminary discussion of how we can
incrementally build a projection for a complex mechanical
system.

3.1 Projection for a single link

Consider the behavior of a rigid body link x rotating about
a hinge joint, as illustrated by Figure 2. For simplicity,
we assume the hinge constraint is fixed in the global co-
ordinate frame. The hinge constrains the motion of the

q
x

Fig. 2. A single rigid
body link rotating
about a compliant
joint.

body to a single degree of freedom
and the admissible twists are rotations
about the joint axis. Therefore, the
twist of the rigid body ξ ∈ R6 is a
function of the joint angle θ ∈ R, or
ξ = f(θ). The Taylor expansion of f(θ)
gives the approximation

ξ ≈ f(0) +
δf

δθ
∆θ, (1)

where J = δf
δθ is the Jacobian of the kinematic configuration

of the body. Without loss of generality, let f(0) = 0, giving
the first-order kinematic relationship ξ ≈ J∆θ.

Assuming a stiff joint, any displacement of the hinge
from its rest or initial configuration will generate a torque
about the joint axis. The torque τ and joint displacement ∆θ
of the hinge are related by

Cθτ = ∆θ, (2)

where the scalar Cθ = K−1θ is the compliance, or inverse
stiffness, of the joint. This is why we abbreviate the name
first order reduced compliant systems as FORK-1S.

Body wrenches w ∈ R6 corresponding to joint torques
are computed by the transpose of the Jacobian,

τ = JTw. (3)

Combining Equations 2 and 3 and multiplying on the left
throughout by J gives

JCθJ
Tw = ξ. (4)

Here, Cx = JCθJ
T is the effective compliance of the body

x in spatial coordinates. The twist of the body ξ resulting
from an applied external wrench wext is computed as

Cxwext = ξ (5)

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 4

and the homogeneous transformation of the body’s dis-
placement is computed by the exponential map. Specifi-
cally, we denote Hξ as the 4-by-4 homogeneous transfor-
mation matrix of a body displaced by twist ξ from the rest
configuration and compute it as

Hξ = H exp(ξ), (6)

where H is the transformation matrix of the body in the the
rest configuration (additional comments with respect to this
matrix exponential appear in the appendix).

It is convenient to use compliance to model the behavior
of the body in full coordinates because this compliance will
be zero for motions not permitted by the joint. As such, Cx
can be rank deficient, and a robust method for computing
the matrix inverse is necessary to compute the stiffness Kx.
Our work uses a truncated singular value decomposition
(SVD) [29] to compute the inverse when needed.

We can perform a very similar projection of the rotational
mass matrix Mθ by working with the inverse mass A =
M−1, which we define as accelerability. From the equation
of motion Aθτ = θ̈, and assuming the body acceleration
φ̇ ∈ R6 is approximately Jθ̈, we find JAθJTw = φ̇, thus,

Ax = JAθJ
T . (7)

We follow the same projection for the damping matrix to
produce the second order system

Mxφ̇+Dxφ+Kxξ = w. (8)

Note that the static solution of this system exactly matches
that of the original. Also notice that this example is more
instructional than useful given that Equation 8 has six
dimensions while it was constructed from a 1D joint. That
is, Equation 8 is rank one in this case and requires that we
produce a solution within the space of admissible motions.
In contrast, many of the larger more complex examples we
show in this paper result in full rank systems.

Despite the simplicity of this example, these projections
are useful and a central part of the approach we describe
in Section 4. Specifically, the end effector will be part of
a complex system of joints and rigid bodies. The effective
compliance at the end effector x is due not only to the
compliant behavior of the directly attached joint, but also
depends on the compliance of its parent (and the rest of the
system). As such, we will describe an incremental approach
for computing the effective stiffness, damping, and mass, at
each link in an articulated system.

3.2 Truncated SVD tolerance
Matrix inversion by truncated SVD is used extensively in
our work and this requires tuning a tolerance parameter ε.
A popular formula [30] for choosing the tolerance value of
a matrix A ∈ Rm×n is

ε = max(m,n) ‖A‖ ε, (9)

where ε is the machine epsilon value. Application of Equa-
tion 9 typically results in tolerance values that are suitable
for inversion of the effective matrices. However, for some of
the more complicated mechanisms in this paper we found
it necessary to adjust the tolerance value. This is done by
inspection of the mechanism and modifying the tolerance

= revolute joint

= end effector

c

a
b

c
d

e

f

g

b

d e

a

f g

h i

i

h

Fig. 3. An image visualizing the connectivity of bodies used in construct-
ing the effective coupled stiffness, damping, and mass of end effectors.

parameter until the rank of the effective matrices matches
the expected value. Note that the rank of the effective
matrices corresponds to the number of admissible twist
directions, and this corresponds to the actual degrees of
freedom of the system.

3.3 Notation

Throughout this article we use different coordinate frames.
Preceding superscripts are used to denote the coordinate
frame in which a vector is expressed, for instance, the
velocity φ ∈ R6 of body i in frame j is denoted by jφi.
Likewise, a wrench acting on body i in frame j is denoted
by jwi. The adjoint matrix k

jAd maps the twist of a body
in frame j to frame k, while its inverse transpose is used to
change the coordinates of a wrench from frame j to frame k.

The joint structure of the mechanism has a dual represen-
tation as a directed acyclic graph (DAG), as seen in Figure 3.
The graph’s nodes are links (i.e., rigid bodies), and the edges
correspond to joint constraints, with the direction denoting
the parent-child relationship. Specifically, the terms parent
link and child link refer to the rigid bodies associated with
the outgoing and incoming vertex of the edge, respectively.
Using calligraphic font for sets, we write Pi and Ci to denote
the set of parents and children of link i. Also, Aj is the set
of ancestors of link j where branching occurs (e.g., from
Figure 3, Af contains c and b). Let E denote the set of end
effectors, and L denote all the internal links of a mechanism.
Note that a body can only belong to one of E or L.

In Section 7, we describe how to blend multiple models.
We use a number in parentheses to denote the model index,
for instance, ξ(i) denotes a twist from the ith FORK-1S
model. Interpolated quantities are denoted with an over-bar,
for example, ξ̄ denotes an interpolated twist.

4 INCREMENTAL FORK-1S CONSTRUCTION

We incrementally build our approximated model by starting
at the base link and working towards the end effectors. The
process is simplified by examining three fundamental cases:
chaining, splitting, and merging. In Figure 3 we can observe
the three cases. Body b is a chained extension from body
a. There exists a split at body b because both c and h are
children. Finally, the only merge exists at body e, which has
the two parents c and i. It is interesting to note that the

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 5

Algorithm 1 Recursive algorithm for computation of C.
Initiate recursion with RECURSECOMPLIANCE(base).

function RECURSECOMPLIANCE(i)
if |Pi| == 1 then
Ci,i ← CHAIN(i) // apply Equation 10

else if |Pi| > 1 then
Ci,i ←MERGE(i) // apply Equation 14

end if
for j ∈ Ci do
RECURSECOMPLIANCE(j)

end for
if |Ci| > 1 then
SPLIT(i) // apply Equation 12

end if
end function

parent child relationship between bodies c and e can be set
in either direction without affecting the final projection.

4.1 Chaining

The effective compliance of body b in the chaining case
is the sum of the compliance of the parent link a and
the compliance of the joint between the two bodies, Cθ .
Assuming the effective compliance of the parent link has
already been constructed, it is straightforward to compute
the effective compliance of the child link. The twist-wrench
relationship at the link is

Cb,b = JCθJ
T + b

aAd Ca,a
b
aAdT , (10)

where Ca,a is the effective compliance of the parent link, J
and Cθ are respectively the kinematic Jacobian and compli-
ance of the common joint. Multiplying the compliance Cb,b
by a wrench bwb produces a twist, where the total twist is
the sum of two parts: the twist due to the parent’s motion
and the twist due to the common joint motion.

Note that we use two identical subscripts to denote the
compliance Cb,b because we want the motion of body b
due to wrenches on body b. In the sections that follow,
we will also need to capture the motion of one body due
to a wrench on another body in the system. Also notice
that the compliance matrix could be written b

bCb,b to denote
that it provides twists expressed in the coordinate frame
of body b and must be given wrenches expressed in the
same coordinate frame. We will drop these preceding scripts
when the coordinate frames are clear due to context.

4.2 Splitting

In the case where two or more links share a common parent,
their motion is coupled through their common parent. For
a link with m children, the linear system determining the
twist-wrench relationship of the child links is Φ = Cw where

C =

C1,1 . . . C1,m

...
. . .

...
Cm,1 . . . Cm,m

 (11)

and Φ = (1φT1 · · ·
mφTm)T , w = (1wT1 · · ·

mwTm)T . In block
matrix C the diagonal block Ci,i is the compliance of child
link i computed as described for the chaining case, while
the off-diagonal blocks provide the coupling. That is, Ci,j

determines the twist at link i due to a wrench applied to
sibling link j. To create these off diagonal blocks, an adjoint
transform is used to first map wrenches in link j to the
common parent k. The resulting twist is determined by
the compliance of the parent, which is then mapped from
frame k into the local coordinate frame of link i:

Ci,j = i
kAd Ck,k

j
kAdT . (12)

Chaining additional links after a split is very similar. The
diagonal blocks are updated as per Equation 10, while the
off diagonal blocks are updated using Equation 12, where k
is the lowest common ancestor of the two links i and j.

4.3 Merging
Unlike the cases of serial chain and splitting which work
with compliances, merging uses the effective stiffness of the
parent links. The effective stiffness is a parallel combination
of the effective stiffness of the parent links, and includes the
coupled stiffness due to a common ancestor.

The compliant behavior of link k results from multiple
coupled chains attached to a single rigid body. For a link
with m parents, we consider that the motion of k is the
result of multiple superimposed versions of the link, with
virtual link labels 1, . . . ,m, and coupled compliance matrix
C computed with Equation 11. Let us now write the linear
system describing the wrench-twist relationship using the
stiffness K = C−1, as

w = KΦ (13)

where Φ = (kφT1 · · ·
kφTm)T and w = (kwT1 · · ·

kwTm)T . Note
that we use coordinate frame k for all blocks, and observe
that kφ1 = kφ2 = · · · = kφm because the twist motion of all
the virtual links must be identical. Also, the accumulation
of wrenches equals the total wrench at link k, that is, kwk =∑m
i=1

kwi. Therefore, the effective stiffness at link k is

Kk,k = I K IT (14)

where I = (I · · · I), and I is the 6 × 6 identity matrix. That
is, the stiffness is the sum of all the blocks of the inverted
coupled compliance matrix. The effective compliance at link
k is computed by inverting Kk,k using the truncated SVD
method.

Instead of creating the coupled compliance incremen-
tally, starting from the base and moving out to the end effec-
tors, we use the recursive approach outlined in Algorithm 1,
which combines the chaining, merging, and splitting tech-
niques described in this section. This process is initiated by
a single call RECURSECOMPLIANCE(a), where parameter a
is the base link of the mechanism.

5 WRENCH AND TWIST MAPS

With the method described in the previous section, we
can construct the coupled compliance, damping, and mass
matrix of the end effectors. This allows us to simulate a re-
duced system consisting only of the end effectors. However,
we still need to visualize the positions of all links in the
structure. For this, we use the static pose twist of internal
links as computed from a set of end effectors wrenches, and
we call this the twist map. At a given time step of the reduced
simulation, we compute wrenches that explain the current

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 6

state, i.e., current twists, thus producing a compatible pose
for the internal links.

In order to compute the twist map, we first describe
the construction of a wrench map that distributes wrenches
applied at the end effectors to the internal links. These maps
are built incrementally. Our algorithm starts at each end
effector and traverses the DAG of the mechanism in reverse
order. First, a local wrench map is found that distributes
wrenches from child links to their parents. Then, a global
wrench map is computed by a compound matrix transform
along the kinematic chain.

5.1 Local wrench map
Given the wrench at link k, the local wrench map may be
used to compute the wrenches distributed amongst its par-
ent links. Naively, we could simply divide the wrench by the
number of parent links and compute the wrench to transfer
to the parent links using the appropriate adjoint transforms.
However, this division of force will not be correct because
the wrenches transmitted down different chains will depend
on the effective compliance of each chain. Thus we construct
a linear system to ensure that wrenches are distributed in a
plausible manner that respects the internal joint constraints
and compliances.

Note that the sum of the wrenches at the parent links
must equal the wrench applied at the child link k. That is,

kwk =
∑
i∈Pk

i
kAdT iwi. (15)

Consider the case of m superimposed virtual links that
was presented in Section 4.3. We can write the following
constrained linear system to determine the distribution of
wrenches on the different chains:[

C IT

I 0

] [
w
λ

]
=

[
0

kwk

]
. (16)

The constraint here is the same as Equation 15, except
that all quantities are represented in frame k, and thus the
adjoints are 6 × 6 identity matrices, i.e., I w = kwk. To
compute a local wrench map that takes the wrench from
k and divides it among its parents 1, . . . ,m, we invert the
system above, replacing the right hand side by a block
column matrix that will provide the desired vector when
right multiplied by kwk. That is,

1Wk

...
mWk

∗

 =

[
C IT

I 0

]−1 [
0
I

]
. (17)

This gives us a block column vector containing the wrench
map for each parent link, with a block ∗ due to the Lagrange
multipliers that we can ignore. Note that forming the left
hand side blocks iWk requires computing the inverse of a
system that may be rank deficient due to the coupled com-
pliance. Again, we use a truncated SVD in its computation.

Finally, while these wrench maps only consider the
difficult case of merging (multiple parents) by using super-
imposed virtual parent links, the transmission of wrenches
along simple serial chains is easy. It simply involves a
change of coordinates with an adjoint inverse transpose. For

Algorithm 2 Recursive algorithm to compute all wrench
maps iWe. Here, i is a mechanism link. Initiate recursion by
calling RECURSEWRENCHMAP(e, e, I) for every end effector
e, where I is the identity matrix.

function RECURSEWRENCHMAP(i, e, iWe)
for j ∈ Pi do
jWi ← LOCALWRENCHMAP(i) // apply Equation 17 or 18
jWe ← jWi

iWe // apply Equation 19
RECURSEWRENCHMAP(j, e, jWe)

end for
end function

parent link a and child link b in a serial chain, the wrench
map is simply

aWb = b
aAdT . (18)

5.2 Global wrench map
The matrix iWk gives a local mapping for wrench distribu-
tion between child link k and parent link i. Since the local
wrench map only needs to be computed once, this makes it
possible to construct a global wrench map for computing the
wrench at internal links due to applied wrenches at the end
effectors. Keeping with our scheme of incremental model
building, we use the local map to compute the wrenches
distributed to internal links due to wrenches applied at the
end effectors.

Let jWi be the matrix mapping wrenches from link i
to its parent link j. The matrix mapping wrenches from
end effector e to link j is simply the compound matrix
transform of the wrench map for each body in the path
1, . . . , n between e and j,

jWe = jW1

(
n−1∏
i=1

iWi+1

)
nWe. (19)

By accumulating the wrenches due to all end effectors,
the wrench affecting an internal link is

iwi =
∑
e∈E

iWe
ewe. (20)

We use a recursive algorithm to explore the DAG while
computing the global wrench map for each link. Algorithm 2
gives an overview of how the equations described in this
section are used to build the maps.

5.3 Global twist map
The twist map provides the static solution of the compliant
joint chain due to wrenches applied at the end effectors. For
a serial chain of compliant joints, the twist at an internal link
i is computed as

iφi =
∑
e∈E

iCi,i
iWe

ewe. (21)

However, for more complex mechanisms, special consider-
ation must be given to the coupled motion due to splitting
and merging of the kinematic chain. The contributed motion
of links that share a common ancestor with link i must also
be considered, and the general version of the twist map iTe
in Equation 21 is

iTe = iCi,i
iWe +

∑
a∈A

i
aAd aCa,a

(
aWe − i

aAdT iWe

)
(22)

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 7

and iφi =
∑
e∈E

iTe
ewe. The twist has a component due to

the wrench arriving from each ancestor, but also experiences
motion due to that of its ancestors influenced by end effector
wrenches. The subtraction in the last term ensures that we
do not include the motion of the ancestor induced by the
wrench transmitted through the chain containing link i,
because it is already accounted for in the first term.

6 DYNAMIC SIMULATION

We simulate the reduced dynamic system using a backward
Euler formulation [31]. As such, we have a system matrix of
the form

A = M− h2K− hD. (23)

To solve this system with frictional contacts, we use an iter-
ative projected Gauss-Seidel solver similar to that described
by Erleben [32]. This involves a Schur complement of the
form GTA−1G, where G is the Jacobian for the contact and
friction constraints. We note that it is only necessary to
invert the system matrix once, and reuse this small dense
inverse system for the duration of the simulation.

The solution to the reduced dynamic system only pro-
vides the positions (twists, ξ) and velocities of the end
effectors links. Internal links are updated using the twists of
the end effectors. Specifically, we compute equivalent static
end effector wrenches as w = Kξ, and from these compute
the configuration of internal links using the twist map in
Equation 22.

6.1 Free-body base link
For simplicity, the discussion above has let the body frame
of the base link be fixed in the world. To extend the reduced
model to allow for motion at the base, we integrate a second
equation of motion for a rigid body representing the base.
We set the base mass and inertia matrix to be that of the
entire structure in the rest pose. The motion of the base is
driven by gravity, but also by the net external wrenches
applied at the end effectors. While the coupled equations
of motion could be derived from the Lagrangian, we only
couple the base and end-effector models through external
forces, and assume that the omitted terms such as Coriolis
forces are negligible when the base has large mass and
is moving slowly. In this case, the contact and frictional
constraints must be modified to use the combined velocity
of the base link bφb and velocity of the end effector link kφk
in contact frame c, cφk+b = c

kAd kφk + c
bAd bφb.

7 COMBINING MULTIPLE FORK-1S MODELS

A single FORK-1S model works well for a moderate range
of wrenches applied at the end effectors, but the error in
the twist map approximation of the kinematics does grow
as the model moves away from the rest post (see Figure 7 in
the discussion of results). Furthermore, changes in geometry
can bring important changes in the compliance of the end
effectors as shown in Figure 4. Therefore, in some scenarios
it can be attractive to reduce the kinematic and compliance
errors through the use of multiple FORK-1S models at dif-
ferent linearization points. In this section we describe how
to blend multiple models so that we can produce accurate

K
x

θ2

(1)

(2)

(3)
Kx

(1)

Kx
(2)

Kx
(3)

θ2

θ1 θ2

θ2θ1

θ1

Fig. 4. Three configurations of a two-joint-two-link mechanism shows
the need for multiple linearization points. As the right link is pulled
horizontally, the compliance in the direction of the local x axis (red) goes
to zero as the mechanism approaches a singular configuration. Multiple
linearization points provide appropriate stiffnesses for configurations
away from the rest pose.

simulations even at kinematic states that are disparate from
the rest configuration.

Creating FORK-1S models away from the rest configura-
tion is very similar to the construction of the rest configura-
tion model. We apply a constant set of wrenches at the end
effectors to find the static equilibrium solution using a full
simulation. With the solution, we construct a new linearized
model. Each linearization has a corresponding wrench and
reference pose for the end effectors. Therefore, we augment
the model to include eb, which are the static equilibrium
wrenches at the end effectors e ∈ E , and He, which are
the homogeneous 4-by-4 transformation matrices giving the
configurations of the end effectors at the linearization point.

To combine the models, we use a novel blending scheme
that exploits the eigenstructure of the effective mass, stiff-
ness, and damping matrices across multiple models. An
estimate of the static equilibrium wrench and configuration
is also determined using linear interpolation. We therefore
revise the second order dynamical system to include the
blended quantities, such that

M̄φ̇+ D̄φ+ K̄ξ = w − b̄, (24)

where M̄, D̄, and K̄ are the blended effective mass, stiffness,
and damping matrices, and b̄ is the interpolated static
equilibrium wrench. As previously noted, we use a back-
ward Euler formulation of Equation 24, solving for the end
effector velocities φ.

The final configuration of end effector e is computed as
H̄e exp(eξe). Here, H̄e is the reference configuration of the
end effector for the interpolated model. In other words, if
the current configuration of the end effectors is the same
as one of the sampled configurations, then the matrix H̄e

exactly equals the reference configuration of the closest
model; otherwise, it is approximated by interpolating the
end effector transformations at each linearization point from
the nearby models. We provide additional details on inter-
polating the displacements and transforms of mechanism
bodies in Section 7.3.

7.1 Blending weights
We use a variant of the Shepard interpolation method to
compute the blending weights. The weight for the i-th

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 8

Algorithm 3 Blend matrices with rank-1 updates. Weights
α1...k interpolate the eigendecomposition of matrices
A(1...k). Function RANK(A, ε) computes the rank of A with
tolerance ε, and EIG(A) returns the eigendecomposition.

function BLENDRANK1(A(1...k), α1...k, ε)
Ā← 0
r = RANK(A(1), ε)
Q(1),Λ(1) ← EIG(A(1)) // Note that this is pre-computed
for j ∈ 1 . . . r do
q̄ ← α1Q

(1)
j

λ̄← α1Λ
(1)
jj

for i ∈ (2 . . . k) do
Q(i),Λ(i) ← EIG(A(i)) // Note that this is pre-computed
q ← vector in Q(i)

1...r most similar to Q(1)
j

λ← diagonal entry in Λ(i) corresponding to q
q̄ ← q′ + αiq
λ̄← λ̄+ αiλ

end for
q̄ ← q̄

‖q̄‖
Ā← Ā+ λ̄ q̄q̄T

end for
return Ā
end function

nearby model is

αi =
1

s

(∑
e∈E ‖ξe − ξ

(i)
e ‖
)−p

, (25)

where s is a normalization factor such that the sum of all
αi equals 1. For the results obtained in this paper, we use
p = 2. The distance to the nearby model is computed using
the current end effector displacement ξe and the end effector
displacement at the sample configuration ξ(i)e relative to the
base link. We mix linear and angular components of the
twist vectors by scaling factors 1

r and 1
π respectively, where

r is the bounding sphere radius of the mechanism. These
scaling factors are omitted from Equation 25 for brevity.

7.2 Interpolating the effective matrices
The first step in performing simulation by Equation 24 is to
compute the interpolated effective matrices. As opposed to
simply blending matrix elements, we use the eigenstructure
of each matrix so that the effective mass, stiffness, and
damping of end effectors can rotate in a smooth manner
across the configuration space. Consider the example in
Figure 4. As the second joint rotates, the contribution of the
compliance of the first joint will be in a different direction in
the local coordinate frame. By interpolating the eigenvector
directions we can produce a plausible end effector compli-
ance.

We group the eigenvectors of different matrices accord-
ing to their similarity computed by a dot product. The
grouping of eigenvectors across different models is straight-
forward when the linearized models are not too far from
one another in the configuration space. We pre-compute the
eigendecomposition of the effective matrices and store the
eigenvectors and eigenvalues with each model.

At run time, we interpolate the eigenvectors and corre-
sponding eigenvalues using the blending weights, and then
assemble the blended matrix as a sum of rank-1 matrices.
These are formed by the outer-products of the interpolated

Algorithm 4 Blending internal links with multiple FORK-1S
models using a kinematic approach given end effector
twists ξ and blending weights α.

function UPDATEINTERNALLINKS(ξ, α1...k)
ew← K̄eξ
for l ∈ L do // visit all internal links
ξ̄l ← 0
for i ∈ 2. . .k do
ξ

(i)
l ←

∑
e∈E

lT
(i)
e

ew
(i)
e // use twist map, §5.3

ξ̄l ← ξ̄l + αi log
(
H

(1)
lξ

−1
H

(i)
lξ

)
// note H(i)

lξ =H
(i)
l exp(ξ

(i)
l)

end for
H̄l ← H

(1)
lξ exp(ξ̄l) // Update simulation body l using H̄l

end for
end function

eigenvectors and scaled by interpolated eigenvalues. We
preserve the rank of the original matrices. Since the effective
matrices are real and symmetric, this is easily done by
excluding eigenvalues that have magnitude less than some
epsilon value.

The method used to blend effective matrices is provided
in Algorithm 3. The eigenstructure of each matrix is pre-
computed as Q containing the eigenvectors as columns,
and Λ a diagonal matrix containing the eigenvalues. The
eigenvalues are sorted by descending magnitude.

As a first step, the rank r is determined by counting the
eigenvalues with a magnitude greater than ε. The closest
model, which corresponds to the largest αi, is used as a
reference and its eigendecomposition is used to determine
the rank for the blending. Next, the eigenvalues and eigen-
vectors are linearly interpolated across all models using the
blending weights α1...k. Finally, the interpolated eigenvector
q̄ is normalized and used to performed a rank-1 update
to the blended matrix Ā, scaled by the interpolated eigen-
value λ̄.

7.3 Interpolating the internal body twists
In addition to blending the end effector behavior, the twists
of the internal bodies are also interpolated across the mod-
els. Rather than using a low-rank blending method involv-
ing the twist map and the wrench map, we instead choose to
compute the internal wrenches of the blended end effectors
and compute the displacements of internal bodies and blend
these displacements across all models.

Interpolation of rigid transformations can take inspi-
ration from other work which works with rotations, for
instance in averaging quaternion rotations or cubic curves
of rotations [33], [34], [35]. To interpolate two models with
each providing a twist away from rest, ξ(1)j and ξ

(2)
j , we

compute the interpolated transform H̄ of the end effector as

H̄ = H
(1)
ξ exp

(
α log

(
H

(1)
ξ

−1
H

(2)
ξ

))
(26)

where α is the interpolation parameter and

H
(j)
ξ = H(j) exp

(
ξ(j)

)
(27)

gives the transform of the end effectoring according to the
j-th model.

To include additional models in the interpolation, we
use addition with our base model H(1) exp(ξ(1)) serving as

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 9

Algorithm 5 The simulation algorithm for blended FORK-1S
combines methods for interpolating the effective matrices
and displacements of the internal bodies.

function BLENDEDSIMULATION
Compute blending weights α1...k // see Equation 25
M̄← BLENDRANK1(M(1...k), α1...k, ε)
K̄← BLENDRANK1(K(1...k), α1...k, ε)
D̄← BLENDRANK1(D(1...k), α1...k, ε)
for e ∈ E do
eb̄e ←

∑k
i=1 αi

eb
(i)
e // static equilibrium wrench

H̄e ← H
(1)
e exp

(∑k
i=2 αi log(H

(1)
e

−1
H

(i)
e)
)

// ref. config.
end for
ξ ← STEPENDEFFECTORDYNAMICS // solve Equation 24
UPDATEINTERNALLINKS(ξ, α1...k) // see Algorithm 4

end function

the linearization point for other models. The observation is
that this works well as long as the error for both our base
model and the other models are close enough. The other
observation is that while order is important when chaining
multiplications, by doing interpolation with addition inside
the exponential we avoid the order dependence of matrix
multiplication. Specifically,

H̄ = H(1) exp
(k∑
j=2

αj log(H(1)−1H(j))
)
. (28)

Algorithm 4 outlines the method used to perform kine-
matic blending of the internal links. Much as in the single
model approach, the end effector wrenches ew are estimated
as the end effector displacements eξ transformed by the
interpolated stiffness. For each model, the displacement
contributed by each end effector is computed using the twist
map lT

(i)
e , which is specific to the link and the model. This

is then used to update the interpolated displacement ξ̄l of
link l using Equation 28. Note that our implementation of
the Algorithm 4 is parallelized, per link, across the models.

7.4 Blended FORK-1S simulation
The procedure for dynamical simulation of the blended
model is outlined in Algorithm 5. The first step is to de-
termine the blending weights based on the current displace-
ments of the effectors. We then compute the interpolated
mass, stiffness, and damping matrices, along with the static
equilibrium wrench and reference configuration for each
end effector. With the blended model, we then step the
simulation of the end effectors and update positions of
internal links.

7.5 Model selection
Non-parametric regression methods, such as the k-nearest
neighbors (k-NN) algorithm, seem well-suited for our
blending approach. However, this requires selecting a subset
of the sampled models and interpolating across them. We
have observed that excluding models from blending can
produce popping artifacts in the motion of the internal
links. Therefore, we choose to perform blending across all
of the sampled models. While blending across all models is
wasteful, we recognize that a good avenue of future research
would be to group models into well-behaved subsets and to

build a graph of these subsets that can be walked at run-
time.

In some instances, one or more of the effectives matrices
in the blending set are lower rank than the others. This
typically occurs if the mechanism configuration is singular
when the model is constructed. In other words, the actual
degrees of freedom of the system is not reflected by the rank
of the effective matrices. For example, the undeformed con-
figuration of the ladder in Figure 5 is singular since it cannot
be stretched or deformed in a vertical direction; that is, the
vertical direction is inadmissible. This causes problems with
blending, since we do not want to introduce inadmissible
displacements to the simulation of the mechanism.

One solution is to blend only eigenvectors that corre-
spond to admissible twist directions across all models, and
exclude directions contained only in the higher rank models.
As the simulation moves away from a singular configu-
ration, the reduced rank matrix can be dropped and the
additional admissible directions blended in. Another option
is to artificially increase the rank of the lower rank matrices
and blend them with the others. For the stiffness matrix,
this corresponds to blending in a very large stiffness; for
mass, a near infinite mass. Equivalently, in our examples we
take the approach of blending the inverse effective matrices,
and zero is used for inadmissible directions when the set
contains lower rank matrices.

8 RESULTS

We have integrated our approach with the Vortex simulator
of CMLabs Simulations. In this section we demonstrate the
utility of our approach and show different models that we
can produce for various scenarios of importance. Examples
include simulation of multi-legged robot in contact with
uneven terrain, and simulation of human grasping, as seen
in Figure 1 and in the accompanying video. Note that all
video results were obtained by FORK-1S simulation, unless
otherwise stated.

Figure 5 shows a comparison between simulations with
the single model FORK-1S method versus a commercial
physics engine. In each case, a constant force is applied
at an end effector and simulated until static equilibrium
is reached. The final configurations are perceptually very
similar between simulation with FORK-1S and the full body
physics engine.

8.1 Blended mechanisms

Figure 6 shows a comparison of mechanisms simulated
using single model FORK-1S versus the blended approach
described in Section 7. The single model method begins to
display constraint violation errors when the end effectors
are displaced away from the initial configuration. This is
because a single linearization point is no longer a good
approximation of the dynamical or kinematic behavior of
the mechanism. By including models at additional lineariza-
tion points, the non-linear behavior of the mechanism is
better represented by smoothly blending in variations of end
effector dynamics.

The accompanying video demonstrates that new models
can be added quickly and interactively to the blending

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 10

FORK-1S

FORK-1S

FORK-1S

Vortex

undeformed

Vortex
Vortex undeformed

undeformed

Fig. 5. Deforming a helix (left), spring ladder (middle), and “Y” mechanism (right). The rest configuration is shown, as well as a comparison between
the static solution reach by simulation with FORK-1S vs. a constrained rigid body simulator (Vortex). In each case, a 100 N force is applied (yellow
arrow); all joints use a compliance of Cθ = 0.001.

set. Forces are applied at an end effector of the ladder
mechanism using a virtual spring that pulls the end ef-
fector toward the on-screen cursor. When constraint vio-
lation errors are visually perceptible using the FORK-1S
simulation, the user switches to using a full constrained
multi-body simulation. A new model is constructed once
static equilibrium is reached. The eigenvalue decomposition
of the effective matrices of the new model are computed
and stored for blending, which is not a computationally
expensive step given that the matrices are as small as 6-
by-6 if there is only one end-effector. Finally, switching back
to the FORK-1S simulation, the new model is blended with
the other models.

For the results in this paper, we manually select the
linearization points using this interactive approach. How-
ever, we conceptualize that an automatic method could be
devised whereby the selection process is guided by the
constraint violation and a maximum error threshold. For
instance, by randomly deforming the mechanism across its
state space.

8.2 Constraint violation error

We perform a number of experiments to explore, quantita-
tively, how well the FORK-1S method approximates the be-
havior of a mechanism. Specifically, we measure constraint
violation error versus end effector displacement. The error
at each joint is measured as the Euclidean distance between
constraint attachment points of body pairs.

Figure 7 shows the relative constraint error for the “Y”
and the ladder mechanism (shown in Figure 5) as an end
effector is displaced by applying an external force in con-
stant direction and slowly increasing the magnitude. The
relative error is computed as the position violation of each
constraint, accumulated over all joints and scaled by 1

r ,
where r is the bounding sphere radius of the mechanism
at the rest configuration. This is plotted versus the relative
displacement of the end effector, which is computed as the
Euclidean norm of the twist with the linear component
scaled by 1

r and the angular component scaled by 1
π .

Example # links Vortex FORK-1S Speed-up
N=1 N=4 N=8

Helix 50 240 20 12 15 20.0×
Helix 100 470 32 16 21 29.4×
Helix 400 2150 112 84 76 28.3×
Ladder 48 334 22 14 18 23.9×
Robot arm 20 121 24 18 21 6.7×

TABLE 1
The mean computation time in µs per simulation step for various

examples. Our method with N threads is compared against performing
a full constrained rigid body simulation using the Vortex physics engine.

Example # links Vortex # of FORK-1S Speed-up
1 2 4

Helix 200 1048 78 96 160 13.4×
Ladder 36 302 37 82 99 8.2×
Robot arm 20 121 26 47 86 4.7×

TABLE 2
The mean computation time in µs per simulation step for various

examples using the blended FORK-1S method. In each case, 4 threads
were used to simulate the blended model.

We note that the rate of increase in the error is dependent
on the direction of the applied force, but even for signif-
icant displacements of the end-effector, the proportional
constraint error remains low. For example, when the relative
end effector displacement is 1, the single model FORK-1S
method has a relative violation error in the range of 0.1
to 0.15. However, by using the blended FORK-1S method,
the error for a larger range of displacements is significantly
reduced. From Figure 7 it is clear that the blended FORK-1S
method interpolates the sample points (i.e., the error be-
comes zero) in addition to reducing the overall constraint
violation error.

8.3 Performance

Here, we compare the overhead of simulating a mechanism
with a constrained rigid body physics engine versus the
method outlined in this paper. An Intel Core i7 2.8 GHz pro-
cessor with 4 cores was used to obtain performance results.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 11

RestFORK-1S

Blended
FORK-1S

Vortex

Vortex

Blended
FORK-1S

FORK-1S

Rest

FORK-1S Blended FORK-1S VortexRest

Fig. 6. Deforming a ladder (upper left), helix (right), and loop structures (bottom left), comparing blended FORK-1S to single model FORK-1S. A
force is applied at the center of mass of end effector bodies with a direction indicated by the yellow arrow. In the case of blending, only two models
were used and the static equilibrium configuration shown in these examples was not included as a linearization point.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

re
la

ti
ve

 c
o

n
st

ra
in

t
er

ro
r

relative displacement |K-1w|

"Y" mechanism (1 model)

"Y" mechanism (2 models)

"Y" mechanism (3 models)

"Y" mechanism (4 models)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

re
la

ti
ve

 c
o

n
st

ra
in

t
er

ro
r

relative displacement |K-1w|

Ladder mechanism

Ladder mechanism (2 models)

Ladder mechanism (3 models)

Ladder mechanism (4 models)

Fig. 7. The relative constraint error is measured for the “Y” shaped mechanism (left) and ladder mechanism (right) as a single end effector is pulled
is various directions. The vertical axis gives the constraint violation error, which is relative to the mechanism size. The horizontal axis gives the
relative displacement of the end effector, which is also represented in proportion to the mechanism.

Note that only moderate efforts were made to optimize our
implementation.

The computation times for solving the dynamical system
in Section 6 and performing numerical integration are given
in Table 1. Each mechanism listed in the table was simulated
using a single threaded version of the Vortex physics engine,
as well as our single model FORK-1S implementation using
different numbers of threads for the parallel update of
internal links.

The FORK-1S method performed better in all cases, with
the most drastic speedups observed when simulating long
serial chains. Notably, there is a 28 times performance in-
crease for the helix example with 400 links. Also, as Table 1
suggests, there is a sweet spot in choosing the thread count
for simulating a particular mechanism, with an increase of
threads not necessarily giving better performance. One prac-

tical consideration that impacts performance significantly is
grouping the internal links so that updates are performed in
batches per thread. This avoid unnecessary context switch-
ing. Additionally, the associated data structures are stored
contiguously in memory in order to minimize memory
thrashing issues.

Table 2 shows the computation time per step for sim-
ulating various mechanisms using the blended FORK-1S
approach. We note that the computation time increases with
the number of models. This is not unexpected since the
data structures of individual models must be updated in
addition to computing the parameters of the blended model.
Specifically, our implementation is integrated with the Vor-
tex physics engine and there is overhead due to conversion
between data structures used by FORK-1S. However, the
blended simulation remains a notable improvement over the

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 12

full constrained rigid body simulation. Also, Equation 26
is used to update the reference configuration of the end
effectors as well as the configuration of the internal links.
Conversion of the homogeneous transform matrix using
the exponential map becomes a bottle neck is this case,
and further performance improvement could be realized by
optimizing our implementation of this function.

8.4 Discussion and limitations

Interior body reconstructions have constraint errors when
large external forces are applied at the end effectors of a
simulation with just a single FORK-1S model. Therefore one
of our contributions with this work is to introduce models
at additional linearization points and blend their behavior
as the system is pulled from its rest state.

Although the added models extend the range of motion
for a mechanism, geometric limits of the internal joints are
not necessarily well approximated by our method. Adap-
tively stiffening the system may help in these situations,
become stiffer as singular and joint limit configurations are
approached. This strategy could also be used to avoid states
where joint constraint errors appear. We leave joint limits
and additional non-linear compliance scaling for future
work.

It is also possible to make small modifications to the ge-
ometry to correct errors at the expense of letting rigid links
deform, and such strategies have been used in repairing foot
skate [36] and length changes are often not perceived [37].
Errors can be fixed by allowing rigid bodies to stretch, but
there is a limit to how large external forces can grow before
geometry modifications are visible.

We note that the behavior of the reduced model can
differ from the full model. In general, we observe the re-
duced systems to be slightly stiffer than their fully simulated
systems. This is not surprising, and we believe this occurs
naturally due to the lower number of degrees of freedom
and the linearization we impose. Higher levels of damping
seen in the reduced system can be explained by our im-
plicit integration, while Vortex uses a symplectic integration
scheme.

The construction process assumes that we can walk from
a base node in the graph to all end effectors. When there are
loop closures between two end effectors that are on the far
side of the graph from the base, the incremental algorithm
will not find them. An alternative projection technique is
necessary in this case.

9 CONCLUSION

First order reduced models of compliant mechanisms pro-
vide a fast alternative to simulating virtual humans and
robots. By focusing only on the end effectors, the simulation
only needs to solve a small dense system while the full
state of the non-reduced mechanism can be computed in
parallel. Using the exponential map to compute the state of
the internal links produces a desirable behavior with little
separation at joints for a good range of interaction forces.
Our method deals with loops in the constraints, and permits
different levels of physics fidelity by adjusting the number
of end effectors included in the reduced model. Finally, with

the method we present for blending multiple linearization
points we can accurately simulate structures over a wider
range of simulation states.

FORK-1S provide an important new approach among a
large spectrum of techniques important for the creation of
interactive and immerse virtual environments. We believe
it will be a useful tool for improving industrial training
simulations and physics-based character animation.

9.1 Future Work
A number of avenues of future work are discussed in
Section 8.4. We also intend to investigate various methods
for controlling end effector motion. This is useful for many
applications, such as manipulation tasks in character ani-
mation and robotics simulation. Online control for dexter-
ous manipulation tasks has been successfully demonstrated
using PD servo control [38]. We believe a similar control
framework could be achieved using FORK-1S, for example,
by modulating the static equilibrium wrench to drive the
gripper towards a set point posture rather than interpolating
the value of be across the models. Similarly, our reduced
compliant model could be used to perform short-horizon
motion planning using model predictive control (MPC), for
instance, in combination with the technique described by
Kumar et al. [39]. We believe that reduced models for MPC
are an important avenue of future research.

APPENDIX - RIGID BODY KINEMATICS

Any rigid motion from one position to another may be
described as a screw motion. That is, there exists a coordinate
frame in which the motion consists of a translation along
an axis combined with a rotation about the same axis. The
time derivative of a screw motion is a twist consisting of
the linear velocity v ∈ R3 and angular velocity ω ∈ R3.
Since much of this paper concerns statics, and because it
is convenient to write rigid displacements (screws) in body
coordinate frames, we abuse the term twist for these small
displacements ξ. We use φ and the term velocity to write the
equations of motion and specifically use the body velocity as
defined by Murray et al. [28]. Analogous to a twist, a wrench
w ∈ R6 is a generalized force consisting of a linear force
f ∈ R3 and a rotational torque τ ∈ R3. Following Murray et
al., we pack twist and wrench vectors with linear parts on
top and angular parts on the bottom, i.e., φ = (vTωT)T and
w = (fT τT)T .

Twists and wrenches transform to different coordinate
frames using the adjoint matrix Ad ∈ R6×6. To transform
twists from coordinate frame a to coordinate frame b, we
directly use

b
aAd =

[
b
aR

bp̂a
b
aR

0 b
aR

]
, (29)

where b
aR ∈ SO(3) is the rotation matrix from frame a

to b, the origin of coordinate frame a in coordinates of
frame b is bpa, and ˆ is the cross product operator. That
is, aφ in frame b is computed as bφ = b

aAdaφ. The inverse
transpose of the adjoint is used to transform a wrench
between coordinate frames, bw = b

aAd−T aw. Finally, we use
the exponential map eφ̂ : R6 → SE(3) on a twist to compute
the relative rigid motion as a homogeneous transformation

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 13

matrix using formulas given by Murray et al. [28]. Here,
we follow Murray et al. where the hat notation φ̂ denotes
a repacking of the 6 components of a twist into a 4-by-4
matrix. However, throughout this paper we omit the hat
notation and let it be implicitly clear from context that the
exponential of a twist is indeed the matrix exponential.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their suggestions for
improving the paper. This work was supported by funding
from NSERC, CFI, MITACS, CINQ, and GRAND NCE.

REFERENCES

[1] S. Andrews, M. Teichmann, and P. G. Kry, “FORK-1S: Interactive
compliant mechanisms with parallel state computation,” in
Proceedings of the 18th Meeting of the ACM SIGGRAPH Symp. on
Interactive 3D Graphics and Games, ser. I3D ’14, 2014, pp. 7–14.
[Online]. Available: http://doi.acm.org/10.1145/2556700.2556717

[2] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson,
“Physically based deformable models in computer graphics,”
Computer Graphics Forum, vol. 25, no. 4, pp. 809–836, 2006.

[3] M. Nesme, P. G. Kry, L. Jeřábková, and F. Faure, “Preserving
topology and elasticity for embedded deformable models,” ACM
Trans. on Graphics, vol. 28, no. 3, p. 52, 2009.

[4] J. Barbič and Y. Zhao, “Real-time large-deformation substructur-
ing,” ACM Trans. on Graphics, vol. 30, no. 4, pp. 91:1–91:8, Jul. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2010324.1964986

[5] T. Kim and D. James, “Physics-based character skinning using
multidomain subspace deformations,” IEEE Trans. on Visualization
and Computer Graphics, vol. 18, no. 8, pp. 1228–1240, 2012.

[6] D. Harmon and D. Zorin, “Subspace integration with local
deformations,” ACM Trans. on Graphics, vol. 32, no. 4, pp.
107:1–107:10, 2013. [Online]. Available: http://doi.acm.org/10.
1145/2461912.2461922

[7] C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, “Realistic haptic
rendering of interacting deformable objects in virtual environ-
ments,” IEEE Trans. on Visualization and Computer Graphics, vol. 12,
no. 1, pp. 36–47, 2006.

[8] E. G. Parker and J. F. O’Brien, “Real-time deformation and
fracture in a game environment,” in Proc. of the ACM
SIGGRAPH/Eurographics Symp. on Comp. Anim., 2009, pp. 165–175.
[Online]. Available: http://doi.acm.org/10.1145/1599470.1599492

[9] K. Yamane and Y. Nakamura, “Stable penalty-based model of
frictional contacts,” in Proc. of IEEE International Conference on
Robotics and Automation, 2006, pp. 1904–1909.

[10] J. Allard, F. Faure, H. Courtecuisse, F. Falipou, C. Duriez, and P. G.
Kry, “Volume contact constraints at arbitrary resolution,” ACM
Trans. on Graphics, vol. 29, no. 4, p. 82, 2010.

[11] C. O’Sullivan and J. Dingliana, “Collisions and perception,” ACM
Trans. on Graphics, vol. 20, no. 3, pp. 151–168, 2001. [Online].
Available: http://doi.acm.org/10.1145/501786.501788

[12] D. Baraff, “Linear-time dynamics using lagrange multipliers,”
in Proc. of the 23rd annual conference on Computer graphics
and interactive techniques, 1996, pp. 137–146. [Online]. Available:
http://doi.acm.org/10.1145/237170.237226

[13] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary
Differential Equations and Differential-Algebraic Equations, 1st ed.
Philadelphia, PA, USA: Society for Industrial and Applied Mathe-
matics, 1998.

[14] U. Ascher and P. Lin, “Sequential regularization methods for
simulating mechanical systems with many closed loops,” SIAM
Journal on Scientific Computing, vol. 21, no. 4, pp. 1244–1262, 1999.

[15] F. Faure, “Fast iterative refinement of articulated solid dynamics,”
IEEE Trans. on Visualization and Computer Graphics, vol. 5, no. 3, pp.
268–276, 1999.

[16] R. Tomcin, D. Sibbing, and L. Kobbelt, “Efficient enforcement of
hard articulation constraints in the presence of closed loops and
contacts,” in Computer Graphics Forum, vol. 33, no. 2. Wiley Online
Library, 2014, pp. 235–244.

[17] R. Featherstone and D. Orin, “Robot dynamics: equations and
algorithms,” Proc. of IEEE International Conference on Robotics and
Automation, vol. 1, pp. 826–834, 2000.

[18] R. Featherstone, Rigid Body Dynamics Algorithms. New York:
Springer, 2008.

[19] R. M. Mukherjee and K. S. Anderson, “A logarithmic complexity
divide-and-conquer algorithm for multi-flexible articulated body
dynamics,” Journal of Computational and Nonlinear Dynamics, vol. 2,
no. 1, pp. 10–21, 2006.

[20] S. Redon, N. Galoppo, and M. C. Lin, “Adaptive dynamics of
articulated bodies,” ACM Trans. on Graphics, vol. 24, no. 3, pp.
936–945, 2005.

[21] P. G. Kry, L. Reveret, F. Faure, and M. P. Cani, “Modal locomotion:
Animating virtual characters with natural vibrations,” Computer
Graphics Forum, vol. 28, no. 2, pp. 289–298, 2009.

[22] R. F. Nunes, J. B. Cavalcante-Neto, C. A. Vidal, P. G. Kry,
and V. B. Zordan, “Using natural vibrations to guide control
for locomotion,” in Proceedings of the ACM SIGGRAPH Symp.
on Interactive 3D Graphics and Games, ser. I3D ’12. New
York, NY, USA: ACM, 2012, pp. 87–94. [Online]. Available:
http://doi.acm.org/10.1145/2159616.2159631

[23] K. Yamane and Y. Nakamura, “Natural motion animation through
constraining and deconstraining at will,” IEEE Trans. on Visualiza-
tion and Computer Graphics, vol. 9, no. 3, pp. 352–360, 2003.

[24] S. R. Buss and J.-S. Kim, “Selectively damped least squares for
inverse kinematics,” Journal of Graphics Tools, vol. 10, 2004.

[25] O. Khatib, “A unified approach for motion and force control of
robot manipulators: The operational space formulation,” IEEE
Journal of Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[26] A. Z. Hajian and R. D. Howe, “Identification of the mechanical
impedance at the human finger tip,” Journal of biomechanical engi-
neering, vol. 119, no. 1, pp. 109–114, 1997.

[27] C. J. Hasser and M. R. Cutkosky, “System identification of the
human hand grasping a haptic knob,” in Proc. of the 10th Symp. on
Haptic Interfaces for Virtual Environments and Teleoperator Systems,
2002. [Online]. Available: http://ieeexplore.ieee.org/iel5/7836/
21555/00998957.pdf

[28] R. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to
robotic manipulation. CRC Press, 1994.

[29] P. Hansen, “Truncated singular value decomposition solutions
to discrete ill-posed problems with ill-determined numerical
rank,” SIAM Journal on Scientific and Statistical Computing,
vol. 11, no. 3, pp. 503–518, 1990. [Online]. Available: http:
//epubs.siam.org/doi/abs/10.1137/0911028

[30] W. T. V. W. H. Press, S. A. Teukolsky and B. P. Flannery, Numerical
Recipes (3rd edition). Cambridge University Press, 2007.

[31] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in Proc.
of the 25th annual conference on Computer graphics and interactive
techniques, 1998, pp. 43–54.

[32] K. Erleben, “Velocity-based shock propagation for multibody
dynamics animation,” ACM Trans. on Graphics, vol. 26, no. 2, 2007.
[Online]. Available: http://doi.acm.org/10.1145/1243980.1243986

[33] M.-J. Kim, M.-S. Kim, and S. Y. Shin, “A general construction
scheme for unit quaternion curves with simple high order
derivatives,” in Proceedings of the 22Nd Annual Conference on
Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’95,
1995, pp. 369–376. [Online]. Available: http://doi.acm.org/10.
1145/218380.218486

[34] S. R. Buss and J. P. Fillmore, “Spherical averages and applications
to spherical splines and interpolation,” ACM Trans. Graph.,
vol. 20, no. 2, pp. 95–126, Apr. 2001. [Online]. Available:
http://doi.acm.org/10.1145/502122.502124

[35] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Averaging
quaternions,” Journal of Guidance, Control, and Dynamics, vol. 30,
no. 4, pp. 1193–1197, 2007.

[36] L. Kovar, J. Schreiner, and M. Gleicher, “Footskate
cleanup for motion capture editing,” in Proc. of the ACM
SIGGRAPH/Eurographics Symp. on Comp. Anim., 2002, pp. 97–104.
[Online]. Available: http://doi.acm.org/10.1145/545261.545277

[37] J. Harrison, R. A. Rensink, and M. van de Panne, “Obscuring
length changes during animated motion,” ACM Trans. on
Graphics, vol. 23, no. 3, pp. 569–573, 2004. [Online]. Available:
http://doi.acm.org/10.1145/1015706.1015761

[38] S. Andrews and P. G. Kry, “Goal directed multi-finger manipula-
tion: Control policies and analysis,” Computers & Graphics, vol. 37,
no. 7, pp. 830–839, 2013.

[39] V. Kumar, Y. Tassa, T. Erez, and E. Todorov, “Real-time behaviour
synthesis for dynamic hand-manipulation,” in Robotics and Au-
tomation (ICRA), 2014 IEEE International Conference on. IEEE, 2014,
pp. 6808–6815.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, R? 201? 14

Sheldon Andrews received a B.Eng. degree in
computer engineering from Memorial University,
St. John’s, Canada in 2004, a M.A.Sc. degree
in electrical engineering from the University of
Ottawa, Canada in 2007, and a Ph.D. in com-
puter science from McGill University, Montreal,
Canada in 2014. He worked as a software de-
veloper from 2007 to 2009 implementing and de-
signing real-time physics simulations at CMLabs
Simulations in Montreal, Canada. He is currently
a postdoctoral researcher at Disney Research

in Edinburgh, UK. His research interests include human motion syn-
thesis, physics-based animation, grasping and dexterous manipulation,
measurement based modeling for virtual environments, and intelligent
systems. Dr. Andrews is a member of the IEEE.

Marek Teichmann completed his Ph.D. in com-
puter science at the Courant Institute, NYU,
in the field of Computational Geometry and
Robotics, working on theoretical and practical
aspects of grasping and fixturing. Marek was col-
lision group leader at Lateral Logic, a developer
of visualization and simulation software technol-
ogy. Marek continued this work at MathEngine,
where he designed and implemented advanced
collision algorithms as part of computer simu-
lations of rigid-body dynamics systems. He is

currently CTO of CMLabs Simulations.

Paul G. Kry received his B.Math. in computer
science with electrical engineering electives in
1997 from the University of Waterloo, and his
M.Sc. and Ph.D. in computer science from the
University of British Columbia in 2000 and 2005.
He spent time as a visitor at Rutgers during
most of his Ph.D., and did postdoctoral work at
INRIA Rhne Alpes and the LNRS at Universit
Ren Descartes. He is currently an associate pro-
fessor at McGill University. His research interests
are in physically based animation, including de-

formation, contact, motion editing, and simulated control of locomotion,
grasping, and balance. He co-chaired ACM/EG Symposium on Com-
puter Animation in 2012, Graphics Interface in 2014, and served on
numerous program committees, including ACM SIGGRAPH, ACM/EG
Symposium on Computer Animation, Pacific Graphics, and Graphics
Interface. He heads the Computer Animation and Interaction Capture
Laboratory at McGill University. Paul Kry is currently the president of the
Canadian Human Computer Communications Society, the organization
which sponsors the annual Graphics Interface conference.

